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Abstract 

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that may improve 

motor learning. However, the long-term effects of tDCS have not been explored, and the ecological validity 

of the evaluated tasks was limited. To determine whether 20 sessions of tDCS over the primary motor cortex 

(M1) would enhance the performance of a complex life motor skill, i.e., typing, in healthy young adults. 

Healthy young adults (n = 60) were semi-randomly assigned to three groups: the tDCS group (n = 20) 

received anodal tDCS over M1; the SHAM group (n = 20) received sham tDCS, both while performing a 

typing task; and the Control group (CON, n = 20) only performed the typing task. Typing speed and errors at 

maximum (mTT) and submaximal (iTT) speeds were measured before training, and after 10 and 20 sessions 

of tDCS. Every subject increased maximum typing speed after 10 and 20 tDCS sessions, with no significant 

differences (p > 0.05) between the groups. The number of errors at submaximal rates decreased significantly 

(p < 0.05) by 4% after 10 tDCS sessions compared with the 3% increase in the SHAM and the 2% increase in 

the CON groups. Between the 10th and 20th tDCS sessions, the number of typing errors increased 

significantly in all groups. While anodal tDCS reduced typing errors marginally, such performance-enhancing 

effects plateaued after 10 sessions without any further improvements in typing speed. These findings suggest 

that long-term tDCS may not have functionally relevant effects on healthy young adults’ typing performance. 

 
Key words: non-invasive brain stimulation, transcranial direct current stimulation (tDCS), motor learning, 

long-term, motor skills. 

  



INTRODUCTION 

Transcranial direct current stimulation (tDCS) is an inexpensive and safe method 

of neuromodulation used to enhance motor and cognitive functions in healthy adults and patients 

(Bikson et al., 2016, Antal et al., 2017). By delivering a weak current through the scalp, tDCS can 

modulate the excitability of the underlying cortical areas. Anodal tDCS modifies the resting 

membrane potential closer to the critical depolarization threshold, increasing excitability, while the 

opposite effect of a tonic hyperpolarization is associated with cathodic stimulation (Bindman et al., 

1964, Nitsche and Paulus, 2000, Romero Lauro et al., 2014). Pioneering studies reported that 

tDCS modifications in brain excitability lasted past the stimulation period (Nitsche and Paulus, 

2000, Nitsche and Paulus, 2001) and in combination with motor practice, could enhance motor 

learning (Nitsche et al., 2003). However, the mechanism of how tDCS might enhance motor 

performance following motor practice is complex (Stagg and Nitsche, 2011, Kronberg et al., 

2017). 

 

Although anodal tDCS may enhance motor learning, only a few of studies have examined the 

effects of tDCS on motor learning using multiple practice sessions in a task that healthy adults 

often used in daily life (Reis et al., 2009, Gálvez et al., 2013, Gomes-Osman and Field-Fote, 

2013, Ammann et al., 2016, Fan et al., 2017). Animal data from multisession compared with acute 

use of tDCS suggest that the practice effects last longer and are more stable, possibly due to a 

cumulative effect produced by the serial sessions (Rueger et al., 2012). Indeed, a meta-analysis of 

the effect of tDCS on manual motor sequence learning reported inconsistent results from single-

sessions but a consistent positive effect across multiple sessions (Hashemirad et al., 2016). In 

addition, in four out of five, multi-session studies, tDCS compared with sham treatment enhanced 

bimanual motor skill performance (Pixa and Pollok, 2018). The cumulative effect of multiple 

tDCS sessions is unclear. It could rely on increased cortical modulation across multiple tDCS 

sessions (Alonzo et al., 2012, Gálvez et al., 2013), although this has not always been the case 

(Horvath et al., 2016, Zappasodi et al., 2018). Importantly, it is unclear whether changes in cortical 

plasticity are indicators of changes in motor performance (Abdelmoula et al., 2016, Lopez-Alonso 

et al., 2018). From a behavioral point of view, the cumulative effects on motor learning may also 

depend on the task that is being evaluated. In a visual isometric pinch force task, the effects of M1 

tDCS on motor learning was limited to the first session (Reis et al., 2009), while in a sequential 

finger tapping task anodal-tDCS facilitated learning gains (Saucedo-Marquez et al., 2013). 

Nevertheless, these multisession interventions in healthy participants lasted only up to 5 days and 

it remains unclear if the benefits of tDCS would incrementally increase with additional sessions of 

stimulation over weeks, or whether the performance-enhancing effects would plateau over time. In 

addition, the motor tasks that were evaluated in the above-mentioned studies were highly 

controlled and their ecological validity and transfer to life skills were limited. 

 

The objective of the present study was to determine whether 20 sessions of tDCS over M1 would 

enhance the performance of a complex life motor skill, i.e., typing, in healthy young adults. We 

chose to evaluate typing performance because this is a bimanual motor task that is ubiquitous in 

young individuals’ daily life. Two outcomes can characterize typing performance: typing speed 

and error. Learning to type on a keyboard with a few or no errors is a complex skill that demands 

extensive periods of practice and requires the integration of sensory-motor, language, and 

cognitive skills (Grabowski, 2008, Rosenbaum, 2010). We stimulated M1 because brain 

imaging data suggest that practicing manual motor sequences induces structural and functional 

changes in multiple cortical regions such M1, pre-motor cortex, and the supplementary motor 

area (Hikosaka et al., 2002, Kansaku et al., 2005). Although the underlying mechanisms of motor 

skill acquisition of a complex motor task remain unclear, M1 seems to play an essential role in the 

early, rapid phase of motor skill acquisition (Muellbacher et al., 2002, Ehsani et al., 2016, Papale 

and Hooks, 2018, Yokoi et al., 2018, Hwang et al., 2019). We hypothesized that 20 tDCS sessions 

applied to M1, in combination with motor practice will improve typing performance compared 

with motor practice without tDCS. Based on the extant data we further hypothesized that the 

performance enhancing effects would plateau off after 10 sessions without further improvements 
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in typing performance by session 20. This is the first study to utilize a long-term tDCS 

intervention in healthy volunteers. 

EXPERIMENTAL PROCEDURES 

Method 

All participants were right-handed (Oldfield, 1971) healthy young adults (n = 63, 42 males, age 

21 ± 2 years). Exclusion criteria were: (1) age below 18 or above 30 years; (2) history of 

neurological diseases, psychological disorders or substance abuse; (3) personal/familial history of 

epilepsy or fainting; (4) traumatic brain injury, presence of a pacemaker, piece of metal implanted 

in the skull; (5) current usage of drugs known to influence cognition or behavior; (6) recent (<6 

months) exposure to brain stimulation; (7) disability of the fingers, hands, or wrist, and (8) any 

experience with typing programs. All participants signed an informed consent, approved by the 

university ethical committee. The study was conducted according to the declaration of Helsinki 

(Anon, 2002). Participants were asked to refrain from caffeine or alcohol consumption the day 

before the experimental sessions. 

Design 

All the participants completed a familiarization period followed by 23 experimental sessions 

consisting of three testing and 20 training sessions. 

 

The typing familiarization period began by introducing the instructions of the efficient touch-

typing program (Tipp 10 freeware, Thielicke IT Solutions, Berlin, Germany), which is based on 

the use of both hands and all the fingers (Freeman et al., 2005, Weigelt Marom and Weintraub, 

2015). Participants practiced typing a specific text until they were able to use all of the fingers 

correctly and were at least 70% accurate, without time constraint. Participants reached this 

criterion in 2–7 training sessions. Next, participants were familiarized in one trial with the two 

typing tests. All participants completed the familiarization period in 14 days. 

 

Typing performance was tested three times: at baseline (T1), after the 10th (T2) and 20th (T3) 

session (Fig. 1). Participants were ranked based on baseline maximal typing speed from fastest to 

slowest and trios of participants were randomly allocated to one of three groups: tDCS, SHAM, or 

CON. Participants in the tDCS and SHAM groups performed 20 motor training sessions while 

concurrently receiving anodal or sham tDCS, respectively. Subjects in the CON group performed 

motor training sessions without stimulation. 

 
 

 
Fig. 1. Experimental protocol. Rd, pseudo-randomized; T1, Time 1; T2, Time 2; and, T3, Time 3; mTT, 

maximum typing test; iTT, incremental typing test; w, week; w1, week 1; w2, week 2; ….  
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The typing training program 

The training program consisted of 20 sessions over 2.5 months and was implemented using the 

testing software (Tipp 10 freeware, Thielicke IT Solutions, Berlin, Germany). Each training 

session lasted 15 min and was separated by a minimum of 48 h (Fig. 2). The time of day of training 

was kept constant throughout the 20 sessions for each participant and was similar in the three 

groups. Participants performed the training and testing sessions in the same laboratory room and 

with the same equipment. 

 
 

 
Fig. 2. Typing training program. (A) During training sessions participants received visual keyboard feedback 

on the computer screen. Participants were sitting in a chair in front of a computer screen positioned at eye 

level and they always used the equal computer model, keyboard and chair; (B) touch-typing program and 

representation of increasing difficulty across the sessions. The correct fingers position, i.e., rest digits 2–5 of 

each hand on the respective a, s, d, f and h, j, k, l keys of a standard Qwerty keyboard. The software 

configuration was that regardless of whether participants keystroked the wrong letter, the text continued 

without demanding correction. The level of difficulty increased session by session by adding new letters to 

the practice. In the illustration, we can see the representation of the keys that are added after each training 

session by colours, the darker colours keys are added before. In session 18, participants used all keys, and in 

sessions 19 and 20, they only used the numeric keypad with their right hand. 

Typing tests 

Typing skill assessment comprised two tests: the maximum and incremental typing speed tests 

(mTT, iTT). For mTT, the instructions were: ‘Type as fast and accurately as possible’. The text 

included all of the letters of the Spanish alphabet, a total of 393 characters. The iTT was conducted 

in order to establish an individual speed–accuracy trade-off function. Participants typed the same 

text six times at different speeds: 20%, 30%, 40%, 50%, 60%, and 70% of the individual 

maximum speed obtained in mTT. A metronome was used to pace typing. Instructions were: 

‘Type as accurately as possible while following the metronome beat’. 

  

https://www.sciencedirect.com/science/article/pii/S0306452221002402#f0010


tDCS 

Anodal tDCS was applied over the left M1 for 15 minutes concurrently with the typing practice. 

Stimulation intensity was set to 1.5 mA and was delivered for 15 minutes via saline-soaked sponge 

electrodes (size: 5x5cm; surface area: 25 cm2; current density: 0.06 mA/cm2), connected to aDC 

stimulator (tDCS Stimulator Clinical Version, TCT research Limited, Hong-Kong), using a 10 

seconds “on” and “off” ramping. The configuration of the above parameters was based on a 

previous study that combined tDCS with physical therapy in patients (Middleton et al., 2014). The 

size of the anode electrode and stimulation intensity were based on methods detailed previously 

(Ho et al., 2016). To position the electrodes, we used a 64-channel EEG cap. The anode electrode 

was positioned over the C3 electrode site corresponding to the left M1 cortex and the reference 

cathode electrode was placed over the right supra orbital cortex. Left M1 was the target area of the 

TDCS stimulation since it has been shown to play an essential role in motor learning (Kansaku et 

al., 2005, Neva et al., 2014, Beets et al., 2015), seems to improve motor performance in both hands 

in right-handed participants (Vines et al., 2008), and is the main site of stimulation in previous 

tDCS motor studies (see review Ref. (Patel et al., 2019)). 

 

Participants in the SHAM group received an initial 30 s of stimulation during which the current 

linearly increased from 0 to 1.5 mA and then the current was turned off. With this procedure 

participants are unable to differentiate between real and sham stimulation (Gandiga et al., 

2006, Ambrus et al., 2012, Antal et al., 2017). At the end of the last SHAM and tDCS sessions 

participants were asked to report whether they thought they received stimulation in order to 

ascertain the efficacy of the sham stimulation. 

 

We followed established safety guidelines (Paneri et al., 2015, Aparício et al., 2016, Bikson et al., 

2016, Nikolin et al., 2018). At the end of each session, we asked each participant to report any 

adverse effects using a questionnaire (Brunoni et al., 2011). The questionnaire probed the presence 

of excessive symptoms related to itching, pain, tingling, burning, nausea, fatigue, difficulty of 

concentration or any other discomfort. Subjects were asked to answer on a scale of 1–4 from 

lowest to highest, the sensation for each symptom (1 = minimal; 2 = mild; 3 = moderate; 

4 = severe). 

Behavioral analysis 

The dependent variables were speed of typing, i.e., the number of characters [letters and 

punctuation marks] typed per minute (CPM); and the number of typing errors (incorrect letters or 

punctuation marks). For the mTT we also calculated a Global Performance Index (GPI) as a 

measure of typing performance that combined speed and accuracy, based on similar indices from a 

previous study (Laventure et al., 2016). The GPI was calculated as follows:GPI=e-speed∗e-

accuracywhere e is the mathematical constant, also known as the Euler’s number, and is defined as 

the base of the natural logarithm (∼2.71828). Speed was the average time between correct 

keypresses in seconds. The accuracy was the relationship between the number of correct answers 

with respect to the total number of answers (e.g., 100% of accuracy = 1). The higher GPI values 

indicate better typing performance. 

 

For iTT, we calculated the number of errors at each speed and the total number of errors as the 

sum of errors performed in each speed. For the adverse effects tDCS-induced questionnaire, we 

calculated the total mean of responses to the eight variables (itching, pain, tingling, burning, 

nausea, fatigue, difficulty of concentration, discomfort) across the 20 sessions. 
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Statistical analyses 

Data are presented as mean ± standard deviation (±SD). Normality was assessed using the standard 

distribution, visual inspection of Q–Q plots and box plots, and the Shapiro–Wilk test. We 

evaluated the homoscedasticity using Levene’s test. 

 

The tDCS-induced sensations were analyzed using an independent samples t-test. 

 

The tDCS effects were assessed using the typing speed, number of errors, and GPI scores. 

Changes within and between groups for the typing speed, errors and GPI scores, in the mTT test 

and the total number of errors in the iTT test, were compared using mixed models for repeated 

measures designs. We utilized Jamovi software (AA.VV., 2020), the GAMLj module (Gallucci, 

2019), and the lme4 R package (R, 2018). GAMLj estimates variance components with restricted 

(residual) maximum likelihood (REML), which produces unbiased estimates of variance and 

covariance parameters. The inter-subject factor group (tDCS, SHAM, CON), the intra-subject 

factor time (T1, T2 and T3) and the interaction (group × time) were set as fixed effects. The 

participant intercept was set as the random effect. Bonferroni-Holm were performed to correct for 

multiple comparisons. Furthermore, in the iTT test since there were significant differences in the 

total number of errors at T1, this variable was included as a covariable in the subsequent analyses 

of the mixed model. 

 

The β coefficients and their corresponding 95% confidence intervals represented the effect size. In 

order to evaluate the relationship between the changes in speed and accuracy and the enhancement 

in motor skill, we evaluated the Speed–Accuracy Tradeoff Function using the errors at 20%, 30%, 

40%, 50%, 60%, and 70% of the individual maximum speed for the iTT test, using a previously 

published procedure (Reis and Fritsch, 2011). 

 

The alpha level was set at p < .05. 

RESULTS 

Of the original 63 participants, three dropped out: one due to a wrist injury and two participants 

performed the study protocol incorrectly. The remaining 60 participants (n = 20 per group) 

completed all the sessions. 

 

A total of 800 tDCS sessions were performed without complications. All participants in the tDCS 

and SHAM groups occasionally experienced mild and transient adverse effects during stimulation, 

such as “itching”, “burning” or “discomfort”. Transient erythema (∼5 min) appeared in 7% of 

participants (tDCS: 2; SHAM: 1), due to the saline-soaked sponge, in participants with atopic or 

sensitive skin. Two participants reported a mild headache once. In no session was it necessary to 

interrupt the stimulation for any reason. Overall, tDCS-induced self-reported adverse effects were 

minimal (tDCS: 1.21 ± 0.15 vs. Sham: 1.18 ± 0.11) and were not significantly different between 

groups (t39 = 1.17, p = 0.251) (Table 1). 
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Table 1. Adverse effects tDCS-induced. Stimulation sensations self-reported by the participants after each 

training session across the time. Stimulation sensations were assessed on a Likert 4-point scale: 1 = minimal; 

2 = mild; 3 = moderate; 4 = severe 

Sensations 

Itching Painful Tingling  Burning Nauseous Fatigue 
Difficulty of 

concentration 
Discomfort 

tDCS        

1.77 1.12 1.25 1.24 1.01 1.15 1.09 1.02 

(0.44) (0.17) (0.32) (0.29) (0.02) (0.34) (0.24) (0.07) 

Sham        

1.69 1.14 1.25 1.12 1.02 1.12 1.12 1.07 

(0.35) (0.18) (0.28) (0.17) (0.06) (0.20) (0.21) (0.22) 

        

 
Note: Data are Mean (SD). 

In the tDCS and SHAM groups, 55% and 53% of participants reported that they were being 

stimulated, respectively, confirming the blinding procedure of the SHAM group. 

Maximum typing test (mTT) 

For the mTT, there was a main effect for Time (F2,113 = 88.20, p < .001). There were no significant 

Group or Time*Group interaction effects (Fig. 3). The average typing speed in all the participants 

was 165 ± 55 CPM at T1, 214 ± 52 CPM at T2 (ΔT2-T1 = 49 CPM), and 253 ± 52 CPM at T3 (ΔT3-

T1 = 88 CPM) (pholm < 0.01 across the comparisons, β = 50 and CI95% = 37 to 63; β = 88 and 

CI95% = 75 to 101; β = 39 and CI95% = 26 to 52, for T1 vs T2, T1 vs T3 and T2 vs T3, respectively). 

 

 
 

 
Fig. 3. Speed in the maximum typing test (mTT). The evolution of maximal typing speed across the 

evaluations. Dots beyond the whiskers represent outliers in the data set. Pair comparison with Holm-

Bonferroni adjustment Time effect, p < .01. 
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There were no significant Time, Group, or Time*Group effects in the number of errors (Table 2). 

Table 2. Number of errors in the maximum typing test (mTT). Descriptive data and ANOVA results of 

the number of errors in mTT 

Time Group   
 

p-value   

 tDCS SHAM CON  Time Group Time X Group 

T1 33 ± 31 22 ± 18 21 ± 14     

T2 24 ± 23 17 ± 14 21 ± 22  0.29 0.22 0.77 

T3 26 ± 17 21 ± 16 18 ± 15     

        

 
Note: Data are Mean ± SD. 

In the GPI scores, there was a main effect for Time (F2,114 = 36.35, p < .001). There were no 

significant Group or Time*Group interaction effects. The mean GPI scores in all participants were 

0.27 ± 0.04 at T1, 0.29 ± 0.03 at T2, and 0.30 ± 0.02 at T3 (pholm < 0.01 across the 

comparisons, β = 0.02 and CI95% = 0.02 to 0.03; β = 0.04 and CI95% = 0.03 to 0.05; β = 0.01 and 

CI95% = 0.01 to 0.02, for T1 vs T2, T1 vs T3 and T2 vs T3, respectively). 

Incremental typing test (iTT) 

For the total number of errors, there was a main effect of Time (F2,1012 = 14.70, p < .001) and a 

Time*Group interaction (F4,1012 = 4.99, p < .001) but no Group effect (Fig. 4A). The total number 

of errors decreased in the tDCS group between T1 and T2 (ß = −4.19, CI95% = −5.56 to 

−2.82, t3003 = 5.99, pholm < 0.001) and increased in the SHAM and CON groups (ß = 2.63, 

CI95% = 1.27 to 4, t3003 = 3.78, pholm < 0.004; ß = 2.19, CI95% = 0.82–3.56, t3003 = 3.13, pholm < 0.04, 

respectively). Thus, errors decreased only in the tDCS group after 10 sessions (tDCSΔT2-T1: −4.19 

vs. ShamΔT2-T1: 2.63 and, vs. CONΔT2-T1: 2.19). From T2 to T3, the total number of errors increased 

across all the groups (ß = 3.95, CI95% = 1.13–6.79, t3003 = 5.65, pholm < 0.001; ß = 4.77, CI95% = 1.95–

7.59, t3003 = 6.84, pholm < 0.001; ß = 2.63, CI95% = 0.19–5.46, t3003 = 3.81, pholm = 0.004; for tDCS, 

Sham and Control, respectively). At T1 the total number of errors was higher in the tDCS 

compared to the SHAM group (ß = 5.46, CI95% = 0.83–10.09, t274 = –268, pholm < 0.001), without 

significant differences between the groups at T2 and T3. 
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Fig. 4. Total number of errors in the incremental typing test (iTT). (A) The total number of errors across the 

three evaluations. (B) The total number of errors at T2 and T2 with T1 as covariable. See results section for a 

detail information of the significant effects reported by the ANOVA (A) and ANCOVA (B). Data are 

Mean ± 95% confidence interval (CI). 

To control for the differences in the total number of errors between groups at T1, we introduced 

the total number of errors at T1 as a covariant of a mixed model (Fig. 4B). There were significant 

Time (F1,625 = 31.14, p < .001) and Group (F2,56 = 4.98, p = .01) main effects but no Time*Group 

interaction. Post hoc analysis confirmed the effect identified by the model, i.e., reductions in error 

only after tDCS but not after SHAM or CON (ß = −4.16, CI95% = 1.22–

7.10, t56 = −2.78, pholm = 0.02; ß = −4.00, CI95% = 1.12–6.88, t56 = −2.72, pholm = 0.02; and, ß = 0.17, 

CI95% = −2.71 to 3.03, t56 = 0.11, pholm = 0.91, for tDCS vs SHAM, tDCS vs CON, and SHAM vs 

CON respectively). From T2 to T3, the total number of errors increased in all the groups 

(ß = −3.79, CI95% = −2.46 to −5.13, t625 = −5.58, pholm < 0.001). 

 

We were unable to characterize the Speed–Accuracy Tradeoff Function. As Fig. 5 shows there was 

a high inter-individual variability in the speed-accuracy relationship and only T3 showed a clear 

sigmoid fit across the groups. 
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Fig. 5. Speed-accuracy curves for iTT. Errors at 20, 30, 40, 50, 60, 70% of maximal typing speed. The last 

panel shows Mean ± 95%C.I. 

  



DISCUSSION 

The purpose of the present study was to determine whether 20 sessions of tDCS delivered to the 

M1 would enhance the performance of a complex motor skill, namely, typing, in healthy young 

adults. We found that anodal tDCS significantly reduced the total number of errors during an 

incremental typing test (iTT) but showed no effect on the maximal typing speed. As hypothesized, 

the tDCS effects were pronounced during the first 10 sessions. 

 

To our knowledge, the present study is the first to deliver tDCS for 20 sessions in an effort to 

improve the performance of a life-skill in healthy young adults. We found that after 20 sessions of 

tDCS, participants performed iTT with 6% fewer errors compared to the SHAM and control 

groups. Our data agree with previous findings demonstrating favorable effects of tDCS on 

acquiring a bimanual motor skill (Pixa and Pollok, 2018). Gomes-Osman and Field-Fote 

(2013) employed a modified version of the typing task and reported that five sessions of bi-

hemispheric anodal tDCS improved typing performance. 

 

In the present study, stimulation targeted M1 and its typing error-reducing effects were prominent 

after 10 sessions only in the tDCS group. These findings are consistent with the role of M1 in the 

early stages of motor skill acquisition (Muellbacher et al., 2002, Beets et al., 2015, Kawai et al., 

2015, Buch et al., 2017, Yokoi et al., 2018, Broeder et al., 2019). Findings in rats suggest that M1 

plays an active role in motor skill acquisition up to 9 days, after which M1 can become disengaged 

from movement control (Hwang et al., 2019). In the present study M1 plasticity, may have been 

the underlying mechanism for the coding of the motor skill into motor memory, during the initial 

10 sessions of the typing practice (Dayan and Cohen, 2011, Ostry and Gribble, 2016). 

 

Somewhat unexpectedly, the number of errors in iTT started to increase after the 10th session in 

all three groups, so that the number of typing error was still lower in tDCS compared with SHAM 

and CON. One possible explanation is that the participants typed increasingly faster, thus 

committing more errors. In the current study the performance-enhancing effects of tDCS 

stimulation seemed to reach a plateau and did not facilitate typing performance beyond the level 

reached at session 10. In other words, the effects of tDCS stimulation were not linear or 

cumulative. Stimulation may have helped maintain the gains achieved during the initial 10 

sessions, however this is merely a speculation which cannot be compared with prior data, as 

studies to date only completed five sessions of stimulation at most (Alonzo et al., 2012, Gálvez et 

al., 2013, Ho et al., 2016). 

 

The favorable effects of anodal stimulation over M1 after five sessions have also motivated us to 

assess the stimulation effects on a speed-accuracy tradeoff during typing (Reis et al., 2009). 

However due to large inconsistencies within individual trade-accuracy relationships, we were 

unable to compute individual curve fits across sessions and examine stimulation effects on the 

tradeoff. Participants only showed a sigmoidal speed-accuracy tradeoff relationship at T3, 

although the inter-subject variability remained high. This variability may reflect the complexity of 

the iTT assessment and may explain why previous typing studies chose to report speed and 

accuracy measures separately instead of using a trade-off function (Rosenbaum, 2010, Kalava et 

al., 2014, Weigelt Marom and Weintraub, 2015). 

 

The positive effects of anodal tDCS were limited to the iTT and were not observed with the mTT. 

During the mTT, participants increased typing speed by 67%, keeping the number of errors stable 

across the 20 training sessions without showing significant differences between groups. The 

continued improvements in speed across the 20 sessions clearly rule out a celling effect in mTT. 

These results were expected as numerous studies reported continuous improvements in writing 

speed over 100 hours or even years of practice (Chapman, 0000, Keith and Ericsson, 2007). Both 

outcomes, iTT and mTT, demand asynchronous bilateral well-coordinated and skilled finger 

movements. However, in the iTT the metronome sets typing speed, while in the mTT participants 

were able to freely select their execution speed. Our mTT data suggest that the participants seemed 
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to have developed a cognitive strategy to increase the maximum typing speed, as long as it 

allowed them to keep errors constant. Previous studies have also noticed this typing strategy 

(Rosenbaum, 2010, Weigelt-Marom and Weintraub, 2018). In contrast, during the iTT the speed 

was set, increasing the cognitive demands compared to mTT. This is in line with other studies 

suggesting that tDCS stimulation is preferentially effective in tasks that require high cognitive 

demand (Horvath et al., 2016, Lum et al., 2018), accounting for the effects we observed after real 

stimulation on iTT but not on mTT. Collectively, the findings suggest that the effects of anodal 

tDCS may be task dependent (Kantak et al., 2012, Saucedo-Marquez et al., 2013). 

 

We observed minimal adverse effects of tDCS, and these were similar across the tDCS and sham 

stimulation groups, suggesting that repeated sessions of tDCS with the parameters used in the 

present study, are safe in healthy young adult participants. These findings expand evidence from 

previous studies related to the safety of repeated sessions of tDCS (Nikolin et al., 2018). 

 

Our study has several limitations. The first was a lack of a follow-up of typing performance. We 

chose typing as the motor task because it has a high ecological validity in everyday life and is thus 

functionally relevant, also facilitating adherence. However, for this reason it was impossible to ask 

the participants to refrain from typing in order to assess the retention effects of the stimulation. In 

addition, we were unable to control for the amount of typing participants might have performed 

outside the study. However, since all the participants were university students belonging to the 

same academic group, it is unlikely that there were systematic differences between groups in the 

practice time outside of the experiment. In addition, the effects of tDCS might have been limited 

by the stimulation of a single cortical area. In fact, our results suggest a potentially diminishing 

role of anodal tDCS over M1 in motor learning across 20 sessions of stimulation. Thus, future 

studies using other stimulation sites are warranted in order to minimize a possible plateau in motor 

performance. Additionally, a positive control group having tDCS applied to a region that is not 

expected to influence the dynamics of motor learning, will shed further light on the enhanced 

learning effects attributed to tDCS. Another potential limitation in our study is the absence of 

neurophysiological measures. Future studies using combined TMS and EEG techniques are 

warranted in order to further explore the underlying mechanisms that may contribute to tDCS 

induced enhancements. 

 

Our findings question the functionality of tDCS effects on typing performance in healthy 

participants because the effect size of the observed improvements induced by real tDCS were 

small for iTT and absent for mTT. However, it is possible that the effects would have been more 

pronounced in patients with lower baseline typing performance due to a motor deficit. 

 

In conclusion, while anodal tDCS over M1 reduced typing errors marginally, the performance-

enhancing effects plateaued after 10 sessions, showing no significant improvements in typing 

speed. Our findings question the efficacy of tDCS for enhancing healthy young adults’ typing 

performance by functionally meaningful margins. 
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