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Abstract
Aim: To understand spatial-temporal changes (beta-diversity) in coastal communities 
and their drivers in the context of climate change. Coastal ecosystems are extremely 
exposed and dynamic, where changes in seaweed assemblages have been associated 
with changing water temperatures. However, at local scale, the effects of changes in 
the upwelling events and related stressors seek further exploration.
Location: Galicia rías, North West of the Iberian Peninsula.
Methods: Using data collected in 42 sampling localities in Galicia rias and over two 
time periods (1998 and 2014), we analysed changes in the seaweed community's 
composition through time and space. We calculated the temporal beta-diversity 
index and spatial beta-diversity as the pairwise composition differences between 
sampling localities. We use generalized dissimilarity models, to identify local environ-
mental drivers of spatial and temporal beta-diversity.
Results: We found a significant change in seaweed communities of Galicia rias, be-
tween 1998 and 2014 (temporal beta-diversity). They were mostly related to species 
loss rather than to species replacement. The dissimilarity among localities (spatial 
beta-diversity) was significantly higher in 2014 than in 1998. Nitrate concentration 
was consistently predicted as the main driver of both temporal and spatial beta-
diversity patterns.
Main conclusions: Unlike other studies in marine ecosystems, our results suggest 
that observed changes in the structure of perennial seaweed assemblages in Galicia 
Rias might lead to a local biotic heterogenization, indirectly linked to climate change 
through changes in nutrients availability and the upwelling intensity. Changes in 
Galicia seaweed communities call scientific attention to the importance of local 
stressors in climate change studies.
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1  | INTRODUC TION

Unprecedented climate changes are globally altering every ecosys-
tem on Earth. Climate fluctuations are pointed as important driv-
ing forces of complex and unanticipated changes in biodiversity 
(Burrows et al., 2014; Parmesan & Yohe, 2003). Most research has 
focussed on understanding changes in species abundance and/or 
distribution, from regional to global scales. The observed distribu-
tion shifts have often followed the same trajectories as species ther-
mal affinities (Burrows et al., 2019; Mieszkowska, 2015). However, 
heterogeneity in species responses to changes has been also doc-
umented, even within the same community (Lima et  al.,  2007). 
For instance, a temperature increase may negatively affect cold-
adapted species while benefiting warm-adapted ones in the same 
location (eg. Mieszkowska & Sugden, 2016; Muguerza et al., 2020; 
Wernberg et al., 2011). For this reason, recent research has shifted, 
and increasing attention is being paid to understanding the extent of 
change in communities’ composition between localities or time in-
stances (beta-diversity; Crabot et al., 2019; Fitzpatrick et al., 2013). 
Beta-diversity changes over time and space and can be influenced by 
shifts in species ranges and local extinctions (Magurran et al., 2015). 
Indeed, measures of beta-diversity can provide valuable insights into 
local and regional biodiversity patterns and underlying processes 
(Crabot et al., 2019), and on climate change impacts on biodiversity 
(Tingley & Beissinger, 2013). Despite recent advances in the under-
standing of communities’ changes at different spatial scales (e.g. Bué 
et al., 2020; Leclerc, 2018; Robuchon et al., 2017), further explora-
tion of beta-diversity patterns and the underlying in situ environ-
mental drivers is needed, particularly in highly dynamic ecosystems.

Climate change impacts are particularly severe in coastal bi-
omes. They are extremely dynamic ecosystems where high levels 
of biodiversity and key climate regulating processes are vulnerable 
to changes in both ocean and land environmental pressures (He & 
Silliman, 2019). The increasing temperature of both air and water at 
a rough rate of 0.1ºC –0.2ºC per decade is one of the main threats 
to coastal ecosystems (IPCC, 2014). Notwithstanding, changes in 
upwelling events, acidification and/or anthropogenic local stress-
ors are also involved (Allison & Bassett, 2015; Mineur et al., 2015). 
Adjustments in species distributions, abundance and community 
compositions have been globally reported and associated with 
these climate-related changes (eg. García Molinos et  al.,  2015; 
Hawkins et al., 2009; Mieszkowska, 2015; Mieszkowska et al., 2005; 
Mieszkowska & Sugden,  2016; Poloczanska et  al.,  2016; Smale 
et  al.,  2019). Studies focussing on temporal and spatial variations 
in the composition of communities (expressed as beta-diversity) 
have shown an increasing homogenization (Dornelas et  al.,  2014; 
Magurran et al., 2015; Piazzi & Ceccherelli, 2020). Although coastal 
communities’ changes have been associated with the predicted 
warming (Bué et  al.,  2020), beta-diversity is still poorly explored 
to understand climate change impacts on marine communities’ ho-
mogenization (Dornelas et  al.,  2014; Magurran et  al.,  2015; Piazzi 
& Ceccherelli,  2020). While recent studies have investigated the 
spatial scale dependency of biodiversity patterns and processes 

(Leclerc,  2018; Robuchon et  al.,  2017), temporal changes in beta-
diversity patterns remain overlooked. Assessments of both temporal 
and spatial beta-diversity could provide a more sensitive indicator of 
community changes.

In coastal ecosystems, seaweeds play a central role as they are eco-
logically important primary producers. However, they are vulnerable 
to physical and chemical changes in the marine environment (Harley 
et al., 2012). In the last decades, dramatic changes in seaweed assem-
blages have been linked to climate change (eg. Barrientos et al., 2020; 
Gallon et  al.,  2014; Lima et  al.,  2007; Piñeiro-Corbeira et  al.,  2016; 
Smale & Wernberg, 2013; Wernberg, Russell, et al., 2011; Wernberg, 
Thomsen, et al., 2011). Major changes have been observed in temperate 
areas, including increases of warm water adapted species and retreats 
or disappearances of the cold-adapted ones (Barrientos et  al.,  2020; 
Casado-Amezúa et  al.,  2019; Díez et  al.,  2012; Lima et  al.,  2007; 
Muguerza et  al.,  2020; Piñeiro-Corbeira et  al.,  2016; Wernberg, 
Thomsen, et al., 2011). Occasionally, these changes have a major impact 
on the submarine landscape, such as when complex three-dimensional 
kelp forests have been replaced by structurally simpler systems dom-
inated by algal turfs (Filbee-Dexter & Wernberg,  2018; Wernberg 
et al., 2019). Even though changing water temperature has been linked 
to these changes, other factors (e.g. waves, currents and nutrient con-
centrations) deserve further attention as they might also play an im-
portant role, particularly at local scales (e.g. Mabin et al., 2019; Mancuso 
et al., 2018; Piñeiro-Corbeira et al., 2019; Robuchon et al., 2017; Smale 
& Wernberg, 2013; Straub et al., 2019).

The number of studies linking seaweed assemblage shifts to 
climate change has been growing in the last years. Still, there are 
knowledge gaps, particularly in overlooked regions where environ-
mental conditions may not be directly comparable to those in neigh-
bouring areas. Located in the North West of the Iberian Peninsula, 
Galicia is a region characterized by several large inlets (drowned river 
valleys known as rías) that provide a heterogeneous environment 
and shelter for many species. Further, marine productivity is remark-
ably high thanks to the strong influence of a large upwelling system 
(Bode et al., 2011; Sydeman et al., 2014). These unique conditions 
mean that the Galician coast is home to a high diversity of seaweeds, 
being the southern edge of the range of many cold-temperate spe-
cies (Bárbara et al., 2005; Hoek & Breeman, 1990). Recent studies 
have reported an impoverishment of the intertidal seaweed's com-
munities in Galicia rias (Barrientos et  al.,  2020; Piñeiro-Corbeira 
et al., 2016). The increase of the air and seawater temperatures, fre-
quency of strong waves and the slight decrease in some nutrients 
were suggested as potential causes for this loss (Piñeiro-Corbeira 
et  al.,  2016). However, further analyses are still required to accu-
rately discriminate the main threats to these communities. In addi-
tion, since decreases in local richness can be followed by increased 
beta-diversity (Socolar et al., 2016), it is important to understand 
whether and how the changes in the number of species per locality 
may have altered the patterns of beta-diversity in Galicia.

To better understand what might make seaweed assemblages 
in Galicia vulnerable to future climate change, we investigated the 
spatial and temporal responses of seaweed communities to in situ 
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environmental changes. Using data collected in 42 sampling localities 
over two time periods (1998 and 2014) (Piñeiro-Corbeira et al., 2016), 
we tested whether the observed decrease in species frequency was 
accompanied by changes in the community structure (as temporal 
beta-diversity) and, if so, whether they could be linked to sea surface 
temperature changes (Piñeiro-Corbeira et  al.,  2016). Additionally, we 
investigated whether the spatial beta-diversity changed in 1998 and 
2014, and whether there are differences in the environmental variables 
determining the spatial and temporal beta-diversity, respectively.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study area is North West Iberia, Galicia (Figure 1), where the 
coastline is characterized by open coast sections interrupted by 

sheltered rias, and an alternation of rocky cliffs and sandy beaches 
(Piñeiro-Corbeira et al., 2016). Sea water temperature ranges from 
11 ºC in winter to 18 ºC in summer (Bárbara et al., 2005). Coastal 
upwelling has a strong influence on primary production in spring-
summer, bringing nutrients from the Eastern North Atlantic Central 
Water mass to near the coast and even inside the rias (Alvarez 
et al., 2011). In winter, downwelling retains water inside the rias and 
nutrients are depleted (Varela et al., 2004).

2.2 | Seaweed data

We use data collected and published by Piñeiro-Corbeira et al., 2016. 
Seaweed communities were surveyed in forty-two intertidal locali-
ties along Galicia rias in 1998–9 and re-surveyed in 2014 applying the 
same methodology to ensure comparable datasets (Figure 1; Piñeiro-
Corbeira et al., 2016). Sampling localities were chosen to (a) ensure 

F I G U R E  1   Study area and sampling localities in green (some reference names in balloons). Rías names. Small inset of the study area 
location in the European context [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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appropriate hard subtract for intertidal seaweeds; (b) minimize human 
pressures (e.g. far from harbours, villages, aquaculture plants; Piñeiro-
Corbeira et al., 2016); and (c) provide an appropriate sampling of the 
levels of wave exposure found in the region (exposed, semi-exposed, 
semi-protected and protected; see Cremades et al., 2004 and Piñeiro-
Corbeira et al., 2016, for details). In each sampling locality, the same 
transect sampling approach was replicated in the two time periods 
(Piñeiro-Corbeira et al., 2016). The presence/absence of 39 seaweeds 
(Table S1) was recorded by local inspection of a 10 m wide transect 
(from the supralittoral fringe to the infralittoral one) for one hour 
(Piñeiro-Corbeira et  al.,  2016). Species were selected based on (a) 
perennial character to avoid seasonality confounding effect; (b) nar-
row range of wave exposure conditions (stenoecious) to disregard the 
potential effect of wave intensity in these species’ distributions; and 
(c) identifiability (Cremades et al., 2004; Piñeiro-Corbeira et al., 2016). 
Based on authors’ expert knowledge, literature (Lüning, 1990) and bi-
ogeographic affinity (Guiry & Guiry, 2021), the selected species were 
grouped according to thermal affinities for further analysis (Table S1).

2.3 | Environmental variables

In situ environmental variables were used to investigate the drivers 
of both temporal and spatial beta-diversity patterns in Galicia Rías 
(Figure S1) weekly water column recording of seawater temperature, 
and nitrate and phosphate concentrations. Data were provided by 
Instituto Tecnoloxico para o Control de Medio Mariño de Galicia 
(INTECMAR, Vilagarcía de Arousa, Spain), which runs a network of 
sampling stations where water samples are collected on a weekly 
basis at depth intervals 0–5 m, 5–10 m and 5-15m. In this study, we 
used in situ data from 43 sampling stations to produce a continuous 
yearly average of the surface of seawater temperature, nitrate and 
phosphate concentrations at 0.005 degree of resolution, using the 
Inverse Distance Weighting interpolation (IDW) model. IDW outper-
forms other interpolation methods in spatial interpolation for seawa-
ter temperature (Kusuma et al 2018). We used in situ measurements 
of the average water temperature in the upper 5 m layer as a sur-
rogate for sea surface temperature (SST), as it matched the warm-
ing trend observed in satellite-derived SST data (Piñeiro-Corbeira 
et al., 2016). Due to its high correlation with other variables, water 
temperature between 5 and 10m was excluded from the analysis. 
The remaining variables had correlation coefficients below 0. 505 in 
1998 and 0.574 in 2014.

2.4 | Data analysis

We analysed trends in the seaweed community compositions in 
Galicia by looking at spatial and temporal differences in taxa richness 
and beta-diversity. We performed analyses for all taxa and for spe-
cies grouped by empirical thermal affinity. Species richness for each 
sampling locality was calculated as the number of the observed sea-
weed species. Temporal changes in species richness were measured 

through the difference between 2014 and 1998 in each location and 
its significance was tested using a Wilcoxon Signed-Rank Test.

To study the change in seaweed community composition 
through time (from 1998 to 2014), we calculated the temporal beta-
diversity index (TBI, Legendre, 2019). The Sørensen index was used 
as TBI because it is the presence-absence equivalent of the Bray-
Curtis dissimilarity index. TBI was computed for each sampling lo-
cality by measuring the change in species composition between the 
first (1998) and second surveys (2014). TBI was decomposed into 
the species loss (B) and gain (C) components of these dissimilar-
ities (Legendre,  2019). We tested for significant changes, to iden-
tify localities that have changed in composition. We tested the null 
hypothesis (H0) that species assemblage at a given locality i (i.e. sam-
pling locality) was not different between 1998 and 2014, compared 
to the assemblages that could have been observed at the same two 
times in each sampling locality (Legendre, 2019). We applied a boot-
strap method to randomly recompute TBI 999 times, and a p-value 
was calculated for the TBI difference between 1998 and 2014 at 
each sampling locality. Analyses were performed using the TBI.R 
function available in the R package “adespatial” (Dray et al., 2018). 
Two additive components were calculated: turnover (Simpson index 
of dissimilarity, βsim) and nestedness (nestedness resultant index of 
dissimilarity, βsne) (Baselga, 2010). This was made because variation 
in species composition may be caused by turnover (species replace-
ment from site to site or year to year) or nestedness (species loss 
from site to site, or year to year) (Baselga, 2010). They were com-
puted using the betapart package in R (Baselga & Orme, 2012).

To analyse the spatial variation of seaweed communities, we 
calculated the spatial beta-diversity as the pairwise composition 
differences between sampling localities for each sampling year. 
We measured beta-diversity by calculating the presence-absence 
Sørensen dissimilarity index (βsor), turnover (Simpson index of dis-
similarity, βsim) and nestedness (nestedness resultant index of dis-
similarity, βsne) components (Baselga, 2010). Significance was tested 
with a t test after 100 iterations of resampling of 50% of all sampling 
units. Analyses were performed using the betapart package in R 
(Baselga & Orme, 2012).

We use generalized dissimilarity modelling (hereafter, GDM, 
Ferrier et al., 2007), to evaluate the role of environmental changes 
in the observed patterns. GDM is a nonlinear matrix regression 
technique for analysing spatial patterns in the compositional dis-
similarity between (previously calculated) pairs of locations or tem-
poral dissimilarities as a function of environmental dissimilarity and 
geographical distance (Ferrier et  al.,  2007). To fit GDMs, we con-
structed site-by-species and site-by-environment matrices for each 
year (1998 and 2014) and between years, where sites are the lo-
calities where species were observed. In addition to temperature, 
phosphates and nitrates, the environmental matrices included the 
geographical coordinates for the localities. It is from these predic-
tors that GDM derives sets of I-splines and calculates distances 
between all possible pairs of sites. We tested variable significance 
using Monte Carlo permutation (Ferrier et  al.,  2007). All analyses 
were performed in R v. 2.12.2. All previous analyses were replicated 
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(temporal and spatial beta-diversity) for each thermal affinity group 
(warm and cold-water species).

3  | RESULTS

3.1 | Quantification of seaweed communities

In 1998, 39 species of seaweed were observed in the 42 sampling 
localities. This number decreased to 37 in 2014, as two species 
were not observed, namely Cystoseira nodicaulis and Gracilaria gra-
cilis. (Figure 2, Figure S2). There were significant differences in the 
total number of species observed per locality from 1998 to 2014 
(W = 678.5, p <.05). There was a general decrease in the total num-
ber of species observed per locality during the study period (in ~81% 
sampling localities). An increase in the number of species was only 
observed in three localities, namely Punta Del Castro, Santa Cruz 
and Punta Bazar. The same pattern was observed when looking at 
species by their thermal affinity (Figure 2, Figure S2). Regardless of 
the thermal affinity, the number of species observed per locality 
decreased significantly (W cold =642, p <.05 and W warm = 622, 
p  <.05, respectively). One species of each thermal affinity went 
unrecorded in 2014 (the warm-affinity C.  nodicaulis and the cold-
affinity G. gracilis). The number of warm-adapted species increased 

in five localities of Central and Northern Rías (Punta de Arnela, Punta 
Lens and Punta Bazar in Rías Baixas, Santa Cruz, Barizo and Punta do 
Castro) while the number of cold-adapted species increased in three 
localities of the Southern Rías (Punta Bazar, Punta Batuda and Punta 
Redondelo).

3.2 | Temporal patterns of beta-diversity

Overall, there were changes in seaweed community compositions 
between 1998 and 2014. Species loss was the main component of 
temporal beta-diversity between 1998 and 2014 (t = −0.21, p < .05, 
Figure 3, and Table S2), and this also happened when each thermal 
affinity group was examined separately (t warm = −0.27, p <.05, t 
cold = −0.24, p <.05, Figure 3). Seaweed community's lost species in 
35 localities, for instance Gigartina pistillata and Himanthalia elongata 
were absent in 15 localities in 2014, compared to 1998 (Table S1 and 
S2). With all species taken together and with just the cold-water set, 
there were significant differences in ~14% of sampling localities be-
tween 1998 and 2014 (TBI >0.06, p-value < .05; Table S2), while this 
value increased to 17.5% when only warm-adapted seaweeds were 
taken into consideration (Table S2).

Changes in nitrate concentrations and water temperature from 
1998 to 2014 were the major drivers of the observed patterns of 

F I G U R E  2   Boxplots of species richness and spatial beta-diversity (Sorensen dissimilarity index) each year (1998 and 2014) for all 
seaweeds and with seaweeds grouped by thermal affinity
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temporal beta-diversity and the associated species loss (Table  1, 
Figure S1, S3). On the other hand, the change in phosphate concen-
trations also contributed to the pattern observed for the cold-water 
group (Table 1, Figure S1).

3.3 | Spatial patterns of beta-diversity

There was a significant correlation between the observed values of 
spatial beta-diversity in 1998 and 2014 (Mantel statistic = 0.67 p <.05). 

F I G U R E  3   Plot of seaweed survey data for 1998 and 2014, where 42 localities were plotted (yellow dots) using species gains (C) against 
species losses (B) – B-C plot. Dot size proportional to the temporal beta-diversity value (Sorensen index) between 1998 and 2014. Green 
line is where gains are equal to losses while the red line has the slope of the green line but passes through the centroid of the points. Red 
line position indicates the direction of communities' composition changes from 1998 to 2014 (loss of species) [Colour figure can be viewed at 
wileyonlinelibrary.com]

TA B L E  1   Coefficients of GDMs 
predictors of spatial beta-diversity and 
its components (replacement and species 
loss) in 1998 and 2014 and of TBI

Geographic 
Distance [Phosphate] [Nitrate]

Temp. 
(<15 m)

Temp. 
(<5 m)

All Taxa Beta-diversity 1998 0.00 0.13 0.95* 0.07 0.16

2014 0.00 0.00 1.01* 0.01 0.23

TBI – 0.00 1.07 0.50 0.00

Species loss 1998 0.07 0.03 0.00 0.01 0.00

2014 0.13 0.04 0.00 0.11 0.08

TBI – 0.01 0.35 0.13 0.00

Replacement 1998 0.00 0.13 0.7* 0.19 0.07

2014 0.00 0.00 1.01* 0.01 0.23

TBI – 0.00 0.00 0.00 0.00

Warm 
Affinity

Beta-diversity 1998 0.01 0.53 1.70 0.27 0.12

2014 0.00 0.20 2.43 0.00 0.61

TBI – 0.10 2.41 0.42 0.00

Species loss 1998 0.09 0.07 0.00 0.00 0.00

2014 0.17 0.11 0.00 0.04 0.08

TBI – 0.00 0.47 0.25 0.00

Replacement 1998 0.00 0.31 0.39 0.77 0.23

2014 0.00 0.16 0.21 0.00 0.00

TBI – 0.00 0.00 0.00 0.00

Cold 
Affinity

Beta-diversity 1998 0.00 0.00 0.83* 0.02 0.14

2014 0.00 0.00 0.70 0.11 0.13

TBI – 0.59 0.73 0.42 0.00

Species loss 1998 0.00 0.03 0.00 0.08 0.05

2014 0.00 0.00 0.70 0.11 0.13

TBI – 0.00 0.01 0.18 0.00

Replacement 1998 0.00 0.00 0.76* 0.01 0.13

2014 0.00 0.00 0.70* 0.11 0.13

TBI – 0.07 0.98 0.00 0.00

Note: Note The most important predictors are shown in bold.
*Statistically significant (p <.05).

www.wileyonlinelibrary.com
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Both spatial replacement (turnover) and species loss (nestedness) com-
ponents were also significantly correlated between years (Mantel sta-
tistic=0.64 and 0.24, p = .001 and .004, respectively). The dissimilarity 
among localities (spatial beta-diversity) was significantly higher in 2014 
than 1998 (Figure 2; t = 15.693 p < .05). The same was also observed 
for the spatial replacement (t = 14.02, p <.05) and species loss com-
ponents of beta-diversity (t = 5.91, p <.05). Similar patterns were ob-
served when looking at species by their thermal affinities. There was 
a significant increase of beta-diversity and its components from 1998 
to 2014 (Figure 2 and Figure S2) except for nestedness (species loss) in 
cold-water species (t = 1.02, p >.05, Figure 2 and Figure S2).

Nitrate concentration was consistently predicted as the main 
driver of spatial patterns in Galicia rías in each year (Table  1, 
Figure S4). It was significantly related to spatial beta-diversity and 
replacement in 1998 and in 2014 for all species as well as for cold-
adapted species spatial beta-diversity in 1998 and replacement in 
both time periods (Table  1, Figure  S4). Although not significant, 
nitrate concentration was related to warm-adapted species spatial 
beta-diversity and replacement in 1998 or 2014 (Table  1). Water 
temperature, particularly at the surface (<5 m), was the second most 
important driver of beta-diversity patterns for all taxa in both time 
periods. The same was also observed independently for each ther-
mal affinity group, although changes in phosphate concentrations 
were also important for the warm-affinity group (Table 1, Figure S4). 
Geographic distance and phosphate concentration were the most 
important drivers of species loss among localities for all species and 
for species with warm affinity (Table 1, Figure S1, Figure S4).

4  | DISCUSSION

Understanding spatial-temporal changes in ecological communities 
of coastal ecosystems are crucial in the context of climate change. 
Our study is pioneering in exploring how in situ recorded environ-
mental variables may affect the structure of the perennial seaweed 
assemblage over space and time in the rocky intertidal of NW Iberian 
Rías. Our results show that seaweed assemblages changed signifi-
cantly between 1998 and 2014 (temporal beta-diversity), and these 
changes were linked to species loss rather than to species replace-
ment. Therefore, our results support the initial hypothesis that the 
decrease in species recorded between 1998 and 2014 came with 
changes in the community structure. Nonetheless, our results di-
verge from observations in other marine assemblages (e.g. fishes) 
where the temporal beta-diversity was linked to species replacement 
rather than species loss (Dornelas et al., 2014; Magurran et al., 2015). 
These studies suggested an increase in spatial homogenization as the 
species identity of colder northern localities increasingly resembles 
that of warmer southern localities (Magurran et al., 2015). Similarly, 
many studies with seaweeds across the European Atlantic have re-
ported range shifts as well as some replacement of cold-affinity spe-
cies by warm-affinity ones (eg. Díez et al., 2012; Gallon et al., 2014; 
Lima et al., 2007; Muguerza et al., 2017, 2020). In our study, how-
ever, species losses outweighed gains in both cold-affinity and 

warm-affinity species suggesting that water warming may not be 
the only factor explaining temporal beta-diversity patterns. In fact, 
our analysis suggests that the changes in nitrate concentration have 
greater explanatory power for the temporal beta-diversity variation 
in Galician rías than water warming. Another alternative hypothesis 
for the observed pattern is a mismatch between changes in envi-
ronmental and species responses: while some cold-adapted species 
might disappear in one locality, warm-adapted ones might not have 
the time to arrive. Therefore, we acknowledge that caution should 
be taken in the interpretation of our results as we have only tested 
two-time instances. Longer time series will be needed to determine 
the true extent of the relative importance of nutrient and tempera-
ture changes to the perennial seaweed assemblage.

Temperature has often been identified as the main driver of tem-
poral and spatial changes in many marine communities (Burrows 
et al., 2019). However, a range of abiotic and biotic factors are known 
to be drivers of change in the marine realm (Bulleri et  al.,  2020). 
Environmental factors other than temperature may be equally import-
ant in accounting for community changes at local scales, such as nu-
trient inputs, storms or habitat destruction (Jackson, 2008). Nitrogen 
and phosphorus are common limiting nutrients for seaweeds; for exam-
ple, growth can be simultaneously limited by both (Hurd et al., 2014). 
On the other hand, different seaweed species show different nitrogen 
usage, suggesting that more diverse communities enhance nitrate up-
take (Bracken & Stachowicz,  2006). In fact, laboratory experiments 
suggest that nutrient limitation may more strongly constrain seaweed 
performance than warming, in both warm and cold-affinity temperate 
species (Piñeiro-Corbeira et al., 2019). Nonetheless, disentangling the 
relative importance of temperature and nutrients from field data can 
be challenging because high temperatures often correlate with low 
concentrations of inorganic nutrients in temperate marine ecosystems 
(Gerard, 1997). This relationship is particularly relevant in areas such as 
Galicia where a seasonal coastal upwelling pumps colder nutrient-rich 
deeper water to the surface, thus fuelling a great primary production 
(Alvarez et al., 2017). Climate change is altering the intensity of eastern 
boundary upwelling (Sousa et al., 2017; Sydeman et al., 2014). Although 
somewhat contentious, and unlike other large upwelling systems world-
wide, there is evidence that the Iberian upwelling may have weakened 
in recent times (Sydeman et al., 2014). A weaker upwelling would be 
largely consistent with the environmental changes observed between 
1998 and 2014 and here reported, as it would involve warmer, nutrient-
poor waters. Moreover, the spatial variability of the temporal trends of 
some environmental variables (e.g. nitrates, temperature) might also be 
related to the spatial variability of the upwelling system since upwell-
ing events are more frequent and intense along the western coast of 
Galicia than along the northern one (Alvarez et al., 2011). Obviously, a 
weakened upwelling might not be the only mechanism behind the en-
vironmental changes recorded in Galicia. A detailed analysis of water 
temperature seasonal trends suggests that much of the warming hap-
pens in autumn (Piñeiro-Corbeira et  al.,  2016), a time of year when 
upwelling events typically occur less frequently (Alvarez et al., 2011). 
Similarly, changes in other human activities on the nearby coast may 
also be related to the variation recorded for some nutrients over time 
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(e.g. nitrates). Nonetheless, it still seems plausible to suggest that the 
change in the intensity of the Iberian upwelling could be an ultimate 
driver of at least some of the variation in the perennial seaweed assem-
blage recorded in Galicia between 1998 and 2014.

The prevalence of species losses over gains between 1998 and 
2014 led to a higher spatial beta-diversity in seaweed assemblages in 
2014. This could be a consequence of the fact that the estimates of 
dissimilarity between sites may increase even though the number of 
different species between two sites does not change if the sites to be 
compared have fewer species in total (Legendre, 2019). Nevertheless, it 
does not counteract our inference that rather than the biotic homoge-
nization reported elsewhere for other marine assemblages (Magurran 
et al., 2015), the assemblage of intertidal perennial seaweeds of Galician 
coasts became more spatially variable in 2014. Regardless of the year, 
species turnover rather than nestedness was the main component of 
spatial beta-diversity. This is hardly surprising for the intertidal sea-
weed assemblage, as wave exposure is a major determinant of the pres-
ence/absence of many species at a given site (Barrientos et al., 2020). 
Although we believe that the potential effect of wave exposure was 
mitigated by the sampling methodology, its importance is indubitable 
(Robuchon et  al., 2017), particularly in the intricate coast of Galician 
rias. As such, the hypothesis that the observed spatial beta-diversity 
and spatial replacement might be also related to the differences in wave 
exposure among sites will possibly need further exploration. Indeed, 
nitrate concentration is consistently predicted as the variable that best 
predicts the spatial beta-diversity, and our data show that the sites 
within the rias tend to have higher nutrient concentrations and those 
sites usually are less exposed to the waves.

5  | CONCLUSION

Undoubtedly, global climate change is leading to changes in commu-
nities. In Galicia rias, the structure of perennial seaweed assemblage 
has changed over space and time, leading to an apparently biotic het-
erogenization. The observed pattern is apparently linked to nitrates 
concentrations, which might be explained by a strong influence of 
changes in the intensity of the Iberian upwelling. Despite counter-
current, our results highlight the importance of exploring local and 
indirect climate change effects.
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