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Prognostic implications of troponin T variations in inherited
cardiomyopathies using systems biology
Rameen Shakur 1,2✉, Juan Pablo Ochoa3,4, Alan J. Robinson5, Abhishek Niroula6, Aneesh Chandran7,8, Taufiq Rahman8,
Mauno Vihinen6 and Lorenzo Monserrat 4✉

The cardiac troponin T variations have often been used as an example of the application of clinical genotyping for prognostication
and risk stratification measures for the management of patients with a family history of sudden cardiac death or familial
cardiomyopathy. Given the disparity in patient outcomes and therapy options, we investigated the impact of variations on the
intermolecular interactions across the thin filament complex as an example of an unbiased systems biology method to better
define clinical prognosis to aid future management options. We present a novel unbiased dynamic model to define and analyse the
functional, structural and physico-chemical consequences of genetic variations among the troponins. This was subsequently
integrated with clinical data from accessible global multi-centre systematic reviews of familial cardiomyopathy cases from 106
articles of the literature: 136 disease-causing variations pertaining to 981 global clinical cases. Troponin T variations showed distinct
pathogenic hotspots for dilated and hypertrophic cardiomyopathies; considering the causes of cardiovascular death separately,
there was a worse survival in terms of sudden cardiac death for patients with a variation at regions 90–129 and 130–179 when
compared to amino acids 1–89 and 200–288. Our data support variations among 90–130 as being a hotspot for sudden cardiac
death and the region 131–179 for heart failure death/transplantation outcomes wherein the most common phenotype was dilated
cardiomyopathy. Survival analysis into regions of high risk (regions 90–129 and 130–180) and low risk (regions 1–89 and 200–288)
was significant for sudden cardiac death (p= 0.011) and for heart failure death/transplant (p= 0.028). Our integrative genomic,
structural, model from genotype to clinical data integration has implications for enhancing clinical genomics methodologies to
improve risk stratification.
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INTRODUCTION
The most common forms of genetic heart disease are the inherited
cardiomyopathies, which affect ~0.2% of the global population1,2.
The cardiomyopathies are a group of rare heart muscle disorders
that afflict the structure and physiological function of the
myocardium. The two most common traditional pathological
forms are dilated and hypertrophic cardiomyopathies, each with
characteristic clinical phenotypes and often showing an autosomal
dominant inheritance. The most common genetic variations
appear in sarcomeric proteins; of which the troponin (Tn) proteins
are part of the larger thin filament complex within the regulatory
unit of the sarcomere. The Tn variations are thought to contribute
approximately to 8–10% of all the known sarcomeric protein
cardiomyopathies3. However, given the lack of a complete Tn
complex, analysis has often been limited to sub-complexes.
Although there are many Electron Microscopy and Nuclear
magnetic resonance interaction data, the resolution is too limited
to provide a protein–protein interaction map.
The Tns are a complex of three subunits: Tn I (TnI) inhibits

actomyosin ATPase; Tn C (TnC) binds calcium; and Tn T (TnT) links
the complex to tropomyosin (Tm) and is believed to be
responsible for the movement of Tm on the thin filament,
modulating binding of the myosin head to actin. The subunits are

arranged in a 1:1:1 stoichiometric ratio along the thin filament
with one Tn: Tm complex bound to every seven actin monomers4.
Since the first observations associating genetic variations in the

Tn complex to morphological classifications—such as hyper-
trophic cardiomyopathy (HCM) and an increased risk of sudden
cardiac death (SCD)—there have been many studies attempting
to define the clinical prognostic and management implications of
genotype-phenotype conundrums5–7. Most variations are related
to HCM, although others may cause dilated cardiomyopathy
(DCM) and less frequently restrictive cardiomyopathies (RCM) with
differing clinical outcomes8. For example, variations in the cardiac
TnT gene (TNNT2) cause HCM with variable clinical phenotypes7,9.
Some patients with these variations have a high risk of ventricular
arrhythmias and SCD, even with little or no left ventricular
hypertrophy to surmise prognosis7. This poses difficulty on the
optimum timing for the application of device therapy (such as
implantable cardiac defibrillators) for patients, and so many have
tried to determine if genetic prognostication can help1. Early
comparisons of two TnT mutants-one associated with HCM, and
the other with DCM-noted qualitatively different functional
consequences of the TnT variations on calcium sensitivity, ATPase
activity and sliding speed, and concluded this led to divergent
phenotypes of HCM and DCM10.
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Therefore, the application of clinical genomics has often been
hampered due to the lack of integrated and unbiased represen-
tation of the genomic, structural and clinical phenotypic interplay,
whilst trying to grapple with ascertainment bias1. However, the
ideal for a structural analysis would be a fully co-crystallised high-
resolution structure of full-length F-actin-Tm-Tn complex. How-
ever, such a structure is currently unavailable. These observations
underlie the longstanding complexity between genotype-
phenotype correlations in real-world clinical practice. Hence, a
prognostic model must account for the dynamic nature of cardiac
contraction in the genomic landscape in regards to possible
phenotype-specific hotspots and provide insights on thin
filament variations and cardiomyopathies and their potential
clinical sequelae.
Given the disparity in patient outcomes and therapy options,

and the potential for exploiting genotype-phenotype implications
to improve patient care, we investigated the impact of variations
on the intermolecular interactions across the thin filament
complex. Our findings are pertinent to better define and instigate

the application of clinical genomic data for inherited diseases,
such as the cardiac TnT variations, and how in high-risk categories
we may best stratify risk and define potential invasive or non-
invasive therapy.

RESULTS
Intermolecular interactions across the troponins are dynamic
and dependent on the calcium state
We hypothesised the clinical outcome associated with variations in
the Tn proteins may arise from their impact on the structure and
dynamics of the protein complex. We analysed inter-subunit
interactions in cardiac Tns and Tm in Ca2+ bound (Ca2+-saturated)
and unbound (Ca2+-depleted) states (Fig. 1). The static amino acid
interactions between subunits are independent of calcium binding,
while dynamic interactions depend upon calcium binding (Fig. 1).
Thus, we identified residues and regions among the Tns that have
intermolecular interactions, and their calcium dependence (Supple-
mentary Table 1). For TnT, these were residues 1–89, 90–129,
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Fig. 1 Human cardiac thin filament genetic variants and structural changes during calcium binding. The centre depicts interactions closer
than 4 Å between pairs of residues in human cardiac thin filament are depicted as coloured arcs: interactions unique to calcium-saturated
state (PDB:1J1E) (green); interactions unique to calcium-free state (PDB:1YV0) (red); interactions common to both calcium-saturated and
calcium-free state (blue); interactions between troponins, tropomyosin and actin (PDB:2W4U) (yellow); and interactions between TnT and
tropomyosin (PDB:2Z5H) (purple). Radiating out from the centre, rings show: extent of protein sequence resolved by crystallography; protein
domains; amino acid residue numbers; location of calcium-binding residues (cyan); location and frequency of variants reported causative of
hypertrophic cardiomyopathy (HCM) (purple background); location and frequency of variants reported causative of dilated cardiomyopathy
(DCM) (green background); and conservation of each amino acid across ten species (grey histogram). Figure was generated by using Circos11.
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130–179 and 200–288; and for TnI, residues 131–175 and 176–210.
These regions were later used for unbiased categorisation and
analysis of clinical sub-classifications, therapy and patient outcomes.
The centre depicts interactions closer than 4 Å between pairs of

residues in human cardiac thin filament are depicted as coloured
arcs: interactions unique to calcium-saturated state (PDB:1J1E)
(green); interactions unique to calcium-free state (PDB:1YV0) (red);
interactions common to both calcium-saturated and calcium-free
state (blue); interactions between Tns, Tm and actin (PDB:2W4U)
(yellow); and interactions between TnT and Tm (PDB:2Z5H)
(purple). Radiating out from the centre, rings show: extent of
protein sequence resolved by crystallography; protein domains;
amino acid residue numbers; location of calcium-binding residues
(cyan); location and frequency of variants reported causative of
HCM (purple background); location and frequency of variants
reported causative of DCM (green background); and conservation
of each amino acid across ten species (grey histogram). Figure was
generated by using Circos11. Only the region 180–199, for which
we did not have sufficient data to form part of our dynamic model
was not used for future analysis of patient outcomes.

Troponin variations tend to cluster to hotspots in regions that
share similar clinical phenotypes
To understand how Tn structure correlates with genetic
cardiomyopathies, we collected pathogenic amino acid substitu-
tions reported in OMIM12 and ClinVar13 and identified cases from
freely accessible publications through a systematic review. We
identified 106 articles and collected 136 pathogenic or likely
pathogenic amino acid substitutions in Tn genes: 13 in cardiac
TnC (TNNC1), 65 in cardiac TnT (TNNT2) and 58 in cardiac TnI
(TNNI3) (Supplemental Fig. 2). These variations were initially
combined with the global case data from 981 patients (546 index
cases and 435 relatives) from our systematic review. The full list of
variations is reported in Supplementary Table 2. To study the
distribution of variations in the Tns among patients, we plotted
the frequencies of pathogenic substitutions associated with HCM
and DCM using only the index cases along with intermolecular
interactions (Fig. 1). We observed variations cluster and formed
hotspots associated with either DCM or HCM in TnT and TnI. The
localization of these variations may affect structural domains and
their functions, e.g. residues involved in subunit interactions or
calcium binding (Fig. 1 and Supplementary Table 1). Thus Fig. 1
synthesises information on clinical outcomes of genetic variations
in patients with the structural and sequence details of the Tns
and their dynamic interactions.

Recurrent pathogenic variants occur at sites under negative
selection
Evolutionarily conserved sites in protein sequences are crucial for
maintaining protein structure and/or function; therefore, varia-
tions at these sites are largely deleterious. To investigate
evolutionary conservation at sites of recurrent pathogenic
variants, we analysed the conservation of amino acids in the
TnC, TnT and TnI proteins by computing the site-specific rate of
non-synonymous substitutions (Ka) to the rate of synonymous
substitutions (Ks) at each site in orthologous sequences (Ka/Ks
ratio) . A Ka/Ks ratio of 1.0 indicates neutral or no selection, smaller
than 1.0 indicates a negative selection and greater than 1.0
indicates a positive selection. The ratio was calculated with
programme Selecton and has been used previously e.g. in the
highly reliable amino acid substitution pathogenicity predictor
PON-P214,15. Here, the Ka/Ks ratios ranged from 1.6 × 10−3 to 1.0,
with the majority of the amino acids having the ratio much less
than 1.0. These results indicate that the protein sequences are
highly conserved and under negative selection except in the
N-termini (Fig. 2). Further the residues with recurrent variants in

TnT and TnI have low Ka/Ks ratio, indicating the residues are under
negative selection pressure.

Arginine amino acids and CpG dinucleotides are mutation
hotspots in troponin T
Arginine is the most frequently substituted amino acid in the Tns
(Fig. 3). Changes to Cys, His, Glu and Trp are the most frequent in
our data set (Supplementary Fig. 3a). As the numbers of index
cases are the largest for TnT, we discuss cases in this protein. Of
the index cases carrying a variant in TnT, 68.6% carried a variation
of an arginine. Among the DCM patients with a variation in TnT,
78.7% (37 of 47 cases) had a variation of an arginine (Fig. 3a).
Likewise, among HCM patients with a variation in TnT, 66.8% (167
of 250 cases) had a variation of an arginine (Fig. 3b). Arginine is
coded by six codons: CGU, CGC, CGA, CGG, AGA and AGG. In the
TNNT2 gene, the most frequent codons for arginine are CGC (5
codons), CGG (9 codons) and AGG (12 codons). Codons CGC and
CGG contain CpG dinucleotides. These dinucleotides are well-
known variation hotspots in other genes16. Our results further

Fig. 2 Summary of codon-specific selective pressure in human
troponins. a Troponin C; b Troponin T; and c Troponin I. The amino
acids sequences run on the x-axis and the selective pressure
(represented by Ka/Ks ratio) is on the y-axis. Each dot represents an
amino acid in the protein sequences, the colour indicates disease
phenotype and the size indicates the number of cases carrying
variations at those sites. The CpG sites in the DNA sequence are
marked by vertical bars. Codons for arginine are colour-coded.
Secondary structure annotations are shown at the bottom. Asterisk
indicates hotspot variation sites.
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support CpG dinucleotides are enriched as shown previously to
TnT variants, but specific to this study we enhance this through
our detailed analysis of HCM and DCM patients; Whilst also
reporting limited anecdotal differences between HCM and DCM
cases based on the underlying variation of the arginines in such
regions. In particular, arginines in regions of TnT containing
variations in HCM patients (i.e. amino acids 90–129 and
200–288) are often coded by CGC codons, whereas arginines
in regions of TnT substituted in DCM patients (i.e. amino acids
130–179) are often coded by CGG codons (Figs. 1 and 2). Arg92
coded by CGG codon is an exception as 65 cases of HCM have
been reported due to variations in this amino acid. However, it
should be noted that given the limited size of the study our data
did not show any statistical significance. Whilst, in the TNNI3
gene, five of six sites containing a CGG codon had variations and
we identified four of them as hotspots, whereas four of nine CGC
codons contained variations, but were not hotspots. Thus,

variations in HCM and DCM patients were frequently in arginines
coded by CpG-containing codons.

Simulations of hotspots of troponin T structure
To predict how variation hotspots pertaining to conformational
changes may affect protein structure, we performed all-atom
molecular dynamics simulations for wild-type and four common
TnT variants. In the present study, simulation of the monomeric
Tn unit was carried out to understand how the newly identified
variations affect the structural integrity of the monomeric Tn
rather than the complex formation and calcium sensitivity. The
four variants underwent notable structural changes and deviated
significantly from the wild-type structure after 20 ns of simula-
tion, further the variant proteins lost the overall structural
compactness during the course of simulations (Fig. 4b–e)
(Supplementary Movies 1–5). The root-mean-square deviation
(RMSD) values, computed by superposing each simulated
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Fig. 3 Distribution of amino acid variants for cause of death and phenotypes. a Frequencies of reference and altered amino acids in
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snapshot onto the starting conformation, can provide insight
into the degree of structural deviation experienced by the
protein during the course of simulation. The wild type was
structurally stabilized towards the end of simulation with a

time-averaged RMSD of 5.0 ± 0.8 Å (Fig. 4f). Conversely, the
variant forms underwent larger conformational changes, with
the highest structural deviations in the p.Arg92Trp variant
(Fig. 4f, green line). Moreover, in accordance with the RMSD values,

Fig. 4 Molecular dynamics simulations of wild-type (WT) and TnT variants. Final conformations of TnT after 20 ns of simulation: a WT;
b p.Arg92Gln; c p.Arg92Trp; d p.Arg141Trp and e p.Arg173Trp. b–e Location of amino acid variant is shown with blue sticks. f–h Structural
analysis of simulated WT and variant TnTs: f Time evolution of backbone RMSDs of simulated TnTs from the equilibrated WT conformation.
Structural deviations calculated in terms of RMSD values show that all the variants were experiencing larger conformational changes
compared to the WT; g time-averaged accessible surface area for WT and variants over the simulation; and h ensemble-averaged root-mean-
square fluctuations (RMSFs) of the Cα atoms in WT and variants, distinguishing the highly flexible regions in the protein. Colour scheme:
WT (black), p.Arg92Gln (red), p.Arg92Trp (green), p.Arg141Trp (blue) and p.Arg173Trp (cyan).
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the p.Arg92Trp variation was more solvent exposed than the
others (Fig. 4g), suggesting the structural instability of the variants.
The more dynamic nature of the variants was supported by their
local fluctuations in the residues, as measured by the root-mean-
square fluctuations (RMSFs) of their Cα atoms. Basically, RMSF
calculates the degree of movement of each Cα atom around its
average position, implying the highly flexible regions in the
protein will show a large RMSF value while the more constrained
regions will reflect a low RMSF. Residue fluctuations were
increased in the variants (Supplementary Movies 1–5), with
residues 80–125 being the most flexible (Fig. 4h). Most of the
known TnT disease-related variations were clustered to the
N-terminal end, which included the highly conserved region
112–136. Moreover, variations in the N-terminal region (e.g., p.
Arg92Gln) weakening the folding and stability of the protein and
complex formation with Tm are supported in previous studies17,18

(Supplementary Movies 1–5). Thus, the TnT variations perturbed
the protein structure and its flexibility, which may subsequently
lead to variation-specific cardiovascular phenotypes. However,
detailed structural, biochemical and computational studies are
required to explore the protein–protein interactions in the Tn

complex and calcium-binding mechanism, which will be a focus of
future research.

Survival free of cardiovascular death does not differ between
troponins, but clinical phenotypes and outcomes do vary
To identify global trends in contributions to cardiovascular death,
we examined the clinical phenotypes and outcomes associated
with variations in each patient’s Tn (Fig. 5a). Here we identified
that HCM was the predominant phenotype in Tn variations: 83.4%
of the probands reported in the literature had this phenotype
(458/549). In TNNT2, HCM represented 82.7% (253/306) of the
index cases with variations; in TNNI3 the percentage was 87.5%
(196/224) (Fig. 5b). The number of index cases reported with
TNNC1 variations was much smaller (only 19) than those with
TNNT2 and TNNI3 variations; in this gene, the number of probands
with DCM and HCM was balanced (47.4% for each phenotype; 9/
19). For patients with variations in TNNI3, the proportion with DCM
was lower than in the other two genes (only 4.9% developed this
phenotype), but accounted for the highest proportion of patients

Fig. 5 Variations in the cardiac troponins described in the literature. a Global distribution of cardiomyopathy patients across countries
(% from total) carrying pathogenic or likely pathogenic substitutions in the troponin complex. b Associated phenotype according to the
presence of substitutions in TNNC1, TNNT2 and TNNI3. Differences were significant between the three groups (p < 0.001). c Survival curves
showing the freedom from cardiovascular death in variations in TNNC1, TNNT2 and TNNI3 genes. The differences between genes did not reach
statistical significance. (The map was modified by us from this figure:https://commons.wikimedia.org/wiki/File:World_map_nations.svg. The figure has
a Creative Commons licence so the figure is free to use and edit: https://en.wikipedia.org/wiki/GNU_Free_Documentation_License).
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with RCM (7.6%; 17/224). Thus, all three Tns had non-negligible
association with different phenotypes (p < 0.001).
To understand the outcomes for patients with Tn variations, for

681 patients (including index and relatives) who had sufficient
data to make a survival analysis at last follow-up age, we
calculated the survival from global cardiovascular mortality and
cardiovascular specific causes (SCD and heart failure death).
However, the differences in cardiovascular mortality among the
Tns did not reach statistical significance (Fig. 5c).
Variations in TnT showed separate hotspots for DCM and HCM

(Fig. 1); thus, we examined the variable outcomes in these
separate regions. More than 90% of the patients who had a
variation among amino acids 90–129 or 200–288 had HCM; with
amino acids 1–89 of TnT, HCM also predominated (81.5%) but the
number of reported cases was lower than in the other regions
(Fig. 6a). In contrast, DCM was the phenotype for 50.6% of patients
with a variation among amino acids 130–179, with two sub-
clusters: amino acids 130–150 and 172–173. Thus, patient
phenotypes appeared correlated with the region in which their
variation occurred. Further, there were differences in terms of
cardiovascular death for variations in each region (p= 0.014)
(Fig. 6b). Given TnT showed region-specific differences in the
clinical outcome for variations, we repeated the survival analyses
separately for each region (Fig. 6c–f). Variations among amino
acids 90–129 and 130–179 were associated with the worst
survival. When considering causes of cardiovascular death
separately, there was a poor survival in terms of SCD for patients
with a variation in amino acids 90–129 and 130–179 when
compared to amino acids 1–89 and 200–288 (p= 0.030) (Fig. 6c).
The worst prognosis in terms of heart failure death was for
patients with a variation among amino acids 130–179 in
comparison to any other region (p= 0.043) (Fig. 6d). The survival
analysis was then performed by dividing TnT into regions of high
risk (a variation among amino acids 90–129 and 130–180) and low
risk (variations in amino acids 1–89 and 200–288). The difference
between high- and low-risk regions was significant for SCD (p=
0.011) (Fig. 6e) and for heart failure death/transplant (p= 0.028)
(Fig. 6f). Thus, there were significant differences in terms of
cardiovascular death for variations in each region.
The variations in TnI highlighted two regions predominately

associated with HCM, including amino acids 131–176, which
interact with TnC in the calcium-bound state (Fig. 1). This may
support the previous reports of HCM being a disease of increased
calcium sensitivity and causing excessive calcium flux18. According
to these data and the circos interactions we divided this gene in
three different regions, involving amino acids 1–130, 131–175 and
176–210. There were non-statistically significant differences
between the three regions in terms of survival of cardiovascular
death (p= 0.084), probably because there were very few patients
in region 1–130 (Supplementary Fig. 9). Pairwise comparison
between regions 131–275 and 176–210 showed a worst survival
for the latter (p= 0.008).
The variations in TnC were distributed along the length of the

protein with no variation hotspots for HCM or DCM (Fig. 1).
Further, the clinical phenotypes and prognosis attributable to
variations were variable, and there were insufficient data from 26
patients to calculate survival curves.

DISCUSSION
In this study, we provide new perspectives for understanding
correlations in the cardiomyopathies with Tn variations by
developing a novel systems biology model that synthesises patient
data on the prognosis and outcomes of Tn variations with
structural data of the Tn complex. First, we independently
determined relevant regions of the Tn proteins based on
calcium-dependent interactions and sites under negative selection.
Second, we identified variation hotspots and genotype-phenotype

correlations and prognosis for each region by undertaking a
metanalysis of the clinical data from freely accessible literature and
public databases. Third, we modelled the likely deleterious effects
of variations with molecular dynamics simulations with respect to
the wild-type protein.
We like others have identified arginine codons and CpG

dinucleotides as potential hotspots for cardiomyopathy-
associated variations as well as other genetic disorders. Arginine
is the most commonly substituted residue in many genetic
diseases19, and its functions are only partly replaceable by other
amino acids. Arginine is often functionally important due to its
interactions with negatively charged residues to form salt bridges
essential for protein stability. CpG sites are variation hotspots20 as
cytosine is often methylated and can spontaneously deaminate to
thymine, with the rate of transition from methylated cytosine to
thymine 10- to 50-fold higher than for other nucleotides16. As four
out of the six codons for arginine contain a CpG dinucleotide, their
codons are particularly susceptible to variation.
From our data, we found arginine is the most frequently

substituted amino acid amongst the Tns, and changes to Cys, His,
Glu and Trp were the most frequent in our data set. Thus,
particular arginine residues in the Tn family, e.g. p.Arg92 in TnT,
are vulnerable to variation. Changes of residues at protein surface
can be detrimental if the residues are involved in protein–ligand
or protein–protein interactions. Thus, we surmise this to be
relevant for Tns that form complexes with actin, Tm and Tn
molecules, but requires further functional validation.
Our analyses identified TnT as possessing discrete regions

within which variations were associated with similar prognoses
and phenotypes for patients, likely because they cause a similar
mechanistic impact. First, we identified two main regions of TNNT2
that are rich in arginine codons and CpG dinucleotides. The first
region codes for the Tm-binding region (residues 90–129), where
HCM is the main phenotype for variations and includes well-
known variations. For example, the p.Arg92Gln variation was one
of the first described in the TnT and is associated with HCM5,9. The
second region involves residues 130–179, in which variations
associated with DCM are higher than in the other regions of the
protein. Two thirds of the Tn variations associated with DCM occur
in TnT, and the majority among residues 130–179 (Figs. 1 and 2).
The gene for this zone is the richest in CGG codons. Although it is
not a Tn interacting region, it is essential for the correct
conformation of the protein, and variations altering its dynamic
properties may lead to a defined patient phenotype. The
prognosis in relation to cardiovascular death from our data is
similar to the other regions, although heart failure, death/
transplantation predominates over SCD as expected, these being
the predominant phenotypes DCM and HCM, respectively (Fig. 6).
In contrast, our data suggested variants in the third region,
involving residues 200–288 in the C-terminal region of TnT, were
mainly associated with HCM, and were clustered among amino
acids 260–288, which binds to TnI. Compared to the rest of TnT,
the 75 N-terminal amino acids are the least conserved across
species, and the region is richer in acidic residues with fewer
CpG dinucleotides. The most common variations, p.Arg278 and
p. Arg286, are associated with HCM but with an incomplete
penetrance and with a good prognosis, unless additional genetic
or environmental modifiers are present10. Thus, variations in this
region have a low incidence of cardiovascular events, hence we
consider this part of the protein to be likely of low relevance for
disease. Molecular dynamics simulations for four TnT variants in
these regions predicted the structures of disease-related variants
are more flexible than the wild type and display different
conformations, which may impact their function (Fig. 4). Thus,
our analyses suggest a future in which systems biology models
combined with personalised clinical genomics can be used to
understand how Tn variations in a cardiac patient may relate to
their clinical phenotype, preferred treatment and likely outcome.
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Fig. 6 Clinical outcomes of amino acid substitutions in TnT regions. a Phenotypes according to regions in the TnT protein. HCM is
significantly more frequent among patients with variations at amino acids 90–129 than in other regions; the higher number of DCM cases is
observed in substitutions at amino acid 130–179 (p < 0.01). b Survival curve for the freedom from cardiovascular death in the four main
regions of TnT; differences were statistically different between the groups (p= 0.014). Pairwise comparison showed a worse prognosis for
patients with variations at regions 90–129 and 130–179 than at regions 1–89 and 200–288. c Freedom from sudden cardiac death in the
different regions of TnT; differences were statistically significant (p= 0.030). Pairwise comparison showed a worse prognosis for individuals
with variations in regions 90–129 and 130–179. d Freedom from heart failure death/transplant in the different regions of TnT; differences
were statistically significant (p= 0.043). Pairwise comparison showed a worse prognosis for patients with variants in region 130–179 against
regions 1–89, 90–129 and 130–179. e, f The same analysis performed by dividing TnT into high risk regions 90–129 and 130–179, and
apparent lower risk regions 1–89 and 200–288. The difference is significant for sudden cardiac death (p= 0.011) and heart failure death/
transplant (p= 0.028).
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Yet, we also appreciate that analysing clinical outcomes of
variations is complicated by variable penetrance in patients
carrying the same variation. These differences in disease progres-
sion may arise from the effects of differing environmental and
lifestyle factors, as well as the contribution of individual variations
in genetic backgrounds, modifier genes and epigenetic effects.
However, accounting for these features will require extensive
large-scale longitudinal clinical genomics studies. Nevertheless,
we envisage integrative analyses, such as ours as enhancing
methods for clinical risk stratification and to better define future
clinical management decisions, especially within the inherited
cardiac disease community. We hope the initiation of future multi-
centre prospective trials will also facilitate integration and
substantiate of such systems in real-world clinical practice.
Among some limitations of our study; clinical data were

obtained after a systematic review that included all the evidence
available in the literature, making the cohort of patients very
heterogeneous. In addition, follow-up time was not summarized in
all the papers, so conducting a sub-analysis of events since the
diagnosis was not performed. On the same hand, combining data
from probands and relatives could bias the analyses toward large
families/founder variations.
This integrative systems biology study incorporates the largest

independent and freely accessible systematic review on the
inherited Tn cardiomyopathies. Although our data collection was
rigorous, transparent and not confined to individual institutions,
we were limited by the accessibility of published data and so
greatly welcome the development of international multi-centre
initiatives supporting data access. Our unbiased analysis based on
the variations, and their impact on structural and physico-
chemical interactions within the Tns of the thin filament complex
provides insight into factors of variations for the development of
differing phenotypes and clinical outcomes.

METHODS
Sequence analysis
Protein sequences of the human cardiac thin filament proteins were taken
from UniProt21 and included TnT (P45379), TnI (P19429), TnC (P63316),
ACTC1 (P68032) and TPM1 (P09493). To cover a wide range of evolutionary
history, orthologs of the human thin filament proteins were identified with
BLASTP22 from the NCBI RefSeq database23. Sequences were selected from
two mammals (human and mouse), two birds (chicken and ground tit
(Pseudopodoces humilis)), two reptiles (Carolina anole (Anolis carolinensis)
and Burmese python (Python bivittatus)), two amphibians (Xenopus
tropicalis and Xenopus laevis) and two fishes (zebra fish (Danio rerio) and
puffer fish (Takifugu rubripes)). The protein sequences of Tns were aligned
with the orthologous human cardiac proteins by using MUSCLE24 followed
by manual refinement in JalView25 (Supplementary Fig. 1). Conservation of
each amino acid in the multiple sequence alignments for TnC, TnT and TnI
was scored by using the Jensen–Shannon divergence25. Amino acid
substitutions in TnC, TnT and TnI were taken from dbSNP26. Variants were
classified according to dbSNP as: unknown; uncertain significance; (likely)
benign; and (likely) pathogenic. If a variant was classified as both
pathogenic and benign, then it was assigned a “disputed” status and
excluded from the analysis.

Protein structures and intermolecular interactions in the thin
filament
To identify intermolecular residue–residue interactions between thin
filament proteins, structures of complexes (Supplementary Table 3) were
searched for pairs of residues with atoms within 4 Å radius for the human
cardiac Tn in the calcium-bound state (PDB:1J1E)27, chicken skeletal muscle
Tn in the calcium-free state (PDB:1YV0)28; a fragment of chicken skeletal
muscle TnT bound to rabbit Tm (PDB:2Z5H)29; and an electron microscopy
structure of the thin filament of insect flight muscle, into which were fitted
the structure of chicken skeletal muscle Tn and rabbit skeletal muscle Tm
and actin (PDB:2W4U)30. Corresponding residues were matched based on
multiple sequence alignments. Residue–residue interactions were taken
from the calcium-bound human cardiac Tn complex (PDB:1J1E); and
mapped from chicken skeletal muscle TnT bound to rabbit Tm (PDB:2Z5H),
and chicken skeletal muscle Tn and rabbit skeletal muscle Tm and actin
(PDB:2W4U). As there is no structure for human calcium-free cardiac thin
filament, residue–residue interactions were inferred from chicken skeletal
muscle calcium-free Tn complex (PDB:1YV0); chicken skeletal muscle TnT
bound to rabbit Tm (PDB:2Z5H), and chicken skeletal muscle Tn and rabbit
skeletal muscle Tm and actin (PDB:2W4U). The residue–residue interactions
of the human calcium-bound cardiac Tn complex (PDB:1J1E) and the
chicken skeletal muscle calcium-free Tn complex (PDB:1YV0) were divided
into three groups: (1) interactions unique to the human calcium-bound
cardiac Tn complex; (2) interactions unique to the chicken skeletal muscle
calcium-free Tn complex; and (3) interactions common to both the human
calcium-bound cardiac Tn complex and the chicken skeletal muscle
calcium-free Tn complex. When structural information was missing for
the human proteins, we inferred interacting residues by mapping the
residue–residue interactions in skeletal muscle Tns from other species.

Literature search
We performed a comprehensive search of PubMed articles (1 January 1971
to 1 November 2019) to collect clinical information of families and
individuals who carry amino acid substitutions in cardiac Tns associated
with cardiomyopathy. The search terms used were:
“English” [Language] AND
(“1900/01/01” [Date-Publication]: “2019/11/31” [Date - Publication]) AND
("hypertrophic subaortic stenosis" OR
HSS* OR
"muscular subaortic stenosis" OR
"asymmetric septal hypertrophy" OR
ASH OR
"asymmetric septal hypertrophy" OR
"hypertrophic cardiomyopathy" OR
"hypertrophic obstructive cardiomyopathy" OR
"hypertrophic cardiomyopathies" OR
HCM OR
("dilated cardiomyopathy") OR
("restrictive cardiomyopathy" OR "restrictive cardiomyopathies")) AND
("troponin T type 2" OR "troponin T" OR TNNT2 OR “troponin C” OR

TNNC1 OR "troponin I" OR TNNI3 OR troponins).
Titles and abstracts of the identified articles were evaluated by two

experts. Next, the full article texts were evaluated and those meeting the
following criteria were selected: observational English language reports
describing phenotypic features (HCM; DCM; restrictive cardiomyopathy;
left ventricular non-compaction) in patients with variations in genes
TNNC1, TNNT2 or TNNI3; and studies published in peer-reviewed journals.
In addition, a manual search of the reference lists of the identified
studies was performed, and references were evaluated using the same
inclusion and exclusion criteria. Studies were included if they had
information on relatives.
The collected information was stored into a database which includes for

each study: country of origin (ISO country names); patient age at diagnosis,
and last follow-up age; family history of cardiomyopathy; morphology and
function of the heart evaluated by cardiac imaging (extent and pattern of
hypertrophy, late gadolinium enhancement, atrial and ventricular dimen-
sions and function, left ventricular outflow tract obstruction, mitral valve
abnormalities); clinical risk factors for SCD (maximum left ventricular wall
thickness ≥30mm, abnormal exercise blood pressure response, non-
sustained ventricular tachycardia, family history of SCD, syncope);
interventions, outcome and prognosis (all death, cardiovascular death,
SCD, non-fatal HF, AF, non-fatal stroke, implantable cardioverter-
defibrillator implantation, myectomy, alcohol septal ablation).

Table 1. Template structures and amino acid sequences used to
model human cardiac TnT.

Template PDB ID Covered amino acids

4DLO chain E 1–81

2XS1 chain A 82–140

1XI4 chin J 141–195

1J1D chain C 196–298
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All the variants were classified according to American Collage of Medical
Genetics and Genomics31,32 guidelines for the interpretation of sequence
variants. We considered the presence of the variant in control databases;
number of studies and descriptive families; functional studies; evidence of
co-segregation of the variant with the phenotype; and computational
evidence support. A variant was considered pathogenic if it had causative
variations in at least three independent peer-reviewed studies with non-
contradictory evidence. If the evidence for pathogenicity was contra-
dictory, internal information of more than 20,000 patients sequenced in
Health In Code Database was used for support or reject pathogenicity for
rare variants (i.e. case-control analysis was performed to define patho-
genicity of variations in amino acids p.Arg278 and p.Arg286; Supplemen-
tary Table 4.). Every variant was reviewed by cardiologists specialized in
genetics (L.M. and J.P.O.) who evaluated the evidence to confirm the
variant classification. Only variants classified as pathogenic or likely
pathogenic for cardiomyopathy were included.
For survival analyses, we defined the ‘cardiovascular death’ of a patient if

one of the following was reported: (1) unexplained sudden death; (2) heart
failure death or transplant; (3) stroke death; or (4) death related to a
cardiovascular procedure (e.g. septal alcohol ablation). Patients were
excluded from the analysis if they had complex phenotypes (i.e. more than
one pathogenic or likely pathogenic variant in genes of the thin filament,
or related to cardiomyopathy, e.g. MYH7, MYBPC3 or MYL2). Survival
analysis was made for 681 cases based on the latest follow-up. The
cumulative probability for the occurrence of cardiovascular death was
estimated with the Kaplan–Meier method and factors were compared by
using the log-rank (Mantel–Cox) method. Survival was calculated from
birth. A two-sided p value < 0.05 was considered statistically significant.
Statistical analyses were performed by using IBM SPSS Statistics for
Windows, Version 25.0 (Armonk, NY: IBM Corp).

Visualisation of thin filament complexes
The Circos11 data visualisation tool was used to display and integrate
information on proteins of thin filament complexes. Each of the proteins in
the human complex is indicated as a segment in the circle. Arcs display
intermolecular interactions between residues; histograms display residue
conservation, and frequencies of variants in patients with DCM and HCM;
and tiling displays locations of calcium-binding residues, and the location
of amino acid substitutions reported in dbSNP27.

Evolutionary conservation
The ratio of non-synonymous substitution rate to synonymous substitution
rate (ω) estimates selective pressure. Synonymous variations are more
common than non-synonymous variations, and thus ω is higher for
variable sites than for conserved sites. Orthologous protein and cDNA
sequences for Tns were collected from the Ensembl Compara database
(http://www.ensembl.org/info/genome/compara/index.html) using its Perl
application programming interface. Protein and cDNA sequences anno-
tated as one-to-one orthologs were obtained. The numbers of protein and
cDNA sequences analysed were 27 for TnC, 12 for TnI and 26 for TnT. The
orthologous protein sequences were aligned using ClustalW33 and used for
the codon alignment of cDNA sequences with PAL2NAL34. The cDNA
codon alignment was provided to calculate codon-level ω33. The human
sequence was used as the reference sequence.

Homology modelling of human troponin T
Homology modelling of wild-type human TnT structure was performed
with Robetta35, by using template structures and amino acid regions
(Table 1). Out of the five models, we chose the best model based on its 3D
quality assessed at the SAVES server36 and MolProbity37. The Ramachan-
dran plots for the top five models were generated by using the RAMPAGE
webserver (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php).

Molecular dynamics simulations
All-atom molecular dynamics simulations were performed for the
model of wild-type TnT. The protonation states of residues were
assigned based on the pKa calculations at pH 7 by using the H++
server38. The protein was immersed in a cubic periodic box of TIP3P
water model39 with water molecules extending 14 Å outside the
protein atoms on all sides. The simulation box contained about 47,000
water molecules. Charge neutrality was maintained by adding 20 Na+

ions. Minimization and thermalization steps were performed by

maintaining harmonic restraints on protein heavy atoms while the
temperature was gradually raised to 300 K in canonical ensembles. The
harmonic restraints were gradually reduced to zero and solvent density
was adjusted under isobaric and isothermal conditions at 1 atm and
300 K. The system was equilibrated for 5 ns in NPT ensemble, with 2 fs
simulation time steps. The equilibrated box dimensions were 120 Å ×
160 Å × 80 Å. The energy components and system density converged.
The system was further simulated to generate 20 ns of production data.
The long-range electrostatic interactions were calculated by using
Particle Mesh Ewald sum with a cutoff of 10 Å applied to Lennard–Jones
interactions. The SHAKE algorithm39 was used to constrain all bonds
involving hydrogen atoms. Variants were simulated in similar way. Four
TnT variants—p.Arg92Gln, p.Arg92Trp, p.Arg141Trp and p.Arg173Trp—
were generated by introducing a point variation in the equilibrated
wild-type structure. The substitutions were performed with the Mutate
Residue module in VMD40. The variant structures were equilibrated for
5 ns and simulated for 20 ns. The Amber 14.0 simulation software
package with Amber ff99SB force field was used in all simulations41.
Simulation trajectories were saved at intervals of 2 ps. Visualisations
were done by using PyMOL42.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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