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Abstract 
Residential location choice (RLC) predicts where and how people choose their 
residential location in the framework of land use–transport interaction models (LUTI). 
This paper seeks an efficient RLC model in the context of irregular zoning of location 
alternatives. The main current proposals in the field are discrete choice models. In RLC 
modeling, the alternatives are spatial units, and spatially correlated logit (SCL) is an 
efficient approach when the analyst cannot pre-define groups of alternatives that 
efficiently reflect the systematic substitution patterns among the alternatives. The SCL 
uses the spatial information on the contiguity of the zones to determine spatial 
correlation among the alternatives. Urban residential location choice usually uses 
administrative zoning, which is very irregular in many cities (mainly historic cities); 
however, SCL is not efficient in this context owing to the limitations of the binary 
contiguity spatial variable employed as a spatial correlation metric (SCM). This paper 
proposes an extension of the mixed SCL model, with an SCM based on the proportion of 
common border length in contiguous zones, which is more efficient in the irregular 
urban zoning context. The proposed model is applied to an urban case study of LUTI RLC 
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modeling with irregular zoning, based on the administrative divisions of the city of 
Santander (Spain) and is shown to be empirically more efficient than the previous 
approaches. 

1. Introduction 
Public administrations and companies must plan infrastructure supply and services in 
advance, including their location and capacity, to manage resources efficiently. To that 
end, they need to predict demand with the highest possible reliability. The demand 
models of activity-transportation type are based on the geographic distribution of 
population and activities. This paper deals with the spatial and behavioral aspects of 
modeling urban land use and transportation demand. The most extensively-used 
current approach involves mathematical simulation models of the interaction between 
land uses and transportation (LUTI), with a structure of the zonal space and two main 
components: a subsystem of land uses and that of transportation (Torrens 2000). 

In LUTI models, the choice of the residential location (RLC) is part of the subsystem of 
land uses (together with the location of activities). It influences the transportation 
subsystem due to the necessity of people’s mobility and goods transport (Wegener 
1994) and is influenced by it through the accessibility or ease with which an activity can 
be accessed from a given location using a transportation system (Geurs and van Wee 
2004). Therefore, LUTI models need to develop RLC models, which aim to predict where 
and how people choose their residence location. The study of these models dates to 
Alonso’s (1960; 1964) work.  

For any family, choosing the characteristics of their residence is crucial, as it determines 
their price of purchase or rent (in most cases it is one of the most important components 
of the family finances), and the available services (sometimes, even the type of social 
activity and personal relationships). For example, the array of transportation services 
available will influence the time available for other activities. 

Location is one of the most essential characteristics of a residence and the most 
commonly-used approach in LUTI RLC modeling is based on discrete choice models 
(DCM). This approach, consistent with random utility theory (Thurstone 1927), groups 
the available locations in spatial residential zones. The economically rational decision 
maker chooses the zone that maximizes his/her perceived utility. This utility depends on 
the characteristics of the residences themselves or on the services in the zone, such as 
transportation, quality of social life, and so on. The equation of a DCM with I available 
alternatives is as follows: 

 Uni=Vni+εni, i=1,…,I (1) 

where dependent variables (Uni) are the unobserved utility perceived by each decision 
maker (n) for each alternative (i). Some characteristics can be observed: Vni is the 
observed component with a parametric function of the observed explanatory variables. 
However, others cannot be observed: εni is a perturbation term summarizing the 
contribution of the unobserved variables. 

Each econometric DCM assumes a function of the observed utility and a joint 
distribution of the perturbations and these lead to an expression of the probability that 
a decision maker n chooses alternative i from I available Pni. The most extensively-used 



 3 

approaches are linear-in-parameter utilities and extreme value for the joint distribution 
of unobserved utilities, called logit choice models. 

The simplest and the most common logit choice model is multinomial logit (MNL) 
(McFadden 1974; Domencich and McFadden 1975), which assumes that unobserved 
utilities are uncorrelated and homoscedastic, according to the extreme value type I (or 
Gumbel) distribution. The variance-covariance matrix of MNL is a scalar matrix  

 Ω = 𝜋𝜋
µ√6

· 𝐼𝐼𝐼𝐼  (2) 

where µ ∈ (0,1] is the scale parameter of the Gumbel distribution. The MNL has a closed 
form; that is, probability is calculated without integration as follows: 

 𝑃𝑃𝑛𝑛𝑛𝑛 = 𝑦𝑦𝑛𝑛𝑛𝑛
𝜇𝜇

∑ 𝑦𝑦𝑛𝑛𝑛𝑛
𝜇𝜇𝐼𝐼

𝑛𝑛=1
  (3) 

where 𝑦𝑦𝑛𝑛𝑛𝑛 = 𝑒𝑒𝑉𝑉𝑛𝑛𝑛𝑛. To identify the coefficients of observed utility, the properties “the 
scale of utility is arbitrary” and “only differences in utility matter” (Train 2003: 23) allow 
to innocuously fix the variance of utility (and, hence, µ) to an arbitrary value if the data 
are not from different sources (i.e., different groups may have different variances). The 
usual normalization of µ in MNL is equal to one. This paper will perform this 
normalization in every logit model described. 

In the context of LUTI, the samples for estimation are mainly based on cross-sectional 
data from revealed preferences surveys. This implies that temporal correlations and 
correlations among the responses of the same individual are absent. Nevertheless, there 
will be correlation among the unobserved responses of the decision makers due to the 
dependency among the alternatives. In RLC modeling, the alternatives are spatial units; 
there is, therefore, spatial dependence at the very least. 

Spatial dependence among spatial units could be defined as the existence of a functional 
relationship between events at a certain point in space and those elsewhere (Moreno 
and Vayá 2000), that is, the values adopted by a variable in a particular zone and in 
neighboring zones. The spatial correlation among residential zones in the unobserved 
utility refers to the presence of systematic patterns of substitution among neighbors in 
the choice process (Anselin 1988; Hunt, Boots and Kanaroglou 2004). 

Train (2003: 46) describes the limitations of MNL in the context of relaxing two 
assumptions: uncorrelation and homoscedasticity. The unobserved heterogeneity in the 
preferences of the decision makers, that can also be present in LUTI context, can be 
introduced in the model with superimposed mixed specifications of random 
coefficients. Section 2 reviews the logit models that relax both restrictions, with special 
emphasis on spatial correlation, and compares them in the RLC modeling context.  

In Section 3, we introduce the mixed generalized extreme value (MGEV) (Chernew et al. 
2003; Bhat and Guo 2004; Hess, Bierlaire, and Polak 2005) family of models, with kernel 
spatially correlated logit (SCL) (Bhat and Guo 2004) that incorporates spatial correlation 
based on contiguity. However, this model has limitations in RLC modeling when zonings 
based on administrative areas are highly irregular. This paper proposes an extension of 
SCL with a spatial correlation metric (SCM) that is more efficient than the SCL and other 
approaches and is consistent with the assumptions of SCL. Section 4 empirically applies 
the proposed specification to a case study of RLC with irregular zoning and compares its 
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performance with the other approaches reviewed in the paper. We present the 
conclusions in Section 5. 

2. Logit choice models 
Mixed models and the MGEV family of models are the main approaches to incorporate 
unobserved correlation among alternatives and unobserved heterogeneity of the 
decision makers. In this section, we review the evolution of these models and analyze 
their adaptation to RLC modeling. 

2.1. Mixed models 

The advances in statistical simulation techniques have increased the use of the mixed 
models approach, where the probabilities are calculated as logit probabilities integrated 
over a density of parameters (Train 2003: 139). This integral does not have a closed-
form solution but can be approximated using simulation, so maximum simulated 
likelihood is used for estimating the parameters. Of these models, the most well known 
is the mixed MNL (MMNL) or mixed logit, which can approximate any DCM derived from 
random utility maximization as closely as one pleases (McFadden and Train 2000). These 
models can be specified from two conceptually different but mathematically equal 
approaches (see Ben-Akiva and Bierlaire 2003): 

• Random coefficients logit (RCL) captures the unobserved heterogeneity of 
individuals’ preferences. The coefficients of the utility function, that reflect the 
valuations of the observed variables, are considered random variates with a pre-
determined distribution and parameters to be estimated (for example, Bhat 
2000).  

• Error components logit (ECL) allows focusing on the analysis of the substitution 
patterns between alternatives based on the structure of the non-Gumbel 
component of the error (for example, Bhat 1998). 

Both approaches can be combined to capture unobserved heterogeneity (RCL) and 
correlation between alternatives (ECL). Nevertheless, this approach for correlation 
between alternatives is not considered appropriate in the RLC models, where there is a 
high number of alternatives zones and, therefore, an extremely high number of error 
parameters to be specified.  

2.2. GEV models 

Williams (1977), Daly and Zachary (1978), and McFadden (1978) defined, independently, 
the nested logit (NL), which allows a richer pattern of substitution among alternatives 
than the MNL maintaining a closed-form probability, though with some additional 
parameters estimated jointly with the coefficients of observed utility. 

The NL model introduced the concept of nests of alternatives, pre-defined by the 
analyst, to incorporate correlation among the alternatives in a logit model. Each nest is 
a group of alternatives, where each one has correlated unobserved utility with the 
alternatives of the same nest, but uncorrelated with the alternatives of other nests. Each 
alternative belongs to only one nest. All the alternatives of the same nest have the same 
scale parameter µk ∈ (0,1], which reflect dissimilarity among the alternatives of nest k, 
because it is inversely related to the correlation between alternatives. The correlation 
among pairs of alternatives is: 
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 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑈𝑈𝑛𝑛,𝑈𝑈𝑗𝑗� = (1 − µ𝑘𝑘2) · 𝛿𝛿𝑘𝑘(𝑖𝑖, 𝑗𝑗)  (4) 

where δk(i,j) = 1, if the alternatives i and j belong to nest k, else 0.  

Different nests can have the same dissimilarity parameter but this requires justification. 
In the case of every dissimilarity parameter being equal to one, NL collapses into an 
MNL. 

McFadden generalized logit models with nests of alternatives in the generalized extreme 
value (GEV) (McFadden 1978) family of logit models. The GEV models are DCM with 
unobserved utility of the alternatives (εn1, …, εnJ) jointly distributed GEV, according to 
the generating function 𝐺𝐺(𝑦𝑦n1, … ,𝑦𝑦𝑛𝑛𝐼𝐼), which must fulfill a series of properties. The 
cumulative distribution function is given by: 

 𝐹𝐹𝜀𝜀𝑛𝑛1,…,𝜀𝜀𝑛𝑛𝐼𝐼(𝑦𝑦n1, … ,𝑦𝑦𝑛𝑛𝐼𝐼) = 𝑒𝑒−𝐺𝐺(𝑒𝑒−𝑦𝑦𝑛𝑛1 ,…,𝑒𝑒−𝑦𝑦𝑛𝑛𝐼𝐼)  (5) 

The parameters can be jointly estimated through maximum likelihood. The probability 
of choice of alternative i for an individual n in GEV models maintains a closed-form 
expression: 

 𝑃𝑃𝑛𝑛𝑛𝑛 =
𝑦𝑦𝑛𝑛𝑛𝑛·

𝜕𝜕𝜕𝜕�𝑦𝑦n1,…,𝑦𝑦𝑛𝑛𝐼𝐼� 
𝜕𝜕𝑦𝑦𝑛𝑛𝑛𝑛

𝐺𝐺(𝑦𝑦n1,…,𝑦𝑦𝑛𝑛𝐼𝐼)
 (6) 

An MNL model is defined by the following GEV generating function: 

 𝐺𝐺(𝑦𝑦n1, … ,𝑦𝑦𝑛𝑛𝐼𝐼) = ∑ 𝑦𝑦𝑛𝑛𝑛𝑛𝐼𝐼
𝑛𝑛=1   (7) 

An NL model is defined by the following GEV generating function:  

 𝐺𝐺(𝑦𝑦n1, … ,𝑦𝑦𝑛𝑛𝐼𝐼) = ∑ �∑ 𝑦𝑦𝑛𝑛𝑛𝑛1 µ𝑘𝑘⁄
𝑛𝑛𝑖𝑖𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑘𝑘 �

µ𝑘𝑘𝐾𝐾
𝑘𝑘=1  (8) 

where I is the number of alternatives and K is the number of nests (decided by the 
analyst). The NL approach was further made flexible with different specifications of a 
cross-nested logit (CNL) (Small 1987; Vovsha 1997; Ben-Akiva and Bierlaire 1999) and 
the generalized NL (GNL) (Wen and Koppelman 2001). Both CNL and GNL are GEV 
models that allow each alternative to be in more than one nest and, therefore, permit a 
richer pattern of substitution among alternatives than the NL with a closed-form 
probability. In this paper, we will use the GNL specification. GNL uses the following GEV 
generating function: 

 𝐺𝐺(𝑦𝑦n1, … ,𝑦𝑦𝑛𝑛𝐼𝐼) = ∑ �∑ (α𝑛𝑛𝑘𝑘 · 𝑦𝑦𝑛𝑛𝑛𝑛)1 𝜇𝜇𝑘𝑘⁄
𝑛𝑛𝑖𝑖𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑘𝑘 �

𝜇𝜇𝑘𝑘𝐾𝐾
𝑘𝑘=1  (9) 

where αIk≥0 are the allocation parameters (or logsum) of each alternative i in each nest 
k. GNL adds the restriction ∑ 𝛼𝛼𝑛𝑛𝑘𝑘𝐾𝐾

𝑘𝑘=1  ∀𝑖𝑖 to facilitate the interpretation of αIk as the 
portion of each alternative i assigned to each nest k. GNL are hierarchically nested with 
MNL (like NL) because they collapse into an MNL when every allocation parameter is 
equal to 1. 

The correlation between two alternatives in a GNL model is obtained from the joint 
cumulative distribution function, which cannot be written in a closed form; it is 
therefore calculated using numerical integration. Papola (2004) proposed the following 
approximation to value the correlation: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶��𝑈𝑈𝑛𝑛,𝑈𝑈𝑗𝑗� = ∑ 𝛼𝛼𝑛𝑛𝑘𝑘
1/2𝛼𝛼𝑗𝑗𝑘𝑘

1/2(1− 𝜇𝜇𝑘𝑘2)𝐾𝐾
𝑘𝑘=1   (10) 
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Hence, the correlation among alternatives not only depends on the dissimilarity 
parameters of the nests, but also on the allocation parameters. 

The allocation parameters can be estimated jointly with the rest of the parameters 
(observed utilities’ coefficients and dissimilarity parameters) or can be pre-defined by 
the analyst. In the RLC models, there are many alternatives, so the first approach has a 
limitation in terms of a high number of parameters to be estimated. In a model with I 
alternatives and K nests, where each one belongs to all nests, there are I·K allocation 
parameters to estimate. The approach of pre-defined allocation parameters depends on 
the chosen criterion. 

In any case, the CNL model has the same dependence as the NL on the nest structure 
pre-defined by the analyst. It has to efficiently reflect the patterns of substitution among 
the alternatives. 

The paired combinatory logit model (PCL) (Chu 1989; Koppelman and Wen 2000) does 
not need a pre-defined structure of nests because it considers them as pairs of 
alternatives. A paired GNL model (PGNL) (Wen and Koppelman 2001) generalizes the 
PCL model by incorporating the allocation parameters and specifies it as a GNL model 
with the following GEV generating function: 

 𝐺𝐺(𝑦𝑦n1, … ,𝑦𝑦𝑛𝑛𝐼𝐼) = ∑ ∑ ��𝛼𝛼𝑛𝑛,𝑛𝑛𝑗𝑗𝑦𝑦𝑛𝑛𝑛𝑛�
1 µ𝑛𝑛𝑛𝑛⁄

+ �𝛼𝛼𝑗𝑗,𝑛𝑛𝑗𝑗𝑦𝑦𝑛𝑛𝑗𝑗�
1 µ𝑛𝑛𝑛𝑛⁄

�
µ𝑛𝑛𝑛𝑛𝐼𝐼

𝑗𝑗=𝑛𝑛+1
𝐼𝐼−1
𝑛𝑛=1  (11) 

where every pair of alternatives i≠j are a nest, with αi,ij and αj,ij (not necessarily equal) 
allocation parameters and dissimilarity parameter µij. PGNL is hierarchically nested with 
MNL (like NL and CNL) because when all allocation parameters are equal to one, it 
collapses into an MNL.  

The limitation of PGNL is the high number of nests when there are many alternatives, 
like in the case of RLC modeling and consequently, a high number of allocation 
parameters to be estimated or pre-defined by the analyst. 

2.3.  Mixed GEV models 

GEV models are logit models that allow unobserved correlation among alternatives 
maintaining a closed-form probability. They can have different patterns of substitution 
based on a structure of nests of alternatives, defined by the analyst, or nesting each pair 
of different alternatives. However, this approach is compatible with a mixed 
superimposed specification of random coefficients, named the MGEV family of models, 
that allows unobserved heterogeneity in the preferences of decision makers. 

The MGEV model assumes that the coefficients of the observed utility vector β follows 
a multivariate random distribution (usually normal) with vector θ of underlying moment 
parameters and multivariate density function f. Then: 

 𝑃𝑃𝑛𝑛𝑛𝑛 = ∫ (𝑃𝑃𝑛𝑛𝑛𝑛|𝛽𝛽)𝑓𝑓(𝛽𝛽|𝜃𝜃)𝑑𝑑𝛽𝛽∞
−∞   (12) 

The MGEV model can be estimated using maximum simulated likelihood method. Under 
rather weak regularity conditions, these estimators are consistent and asymptotically 
efficient and normal (Hajivassiliou and Ruud 1994; Lee 1992). The simulated log-
likelihood function is: 

 𝑆𝑆𝑆𝑆(𝜃𝜃) = ∑ ∑ 𝑦𝑦𝑛𝑛𝑛𝑛𝑙𝑙𝐶𝐶𝑙𝑙𝑃𝑃�𝑛𝑛𝑛𝑛(𝜃𝜃)𝐼𝐼
𝑛𝑛=1𝑛𝑛   (13) 
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where 𝑃𝑃�𝑛𝑛𝑛𝑛(𝜃𝜃) is the average of the realizations of the probability applying simulation 
techniques; that is, an unbiased estimator of 𝑃𝑃𝑛𝑛𝑛𝑛(𝜃𝜃). 

3. Spatial Logit models 
In the logit choice models, where the alternatives are spatial zones, the correlation 
among alternatives have two components: spatial correlation and non-spatial 
correlation (see introduction in this paper). In addition to the information obtained from 
the sample, spatial variables are considered. These variables are used to include 
information on spatial correlation in the model before the estimation process. 

3.1. Spatially Correlated Model 

Bhat and Guo (2004) proposed an MGEV model, MSCL, with a kernel that does not 
depend on a nest structure pre-defined by the analyst because it is a specification PGNL. 
The correlation among the alternatives in a PGNL (and in all GNL, see equation 10) is 
defined from both the allocation and dissimilarity parameters. The MSCL kernel, SCL, 
separates both the components of correlation among the alternatives. The model uses 
a metric of spatial variables to establish pre-calculated allocation parameters; it is 
named spatial correlation metric (SCM) in this paper. The non-spatial correlation is 
collected through the dissimilarity parameters, which are estimated jointly with the rest 
of the parameters. This property allows defining and analyzing both correlation 
components separately.  

The SCL model assumes a spatial association scheme based on contiguous zones (when 
they have a common border) and proposes an SCM based on the spatial information of 
contiguity among the zones. It is based on the binary contiguity variable among pairs of 
zones, δij, which is equal to 1 if zones i and j are different and contiguous and 0 
otherwise. This is the simplest spatial spillover variable from spatial statistics and is pre-
calculated using a map, but the analyst does not need the support of a geographic 
information system (GIS). The allocation parameters proposed in SCL are the “space 
weights” to normalize δij:  

 α𝑛𝑛,𝑛𝑛𝑗𝑗 = 𝛿𝛿𝑛𝑛𝑛𝑛
∑ 𝛿𝛿𝑛𝑛𝑘𝑘𝐼𝐼
𝑘𝑘=1

 (14) 

The nests with non-zero allocation parameters are pairs of contiguous zones. It is 
assumed that the allocation parameters are all the same, named µ. We will name this 
hypothesis the equality assumption of dissimilarity parameters. The GEV generating 
function of an SCL is: 

 𝐺𝐺(𝑦𝑦n1, … ,𝑦𝑦𝑛𝑛𝐼𝐼) = ∑ ∑ ��𝛼𝛼𝑛𝑛,𝑛𝑛𝑗𝑗𝑦𝑦𝑛𝑛𝑛𝑛�
1 μ⁄

+ �𝛼𝛼𝑗𝑗,𝑛𝑛𝑗𝑗𝑦𝑦𝑛𝑛𝑗𝑗�
1 μ⁄

�
𝜇𝜇

𝐼𝐼
𝑗𝑗=𝑛𝑛+1

𝐼𝐼−1
𝑛𝑛=1  (15) 

The simple SCM of an SCL can be efficient in collecting the spatial correlation among 
alternatives in the context of regular zoning. However, in the LUTI RLC context, the 
zoning is usually based on administrative zones, which are sometimes highly irregular, 
particularly in historic cities or cities that have grown without urban planning. 

Irregular zoning implies spatial zones with different shapes and sizes, so there could be 
multiple possibilities of contiguity. In this context, the simple and rigid SCM of an SCL 
does not seem efficient for collecting spatial correlation. For example, in the irregular 
Figure 1. Example of irregular zoning where SCL is not efficient in collecting spatial correlation 
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zoning showed in Figure 1, the SCM of the SCL values the pairs 2-1 and 2-3 with equal 
magnitude but that does not seem to represent the spatial correlation.  

In this situation, it may be necessary to employ a different approach to collect spatial 
correlation. One possible approach is to extend the SCL with a different SCM that uses 
more complex but flexible spatial variables. 

3.2. Distance-based SCL 

A distance-based SCL model (DSCL) (Sener, Pendyala and Bhat 2011) is an extension of 
SCL using this approach. It proposes the following SCM to extend an SCL: 

 α𝑛𝑛,𝑛𝑛𝑗𝑗 =
𝑑𝑑𝑛𝑛𝑛𝑛
φ

∑ 𝑑𝑑𝑛𝑛𝑛𝑛
φ𝐽𝐽

𝑘𝑘=1
  (16) 

where dij is the Euclidean distance between the centroids of zones i and j (requires GIS 
support) and a scalar φ to be estimated. This SCM should be efficient in a regular zoning 
context but not necessarily with irregular zoning. For example, Figure 2 shows an actual 
irregular urban zoning where the red points are the centroids of each zone. With this 
SCM 𝑑𝑑25,10

φ = 𝑑𝑑25,13
φ , but it does not seem to represent the spatial correlation between 

these zones. 

 
Figure 2. Actual irregular administrative urban zoning of Santander (Spain) 

The equality assumption of dissimilarity parameters of SCL should be reviewed for DSCL. 
While in SCL only the contiguous alternatives have not-null allocation parameters, in 
DSCL all the pairs of alternatives have it. 

This SCM allows allocation parameters to not be completely pre-determined when φ is 
the parameter to be estimated. In this case, the DSCL does not maintain different 
parameters for spatial and non-spatial correlation, like the SCL. Pérez-López and Orro 

2 3 1 

25 

10 
13 
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(2016) presented a specification of DSCL, with fixed parameter φ = − 2 named 
gravitational DSCL (GDSCL). It is more parsimonious than the DSCL and maintains 
different parameters for spatial and non-spatial correlation, like the SCL. The allocation 
parameters are the following: 

 α𝑛𝑛,𝑛𝑛𝑗𝑗 =
𝑑𝑑𝑛𝑛𝑛𝑛
−2

∑ 𝑑𝑑𝑛𝑛𝑛𝑛
−2𝐼𝐼

𝑘𝑘=1
 (17) 

3.3. Common border length-based SCL 

This paper seeks an efficient logit choice model in the LUTI RLC modeling context with 
irregular zoning. The spatial correlation among alternatives could depend on its distance 
or the length of the common border (Stetzer 1982; Anselin and Rey 1991; Florax and 
Rey 1995). The use of the common border length between pairs of zones has been 
explored in the field of spatial autocorrelation in linear regression models (Dacey 1969; 
Ma et. al 1997). The common border approach maintains the contiguity requirement, 
so it is consistent with the equality assumption of dissimilarity parameters. Moreover, 
in case of irregular zones, it seems more efficient than the SCM of SCL and DSCL because 
it considers the degree of contiguity among zones, regardless of the form.  

This paper proposes an extension of SCL with a SCM based on the proportion of common 
border length between contiguous zones: 

 α𝑛𝑛,𝑛𝑛𝑗𝑗 = 𝛽𝛽𝑛𝑛𝑛𝑛
∑ 𝛽𝛽𝑛𝑛𝑘𝑘𝐼𝐼
𝑘𝑘=1

 (18) 

where 𝛽𝛽𝑛𝑛𝑗𝑗 is the common border length between contiguous zones i≠j, and 0, 
otherwise. This value needs GIS support for its calculation. This extension of SCL will be 
named BSCL in this paper and its probability is of the following closed form: 

𝑃𝑃𝑛𝑛𝑛𝑛 = �𝑃𝑃𝑛𝑛𝑛𝑛|𝑗𝑗
𝑗𝑗≠𝑛𝑛

· 𝑃𝑃𝑛𝑛𝑛𝑛𝑗𝑗 = 

 ∑ 𝛼𝛼𝑛𝑛,𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛1 𝜇𝜇⁄

𝛼𝛼𝑛𝑛,𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛1 𝜇𝜇⁄ +𝛼𝛼𝑛𝑛,𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛𝜇𝜇
· (𝛼𝛼𝑛𝑛,𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛1 𝜇𝜇⁄ +𝛼𝛼𝑛𝑛,𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛1 𝜇𝜇⁄ )𝜇𝜇

∑ ∑ (𝛼𝛼𝑘𝑘,𝑘𝑘𝑘𝑘𝑦𝑦𝑛𝑛𝑛𝑛1 𝜇𝜇⁄ +𝛼𝛼𝑘𝑘,𝑘𝑘𝑘𝑘𝑦𝑦𝑛𝑛𝑛𝑛1 𝜇𝜇⁄ )𝜇𝜇𝐼𝐼
𝑘𝑘=𝑛𝑛+1

𝐼𝐼−1
𝑘𝑘=1

𝑗𝑗≠𝑛𝑛   (19) 

where Pni|j is the probability that an individual n chooses alternative i having chosen the 
pair of alternatives ij and Pnij is the probability that an individual n chooses the pair of 
alternatives ij. The superimposed mixed specification with random coefficients of BSCL 
and MBSCL allows unobserved heterogeneity in the preferences of the decision makers. 

This approach can be generalized with a new SCM, for example, combining the 
proportion of the common border length between zones with their Euclidean distances 
(see Cliff and Ord 1973 in the field of spatial autocorrelation in linear regression models) 
or considering the smallest distances between the borders. These extensions have the 
advantage of considering the spatial correlation that could exist between zones that are 
near but not adjacent. In any case, it would be necessary to evaluate its consistency with 
the equality assumption of dissimilarity parameters. 

4. Empirical analysis 
This section empirically applies the proposed approach, BSCL and its mixed specification, 
MBSCL, to the real-life case study of RLC modeling in Santander, a historic city in the 
north of Spain (Europe) with highly irregular administrative areas (see Figure 1). We also 
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compare it with the other spatial logit models without pre-defined nests reviewed in the 
paper: the SCL, GDSCL, and its mixed specifications. 

4.1. Methodology 

To compare the models, each one was applied to the same conditions: data, observed 
utility function, and software tools. 

The estimations were performed using BisonBiogeme (Bierlaire 2003), setting 1000 
draws in all mixed specifications. The spatial variables of the SCM were calculated using 
public mapping of the administrative zoning and in the case of the GDSCL and BSCL 
models, using QGIS (2018).  

The utility function specification was developed in two steps: perform the kernel’s 
observed utility (i.e., with fixed coefficients) and perform the mixed specification with 
random coefficients.  

The first step is a backward process using MNL, starting from the observed utility 
specification with all variables of the sample (see next sub-section). In each iteration, 
we validate the sign of the estimated coefficients with the theoretically correct, 
individual relevance using t-test and the improvement of the global goodness-of-fit 
(GoF) with likelihood-ratio tests and indexes. The maximum level of significance used 
for the tests is 5%. The second step uses the same approach to select the coefficients of 
the MNL specification that are considered random, supposedly with a normal 
distribution, starting with all of them being random. 

The likelihood ratio test (LRT) is used to compare the global GoF of nested models1. The 
null hypothesis of LRT is that the likelihood of both models are equal at significance level 
α and the alternative hypothesis is that the likelihood of the nested model is significantly 
higher2. The likelihood ratio of the nested models is not a known distribution, but its 
transformation, named Wilks’s statistic3, is asymptotic 𝜒𝜒(𝑝𝑝2−𝑝𝑝1)

2 , where p2 – p1 is the 
difference in the number of estimated parameters between them (Wilks 1938). Chi-
square distribution is not appropriate when some variance component is zero or 
insignificant with respect to others. This can be violated with the mixed models, so LRT 
is not used in this paper to compare the nested models when some of them are mixed. 
LRT is significant when the Wilks’s statistic is higher than the correspondent 
𝜒𝜒(𝑝𝑝1−𝑝𝑝2),𝛼𝛼
2 quantile.  

To compare the global GoF of non-nested models, we can use the LR with a model 
nested with each one (at least all the models are nested with the null model) or a 
likelihood ratio index (LRI). McFadden’s LRI4 is a pseudo-R2 between 0 and 1 that 
compares the log-likelihood of each model with that of the null model and allows the 
comparison of non-nested models, or nested models when some of them are mixed 

                                                      
1 A model is nested with other when it contains the same parameters and at least one 
more. 
2 The likelihood of a nested model with other is at least equal to that of the other.  
3 The Wilks’s statistic of a model with likelihood L1, nested with other with likelihood 
L2, is −2𝑙𝑙𝐶𝐶𝑙𝑙 𝐿𝐿2

𝐿𝐿1
= −2(𝑆𝑆𝑆𝑆2 − 𝑆𝑆𝑆𝑆1), where 𝑆𝑆𝑆𝑆 = 𝑙𝑙𝐶𝐶𝑙𝑙𝑆𝑆, named log-likelihood. 

4 McFadden’s LRI=1 − 𝐿𝐿𝐿𝐿(𝑚𝑚𝑚𝑚𝑑𝑑𝑒𝑒𝑚𝑚)
𝐿𝐿𝐿𝐿(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚_𝑚𝑚𝑚𝑚𝑑𝑑𝑒𝑒𝑚𝑚)
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models, with an equal number of estimated parameters. The closer the value is to one, 
the better the GoF. The Akaike-adjusted LRI5 (aLRI) considers the number of estimated 
parameters, and so allows the comparison of models with a different number of 
estimated parameters. 

The data collection was performed in the TRANSPACE LUTI project and previous studies 
(Ibeas, Cordera, Dell’Olio and Coppola 2013; Dell'olio, Cordera, and Ibeas 2016) from 
three sources, with spatial and non-spatial information: zoning of the available 
residential locations from public administrative areas, socio-economic and 
transportation information of each alternative zone from public information, and the 
microdata of an ad-hoc preferences survey. 

Santander city was divided in 26 zones, based on administrative areas, that fulfill the 
Anas condition (1981), with a mean area of 0.33 km2. The color-coding on the map of 
Figure 3 represents the tertiles of the number of individuals in the sample who have 
chosen that area per square kilometer, to show patterns of decisions less dependent on 
zoning.  

The irregular zoning can be appreciated, especially in the city center. For example, in the 
SCL approach, the pair of zones 14-13 and 14-15 have the same SCM value, but not in 
BSCL; it is much higher in the second relationship because it considers the common 
border length. In addition, the pair of zones 25-10 and 25-16 have a similar SCM value 
when using GDSCL, but the SCM value is much higher for 25-10 with BSCL. The GDSCL 
assumptions are not in accordance with the expected spatial correlation in this case. 

 
Figure 3. Map of the scheme of the alternative residential zones in Santander and the number of selections per km2 

                                                      
5 Akaike-adjusted LRI=1 − 𝐿𝐿𝐿𝐿(𝑚𝑚𝑚𝑚𝑑𝑑𝑒𝑒𝑚𝑚)−𝑝𝑝

𝐿𝐿𝐿𝐿(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚_𝑚𝑚𝑚𝑚𝑑𝑑𝑒𝑒𝑚𝑚)
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The ad-hoc survey was carried out on 534 individuals, with displacements for work or 
study with origin and destination in Santander city. The microdata includes the spatial 
information on the location of family residence and the place of work or study, 
transportation information of the displacements between the two, and individual and 
family characteristics.   

The microdata of the survey was enriched with socioeconomic and transportation 
information of the residential zones. The sample includes nine variables shown in Table 
1, where TRA type refers to transportation level of service variables, ENV type refers to 
socio-economic environment variables, and IND type refers to individual attributes of 
the family unit.  

 
Type Variable Name Description 

TRA Accessibility AC Indicator of active accessibility of the zone of Coppola and 
Nuzzolo (2011) 

TRA Journey time JT Journey time in minutes between the centroid of the residential 
land use zone and the centroid of the work place land use zone. 

TRA Waiting time WT Average public transportation waiting time in minutes at the 
stops in the zone 

TRA Interzonal IN Dummy variable equal to 1 where the residential and work place 
zones coincide. 

ENV Foreigners FO Number of non-EU foreigners in the zone (in thousands) 

ENV Housing density HO Natural logarithm of the number of dwellings in the zone 

ENV Prestige PG Dummy variable equal to 1 where the zone has special prestige 
(subjective). 

ENV Price of housing PR Average price of housing in the zone (in millions of €). 

ENV Schools SC Number of schools in the zone 

IND High incomes H Dummy variable equal to 1 when family monthly incomes > 
2,500€ Net 

Table 1: Description of the sample variables (based on Ibeas et al. 2013) 

4.2. Utility specification 

In the following tables, the color-coding represents the significance results of the 
relevance and GoF tests: blue (***)—when at least 99%; green (**)—at least 95% but 
less than 99%; orange (*)—at least 90% but less than 95%; and red (·)—when less than 
90%. 

The utility function is a linear specification without a specific constant, performed using 
the methodology explained in sub-section 4.1 (see Perez-Lopez and Orro 2016, for a 
more detailed explanation).  

The first step starts with the saturated model with seven sample variables and their 
eight interactions (except INs) with the IND type variable HI. Table 2 shows the initial 
estimation results of the first step, MNL-full, and the final MNL.  

Coefficient MNL-full MNL 

Var. Inter. Est. value S.E. Sig. Est. value S.E. Sig. 
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AC 
- 0.00579 0.00994 ·  

H -0.0166 0.0188 ·  

JT 
- -0.102 0.0398 ** -0.114 0.0291 *** 

H -0.00702 0.0712 ·  

FO 
- -0.864 0.428 ** -0.870 0.307 *** 

H -1.57 1.00 ·  

IN - 0.235 0.221 ·  

HO 
- 1.39 0.343 *** 1.49 0.265 *** 

H 1.49 0.822 *  

PG 
- -0.897 0.3 ***  

H 1.90 0.553 *** 0.224 0.272 *** 

PR 
- -1.30 0.639 ** -2.16 0.429 *** 

H -0.629 1.10 ·  

SC 
- -0.0878 0.0451 *  

H 0.242 0.0847 *** 0.224 0.0516 *** 

WT 
- -0.132 0.0811 ·  

H 0.0135 0.187 ·  

Statistic Value Sig. Value Sig. 

p 17 

 

6  

LL -1,658.581 -1,667.968 

McFadden LRI 0.04670 0.04130 

Akaike aLRI 0.03692 0.03785 

LR-Null 162.486 *** 143.712  *** 

LR-MNL (𝜒𝜒(11)
2 ) 18.774 *  

Table 2. First step of the observed utility equation performed: initial and final specification results respectively. 

Both models improve the global GoF of the null model significantly. MNL-full has 11 
coefficients more than MNL does, but does not significantly improve its global GoF. 
Further, all the variables of the final estimation MNL show at least 99% relevance. The 
MNL-observed utility specification for alternative i performed in the first step is: 

𝑉𝑉𝑛𝑛,𝑛𝑛 = 𝛽𝛽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽i + 𝛽𝛽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹i + 𝛽𝛽𝐻𝐻𝐹𝐹𝐻𝐻𝐹𝐹𝑛𝑛 + 𝛽𝛽𝑃𝑃𝐺𝐺∗𝐻𝐻𝑃𝑃𝐺𝐺𝑖𝑖𝑛𝑛 ∗ 𝐻𝐻𝑛𝑛 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃i + 𝛽𝛽𝑆𝑆𝑆𝑆∗𝐻𝐻𝑆𝑆𝐶𝐶𝑛𝑛 ∗ 𝐻𝐻𝑛𝑛 (22) 

In the second step, after the process, all the random coefficients were considered fixed, 
except the interaction of SC and H. Table 3 shows the results of the final estimation of 
the second step, named MMNL, where SLL is the simulated LL. 
 
 

 MMNL 

Parameter Est. value S.E. Sig. 

βJT -0.118 0.02934 *** 
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βFO -0.914 0.309 *** 

βHO 1.49 0.266 *** 

βPG*H 1.12 0.287 *** 

βPR -2.12 0.433 *** 

βSC*H 0.160 0.0766 ** 

σ(βSC*H) 0.289 0.127 ** 

Statistic Value 

p 7 

SLL -1,666.966 

McFadden LRI 0.04188 

Akaike aLRI 0.03785 
Table 3. Second step of the observed utility equation performed: last results with MMNL 

All the parameters estimated in the final specification of the second step are significant. 
The final mixed specification of the observed utility function of each individual decision 
maker n, is the same as that of the first step, save for the fact that 𝜷𝜷𝑺𝑺𝑺𝑺∗𝑯𝑯 is considered 
as a random variable with distribution N(0.160, 0.289). This specification shows the 
same global GoF as MNL, with one more estimated parameter, using Akaike aLRI. 

4.3. Model estimation and validation 

This sub-section analyzes the estimation results obtained with the BSCL and MBSCL 
specifications for residential location choice modeling with irregular zoning.  

Table 4 shows the estimation results, obtained in the same circumstances as MNL and 
MMNL, and the global GoF statistic, which are compared with those obtained in the 
previous sub-section. 
 

 BSCL MBSCL 

Parameter Est. value S.E. Sig. Est. value S.E. Sig. 

βJT -0.104 0.0264 *** -0.107 0.0264 *** 

βFO -0.642 0.263 *** -0.648 0.263 *** 

βHO 1.18 0.241 *** 1.15 0.242 *** 

βPG*H 0.908 0.243 *** 0.814 0.247 *** 

βPR -1.51 0.381 *** -1.43 0.380 *** 

βSC*H 0.173 0.0430 ***         0.126 0.0601 ** 

σ(βSC*H)  0.267 0.107 *** 

µ 1.74 0.296 *** 1.80 0.316 *** 

Statistic Value Sig. Value Sig. 

p 7  8  

LL / SLL -1,663.2 -1,661.8 

McFadden LRI 0.04405 0.04484 

Akaike aLRI 0.04003 0.04025 
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LR-MNL 
(𝜒𝜒(1)

2 ) 
9.570 *** 

 

Table 4. Results of the estimation of the BSCL and MBSCL models 

In both models, all the estimated parameters of observed utility are significant. The signs 
obtained are also coherent with a priori notions or theory. A longer commute, greater 
number of foreigners, or higher prices reduce the utility of the zone perceived by the 
decision maker, and therefore the choice probability. The presence of more residences 
increases utility. A zone considered prestigious increases the perceived utility for high-
income decision makers, which is as expected. On average, the presence of a greater 
number of schools increases the utility for high-income decision makers, but with 
significant variation across the population, which could be due to different family 
situations.  

The dissimilarity parameter is significantly different from 1 with at least 99% confidence 
level in both specifications (using a one-side test). Therefore, it shows the presence of 
non-spatial correlation between contiguous alternatives due to non-observed variables. 

Both specifications improve the global GoF of MNL and MMNL. The LRT of BSCL with 
respect to MNL is significant with at least 99% confidence level and its Akaike aLRI is 
higher than that of MMNL. MBSCL Akaike aLRI is higher than that of MMNL. 

4.4. Comparison of spatial correlation approach models 

This sub-section compares the MNL models: the three spatially correlated logit models 
reviewed in the paper and their mixed specifications, all of them estimated in the same 
circumstances (see in Pérez-López and Orro 2016, the estimation results of GDSCL and 
SCL kernels and their mixed specifications). 
 

Kernel MNL GDSCL SCL BSCL 

p 6 7 7 7 

LL -1,667.968 -1,667.968 -1,665.940 -1,663.183 

McFadden LRI 0.04130 0.04130 0.04247 0.04405 

Akaike aLRI 0.03785 0.03728 0.03844 0.04003 

LR – MNL 
(𝜒𝜒(1)

2 ) 
 

0 · 4.056 ** 9.570 *** 

Mixed MMNL MGDSCL MSCL MBSCL 

p 7 8 8 8 

SLL -1,666.966 -1,666.905 -1,664.796 -1,661.802 

McFadden LRI 0.04188 0.04191 0.04312 0.04484 

Akaike aLRI 0.03785 0.03731 0.03853 0.04025 
Table 5: Model comparison 

Table 5 shows the global GoF statistics. GDSCL does not significantly improve the global 
GoF of MNL. SCL and BSCL significantly improve the GoF of MNL (and also of the GDSCL), 
but only BSCL with at least 99% confidence level. BSCL shows the highest McFadden’s 
LRI value of the three spatially correlated kernels and the highest Akaike aLRI value of 
all the models, except for its mixed specification, MBSCL. 
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Every mixed specification improves the Akaike aLRI of its kernel, except MMNL, which is 
the same. MBSCL has the highest McFadden’s LRI value of the mixed spatially correlated 
specifications and the highest Akaike aLRI value of all models. 

5. Conclusions 
This work proposes a spatial correlation metric for logit models with spatial correlation, 
based on the common border of spatial alternatives. It aims to improve efficiency when 
the zoning of alternatives is irregular, which is a common occurrence in urban areas. The 
metrics used in previous specifications, such as SCL or DSCL, have limitations in this case. 

This paper specifies a generalization of the SCL model using the proposed metric, named 
BSCL, and its mixed specification MBSCL. Both models were applied to an urban case 
study of LUTI RCL modeling with irregular zoning, based on administrative divisions in 
the city of Santander (Spain). 

The GoF of the proposed specifications were empirically compared with MNL, MMNL, 
and the reviewed logit models with spatial correlation: SCL, GDSCL, and their mixed 
specifications. BSCL significantly improves the GoF of MNL, SCL, and GDSCL with at least 
99% confidence level. BSCL also outperforms the mixed specifications of the previous 
models. MBSCL shows the best GoF values. 

Acknowledgements 
The authors acknowledge the financial support provided by the Government of Spain 
under the projects TRA2012-37659 and RTI2018-097924-B-I00 MCIU/AEI/FEDER, UE. 

References 
Alonso W (1960) A theory of the urban land market. Pap. Reg. Sci. Assoc 6, pp. 149-157. 

Alonso W (1964) Location and land use. Harvard University Press, Cambridge, MA. 

Anas A (1981) The estimation of multinomial logit models of joint location and travel 
mode choice from aggregated data. Journal of Regional Science 21 (2), 223–242. 

Anselin L (1988) Spatial Econometrics: Methods and Models. Kluwer Academic, Boston, 
Mass. 

Anselin L and Rey S (1991) Properties of tests for spatial dependence in linear regression 
models. Geogr Anal 23(2):113-131 

Ben-Akiva M and Bierlaire M (1999) Discrete choice methods and their applications to 
short-term travel decisions. In Hall R (ed) Handbook of Transportation Science, pp.5-34. 

Ben-Akiva M and Bierlaire M (2003) Discrete Choice Models with Applications to 
Departure Time and Route Choice. In Hall R (ed), Handbook of Transportation Science, 
2nd edn., Kluwer, pp. 7–37. 

Bhat CR (1998) Accommodating flexible substitution patterns in multidimensional 
choice modeling: formulation and application to travel mode and departure time choice, 
Transportation Research 32B (7), 425–440. 

Bhat CR (2000) Incorporating observed and unobserved heterogeneity in urban work 
travel mode choice modeling. Transportation Science 34, pp. 228-238. 



 17 

Bhat CR and Guo J (2004) A mixed spatially correlated logit model: formulation and 
application to residential choice modeling. Transportation Research Part B: 
Methodological 38 (2), 147–168. 

Bierlaire M (2003) BIOGEME: A free package for the estimation of discrete choice 
models. Ascona, Switzerland, 3rd Swiss Transportation Research Conference. 

Chasco C (2002) Econometría Espacial aplicada a la predicción-extrapolación de datos 
microterritoriales (Doctoral dissertation, Universidad Autónoma de Madrid) 

Chernew M, Gowrisankaran G and Scanlon D (2003) Learning and the Value of 
Information: The Case of Health Plan Report Cards, Submitted to International 
Economic Review 

Chu C (1989) A paired combinatorial logit model for travel demand analysis. 
Proceedings of the Fifth World Conference on Transportation Research 4, Ventura, 
CA. 295-309. 

Cliff A, Ord J (1973) Spatial autocorrelation. Pion, London 

Coppola P and Nuzolo A (2011) Changing accessibility, dwelling price and the spatial 
distribution of socio-economic activities. Res. Transp. Econ. 31, pp. 63-71. 

Dacey MF (1969) Similarities in the areal distributions of houses in Japan and Puerto 
Rico. Area, 3; pp. 35-37. 

Daly AJ and Zachary S (1978) Improved multiple choice models. In: Hensher DA  and 
Dalvi MQ  (eds), Determinants of Travel Choice (Westmead: Saxon House), pp. 335-
357. 

Dell'Olio L, Cordera R and Ibeas A (eds) Alonso A, Alonso B, Barreda R, Comi A, 
Coppola R, González E, Monzón A, Moura J, Nogués S, Nuzzolo A, Orro A, Papa E, 
Perez-Lopez J-B, Reques P, Sañudo R and Wang Y (2016) Land Use - Transport 
Interaction Models. The TRANSPACE model. 1st edn. Santander: GIST. 

Domencich TA and McFadden D (1975) Urban Travel Demand: A Behavioural Analysis 
(New York: American Elsevier). 

Florax RJGM, Rey S (1995) The impacts of misspecified spatial interaction in linear 
regression models. In: Anselin L, Florax RJGM (eds) New directions in spatial 
econometrics, advances in spatial science. Springer, Berlin, Heidelberg 

Geurs KT and Van Wee B (2004) Accessibility evaluation of land-use and transport 
strategies: review and research directions. J. Transp. Geogr. 12, 127–140. 

Gumbel EJ (1958) Statistics of extremes. Columbia University Press (Facsimile by UMI, 
Michigan, 1997). 

Hajivassiliou VA, Ruud PA (1994) Classical estimation methods for LDV models using 
simulations. In: Engle R, McFadden D (eds) Handbook of econometrics IV. Elsevier, New 
York, pp 2383–2441 

Hess S, Bierlaire M and Polak J (2005) Capturing taste heterogeneity and correlation 
structure with Mixed GEV models. In: Scarpa R and Alberini A (eds), Applications of 
Simulation Methods in Environmental and Resource Economics, Springer Publisher, 
Dordrecht, The Netherlands, chapter 4, pp. 55-76. 



 18 

Hunt LM, Boots B and Kanaroglou PS (2004) Spatial choice modelling: new opportunities 
to incorporate space into substitution patterns. Progress in Human Geography 28-6, pp. 
746-766. 

Ibeas A, Cordera R, Dell’Olio L and Coppola P (2013) Modeling the spatial interactions 
between workplace and residential location. Transportation Reseach A 49, pp. 110-122. 

Koppelman FS and Wen CH (2000) The paired combinatorial logit model: properties, 
estimation and application. Transportation Research 34B, 75-89. 

Lee LF (1992) On efficiency of methods of simulated moments and maximum simulated 
likelihood estimation of discrete response models. Economet Theor 8(4):518–552 

Ma J, Haining R, Wise S (1997) SAGE user’s guide. Sheffield Center for Geographic 
Information and Spatial Analysis, University of Sheffield 

McFadden D (1974) Conditional logit analysis of qualitative choice behavior. Zarembka 
P (ed). Frontiers in Econometrics, 105-142, Academic Press, New York. 

McFadden D (1978) Modelling the choice of residential location. Karlqvist A, Jundqvist 
L, Snickars F and Weibull J (eds). Spatial Interaction Theory and Planning Models, North 
Holland: Amsterdam, 75-96. 

McFadden D and Train K (2000) Mixed MNL models for discrete response. Journal of 
Applied Econometrics, 15-5, pp. 447-470. 

Moreno R, Vayá E (2000) Técnicas econométricas para el tratamiento de datos 
espaciales: la econometría espacial. Edicions Universitat de Barcelona, Barcelona 

Papola A (2004) Some developments on the cross-nested logit model. Transp Res 
38B(9):833–851 

Perez-Lopez J-B and Orro A (2016) Residential location choice models with spatial 
correlation. In: L Dell’Olio, R Cordera and A Ibeas (eds) Land Use - Transport 
Interaction Models. The TRANSPACE model. Santander: GIST, pp. 114-150. 

QGIS Development Team (2018) QGIS Geographic Information System. Open Source 
Geospatial Foundation Project. http://qgis.osgeo.org 

Sener IN, Pendyala RM and Bhat CR (2011) Accommodating spatial correlation across 
choice alternatives in discrete choice models: an application to modeling residential 
location choice behavior. Journal of Transport Geography 19, pp. 294-303. 

Small KA (1987) A discrete choice model for ordered alternatives. Econometrica 55 (2), 
409–424. 

Stetzer F (1982) Specifying weights in spatial forecasting models: the results of some 
experiments. Environ Plan 14A(5):571–584 

Train KE (2003) Discrete Choice Methods with Simulation. Cambridge University Press, 
2003. 

Torrens PM (2000) How land-use transportation models work. Centre for Advanced 
Spatial Analysis, London. 

Thurstone L (1927) A law of comparative judgment. Psychological Review 34, 273-86. 



 19 

Vovsha P (1997) The cross-nested logit model: application to ode choice in the Tel-Aviv 
metropolitan area. Transportation Research Record 1607, pp. 6–15. 

Wegener M (1994) Operational Urban Models: State of Art. Journal of the American 
Planning Association, 60 (1), pp. 17-29. 

Wen CH and Koppelman FS (2001) The generalized nested logit model. Transportation 
Research Part B: Methodological 35 (7), 627–641. 

Wilks SS (1938) The Large-Sample Distribution of the Likelihood Ratio for Testing 
Composite Hypotheses. The Annals of Mathematical Statistics, Vol. 9, No. 1 (Mar., 1938), 
pp. 60-62. 

Williams HCWL (1977) On the formation of travel demand models and economic 
evaluation measures of user benefit. Environment and Planning 9A, 285-344. 

 


	Alfonso Orro (http://orcid.org/0000-0003-0688-3417)
	Abstract
	1. Introduction
	2. Logit choice models
	2.1. Mixed models
	2.2. GEV models
	2.3.  Mixed GEV models

	3. Spatial Logit models
	3.1. Spatially Correlated Model
	3.2. Distance-based SCL
	3.3. Common border length-based SCL

	4. Empirical analysis
	4.1. Methodology
	4.2. Utility specification
	4.3. Model estimation and validation
	4.4. Comparison of spatial correlation approach models

	5. Conclusions
	Acknowledgements
	References

