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Abstract

It is often believed that in a Big Data context, given the large amount of data avail-
able, the data reflect precisely the underlying population. However, the data are

often strongly biased due to the procedure used for obtaining them.

In order to reduce the significant bias that may appear in Big Data (Big-but-
Biased Data, B3D), different testing methods for bias detection are used and com-
pletely nonparametric estimation methods for bias correction are proposed. Non-
parametric estimators for the mean of a transformation of the random variable of
interest are considered. When ignoring the biasing weight function, two different
setups are proposed. In Setup 1 a small-sized simple random sample of the real pop-
ulation is assumed to be additionally observed, while in Setup 2 it is assumed that a
twice biased sample of small size is observed. The asymptotic properties of the pro-
posed estimators are extensively studied under suitable limit conditions on the small
and the large sample sizes and standard and non-standard asymptotic conditions on
the two bandwidths. The performance of the proposed nonparametric estimators is
compared with the classical estimators based on the two samples involved in each
setup through Monte Carlo simulation studies. Simulation results show that the new
mean estimators outperform the classical empirical means for suitable choices of the
two smoothing parameters involved. The influence of these smoothing parameters
on the performance of the final estimators is also studied, exhibiting a striking limit
behaviour of their optimal values. In addition, bootstrap bandwidth selection meth-
ods for each nonparametric mean estimator are introduced. Finally, the proposed

techniques are applied to several real data sets from different areas.






Resumen

Se acostumbra a pensar que en un contexto de datos de gran volumen, el conjunto
de datos refleja fielmente la poblacién objeto de estudio, dada la gran cantidad de
datos disponible. No obstante, en ocasiones estos datos estdn fuertemente sesgados

debido, por lo general, al procedimiento de obtencién de los mismos.

Con el objetivo de reducir el importante sesgo que puede aparecer en un contexto
de datos de gran volumen, se propone el uso de métodos de contraste para la detec-
cion de sesgo y se desarrollan métodos de estimacion para la correccién del mismo.
Se consideran estimadores no paramétricos de la media de una transformacién de la
variable aleatoria de interés. Se proponen dos escenarios diferentes para abordar el
problema de la estimacién cuando la funcién peso que produce el sesgo es desconoci-
da. En el escenario 1, se supone que se observa adicionalmente una muestra aleatoria
simple de tamano pequenio de la poblaciéon verdadera, mientras que en el escenario
2 se asume que se observa una muestra de tamano pequeno doblemente sesgada.
Las propiedades asintéticas de los estimadores propuestos se estudian ampliamen-
te bajo condiciones limite adecuadas en los tamanos muestrales y bajo condiciones
asintoticas estandar y no estandar en los dos pardametros de suavizado. El compor-
tamiento de los estimadores no paramétricos propuestos se compara con el de los
estimadores cldsicos basados en las dos muestras involucradas en cada escenario a
través de estudios de simulacién de Monte Carlo. Los resultados de la simulacién
muestran que los nuevos estimadores de la media mejoran a las medias empiricas
clasicas para una eleccién adecuada de los dos parametros de suavizado implicados.
También se estudia la influencia de los parametros de suavizado en el funcionamiento
de los estimadores, los cuales exhiben un comportamiento limite llamativo en cuanto
a sus valores 6ptimos. Ademads, se introducen métodos bootstrap para la seleccién
automatica de los pardametros de suavizado para cada estimador no paramétrico de
la media. Finalmente, las técnicas propuestas se aplican a varios conjuntos de datos

reales procedentes de diversas dreas.
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Resumo

Adoditase pensar que nun contexto de datos de gran volume, o conxunto de datos
reflicte fielmente a poboacion obxecto de estudo, dada a gran cantidade de datos
dos que se disponen. Non obstante, en moitas ocasions estes datos estan fortemente

nesgados debido, polo xeral, ao procedemento de obtencién dos mesmos.

Co obxectivo de reducir o importante nesgo que pode aparecer nun contexto
de datos de gran volume, proponse o uso de métodos de contraste para a detec-
ciéon do nesgo e desenvolvense métodos de estimacion para a correcciéon do mesmo.
Considéranse estimadores non paramétricos para a media dunha transformacién da
variable aleatoria de interese. Propénense dous escenarios diferentes para abordar o
problema da estimacién cando a funcién peso que produce o nesgo é desconecida. No
escenario 1, suponse que se observa adicionalmente unha mostra aleatoria simple de
tamano pequeno da poboacién verdadeira, mentres que no escenario 2 suponse que
se observa unha mostra de tamano pequeiio dobremente nesgada. As propiedades
asintoticas dos estimadores propostos son amplamente estudadas baixo condiciéns
limite axeitadas sobre os tamanos mostrais e condicidns asintéticas estandar e non
estandar sobre os dous parametros de suavizado. O comportamento dos estimadores
non paramétricos propostos comparase co dos estimadores clasicos baseados nas dias
mostras implicadas en cada escenario por medio de estudos de simulacién de Monte
Carlo. Os resultados das simulacions amosan como os novos estimadores da media
melloran as medias empiricas clasicas para escollas axeitadas dos dous parametros
de suavizado implicados. Tamén se estuda a influencia dos parametros de suavizado
no funcionamento dos estimadores, amosando un comportamento limite sorprenden-
te en canto os seus valores 6ptimos. Ademais, introdicense métodos bootstrap para
a seleccion automatica dos pardmetros de suavizado para cada estimador non pa-
ramétrico da media. Finalmente, as técnicas propostas aplicanse a varios conxuntos

de datos reais procedentes de diversas areas.
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Preface

This dissertation summarizes all the work developed during the PhD period. It
mainly focuses on proposing different methods for detecting and correcting biases

in a Big Data context. The proposed methodology is applied to various real data sets.

Chapter 1 introduces the context of Big-But-Biased data (B3D) in which this
thesis is developed. It begins with a motivation based on different examples found in
the literature. In Section 1.2, other works dealing with the problem of sampling bias
are considered. In order to correct the bias present in a B3D sample, two different
setups with additional information needed are proposed in Subsection 1.2.1. Since
the study is performed in a nonparametric context and nonparametric density esti-
mation becomes an important tool in the thesis, a review on this topic is included

in Subsection 1.2.2.

Chapter 2 introduces the problem of mean estimation for Big-But-Biased data.
Two different setups in which bias may be corrected are proposed in this chapter.
In addition to the big and biased sample, in Setup 1 it is assumed that a simple
random sample (SRS) of small size from the true population is observed; while in
Setup 2, a twice biased sample is supposed to be observed. Different estimators for
the mean are proposed in both setups, considering the unlikely case that the biasing
weight function is known. The more realistic case of this function being unknown
will be considered in Chapters 4 and 5, in which the general problem of estimating

the mean of a transformation will also be addressed.

In Chapter 3, a procedure for bias testing is proposed. It consists of using two-
sample existing methods to test the equality of distributions and the equality of
means, but considering the distinctive feature that the ratio of both samples sizes
does not tend to a constant, since the size of the B3D sample tends to infinity faster
than that of the SRS. For the equality of distributions, the two-sample Kolmogorov-

Smirnov test, the Cramer-von Mises criterion and the Mann-Whitney U-test are

xi



considered. In the case of testing the mean, the Welch’s adaptation of the Student’s
t-test is used. This specific test is necessary since different distributions do not nec-
essary imply different means. A comparative analysis between the different methods

proposed is performed.

In Chapter 4, nonparametric estimation for a large-sized sample subject to sam-
pling bias in Setup 1 is studied. The general parameter considered is the mean of a
transformation of the random variable of interest. When ignoring the biasing weight
function, a small-sized simple random sample of the real population is assumed to
be additionally observed. A new nonparametric estimator that incorporates kernel
density estimation is proposed. Asymptotic properties for this estimator are ob-
tained under suitable limit conditions on the small and the large sample sizes and
standard and non-standard asymptotic conditions on the two bandwidths. Explicit
formulas are shown for the particular case of mean estimation. Simulation results
show that the new mean estimator outperforms the classical empirical means of the
two samples involved for suitable choices of the two smoothing parameters involved.
The influence of two smoothing parameters on the performance of the final estima-
tor is also studied, exhibiting a striking limit behaviour of their optimal values. A
bootstrap algorithm is used to approximate the mean squared error of the proposed

estimator. Its minimization leads to an automatic bandwidth selector.

Chapter 5 follows parallel lines to those of Chapter 4 but for Setup 2. The
behavior of the nonparametric estimator proposed in this setup is analyzed under
the standard and non-standard asymptotic conditions on the two smoothing para-
meters. The simulation study shows the good performance of the estimator under
the non-standard conditions. A new bootstrap algorithm is used in this setup to
approximate the mean squared error of the proposed estimator when a simple ran-

dom sample of the true population is not observed.

In Chapter 6 the methods proposed in Chapters 4 and 5 are applied to several
real data sets. Firstly, in Section 6.1, a data set concerning airline on-time per-
formance of US flights is considered. It is a large data set with nearly 180 million
records. The mean and the standard deviation of arrival delay of US flights in 2017
is estimated based on 2016 big-but-biased data, using the new approach. In Section
6.2 the issue of air pollution in smart cities is addressed. The estimation method for
Setup 1 and the bootstrap algorithm are applied to a real data set concerning the

levels of different pollutants in the urban air of the city of A Coruna (Galicia, NW



Spain). Estimations for the mean and the cumulative distribution function of the
level of ozone and nitrogen dioxide when the temperature is greater than or equal to
30 °C based on 15 years of biased data are obtained. In Section 6.3, a real data set
from the Telco Company Vodafone ES is considered. It consists of nearly 2.5 million
records and 176 variables with information about Vodafone customers. A new varia-
ble, index, is constructed based on the 14 variables that best reflect the costumer’s
tendency to leave the company. The mean and the cumulative distribution function
of that indez is estimated based on the information of the target group and the uni-
versal control group for retention campaigns. Finally, in Section 6.4 the proposed
methods in both setups are applied to the study of two COVID-19 data sets with
information on asymptomatic, detected and hospitalized cases. Estimations of the
mean age of people infected with COVID-19 are obtained when, in addition to the
big-but-biased sample, a simple random sample of the true population or a doubly

biased sample is observed.

Some comments about future work are given in Chapter 7. The possibility
of extending the proposed methodology to categorical settings or to multidimen-
sional variables, including covariate dependence in the biasing weight, is considered.
Another idea is to apply the methods proposed to the estimation of the variance-
covariance matrix and the correlation matrix, in order to perform principal compo-

nent analysis and linear discriminant analysis.

In Appendix A the proofs for the theoretical results presented in Chapters 4 and

5 are collected.






Chapter 1

Introduction

1.1 Motivation

The sentence with enough data, numbers speak for themselves is often pronounced
in this Big Data era. This reflects the doubtful notion that massive data sets al-
ways reflect objective and absolute truth. However, like any other human creation,
data sets are not totally objective. Occasionally, a large sample is not completely
representative of the population, but it is biased: Big-But-Biased Data (B3D). This
includes partial vote counts on election nights, opinion polls carried out on social

networks and large databases collected with self-selection mechanisms.

An interesting source of big-but-biased data is the StreetBump smartphone app
mentioned by Crawford (2013). This app was created to help planning pothole
patching in the city of Boston, where 20,000 of them are fixed every year. The app
passively detects bumps by recording the accelerometers of the phone and GPS data
while driving, instantly reporting them to the traffic department of the city. Thus,
the city could plan their repair and the management of resources in the most efficient
possible way. However, an important problem observed when using StreetBump was
that people with lower income have a low rate of smartphone use. This rate is even
lower for older residents, where smartphone penetration is as low as 16%. There-
fore, these data provide a big but very biased sample of the population of potholes
in Boston. As a consequence, the number of potholes in certain neighborhoods are

underestimated, which causes a skewed management of resources.

The database of tweets generated by Hurricane Sandy is another interesting ex-
ample cited by Crawford (2013). The data consists of more than 20 million tweets
published between October 27 and November 1, 2012. A combined analysis of T'wit-



1.2. Methods

ter and Foursquare data produced some expected findings, such as an increase in
grocery shopping the night before the storm, and other more surprising, such as
an increase in nightlife the day after the hurricane. However, these data do not
represent an unbiased sample of the population. It is well known that the greatest
number of tweets about Sandy came from Manhattan. This was due to the high
level of smartphone owners and Twitter use in New York. Not many messages were
originated in the most affected areas by the catastrophe, since the lack of electricity
caused many problems with internet access and many devices run out of battery in

the hours after the storm.

In other examples, such as those cited in Hargittai (2015), survey data show
that people do not select into the use of sites randomly; instead, use is biased in
certain ways yielding samples that limit the generalizability of findings. Some of the
problems coming from ignoring sampling bias in big data statistical analysis have
been reported by Cao (2015). Calissano et al. (2018) also point out sampling bias

problems for Twitter data sets.

1.2 Methods

Sampling bias is not a specific feature of big data. It has been widely considered
in the statistical literature over the past few decades. Length bias problems were
described in 1963 by C.R. Rao in the First International Symposium on Classical
and Contagious Discrete Distribution (Patil & Rao, 1978). But preliminary ideas
about sampling bias were already considered in the seminal paper by Fisher (1934)
when studying albinism in genetics. In the nonparametric framework, Lloyd & Jones
(2000) considered nonparametric density estimation for length biased data with un-
known biasing weight function, whereas Cristébal & Alcald (2001) gave an overview

of existing methods for dealing with length bias in nonparametric curve estimation.

In order to reduce the significant bias that may appear in Big Data, the main
objective of this thesis is to develop estimation methods for bias correction as well
as to adapt testing methods for bias detection. To solve the bias correction problem,

there are at least two different setups we can think of.

1.2.1 Setups

Bias correction is considered in two possible setups, which are detailed in Chap-

ters 4 and 5, respectively. Basically, in Setup 1 we assume that, in addition to the
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B3D sample, a small-sized simple random sample (SRS) of the real population is
observed. While in Setup 2, a twice biased sample of small size of the population is

assumed to be additionally observed.

Setup 1 covers situations when the natural way of observing the variable of in-
terest is biased; one can collect a big amount of data in that way; but there exists
an alternative way to proceed (probably much more expensive or time-consuming)
for which a simple random sample of the underlying population can be drawn. A
real life example that can be covered by Setup 1 is estimating the pothole location
density in the city of Boston using the StreetBump smartphone app data mentioned
by Crawford (2013). The B3D sample of pothole locations coming from StreetBump
exhibits an important sampling bias due to different smartphone penetration all over
city areas and age groups. However, one could think of generating a simple random
sample by just driving using randomly generated routes, inspecting at randomly
chosen times and collecting locations of the potholes observed. Of course this pro-
cedure would be much more expensive and time-consuming, so it is reasonable that

this simple random sample would be of a much smaller size.

Setup 2 is plausible when the sampling bias is coming from an acceptance/rejection
method not controlled by the data collector. In such a case, the weigth function is
proportional to the acceptance probability in the B3D sample. If the acceptance
probability is assumed to remain the same but the second sample is obtained from
a population already obtained after performing an acceptance/rejection procedure,
then the second one is a simple random sample from a twice biased population. A
motivating practical example for this setup refers to social network polls, where there
is an important bias of acceptance/rejection nature: millions of people are offered
to complete a survey but ‘only’ a few hundreds of thousands of persons answer the
survey. If a second poll is performed within the list of users who already replied
to the first one, and the acceptance probability function is assumed to remain the
same, then the sample of people who also replied to the second survey is a twice

biased sample as considered in Setup 2.

1.2.2 Nonparametric density estimation

The proposed estimators for bias correction proposed in Chapters 4 and 5 use non-

parametric density estimation techniques.

Nonparametric density estimation has been one of the most studied fields in re-
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cent decades in statistics. The methods proposed in this area allow to analyze data
without any prior parametric assumption about the distribution of the underlying

variables.

Let (X1, X2,...,X,) be an independent and identically distributed (i.i.d.) sam-
ple drawn from some unknown distribution function F', with density function f.
If we are interested in estimating the density function, f, then the most common
nonparametric estimator is the kernel density estimator proposed by Parzen (1962)
and Rosenblatt (1956), which is:

fh(m):nthK<x_hXi>:iZKh(x_Xi)’ (1.1)
i=1 i=1

where Kj(u) = (1/h)K (u/h), being K a kernel function and kA > 0 the smoothing

parameter, also known as bandwidth.

It is usual to request that the kernel function is non-negative and its integral is

one:

K(u) >0, Vu, / K(u)du =1,

and it is also frequent to demand that K is a symmetric function:

Estimator (1.1) will be used in Chapters 4 and 5 to estimate the density functions
involved in each setup. Below we will analyze the properties of this estimator, which
are collected in Rosenblatt (1956), Parzen (1962) and Silverman (1986).

1.2.3 Bias, variance and mean squared error

The bias of the Parzen-Rosenblatt estimator (1.1) can be easily obtained:

pias () = E (@) - 50 = [ 15 (72 swar- )

= (e D) @) =202 ) o)

being p2(K) = [t*K (t)dt the second central moment and * the convolution opera-
tor, defined by:

(f+g)(x) = / £z - )g(y)dy.
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The variance can be handled similarly:
Var (fh (m)) = #Var <K (Q: _hX1>)
N2 B 2
i | [ 5 (552) = (5 (550 rway) ]

i
=~ () £) (@) = (K x @)

1

being its asymptotic expression

pio(K?)
nh

Var (fiu () =
where po(K?) = [ K(t)%dt.
Consequently, the mean squared crror (MSE) of the estimator is:
MSE (fu@) = B(fu@) —1@) = Bias (o @)+ Var (fu (@)
= [(Kn* f)(z) = f@) + % [((Kh)2 * f) (x) — (K f)(ﬂ«")ﬂ

AMSE (fh (x)) +O(R%) + 0 <h> ,

n

where the asymptotic expression is:

M2(K)2 4
— 2 h
4

2 NO(KQ) 1

AMSE ( fu(2)) = fl(a)? + Bo 2 fla) - — f(a)

A global measure of the error made when using the estimator is the mean inte-
grated squared error (MISE):

MISE (i (2) = /E[(fh(x)—f(x)f] dx:/MSE(fh(x)>dx

- / (K * f)(@) — f(@)2da
b [0 ) @) - (@ D@ s

n

= AMISE (fh (x)) +O(h%) +0 <h> ,

n

where the asymptotic expression is:

AMISE (fi () = “2(4[()2# / f"(x)2dx+“°([]f?) —% / F(@)2de. (1.2)

n



1.3. Content of the thesis

In equation (1.2) the negative effect of choosing too large or too small bandwidths

is observed.

It is easy to obtain the optimal smoothing parameter that minimizes the AMISE:

po(K?) >1/5 n-1/5
pa(K)2 [ f" (@) de '

hamise = <

1.3 Content of the thesis

The rest of the thesis is organized as follows. In Chapter 2, two different setups in
which bias can be corrected are introduced. In Chapter 3 a comparative analysis of
several existing methods for bias detection is performed. These are nonparametric
tests of the equality of distributions and the equality of means, which include the
distinctive feature assumed for the asymptotics under the B3D context. The non-
parametric method for bias correction in Setup 1 is presented in Chapter 4. The
general parameter considered is the mean of a transformation of the random vari-
able of interest. A new nonparametric estimator that incorporates kernel density
estimation is deeply studied, obtaining its asymptotic properties under standard
and non-standard conditions. Simulation results show the good performance of the
proposed estimator. Moreover, a bootstrap bandwidth selection method is also pro-
posed. In Chapter 5 the nonparametric estimator for bias correction in Setup 2 is
presented and studied in an analogous way to Chapter 4. In Chapter 6 the methods
proposed in Chapters 4 and 5 are applied to several real data sets. The proofs of
the theoretical results in Chapters 4 and 5 are included in Appendices A.1 and A.2.



Chapter 2

Mean estimation for
Big-But-Biased Data

2.1 Introduction

The present chapter focuses on a rather simple but fundamental problem in the con-
text of big-but-biased data, the estimation of the mean of a continuous population.

For this purpose, two different setups will be considered.

In particular, this chapter deals with the unrealistic case where the biasing func-
tion is known, which has been presented by Cao & Borrajo (2018). To the best of our
knowledge, at that time, there was no existing published work considering sampling
bias when the sample size is very large (large-sized biased data or big-but-biased
data).

In Chapters 4 and 5 this study will be extended to the general case of nonpara-
metric estimation of the mean of a transformation of a continuous population when
the biasing function is unknown. This includes as special cases the mean of the
population and any other moment, the cumulative distribution function at a given

point and also the characteristic function evaluated at a given value.

2.1.1 Sampling bias in big data

In many practical situations, e.g. in machine learning, a large amount of data can
be collected but the sampling mechanism cannot be controlled by the data scientist.
As a consequence, although the sample size can be very large, the distribution of

this sample needs not to be the same as the one of the population of interest. In
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this section this idea is formalized mathematically.

Let us consider a continuous population with cumulative distribution function
F (density f) and let us denote by

X = (X1,...,Xn)

a simple random sample of size n from this population. Let us assume that we are

not able to observe this sample but we observe, instead, another sample,
Y=MW,...,Yn)

of a much larger size (N >> n) from another distribution G (called the biased
distribution, with density g) different from F' but with a common support, D. This
condition can be formulated assuming a positive biasing function, w(x),Vz € D,
such that

g(z) =w(z)f(x) Yz € D. (2.1)

Equation (2.1) implies that w(z) is the likelihood ratio or importance function.

Remark 2.1.1. More general models to (2.1) have been considered by Vardi (1985)
and Gill et al. (1988), but for the case where the biasing weight function w(x) is
known. These papers consider conditions on the functions w, f and g for the model
to be identifiable and for f to be estimable. As these authors point out, there is no
hope to estimate f off the support of g. So it is clear that the support of f has to be
included in the support of g, i.e., w(x) > 0 for every x in the support of f.

If the sampling bias is caused by an acceptance sampling method, the function w
is, up to a constant factor, the probability of acceptance in the sampling mechanism.
This sample mechanism is useful when sampling from a density f is difficult or time-
consuming but f(z) < cg(x) for some constant ¢ > 0 and an easy-to-sample density
g. In fact, if we consider the following acceptance sampling: draw X from f and

keep X =Y with probability 7(X), otherwise draw X again; the density function g

becomes () /()
= iy
and the biasing function is
_ 7(x)
w(z) = om0 )y Va € D. (2.2)

If we consider two proportional acceptance probabilities 71 (x) = dme(x) Vo € D
for some d > 0 in an acceptance sampling, then (2.2) shows that the two biasing

functions are the same, i.e., wi(z) = wa(x) Vo € D.
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2.1.2 Related existing work

A fundamental relationship within this chapter is Equation (2.1) in Section 2.2 be-
low. It relates the density of the underlying population, f, with the density of the
biased population, g, via some biasing function, w. This equation is present in many
statistical papers, although most of them are not related to sampling bias nor to big
data.

Equation (2.1) plays an important role in survey sampling, when defining cali-
bration estimators. The paper by Kott (2016) contains an overview on calibration
weighting in survey sampling. Just to give two examples, optimal calibration esti-
mators have been proposed by Deville & Sérndal (1992), while nonparametric model
calibration estimation has been considered by Montanari & Ranalli (2005). For cali-
bration in survey sampling, the biasing function, w, appearing in Equation (2.1), is
typically known and, in fact, often chosen by the researcher. This is, of course, not
the case in B3D. On the other hand the finite population in survey sampling implies
a discrete nature of w, while the biasing function in our setting is defined on a real

interval.

Equation (2.1) also appears in acceptance-rejection methods in simulation (see,
for instance, the book by Devroye (1986)). In that case, the density g is difficult
to simulate and the density f is easy to simulate. Then w is directly related to the
acceptance probability in the simulation algorithm, which determines its efficiency.
Although there are no inference issues concerning acceptance-rejection algorithms in
simulation, this method motivates natural acceptance-rejection sampling procedures

as a possible source for sampling bias, also in big data.

Relation (2.1) is also present when random sampling is too difficult or too costly
and the probability density function, f, is distorted by some multiplicative non-
negative weight function, w, often specified up to a finite number of parameters.
Estimation of these parameters is an important problem that has been considered
by Ma et al. (2005) for generalized skew-elliptical multivariate distributions. Semi-
parametric estimation methods when a representative sample of the population is
unavailable due to selection bias, have been studied by Genton et al. (2012) and
Ma et al. (2013), among other. These authors proved asymptotic properties for the
estimators of location parameters when the underlying (unobservable) distribution

is symmetric.
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A very special case, related to the previous situation when random sampling is
too difficult, appears when sampling can only be carried out in a paired way and only
one of the components of the pair can be observed. This is the case when the random
variable, X, cannot be observed but we are able to observe Y = max{X;, X2} the
maximum of two independent random copies, X; and X5, of X. In this case the
distribution of Y becomes G(z) = F(x)?, where F is the distribution function of
X. This gives g(z) = 2F(x) f(z), i.e. w(x) =2F(z). In this very particular setting,
the function w depends on f and estimators for pu can be based on the empirical cdf

estimator for G.

The problem is introduced in Subsection 2.2.1, in which two unrealistic estima-
tors for the known w case are proposed. Two possible setups for bias correction are
considered in Subsections 2.2.2 and 2.2.3.

2.2 Basic inference in two different setups

We focus on the problem of estimating the mean of a continuous random variable,
p= [xf(z)dz, in a B3D context, i.e. using a sample of a large size generated from
a distribution which is not the one we are interested in, but some biased version
of it. In the next subsection we look at some unrealistic version of the estimation

procedure that is only feasible when the bias function, w(x), is known.

2.2.1 Estimation procedure when the biasing function is known

In the B3D context presented in Subsection 2.1.1, it is clear that, if the sample X

were observed, a classical estimator for u would be available: the X-sample mean,

1 &
:ngxi.

However, if X is not available and we only observe Y, it is reasonable to use relation

(2.1) in order to estimate p. In fact, using (2.1), the following equation holds:

E <wi(fy)> = /w‘?y)g (y) dy = /yf () dy = p. (2.3)

Equation (2.3) motivates the definition of an unrealistic estimator which can be only

used in practice when the function w is known (Cao & Borrajo, 2018):

N
_qy_ 1 Vi 1 fW
“1_Nzw(m NZ

i=1 i=1 Yi

)Y (2.4)
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as it would happen, for instance, in acceptance sampling. Since 1) is the sample
mean of the simple random sample Z; = Y;/w(Y;), i =1,..., N, its properties as a

good estimator of u are straightforward:
E (ﬂ(l)) =,

Var (ﬂ(1)> =0%/N
and
VN (i = 1) Joz > N(0,1),
where 0% = [2%f(z)?g(x) 'dx — p2.
The estimator in (2.4) is a weighted average of the Y-sample, but the sample

weights f (Y;) /g (Y;) do not sum up to 1. So a reasonable modification of (! is the

following convex linear combination version:

1 Xy 1 XL f(v)Y;
o N 2wy - N 50 25
”_1i 1_1iﬂm' |
N&Zw() N&g(¥)

The estimator in (2.5) can also be regarded as an empirical analogue of the

£ (ck)
()

which is equal to p, by just recalling equation (2.3) and

E(tu(ly)) ~ [ cewa= [rwa-t.

In general, the biasing function, w, is not known (because the underlying densi-

expectation ratio

ties, f and g, are unknown), so the estimators in (2.4) and (2.5) are useless. Thinking
in the more realistic unknown w case, which will be developed in Chapters 4 and 5,

we can think of two different setups.

2.2.2 Setup 1

Since the Y-sample is available, it is certainly possible to estimate the density g and
then plug it into (2.4) or (2.5). To end up with completely observable versions of

a1 and @), we also need to estimate the density f. This can be done if we are
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able to collect a simple random sample, X, from the real population with density f.

Of course, when having the sample X, it is certainly possible to estimate u based
on it. However, when the sample size of X is small, the quality of estimators based
on it may be poor, while estimating p using Y will have a much smaller variance

(although some bias) due to its much larger sample size.
The formulation of this first setup is the following:
Setup 1. Let us assume that we observe the big data sample of a large size IV,
Y = (Y1,...,YNn),

from the biased distribution G (density g). Suppose that we also observe a simple
random sample,

X = (Xla' : '7Xn)7
of a much smaller sample size n (n << N) of the real population F' (density f).

The two resulting estimators for the unknown w case in Setup 1 will be studied
in Chapter 4.

2.2.3 Setup 2
Another possible setup in which we can think of consists in assuming that the bias-
ing mechanism can be replicated a second time for an already first biased population.

Setup 2. Let us suppose that we are in a B3D situation, assuming that we
observe the big data sample of a large size N,

Y =(Y,...,Yn),

from the biased distribution G (density g).

Suppose that we are not able to observe a simple random sample, X, from the

real population, but instead, we can mimic the biasing mechanism and apply it to

the population G to get a biased sample of it,
Z=(Z,...,%y),

i.e. a simple random sample from a twice biased population, M (density m), of a

much smaller sample size n (n << N).
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To study the relation between Setup 1 and Setup 2, let us denote the biasing
functions involved by wi(z) = g(x)/f(x) and wa(x) = m(x)/g(x). If the sampling
bias is caused by an acceptance/rejection sampling method and we denote the prob-
ability of acceptance in the sampling mechanism by wg, then the two biasing weight

functions wy and wy are proportional to wy:
wi(z) = c1 - wo(w),

wa(x) = cg - wp(x).
Therefore, one of them, for example wo, is proportional to the other, wq, i.e.,

we(x) = ¢ wi(x):

wa(x) = cg - wlc(lx) =c-wi(x) (2.6)
for some constant ¢ = 9.
C1
Since
wi(z) = ?Ez; =g(z)=c1-wo(z) f(z)=>1= /g(a:)dx =0 /wo(x)f(x)dx
and
wa(z) = 7;((;)) = m(x) =co-wo(z) g(x)=1= /m(x)dm = CQ/wo(x)g(a:)dx,

we could express

1= ( [ wolx)f(x)dz 7 and o= ( [ wo(x)g(x)da il?
(f wiersiare) (f wiersiae)

obtaining that the constant c is

_ e _ Jwo(x)f(z)dx

o [wo(x)g(z)dx’
When the simple random sample, X, from the true population is not available

and we only observe Y, it is reasonable to use the following relation:
m(x) = wy(z)g(x) Vo € D (2.7)

in order to estimate pu.

In fact, using (2.7), the following equation holds:

) = [ [y
E<w2 (Y)) B /w2 (y)g(y)dy—/m<y)/g(y)g(y)dy
_ (v 1 1
N /cg(y)/f(y)g(y> dy = C/yf (y)dy=—p. (28)
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Equation (2.8) motivates the definition of an unrealistic estimator of £ which can

be only used in practice when the function ws is known:

N N N
- 1 Y; 1 Y)Y 1 1
) _ = L NI 2 NT 2.9
N L mm NS m) e v 2
Since ") is the sample mean of the simple random sample T; = Y;/w(Y;), i =
1,..., N, its properties as a good estimator of £ are straightforward:
E (ﬁ(1)> = - W,
2
~ o
o 57) = 7
ar (fu TN
and

where 02 = [2%f(z)?g(z) " tdx — p?.

The estimator in (2.9) is a weighted average of the Y-sample, but the sample
weights g (Y;) /m (Y;) do not sum up to 1. So a reasonable modification of (! is

the following convex linear combination version:

LR, 1 X gV,
. NZ wy (Y;) N~ m(Y;)
F2) =t — =l (2.10)
K N N ) )
1 1 g (Ys)
N; wy (Y;) N;m(Yz)

The estimator in (2.10) can also be regarded as an empirical analogue of the expec-

5 ()
5 (wtn)

which is equal to u, by just recalling equation (2.8) and

?(mw) = Jmarw=i[rwo=;

In general, as in Setup 1, the biasing function, ws, is not known (because the

tation ratio

underlying densities, g and m, are unknown), so the estimators in (2.9) and (2.10)
are useless. Equations (2.9) and (2.10) require the estimation of the densities g and
m (or the estimation of the biasing function, ws) to obtain observable estimators
for the population mean. This is possible if one is able to collect information on g

and m or indirect information on wsy, which will be discused in Chapter 5.
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Chapter 3
Bias testing

When working with a large database, a logical first step is to check if we are in a
context of biased data. In order to detect if bias exist, we can use several existing
methods that allow to test if the two distributions involved (F and G in Setup 1
and G and M in Setup 2) come from the same distribution (unbiased situation) or

not (biased situation). This is tantamount to using tests for the null hypothesis:
Hy:F =G

against the alternative
H,:F#G@G,

like, for instance, the Kolmogorov-Smirnov test or the Cramer-von Mises criterion.

For simplicity, in this chapter we will focus on Setup 1, in which we observe the
simple random sample X, coming from the unbiased distribution F' and the B3D
sample Y from the biased distribution G. The adaptation to Setup 2 of the following
methods is straightforward. It would be enough to consider the sample Z from the

twice biased distribution M, instead of the sample X.

Despite the fact that the following tests for bias detection are widely known
methods, it is important to consider the distinctive feature of our B3D context: we
will assume that the ratio of both samples sizes involved does not tend to a constant
but to infinity, i.e., the size of the B3D sample tends to infinity faster than that of
the SRS.
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3.1 General bias detection

3.1.1 Kolmogorov-Smirnov test

The Kolmogorov—Smirnov test (KS test) proposed by Kolmogorov (1933) and Smirnov
(1939) is a nonparametric test of equality of distributions used to compare the pop-

ulation distribution with a reference probability distribution
Hy: F = Fy,

or to compare two populations and conclude if they have the same distribution
Hy: F=Q@G.

Let F), be the empirical cumulative distribution function (ecdf) for the sample
(X1,X2,...,X,) and Gy the ecdf for the sample (Y7, Ys,...,Yn), defined as:

1 n

Fo(z) = 521{&.9}, (3.1)
=1
1 N

Gy@) = 52l (3.2)
j=1

where 1 denotes de indicator function.

It is well known that F,, and Gy are the nonparametric maximum likelihood
estimators of F' and G, respectively. Therefore, the proximity of F;,, and Gy will
be indicative of the veracity of Hy, while a large distance between both ecdf will

evidence that Hj is probably false.

The two-sample Kolmogorov—Smirnov statistic quantifies the distance between

the two ecdf involved:

Dy =sup |Gy(x) — Fu(7)],
z€R

where sup denotes the supremum over all x € R, while the one-sample test statistic
computes the distance between the ecdf of the sample and the cdf of the reference
distribution:

D)} = sup | Fp(z) — Fo(x)].
zeR

Many authors have studied the distribution of D° under the assumption that

Fy(z) is continuous. Kolmogorov (1933), Smirnov (1939), Feller (1948), Doob (1949)
and Smirnov (1948) considered the limiting distribution of D0 and Massey (1951)
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showed that the exact distribution of ijo under Hj is independent of Fy if Fy is

continuous.

As it happens with the one-sample test statistic with continuous F' = G under
the null hypothesis, it can be proven that the exact distribution of the two-sample

test statistic does not depend on the distributions involved, it is distribution-free:

Proposition 3.1.1. (Smirnov, 1939) The two-sample Kolmogorov-Smirnov test is

a distribution-free test under Hy if F' = G is continuous.
Proof. Let us define the inverse of F' by
F7L(t) = min{z : F(z) > t}.

Taking into account the change of variables t = F(z) or x = F~1(t), we can

write the statistic as

Dy = sup [Gn(z) = Fu(z)] = sup |Gn(F7H(t) = Fu(FH(1))].
z€eR 0<t<1

Using the definitions of the ecdfs (3.1) and (3.2), under the null hypothesis Hy,

we obtain:

Fo(F7H() = *Z (Xi<F—1(t)} Zl{F X,)<t}>

Gn(FH(t) = *Z <P} = 37 ZI{F Yy)<t}>

and therefore,

sup |Gn(F~'(t)) — Fo(F(t))| = sup Z Lipvy<ey — — Z lipx<ey|-

0<t<1 0<t<1
The distributions of F(X;) and F(Y}) are uniform on the interval [0, 1] since
P(F(X) <) = P(X:< F\(t) = F(F(t) = ¢
and
PE(Y)<t) = PY; < F 1) = F(F\(1) = t.
Therefore, the random variables U; = F(X;),i = 1,...,n and V; = F(Y}),j =

1,..., N are independent and have uniform distribution on [0, 1], so
Dy, =sup|Gn(z) — F, = sup 1 - — 1
n z€R| (z) (z)] = S Z (v,<t} Z (i<t} ] »

which clearly does not depend on F'. O
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Smirnov (1939) proved that, for n and N sufficiently large, under Hy the statistic

N-n
D
N+n Nmn

has the same asymptotic distribution that the Kolmogorov distribution:

N -n d ° .
P( N Tn DNn§t>HK(t) = 142(*1)1 Le—2i%t?

Wik o (2i-1)272 (812)

t 4
=1

where K (t) denotes the Kolmogorov-Smirnov cdf.

Let’s see now what happens when considering the distinctive feature of our B3D

context, i.e., N/n — oo:

N -
Proposition 3.1.2. Under Hy, when N/n — oo, the statistic N+n Dy, has
\/ n

/| N
the same asymptotic distribution that the statistics ﬁDi and /nDE under
n
HO F = Fo.

Proof. On the one hand, under the null hypothesis Hy, and defining

D = sup |Gy (z) — G(x)|
zeR

and

D)} = sup |F,(z) — F(x)],
z€eR

we obtain that:

N-n N -n
FiaDve = ||y sup(Gx(@) - G@) + F(w) — Fu()

\/Nisup]GN() ()+msup|F() F(z)]
— ¢\fDN+

since when N/n — oc:
n n
~ —_— = 1
VN aa Sy w oW

VND§ -% K,

IN

¢7f—%K (3.3)
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N /N_1
VN+n VN~

JnDF % K.

and

On the other hand, under the null hypothesis Hy, the one-sample test statistic,
DF | satisfies:

VaDy = vnsup |Fy(x) = F(z)| = Vasup |[F(x) — Gy (z) + Gy (z) — G(z))|

z€R z€ER
n
g\ﬁHW+WW%:ﬁmMﬁMNfMﬁ,

which implies that

N Nn n
DEF </ D | ——V/ND,
N—I—n\/ﬁ "~ VN+n Non N+n N

N n Nn
N+n¢mﬁ¥- N+n¢ﬁD§§ N P (3.4)

and therefore

Considering (3.3) and (3.4), we obtain:

N n N-n N n
DE — ] VNDS$ <4/ Dy <t/ ——+/nDF —— VND§
NJrn\/ﬁ " N+n N=\ NIV = N+n\/ﬁ nt N+n N

n
and since W\/ N D](\;, ~ 0p(1), we conclude that the asymptotic distribution
\ n

N - N
of \/EDNW is the same as that of \/Nim\/ﬁDf , which, in our particular

situation of the ratio of the two sample sizes tending to infinity, is the same as the
asymptotic distribution of \/nDZ". O

As a consequence, when N/n — oo, the two-sample statistic, Dy ,,, will be used

but callibrating it with the asymptotic distribution of the one-sample test.

Apart from this test, we could also consider other tests or criterions. In Subsec-
tions 3.1.2 and 3.1.3 the Cramer-von Mises criterion and the Mann-Whitney U test

will be used for bias detection.

3.1.2 Cramer-von Mises criterion

The Cramer-von Mises criterion (Cramer, 1928; von Mises, 1928), like the Kolmogo-

rov-Smirnov test, is used to judge the goodness of fit of a theoretical cumulative



3.1. General bias detection 20

distribution function, F{, compared to a given empirical distribution function, F,.

As F' is unknown, the two following statistics could be used:

& = [ 1Fe) - Fo@)Pdr ()

— 0o
2 OO 2
& = [ [Fala) - Fo@)PaF(o)
—0oQ
For comparing two empirical distributions, the generalization to the two-sample

case is given by Anderson (1962):

= [ 1R - Oy ()Pl

—o0
which compares the two empirical cdf. In our context, F,, and G denote the
empirical distribution functions of the SRS and the B3D sample respectively, be-
ing Hy4p the empirical distribution function of the two samples together, i.e.,
(N +n)Hnin(zx) = nFy(x) + NGn(z).

The statistic for the one-sample case is

o) i— 2
T, = ni? = n/ Fa(z) - Fo(@)PdFo(z) = — + 3 [2 — L_ Fg(azi)]
=1

oo 12n

and for the two-sample case:

M= S [ @) -Gy Py () = -t

T - )
Non . Nn(N+n) 6(N +n)

’ :N+nw :N—i—n

where V is defined by

n N
V:nZ(ri—i)2—|—N (sj — )
i=1 j=1
being 7;,¢ = 1,2,...,n, the ranks of the SRS in the combined sample and s;,j =
1,2,..., N, the ranks of the B3D sample in the combined one.

In Rosenblatt (1952) it has been proved that, under the null hypotheses, Ty,
has the same limiting distribution as T,, when n — oo, N — 0o and N/n — A, being
A a positive constant. For moderate sample sizes, the limiting distribution is a good

approximation to the exact distribution.

Proposition 3.1.3. Under Hy, when N/n — oo, the statistic T, has the same
asymptotic distribution that the statistic Ty, under Hy : F' = Fy.
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Proof. Defining .
7 =N [ Gy - G@)PdG(a),

TF —n / T B () — F(2)]2dF ()

—00

and
Nn

T =51 | Fale) = Gu(@)PdP(a),

it can be proven that Ty, has the same asymptotic distribution that Tﬁn.

On the one hand, under the null hypothesis Hy and using the triangular inequal-
ity, we obtain that:

</Oo [Fo(z) = F(z) + G(x) — GN(m)]QdF(I)> 1/2

—00

1/2

</oo [Fo(z) — F(a:)]zdF(at)>1/2 + </oo [Gn(z) — G@;)]%a(;,;)) 7

— 50 —00

IN

which implies that

T = e [ [Fale) = F(@) + Gla) — Gy (@) PP (0)

Nn — m -

< Nan / [Fo(w) — F(2)]*dF (x) + Nan / [Gn(z) — G(x))?dG(z) (3.5)
n 00 1/2 00 1/2

+ ]\2[11 - < / M[Fn(x) —F(x)]ZdF(x)> ( / OO[GN(x)—G(g;)]2dG(g;)) ,

On the other hand, under the null hypothesis Hp and using again the triangular

inequality, we obtain that:

</OO [Fo(z) — Gn(z) + Gn(z) — G($)]2dF(x)>1/2

- 0o 1/2 00 1/2
< ([ @ -on@Pir@) o+ ([ 6ve - 6wPacw)
then, the one-sample test statistic, T)I", satisfies:
" = n/oo [F(z) — F(x)]?dF(z) = n/oo [F(x) — Gn(2) + Gn(2) — G(z)]*dF (x)
< n/_oo [F(z) — Gn(x)]?dF () + n/_oo [Gn(x) — G(2))2dG(x)

+ 2n </°O [Fn(z) — GN(x)]QdF(a:)> v </OO [Gn(z) — G(z)]QdG(x)> v ,

— 00 —00
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which implies that

N TF n_ G 2\/Nn(

1/2 1/2
N+n "_N—l-n N_N—i—n TF) (Tﬁ) ST]I\LT?,W (3.6)

n

Considering (3.5) and (3.6), we obtain:

N n 2V Nn 1/2 1/2
N+n " N+n N N—i—n(") (N) SINg
2v/Nn

n

< TF TG TFYY2 (G 1/2
and since when N/n — oc:
LBV
N+n N ’
vV Nn 4D
~ —o(1),
N +n N+n
T, = Op(1)
and
Tﬁ = Op(1),
we conclude that the asymptotic distribution of T° ]1(; ,, is the same as that of TE,
' n

which, in our particular situation of the ratio of the two sample sizes tending to

infinity, is the same as the asymptotic distribution of Tf , since

N N

3.1.3 Mann—Whitney U test

The Mann—Whitney U test, also called the Mann—Whitney—Wilcoxon (MWW) or
Wilcoxon rank-sum test (Wilcoxon, 1945; Mann & Whitney, 1947), is a nonparamet-
ric test of the null hypothesis that, for randomly selected values X and Y from two
populations, the probability of X being greater than Y is equal to the probability
of Y being greater than X:

Hy:P(X>Y)=P( > X).

The U test is weaker than that of Kolmogorov-Smirnov, since it does not test

the equality of distributions, but a condition that is verified in that case.
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To compute the statistic, U, the two combined samples are ranked and each of
the values of the two samples is assigned to its rank (i.e., rank 1 is assigned to the
smallest observation, rank 2 to the second smallest observation, and so on). If two
or more observations are equal, the mean rank is assigned to the two observations.
Finally, Rx and Ry, the adjusted rank-sums, i.e. the sum of the ranks in each of

the samples X and Y, respectively), are computed. This allows to construct:

1
UX:Nn—i-n(n;)—RX

N(N+1
UY:NTL‘Fi( 2+ )—RY~

Knowing that
(N+n)(N+n+1)

RX+RY: 2 )

the sum of two values is given by
Ux +Uy = Nn.
The U statistic is defined as the minimum between Ux and Uy:
U =min{Ux, Uy}.

For large sized samples, U is approximately normally distributed under the null
hypothesis. In that case, the standardized value is
U—
s= 2 N(0,1),
ou
where my and oy are the mean and the standard deviation of U, under Hg, which

Nn Nn(N +n+1)
mU:T and oy = 12 .

In the note written by Kasuya (2001), the author warns about using the Mann-

are given by

Whitney U-test when the distributions of the two samples are very different, since
it can lead to a misinterpretation of the results. In that case, it is recommended to
use the unequal variances version of the ¢-test (Welch’s ¢-test), which provides more

reliable results.

3.2 Bias detection for mean estimation

Since the non-equality of distributions does not have to imply the non-equality of

means, it would be reasonable to use a specific test for the equality of means when
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addressing a mean estimation problem.

To see the effect of bias on the estimation of the mean, the Student’s ¢-test of
equality of means will be used. In particular, according with our specific context,
the Welch’s adaptation of the two sample t-test (Welch, 1947, 1951) will be consid-
ered. Welch’s t-test is a more reliable version of the test when the two samples have

unequal variances and/or unequal sample sizes.

Welch’s t-test defines the statistic as follows:

2 2
where =X and =X denote the estimated variances of X and Y, respectively; being

n
the degrees of freedom:

n N
S5 N Sy
n?(n—1)  N2(N —-1)

2
(23
d.f. =

This test will not be affected by the condition N/n — oo since, in that case, the

variance of X — Y,

2 2
9% L %
n N

tends to the variance of X. Therefore, the statistic will be approximated by:
X —
t~ K ,
2
X

=

which has asymptotic distribution N (0, 1).

3.3 Simulation

The performance of the tests proposed in Section 3.1 and 3.2 is studied via simula-
tion. We generated 103 pairs of datasets, each with sample size n = 103 in the case
of the sample X, sample size N = 10° for the sample Y and sample size n = 103 in
the case of the sample Z.
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The model presented below has been designed to easily simulate the samples X,
Y and Z involved in the study. Furthermore, taking into account the hypotheses
considered in the theoretical results of Chapters 4 and 5, we opted for a model in

which the densities are bounded away from zero.

Let us consider a population with density f,

3
f(z) = ﬂ($2 +1) 199(), (3.7)
from which the sample X is generated and the following class of weight functions,

w(zr) = ek 1o () + z* 1 g(7), (3.8)

with different choices of kK > 0 and € > 0.

The biased density is

3 k2 3 k2 _k
g(w) = it (= +1) 1gq(x) + E(x +2%) 1z 9)(z), (3.9)
being
1 [k-ehts . 9k+3 k. gktl 4 ok+l
e L M+ 3 (k- + ) 7 (3.10)
14 k+3 k+1
from which we simulate the sample Y.
The twice biased density is
m(x) = @5%@2 +1) 1 () + @(x%“ +27) 1o g (), (3.11)
being
1 [2k - 2k+3 3. 22k‘+3 3(2k - 2k+1 22k’+1
e i (k- ™7 +277) (3.12)

T 14 2k + 3 + 2%k + 1

from which the sample Z can be easily simulated.

Different combinations of k£ and € are considered in this simulation study, provid-
ing very biased situations (k = 2, ¢ = 0.1) and others in which bias is quite significant
(see Figure 3.1), decreasing the degree of bias by decreasing k and increasing ¢ (see
Figure 3.2), until reaching situations in which bias is almost imperceptible (see Fig-
ure 3.3) or it does not exist (k =0, £ = 2).

Several indices to measure the amount of bias in Setup 1 are defined below. All

of them are invariant under location and scale transformations. This means that if
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we consider any positive constant ¢ > 0 and any real number b, the index defined for
the two new random variables, X’ = aX +b and Y/ = aY + b, has the same value as
for the original random variables, X and Y. This is a very convenient property since
the value of the index does not depend on the measure units used. All the indices
except i1 are defined in such a way that they all lie within the interval [0,1]. The
value 0 for all those indices corresponds to no bias, while the value 1 is the maximal

possible value of them.

k=2, eps=10.1 k=1.5 eps=10.1 k=15 eps=1
o _ ¥ o _ o _
o™ o™ o™
-_—- f : - f ., - f
w l‘ w : w :
R a : e a : e g {
£ ]
r
m ; m :0 m R
(= V4 (=0 T 4 a | .. 4
- : , - i. , - J,
M ’ 47
ool Al
2 L% 2 5 =B -2
F ) d"" -
___f R ___.,- - R .‘o
+«* .,’. -———t’
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0o 05 10 15 20 0o 05 10 15 20 00 05 10 15 20

Figure 3.1: Densities f (dashed dark gray line), g (dotted black line) and m (dashed light
gray line) involved in the simulated models for different values of k and e for the biasing
function, w (solid line).

The indices for Setup 2 could be obtained in an analogous way, simply consider-

ing the sample Z instead of X and density m and distribution M instead of f and F.

The first index considers the absolute value of the difference of the population
means of the distributions involved in each case. The average of the standard devi-
ations in the denominator is necessary in order to obtain an scale-invariant index.
For Setup 1:

|y — px|
ox toy’
2
The following two indices are based, respectively, on the L; and Lo distances

11 =
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Figure 3.2: Densities f (dashed dark gray line), g (dotted black line) and m (dashed light
gray line) involved in the simulated models for different values of k& and e for the biasing
function, w (solid line).
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Figure 3.3: Densities f (dashed dark gray line), g (dotted black line) and m (dashed light
gray line) involved in the simulated models for different values of k and e for the biasing
function, w (solid line).

between the density functions:
b
dy = Nf =gl = [ 17@) - g(a)ldz,
b

dy, = ||f—g|!2=[/ (f(@) - gl@)’de|
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where [a, b] is the common support of F' and G.

Since the distance dr, takes values between 0 and 2, the second index is divided
by 2 in order to be in the range [0, 1]:
. 1
i =5l gl

Since the distance dr, is not an scale-invariant measure, it is transformed to obtain
the third relative index in [0, 1]:

=gl
17T+ Tl

The fourth and fifth indices consider the Kolmogorov-Smirnov and the Cramer-

3

von Mises distances between the distribution functions, respectively:

dgs = sup|F(z) —G(z)],

Tz€R
dowi = [ (Fla) =~ G@)P3d(F +6) (o).

The Kolmogorov-Smirnov distance is already a location and scale invariant measure
that takes values in [0, 1], therefore it does not require any modification to obtain
the fourth index:

iy = dgs = sup |F(z) — G(z)|.
rz€R

Since the Cramer-von Mises distance is location and scale invariant but takes values
between 0 and 1/3, the fifth index is:

is = 3/_00 (Flz) - G(m))Q%d(F +G) (@),

Finally, an index that measures the proximity of the weight function, w, to its

nearest constant is considered:
b ) 1/2
, 1w = cwlly [fa(w(w) — Cu) dw]
16 = = ,

lwlly + llewlly [fbw(x)de} 1z +(b—a)l/2-c,

a

1 b
Cw:b—a/a w(z)dr

and the correction in the denominator is introduced to get a location and scale in-

where

variant index with values in [0, 1].
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Table 3.1: Comparison of different relative bias indices in Setup 1.

k g il ig i3 i4 i5 i6

2 0.1 0.661448 0.276439 0.263611 0.276439 0.120925 0.381806
1.5 0.1 0.572910 0.231033 0.222505 0.231033 0.085240 0.332718
1.5 1  0.344384 0.165341 0.173335 0.165339 0.040523 0.192136
1.5 1.5 0.114274 0.066758 0.085891 0.066758 0.005741 0.064524
1 1.5 0.074342 0.043826 0.056667 0.043826 0.002465 0.041561
0.5 1.5 0.036569 0.021553 0.027965 0.021553 0.000594 0.020051
0.1 1.5 0.007302 0.004250 0.005513 0.004250 0.000023 0.003894
0.1 1.8 0.001315 0.000885 0.001595 0.000885 0.000001 0.000940
0 2 4-107% 1.107% 1.107 4.107% 7.10732 4.107V7

Table 3.2: Comparison of different relative bias indices in Setup 2.

k g ’il ig i3 i4 i5 i@

2 0.1 0.228873 0.143197 0.136703 0.143201 0.033393 0.381806
1.5 0.1 0.236722 0.128118 0.122137 0.128118 0.026777 0.332718
1.5 1 0.276367 0.138238 0.134581 0.138238 0.029754 0.192136
1.5 1.5 0.122380 0.072108 0.089893 0.072108 0.006874 0.064524
1 1.5 0.080052 0.046485 0.059155 0.046485 0.002819 0.041561
0.5 1.5 0.037777 0.022276 0.028752 0.022276 0.000640 0.020051
0.1 1.5 0.007173 0.004281 0.005549 0.004281 0.000023 0.003894
0.1 1.8 0.001321 0.000889 0.001604 0.000889 0.000001 0.000940
0 2 0 0 0 0 0 0

Tables 3.1 and 3.2 show the values of the different bias indices considered in
Setup 1 and Setup 2, respectively. In Setup 1, it is clearly observed that in the most
biased situation the value of all indices is greater, decreasing as the bias decreases.
While in Setup 2, although this relationship is not so evident for the three first
considerations of k and e, something similar happens: the values of the different
indices allow us to distinguish the more biased situations (the first ones) from the

less biased ones (the last ones).

For the implementation of the two sample KS test in R we will use the pkolmim
function of the kolmim package, which is an improved version of the ks.test routine
presented in Carvalho (2015). The reason for using this package is that the ks.test
function returns approximated values in case of ties, being the pkolmim function
more efficient since it returns the exact values. For the implementation of the two-
sample Cramer-von Mises test we use the cvom_test function of the twosamples pack-

age with 1000 bootstrap iterations and for the Mann-Whitney test the wilcox.test
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function of the stats package. As for the ks.test function, the wilcox.test returns
approximated values due to the presence of ties. For the equality of means, we use

the t.test with unequal variances.

Table 3.3: Comparison of the rejection probability of the equality of the distributions F’ and
G in Setup 1 using the-two sample KS test, through the ks.test and the pkolmim functions,
the two-sample Cramer-von Mises criterion and the Mann-Whitney-Wilcoxon U-test and
comparison of the rejection probability of the equality of means using the Welch’s ¢-test for
different values of k and € (n = 10%, N = 105, trials=10%, o = 0.05).

k € ks.test pkolmim cvm_test wilcox.test t.test
2 0.1 1 1 1 1 1

1.5 0.1 1 1 1 1 1

1.5 1 1 1 1 1 1

1.5 1.5 0.990 0.991 1 0.990 0.956
1 1.5 0.781 0.786 0.915 0.774 0.651
0.5 1.5 0.237  0.247 0.468 0.273 0.209
0.1 1.5 0.063  0.055 0.161 0.059 0.050
0.1 1.8 0.048 0.050 0.150 0.052 0.052
0 2 0.049  0.050 0.154 0.051 0.050

Table 3.4: Comparison of the rejection probability of the equality of the distributions G and
M in Setup 2 using the-two sample KS test, through the ks.test and the pkolmim functions,
the two-sample Cramer-von Mises criterion and the Mann-Whitney-Wilcoxon U-test and
comparison of the rejection probability of the equality of means using the Welch’s ¢-test for
different values of k and ¢ (n = 103, N = 10°, trials=10%, o = 0.05).

k € ks.test pkolmim cvm_test wilcox.test t.test
2 0.1 1 1 1 1 1

1.5 0.1 1 1 1 1 1

1.5 1 1 1 1 1 1

1.5 1.5 0.997 0.997 0.998 0.995 0.981
1 1.5 0.848  0.851 0.936 0.847 0.715
0.5 1.5 0.282 0.285 0.486 0.300 0.234
0.1 1.5 0.051 0.056 0.166 0.061 0.058
0.1 1.8 0.045 0.046 0.164 0.048 0.041
0 2 0.041 0.044 0.166 0.044 0.039

Tables 3.3 and 3.4 show the rejection probability obtained in the implementation
of the different test proposed for bias testing in Setup 1 and Setup 2, respectively.
Except for the Cramer-von Mises criterion, whose bad results apparently come from
a malfunction of the twosamples package, the rest of the methods considered to test

the equality of distributions offer similar conclusions in both setups. As the indices
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considered in the Tables 3.1 and 3.2 showed, for the first combinations of k and ¢
the absence of bias is totally rejected with probability 1, while in the last cases, the
fact that we only reject Hy 5% of the times is observed. Regarding the equality of

means, the conclusions are similar.

Table 3.5 shows the CPU times of the different methods considered for bias
testing. These times correspond to a single combination of ¢ and k with n = 103,
N = 109, trials=103. The Cramer-von Mises criterion, in addition to moving away
from the behavior of the other methods, is the slowest one. Both functions used in the
implementation of the Kolmogorov-Smirnov test (ks.test and pkolmim) offer similar
simulation times; however, it is preferable to use the pkolmim function since, as we
have already mentioned, it is the only one that returns exact p-values. The Mann-
Whitney U-test throught the wilcox.test function is also quite fast, but it returns
approximated p-values like the ks.test function, instead of exact ones. Finally, the

t-test for the equality of means is the fastest of the tests considered.

Table 3.5: Comparison of CPU times (minutes) of different methods for bias detection.
The times correspond to a single combination of € and k with n = 103, N = 109, trials=103.

ks.test pkolmim cvm_test wilcox.test t.test

16.8 15.7 3513.6 63.6 8
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Chapter 4

Nonparametric Estimation in
Setup 1

4.1 Introduction

The content of the present chapter corresponds to the work published in Borrajo
& Cao (2021). It is an extension of Setup 1 introduced in Chapter 2, which deals
with the mean estimaton problem in a B3D context. This chapter addresses a more
general problem: the nonparametric estimation of the mean of a transformation of
a continuous population. This includes as special cases the mean of the population
(Chapter 2) and any other moment, the cumulative distribution function at a given

point and also the characteristic function evaluated at a given value.

The estimators proposed in Chapter 2 only work in the unrealistic case where
the biasing function is known. In this chapter, estimators for the unknown w case

in Setup 1 are proposed.

The rest of the chapter proceeds as follows. Section 4.2 presents a density-based
nonparametric estimator, as well as a general weighted estimator and includes some
asymptotic results. A simulation study is included in Section 4.3, which shows
that the proposed method outperforms the classical sample means, even the one
computed with a simple random sample obtained without sampling bias. The simu-
lations show striking results for the new estimator in terms of the optimal smooth-
ing parameters. Section 4.4 presents a bootstrap algorithm to estimate the mean
squared error of the estimator. Its minimization leads to a method for automatic

bandwidth selection, which is a relevant practical problem. Finally, Section 4.5 con-
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tains sketches of the proofs. Detailed proofs are long and tedious and can be found

in Appendix A.1.

4.2 Estimation of the mean of a transformation for B3D

We focus on the problem of estimating the mean of a transformation, v, of a con-
tinuous random variable, p, = [v(z)f(z)dz, where v is a known function, in the
context of B3D, i.e. using a sample of a large size generated from a distribution
which is not the one we are interested in, but some biased version of it. This general
parameter u, includes as special cases: the k-th moment of the random variable
(considering v(z) = 2*) which includes the mean (k = 1), already studied in Chap-
ter 2; the cumulative distribution function F'(t) (considering v(r) = 1ly,<4); and
the characteristic function ¢(t) (taking v(z) = exp(itx)), among many other. In the

next subsection we look at the mathematical notation to formulate the problem.

4.2.1 Sampling bias in big data

Let us consider the continuous population and the B3D context presented in Section
2.2.2 in Chapter 2. Following parallel steps to those of that chapter, it is possible
to define analogous estimators to () and (%), but for the general case of the mean

of a transformation.

In case of X being observed, we could use the classical estimator for p,: the

v(X)-sample mean,

i=1
If X is not available and we only observe Y, the relationship between f and g
(see Equation (2.1)) motivates the definition of the following unrealistic estimator

for 11, in the known w case (Cao & Borrajo, 2018):
) Lem oY) 1 f(Yi)u(Y)
RN TN g b
oY)\ _ [ 2) _ _
B (25) = [ 20 an= [otf s =g
(1)

Since fiy * is the sample mean of the simple random sample Z; = v(Y;)/w(Y;), i =

since

1,..., N, it can be proven that is an unbiased estimator of y,, with normal asymp-

totic distribution and variance 0% /N, where 0% = [v(z)%f(z)%g(x) " tdx — p2.
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The estimator in (4.1) is a weighted average of the v(Y')-sample, but the sample
weights f (Y;) /g (Y;) do not sum up to 1. So, we can consider the empirical version

of the expectation ratio

which is equal to p,, since

E(w(ly)) — [ wd= [ fwar=1.

~(1)

Thus, a reasonable modification of fi; ’ is given by:
L& oY) 1 E F(Y)oe(Y)
Nlwd) N& W)
/11(;2) _ =1 _ 2:1 ) <42)
1 1 1 X f(Ya)
N;wm N;gm)

Note that the estimators ﬂ(l) and ;2(2) proposed in Chapter 2 are particular cases

of the estimators in (4.1) and (4.2) when choosing v as the identity function.

In general, the biasing function, w, is not known (because the underlying densi-
ties, f and g, are unknown), so the estimators in (4.1) and (4.2) are useless. However,
since the Y-sample is available, it is certainly possible to estimate the density ¢ and
then plug it into (4.1) or (4.2). To end up with completely observable versions of
[Lq()l) and [Lg), we also need to estimate the density f. This can be done if we are

able to collect a simple random sample, X, from the real population with density f.

Of course, when having the sample X, it is certainly possible to estimate pi,
based on it. However, when the sample size of X is small, the quality of estimators
based on it may be poor, while estimating p, using Y will have a much smaller
variance (although some bias) due to its much larger sample size. The two resulting

estimators will be presented in the following subsection.

4.2.2 Density-based estimation in Setup 1

Equations (4.1) and (4.2) require the estimation of the densities f and g (or the
estimation of the biasing function, w) to obtain real (observable) estimators for the
population mean. This is possible if one is able to collect information on f and g or

indirect information on w.
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Let us assume that we observe the big data sample of a large size N, Y =
(Y1,...,Yy), from the biased distribution G (density g). In Setup 1, we suppose
that we also observe a simple random sample, X = (X1,..., X},), of a much smaller

sample size n (n << N) of the real population F' (density f).
We will now discuss how we can build estimators for p, in this setup.

The Parzen-Rosenblatt kernel density estimators (Parzen, 1962; Rosenblatt, 1956)
based on the samples X and Y can be used to estimate f(x) and g(z):

fue) = 3 K- X,
=1

N

. 1

gb(@ = NE Kb(x_Yi)v
=1

where Kp(u) = (1/h)K (u/h), being K a kernel function and h and b two suitable
bandwidths. The biasing function, w, can be easily estimated as the ratio of both
estimated densities: wp, (x) = gp(x)/ fr().

Plugging these estimators into (4.1) and (4.2) leads to observable versions of /Zq(,l)

and /19 defined as follows:

N N N
e _ Lgs w0 L Sn () (V)
N Zz; Whb (Y3) N ; o (Y; ) (4.3)
Nl gnm N2
L S . (4.4)
R L& ()
N; Whp (Vi) N; 3 (Y)

In fact ﬂqu’h’b and [L%’h’b depend on the two bandwidths, h and b, so the role of these

smoothing parameters is a relevant issue.

From now on, ""* and i>"* denote the estimators in (4.3) and (4.4) when
considering the mean estimation problem, i.e. v(z) = x. In the particular case of

Lhb and 1M turn out to be much

the mean estimation and h = b, the estimators [
simpler when A — oo and when h — 07 or for very small h. This is stated in the
next lemma, that requires the following assumptions on the kernel function and the

two observed samples.
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Al. K is a continuous function and K (0) > 0.

A2. Timyto0 K (u) = 0.

A3. For any a > 1 we have lim,_, 1+~ K (av)/K(v) = 0.

A4. There is a unique pair (i, jo) such that |Y;; — X;,| = minB, with B =
{Yi—X;|,i=1,...,N,j=1,...,n}.

A5. The support of the kernel K is [—1,1].

Conditions Al and A2 are fulfilled by most of the classical kernels. Condition A3
is satisfied by kernels with exponentially decaying tails (e.g. the Gaussian kernel).
Condition A5 is not compatible with A3 and it is fulfilled by the uniform, the trian-
gular and the Epanechnikov kernel, among many other. Condition A4 is a technical
assumption needed to identify which one of the terms K((Y; — X;)/h) dominates
when h tends to zero and Condition A3 holds.

Lemma 4.2.1. Consider two fized samples, X and Y, with sizes n and N, and equal
smoothing parameters, h = b. Then the extreme undersmoothing and oversmoothing
versions of the estimators in (4.3) and (4.4) is reduced as follows. If Condition A1
holds, then

lim oY =Y, lim p?Mh =Y.
h—o00 h—o00

Under Condition A2, and assuming there are no ties between any Y; and any Xj,
we have

lim b = 0.

h—0+ K
Assuming there are no ties in the union of the X and Y samples, Conditions A2,
A8 and A4 imply

lim ﬂz’h’h =argmin, cry. y min |y — Xj|.
h—0+ yeYL.- N}je{l,...,n}‘ i

Finally, either assuming Condition A3 or A5 and defining by = (log N) /N we have

/:L17bN7bN ~ Y’ /:L27vabN ~ Y‘

The two sample means X and Y are extreme cases in the family of estimators
bt and 2t for h = b. Other type of estimators with those two as extreme cases
is the convex linear combination of X and Y: i3* = AX + (1 — \)Y, for A € [0,1].
Simulation results, not reported in this chapter, showed that the estimator with

minimal mean squared error within this convex linear combinations family exhibits
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a worse performance than the best estimator in the family 12"°, proposed here, since

R o2 o2
MSE(*Y) = (1= A)?(ng — p)* + M (1=

where p, is the biased population mean.

From now on, only the estimator ﬂ%’h’b for Setup 1 and its analogous version for

12Mb will be considered. For the sake of brevity these estimators are

the mean, 4
denoted by fi, and fi, respectively, in the rest of the chapter, except when a more

explicit notation is needed.

4.2.3 General weighted estimator

When the function w is known (unrealistic situation) the estimator u( ) n (4.2) is

a particular case of a general weighted estimator of the form

where 7 : R — R™ is a general weight function. For this estimator, it can be proven
(see Appendix A.1.2) that

MSE(i) ~ [ / () (o(y) - uv)g(y)dy] 2

3 [ 6w -m) - [r@ew - uv>g<x>dx]2g<y>dy w20

Observe that if 7 (y)(v(y
to fulfill this is that 7 (y) =

) — ) = 0,Vy € R, then ¥(71) = 0. But the only way
0 which gives the undefined value £]' = 0/0.

On the other hand, if 7(y)(v(y) — f1n) = A (constant), with A # 0 then

U(ry) = [/)\g ] N/[ / dxrg(y)dy:)\Q. (4.5)

So by picking a small value of A > 0 we obtain ¥(7;) = A\? as close to zero as desired

by just considering 72(y) = N/ (v(y) — ).

(v(y) — po)’dy. (4.6)
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By examining (4.5) and (4.6) we conclude that MSE([M(})) =MSE(i3) ~ U(r3)
tends to zero at the rate 1/N and MSE(i7?) ~ ¥(7y) can be arbitrary small (\?)
by taking A small. In fact, a suitable choice of A (a very small one) will give
AMSE(ﬂg,Q)) = AMSE(pl?) < AMSE(i73) using 72(y) = A/(v(y) — py). Of course
this choice of 75 is not available in practice (since it depends on the true pu,) but we

may get very close to A% using other feasible functions 7(y) which are not far from

T2(y).

4.2.4 Asymptotic results

To obtain the asymptotic mean squared error of ji, we need the following two as-
sumptions:

A6. The density functions f and g are six times differentiable and all their first six
derivatives are bounded. Additionally f is bounded and g is bounded away from
zero in the support of f. The function v is six times differentiable.

A7. The following integrals are finite:
/v(y)Qf(y)dy <00
/v(k) (1) f(y)dy < oo for k=2,4,6
[ = m POy < oo for k=246

The fact that the sample size of the big-but-biased sample is much larger than
the one of the simple random sample is translated into the asymptotic condition
N/n — oc.

Theorem 4.2.1. Under the classical conditions on the bandwiths and the sample
sizes, i.e. h — 0, b — 0, nh — oo, Nb — oo and N/n — oo, if Conditions A1, A6

and A7 are fulfilled, then the asymptotic mean squared error of fi, is

AMSE (ji,) = <01b2 + 2 4 Ch?

Cy Cgh2 Cl()hQ 011h4 012h252
N n Tam TN TN

(4.7)

where the first three terms come from the squared bias and the rest of them from the
variance of the estimator. The constants C1, ..., Cio are defined in the sketch of the
proofs (Subsection 4.5.1).
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Corollary 4.2.1. Under the same conditions in Theorem 4.2.1 and choosing v as the
identity function, since the constants Cs and Cy in (4.7) become zero, the asymptotic

mean squared error of i is

c\? o, Cs C C,
N 2, C2 Ca G5 Co T, 08
AMSE (i) = <Clb + Nb) +— A+ttt g
Croh?  Cyiht N Coh2b?
N2b N N

Consequently, the expression for the optimal bandwidth h is:

- cr \V°
hamse = h0=<4c,:1) n 1/ (4.8)

and the one for the optimal bandwidth b:

1/3
i (%) PN i e <0
bamse = by = 1/3
() N a0

Remark 4.2.1. The dominant part of AMSE (i) in Corollary 4.2.1 is

o\ Gy

AMSEy (i) =  C1b* + — —.
SEq (1) <01 + Nb) +—

Since Cy = Var(X) for v(z) = x, we have MSE(X) = Cy/n < AMSEq (1), which

implies that, in the asymptotic sense of Theorem 4.2.1, ji cannot beat the classical

estimator X .

The simulations results in Section 4.3 below, show a very good performance of
the proposed mean estimator, which contradicts somehow Remark 4.2.1. Moreover,
they are very striking with respect to the theoretical asymptotically optimal band-
widths derived from Corollary 4.2.1. More specifically, Table 4.3 motivates to study
theoretically the asymptotic properties of fi,, under the non-standard conditions that
the two bandwidths, h and b, tend to positive constants when the sample size tends
to infinity. The asymptotic mean squared error for the estimator under these non-
standard conditions is presented in Theorem 4.2.2 below. Three assumptions are
needed:

AS8. The kernel K is bounded.
A9. The density function g is bounded away from zero.
A10. The integral [(v(y) — pv)?g(y)dy is finite.
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Theorem 4.2.2. Let us assume h — hg > 0, b — by > 0, n — oo, N/n — oo, and

Conditions A1 and A8-A10. The asymptotic mean squared error for the estimator

[y in (4.4) is given by

AMSE (juw) = Cf + —2 + 2 +
where the first two constants are

. Ky f(y)
‘= ( Ky * g(y)

x Ky(y — 2) x1/ 2
ci = [ ([ RS - msty - ) sepa:

and C3, CF, C5 and Cg are constants depending on populational functions reported
in the sketch of the proofs (Subsection 4.5.2).

2
(v(y) — Mv)g(y)dy>

Remark 4.2.2. In general, the integral in C7 can be made equal to zero for h € 1
(a suitable subinterval of [0,00)) by choosing an adequate b = A(h), as a function
of h. This relationship still gives us the freedom to choose h € I. In this case
AMSE (fi,) = C3/n + C;/N + C;/(Nn) + C%/N? + C; /N3, where the constant
C5 > 0 can be simplified to:

2
Cs = C3(h,b) = / < W(v(y)—uu)g(y)dy) f(z)dz.

In practice we can choose hg € I and by = A(ho) such that C5(ho,bo) can be mini-
mized. The resulting constant is very close to zero (see Table 4.2 below).

For the mean case and the models used in the simulations in Section 4.3, the con-
stant C3(ho, bo) is much smaller than Cy in Corollary 4.2.1 (see Table 4.2). This im-
plies that the dominant part of AMSE (ﬂ2’h0’b0) in Theorem 4.2.2, AMSE, (/l2’h0’b0),
18

AMSE, (gQ»hOvbO) = C3(ho, bo)/n < AMSE, (gﬂv%v%)

for ho and by in (4.8) and (4.9). This means that the optimal choice for the band-
widths when they are considered tending to some positive constants, (ho,bp), gives
a smaller MSE than the optimal bandwidths, (710,50), tending to zero. This strik-
ing result resembles the one obtained by Delyon € Portier (2016) when estimating
[ p(z)dz using an average of ratios of the form gp(Xi)/fh(Xi) for a known function
®.

Remark 4.2.3. Since Cy = Var(X), using parallel arguments to those in Remark

4.2.2, we have AMSFE; (/lQ’hO’bO) < MSE (Y) This implies that, using the optimal

2,ho,

constant bandwidths hg and by, [ bo peats the classical mean estimator X .
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4.2.5 Further applicability

When working with B3D, it is common to deal with extremely asymmetric or heavy
tailed variables. Logarithmic and other types of transformations are often used when
X is a positive random variable. This situations is covered in this chapter by just
considering v(z) = logz, giving p, = E(log X). This parameter can be estimated
using (4.3) or (4.4) with v(z) = logx.

Data with outliers is a common feature also in big data. In such a situation
the underlying density, f(z), is not directly observed. A large sized sample from a
mixture density g(x) = (1 — «)f(x) + ah(z) is observed instead. Here the density
h(z) denotes the outlier generation density. This contaminated version of f(x) is
covered by Equation (2.1) by just considering w(x) =1 — a + ah(z)/f(x) and that
the support of h(z) is contained in the support of f(x). If, for instance, the outlier
generator density, h(x) is proportional to the underlying density, f(z), in some
region, then the biasing weight function w(z) will be constant in that region. This
means that the bias is only present in the region where outliers are expected. In
general, if « is very small, the bias is small too, although it heavily depends on the
values x for which h(x) is very different from f(z). If one has qualitative information
about the shape of the outlier generator density, h(x), it could be incorporated in
the estimation process. Otherwise, the estimators in (4.3) and (4.4) can be used to

estimate any moment of X, or the expected value of any transformation of interest.

4.3 Simulations

The performance of the mean estimator, ji, proposed in Section 4.2, is studied via
simulation. We generated 10 pairs of datasets, each with sample size n = 103 in

the case of the sample X and sample size N = 10° for the sample Y.

Let us consider the population presented in Subsection 3.3. We suppose that the
sample X is generated from the density f defined in (3.7). Considering the class
of weight functions described in (3.8), we simulate the sample Y from the biased
density characterized in (3.9) and (3.10).

Different combinations of k and ¢ are considered in this simulation study (see
Figure 4.1), providing very biased situations (kK = 1.5 and ¢ = 0.1) and others in
which bias is almost imperceptible (k = 0.1 and € = 1.8).
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Figure 4.1: Densities f (dashed line) and g (dotted line) involved in the simulated models
for different values of k and e for the biasing function, w (solid line).

Table 4.1 shows the good performance of i when compared with the classical

sample means. As expected, in the most biased situations, it is preferable to use the

mean of the simple random sample X rather than the Y sample mean; while in the

opposite case, the mean of the biased sample works better due to the larger sample

size. Anyhow, i outperforms both estimators even in the extreme cases. It is also

observed how the optimal bandwidths obtained by simulation, Ay and bep:, widely

differ from the asymptotic optimal ones, ho and by derived from Theorem 4.2.1. The

former are not only larger, but they also seem to contradict the classical condition
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Table 4.1: Comparison of the M SE of X, Y and fi2"ert:bort for different values of k and e
(n =103, N = 10, trials=10%). hg and by refer to the asymptotic optimal bandwidths, in
expressions (4.8) and (4.9), and hpy and by to the optimal ones obtained by simulation.

ke MSEX) MSEY) MSE(i) hopt bopr ho  bo

1.5 01 27-100% 82-1072 12-1076 422 0.32 0.19 0.012
1.5 1.5 27-100% 38-1073 2.7-1077 1252 1.05 0.20 0.017
1 1.5 27-100% 1.6-107% 2.7-1077 1441 124 0.20 0.017
05 1.5 27-100* 4.0-107* 2.9-1077 15.16 1.68 0.20 0.012
01 1.5 27-100* 1.6-107®> 3.0-1077 16.00 3.54 0.21 0.010
01 1.8 27-107* 81-1077 3.1-1077 16.19 7.48 0.21 0.009

Table 4.2: Comparison of the value of constant Cy with the values of constant C3 (h,b) for
h = hope and b = by, the optimal bandwidths obtained by simulation (n = 103, N = 106,
trials=103).

k g MSE (y) 04 hopt bopt Cék (hopta bopt)

1.5 0.1 27-100% 027 422 032 23-10°6
1.5 1.5 2.7-100% 027 1252 1.05 1.4-10°%
1 1.5 2.7-107* 0.27 1441 124 1.0-10°8
05 1.5 27-107* 027 1516 1.68 1.4-10°8
01 1.5 27-100* 0.27 16.00 3.54 3.7-1078
01 1.8 27-107* 027 16.19 7.48 1.6-1077

that they tend to zero when the sample sizes tend to infinity. Table 4.2 contains the

constant Cy and C5 mentioned in Remark 4.2.2.

We explore the behavior of our method for smaller sample sizes. For the par-
ticular choice of k = 1.5, ¢ = 1.5, n = 10% and N = 10%, Figure 4.2 represents the
MSE of our estimator as a function of the smoothing parameters h and b. The
color code on the right side of this figure refers to the M SE values of the estimator
and indicates whether its value is very small (purple) or very high (yellow). The
MSE of the classical estimators are also depicted in the figure, showing the good
performance of our proposed estimator, in comparison with them, for a very wide
range of values for the smoothing parameter h and a still wide range in the case of
b. This figure also provides some approximation of the optimal values for the two
bandwidths, those that minimize the M SE (in red). Figure 4.3 shows similar infor-
mation for k = 1, ¢ = 1.5 and the samples sizes, n = 10% and N = 10, considered

in the simulation study.
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Figure 4.2: Comparison of the MSE of the proposed estimator as a function of h and
b with the MSE of X (solid black line) and the MSE of Y (dashed gray line) for the
particular choice of k = 1.5 and € = 1.5, with n = 10?2 and N = 10%. The red dot represents
the minimal value of the M SE.
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Figure 4.3: Comparison of the MSE of the proposed estimator as a function of h and
b with the MSE of X (solid black line) and the MSE of Y (dashed gray line) for the
particular choice of k = 1 and ¢ = 1.5, with n = 102 and N = 10%. The red dot represents
the minimal value of the M SE.
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4.3.1 Asymptotically-based simulations

To further study the properties of the proposed estimator, fi, we carried out another
simulation study. In order to explore the optimal values of the bandwidths obtained
by simulation, we focus on the particular setting with kK = 1 and ¢ = 1.5 and we an-
alyze how the optimal bandwidths behave when progressively increasing the sample

sizes.

The results in Table 4.3 show how the optimal values obtained by simulation
do not tend to zero, but tend to constant values. This motivates studying the
asymptotic behavior of the estimator under the non-standard conditions that the
two bandwidths (h and b) tend to positive constants when n tends to infinity (see
Theorem 4.2.2 above). Anyhow, it is worth mentioning that M SE(f1) is a very flat
function of (h,b) within a large region that contains the optimal bandwidths (see
Figures 4.2 and 4.3). Thus the proposed estimator is rather stable for a wide range

of values for the two smoothing parameters.

Table 4.3: Comparison of the MSE of X, Y and fi>"ert:bort for different sample sizes and
the choice of k = 1 and ¢ = 1.5. hgpt and by refer to the optimal values obtained by
simulation.

n N MSE(X) MSE(Y) MSE(L) hopt  bopt
10 100 29-1072 4.4-107% 25-107% 204 1.05
20 400 1.6-1072 22-10% 6.0-107%* 3.07 1.15
50 2,500 56-107% 1.7-1073 99-107® 3.890 1.18

100 10,000 29-1073% 1.7-1073 26-10° 5.55 1.22
200 40,000 1.5-107% 1.7-1072 7.0-107% 1092 1.24
500 250,000 5.8-107* 1.6-107% 1.0-107% 1528 1.24
1000 1,000,000 2.7-107* 1.6-1073 2.7-1077 14.41 1.24

4.4 Bootstrap algorithm

Minimizing in the bandwidths h and b some estimator of the M SFE is a reasonable
way to obtain an automatic bandwidth selection method. To do this, the following
bootstrap algorithm for M SE estimation is proposed:

1. Based on the original X and Y samples, the estimated densities fhm.l and g,
where h,; and by; denote the pilot bandwidths obtained from the Seather-
Jones method, are considered as the true population densities in the bootstrap

world.
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2. Bootstrap resamples, X* = (X},..., X)) and Y* = (Y}",...,Yy), of sizes n
and N respectively, are obtained from the estimated densities fp , and g,
as follows:

(a) X7 =} + hpiy - U;, where * = (¢f,...,4;) is a simple random sample
obtained from the empirical distribution computed with the values X =
(X1,...,X,) and U = (Uy,...,U,), with U; simulated from the density
K (a N(0,1) when considering a Gaussian kernel), for i =1,... n.

(b) Y;* =0} + by - Vi, where n* = (nf,...,n%) is a simple random sample
obtained from the empirical distribution computed with the values Y =
(Y1,...,Yy) and V = (V4,...,Vy), with V; simulated from the density
K (a N(0,1) when considering a Gaussian kernel), for i =1,..., N.

2,h,b,*

3. The estimator [ is computed using the resamples X* and Y* and con-

sidering a very wide range of values for the smoothing parameters h and b.

4. Steps 2 and 3 are repeated a large number of times, B, in order to obtain an

approximation of the bootstrap mean squared error (M SE*) of the estimator,
1 2
* _ ~2.hbx X7
MSE (h,b)_EZ@j —X) .
j=1

5. The bandwidths h* and b* that minimize the function M SE*(h,b) are consid-

ered as bootstrap bandwidth selectors.

Since the M SE* is not a robust measure, the presence of outliers could affect its
value. In that case, other error measures could be considered, such as the bootstrap
trimmed mean squared error (T M SE*), i.e. the trimmed mean to a certain propor-
tion « (the mean excluding the proportion « of the highest values) of the squared

errors; or the bootstrap median of the squared errors:
* . ~2,h,b,* <\ 2
MeSE*(h,b) = Median (uj’ o X) .

4.4.1 Simulations

The performance of the bootstrap algorithm is studied via simulation. We generated
100 pairs of datasets, each with sample size n = 103 in the case of the sample X and
sample size N = 106 for the sample Y. For each pair of generated samples, an itera-
tive search of the bootstrap selectors is performed. This search consists of applying

the bootstrap algorithm 3 times using 100 resamples X* and 100 resamples Y* each
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time. In each search, a grid of size 5 is used for each bandwidth (25 combinations
of bandwidths), progressively reducing the area of this grid in each iteration of the
method.

The choice of the pilot bandwidths has some relevance. In this case, we have
used the bandwidths obtained by the Seather-Jones method, sometimes multiplied
by a factor between 0.5 and 2.

Table 4.4: Comparison of the MSE of X, Y and ji>"*" for different values of k and
(n =103, N = 10°, trials=100, B = 100). Median(h*) and Median(b*) refer to the mean
of the bandwidths obtained using the bootstrap algorithm.

ke MSEX) MSEY) MSE(>"*) Median(h*) Median(b*)

1.5 0.1 290-107* 817-1072 1.88-10~* 17.79 0.32
1.5 1.5 290-107* 381-1073 2.89.10~* 2.11-103 1.05
1 1.5 290-10* 1.64-1073 2.91-107* 3.42 1.24
0.5 1.5 290-107* 3.97-10~* 2.23.107* 3.14 - 103 1.68
0.1 1.5 290-107* 1.61-10"° 1.28-107* 67.47 8.39
0.1 1.8 290-107* 7.92-1077 1.19-107* 28.80 23.64

Table 4.4 contains the true values of the M SFE of the classical estimators, since
they can be computed explicitely, the median of the bootstrap bandwidths, A* and
b*, obtained from the algorithm presented above, and the MSE of the proposed
mean estimator. The results in this table show how, in the first and the fourth set-
ting considered, the more biased setting and other in which bias is quite significant,
the estimator obtained with the bootstrap bandwidths outperforms the two classical
sample means, X and Y. In the last two cases (less biased settings), our estimator
for the mean has a slightly worse behavior than Y, which is logical since the bias in
these situations is practically imperceptible and the size of sample Y is very large
(N = 10°). In the second and the third setting, it works better than Y but it has
a behavior quite similar to X. Increasing the number of resamples and trials would
give a more precise picture of the real difference in M SE between the new estimator
and the classical ones. However, this was discarded at this point given the high

computational cost (see Table 4.5).

In conclusion, in situations where we confirm the existence of bias, we will use the
bootstrap algorithm to obtain the bandwidth selectors that provide a good behavior
of our estimator. On the contrary, when we reject the presence of bias, we will

directly use the estimator based on the sample Y.
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Table 4.5: Comparison of CPU times (minutes) of the iterative bootstrap method applied
in a grid of smoothing parameters for different combinations in the number of trials and
resamples (B), considering a single combination of ¢ and k with n = 103 and N = 106.

B

Trials 1 50 100
1 0.55 38.62 71.16
50 39.50 1583.91 3033.50
100 72.12 2974.25 5413.41

4.5 Sketch of the proofs

4.5.1 Sketch of the proof of Theorem 4.2.1

A set of lemmas needed to proof Theorem 4.2.1 is listed below. Their detailed proofs
can be found in Appendix A.1. Along this subsection, Conditions Al, A6 and A7

are assumed for Lemmas 4.5.1-4.5.10.

Lemma 4.5.1. The difference i, — i1, can be expressed as follows

N N2
o A(1—B) ~
ﬂv—uU:A+A<1—B>+T:A, (4.10)
where R
~ 1 n(Y:)
A=— . v(Y;) — o 4.11
N2 i (0 ) (4.11)
and N
~ 1 n(Y)
B=— — . 4.12
N; 95(Yi) (12

The term in (4.11) can be splitted into different terms, A= 4 —1—22—113—;1\44—;1\5,

where
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1o fu(Y) [ a(Y3) — 9(¥i) )
Nz::g (V) ( 9(Y3) ) W) = i)

Since the terms 121\4 and 25 have some factors of quadratic nature inside the sum

(e (ful¥i) — FOD)(@(¥5) — g(¥0)) and (3(Y:) — g(¥:))?) they are negligible with
respect to other terms. Consequently: A ~ A; + A2 — A3.

Lemma 4.5.2. The expectation and variance of A can be approzimated by
E (2) ~ E (ﬁl) +E (&) —E (23) , (4.13)
Var <X) ~ Var (21) + Var (EQ) +Var (23)
+ 2Cov (El,ﬁz) —2Cow <211, /T;;) — 200w (22,23) . (4.14)

The proof of Theorem 4.2.1 proceeds by analyzing the expectations and variances

involved.

Lemma 4.5.3. The expectation ofg s

—~ b2 b4
E( ) ~ D1m+D2b2+D3b4 DQN—DgN
+  Dyh* + Dsh* + O(b%) + O(hY), (4.15)
where
Dy = KO [~
K
Dy = —M;)/’Y(y) "(y)dy,
K
D3 = —“42(4 )/v(y)g(‘*)(y)dy,
K
Dy = MQ(Q )/v”(y)f(y)dy,
K
D5 = M [L00) f)ay,
with
f)
= v — [hy)-
v(y) g(y)( (y) — o)
Lemma 4.5.4. The variance of A\l 18
~ _ D6
Var <A1> = N

where

Dg 3—/5@)@7%
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with

Lemma 4.5.5. The variance of A, is

. h? 4 h* h
Var (Ag) D7 +D8N —l—DgN h+D10;+D11;+D12N+D13m
+ D14]}\;2 +D15]}\;3 +D16}L6+D17}Ji+0<}5)+0<;\;2>, (4.16)
where
D7 = B(UQ) - M121>
Ds = —D¢—B(”)+ 1,
Dy = wl®?) [ 0w)ay
D10 = /_,LQ(K) [B(’U . UH) — ,UUB(U”)] R
2
Dy = NZ(f) [B(?}H2> — B( //)2] /~L41(§{) {B( 1)(4)) _MUB(U(4)):|7
B m (K)2 f”(y 2 "
Do = PR [ EO ) — - B0
2 1
D = 120 [ L0 )
Du = k) | [ 000" W)y + Bl ") - B
2 (4)
Dy5 = ”4(22{ )/fg(y(;y) (v(y) — po) dy,
Dig = N2(K;Z4(K) [B(v” ) v(4)) _ B(v//)B(v(4))]
+ ,ugélof) [B(v @y — B(v(6))}
" (4)
Dy = L0 ! [ UL )~ ay - B(v”>B<v<4>>] ,

where the operator B is defined by

and
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Lemma 4.5.6. The variance of 23 18

Var (43) = D L 0”4+ Dl Dyt 4 Dyl 1 Dy
ar\Az| = 1877 19757 2057 2172, 227372 23772

LY S SN (4 R R TR T
N3y T TPONB N NZ)

where

[Pz 2 [ ]
Do = 2[uo(K?) + KO)] [alwiy
D = =8 [ Bly)dy = ~8Dus
Doz = pa(K)K(0) [/ 5(y)g”(y)dy+/’V(y)v”(y)dy

- ( / Y(y)g" (y)dy + / 7”(y)g(y)dy) ( / 'y(y)dyﬂ

u2(2KQ) [/ 5(y)g"(y)dy+/V(yw(y)d‘y} ’

Dy = K(0)? [ / 5(y>dy( / v(y)dy)zl,

Dy = =2 [mo(K?) +2K0)] [ aly)dy,

with
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Lemma 4.5.7. The covariance between ;4\1 and A\g 18

Cov (21,22) - D27};\i +D28];: +0 (?5) : (4.18)
where
e O
Do = MU0 ) 10 )y

Lemma 4.5.8. The covariance between El and 23 18

cov(ﬁ /T) — Dyl ipyt ipyt p,”
LAz ) = Do 8072, 81372 8277
b b2 b
D 41
+ 33N—|—O< >+O<N> (4.19)

where
D = [ By =Dis,
D = K(O) [aly)dy,
D3 = —2/5 y)dy = —2D;s,
D = 228 [ s+ [+ 0100 - m].

Dy i Mﬁ“[/a@w@@my+/w@@ﬁ@xww—uw@]

Lemma 4.5.9. The covariance between Eg and A\g 18

PN h2 h2 b2 h4 h4 b2 hQ b4
Cov (AQ,Ag) _D34N+D3ST+D36N + D37—— N + D3g—— N
h? h? ht h* h2p? RS
D D D D D
+ Dsoggag + Paogg + Puggy + Daagm + Pz +O<N>

h?b0 htbt h® h?b? h*b?
+ O( N >+O< ~ )+O(N2b>+O<N2>+O<N2>, (4.20)
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where

b 05D [

Da = L o)) Wy + [ 7600000 - iy
- / v"( ) )y / +(y) <>dy]

D3 = (4)

Dy = “Q(Kig ’[ / o) V)" Wy + [ SO W) )y
- 2 / v () f(y)dy / W)y (y)dy| ,

Das = PR L) gD man+ [ 160000 - wdy
~ 2 / V()1 (9)dy / 19D w)dy| .

Dy = MUK [ —/v”(y)f(y)dy/v(y)dy],

Do = —pa(K / 0(y) " (y)dy = —2Ds,

Dy = [/p )dy — /(4)(y)f(y)dy/v(y)dy]7

Diy = / )19 (y)dy = —2Dss,

Dys = —D35.

Lemma 4.5.10. The variance ofg is

~ 1 1 1 1 1 1 1
1% (A):Df Dg—— — 4Dg— + D D D D
ar Tn TN, 62 T 26 T Do T Paay T P
1 h? ht h2 ht h?
—— —92D39—— — 2Dy~ + Dig— + D11— + Dio—
N3 39N ENGT) + 0 + D n + 12757
b h2p? h4v? h2b4 h h2
D ——2D —2D37—— — 2D33—— + Dy3— + Dyy—
+ 45 3N 3TN 38 + 133 + o
hS

b h? ht h2b? RS
+ D15N + D23N2 +4D27m +4D28m +2D35——- Nzt @) < ~ >

bo hib? Rt b? RS
v o) ro(5) +o(mm) +o(x2) +o (3m)

+ Doy
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being

Dy = QMO(KQ)/a(y)d%

DY [ [ st wias 1 [A0war)
s [ w2 [ v(y)v"(y)g"(y)dy} |

The proof of Theorem 4.2.1 is a consequence of Lemmas from 4.5.3 to 4.5.10,
Considering Cl = DQ, CQ = Dl, Cg = D4, C4 = l)77 05 = Dg, CG = _4D67
07 = Dg, Cg = D44, Cg = D107 010 = —2D39, 011 = D12 and 012 = —2D35.
4.5.2 Sketch of the proof of Theorem 4.2.2

The proof of Theorem 4.2.2 follows parallel lines to that of Theorem 4.2.1. The
proofs of the following lemmas are available in Appendix A.1. Along this subsec-
tion, Conditions Al and A8-A10 are assumed for Lemmas 4.5.11-4.5.18.

Using Lemma 4.5.1, in this case A can be expressed as:

A= A%+ A5 — A% — A%+ AL,

where
i = ;i(g{z ) — ).
A = ;ém&{‘b ifgl(;";)(mw(m o
P ]té(fh() <Kh*8§b*>>g<)(é)> (1 )0 (o
e S ()

being EZ and A\’g negligible terms. Thus we will consider Ar = A\”f + ;1\3 — A\:’g

Lemma 4.5.11. The expectation of A* s

~ 1
B(AY) = Di+Dj—. (4.21)
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o6

where
Dy = /7*(y)g(y)dy,
Dy = Di‘—KéO)/w*( )9(y)dy
with
) = G ) - )
c0) = e D ) - w)

Lemma 4.5.12. The variance of E{ 18

LW %

Var (2;) = —

where

with
(Kn* f)(y)*
(Kb * 9)(y)?

a*(y) =
Lemma 4.5.13. The variance of ;{; is
~ 1 1
1% (A*) — DI 4 Di—.
ar | Ag 4 + 5Nn

where

(4.22)

(4.23)

pi = [ ([ B2 ) sty - [+ Gotan) e

9)(
. D) *
D; = / (DD 13) — oty — [ a* Wty - D5

Lemma 4.5.14. The variance of A\g i

~ 1 1 1
Var<A§> = Dir + Diss + Diny:

where

(4.24)
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o7

\V)

pr = 2K [ [ [#we @it - gtz

~—

b
- [ Wy so*(y)g(y)dy]

= [ [ @R - Dawatiits + 3 ([ weway)
- /a*(y)g(y)dy+/so*(y)2((Kb>2*g)(y)g(y)dy

+ [ [e e @i - 2wy

- 3/ [/ " (y) Kp(y — 2)g(y)dy — /7*(y)g(y)dy]29(z)dz,

2

Dy = K£3)2 [/ 0" (y)*g(y)dy — </ @*(y)g(y)dy>2]

+ 2Kb(0) [— / / " (Y)¢* (2) Kby — 2)g(y)g(2)dydz
- 2/7*(y)g(y)dy/so*(y)g(y)dy— /5*(y)g(y)dy]
+ // —2)9(y)g(2)dydz — 4 (/ v*(y)g(y)dy>2

+ 2 @ gtay - / & () = 9) () dy
- / / P ()" () Kby — 2)g(y)g(2)dydz
2
w2 [ | [ewm - s - [ e o
Lemma 4.5.15. The covariance between E’{ and j; s
Cov (2’{,2;) = 0.
Lemma 4.5.16. The covariance between 2’1‘ and j* 18

Cov (21;,2;;) = D; N+DTON2

(4.25)
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where

Dy = //7*(2)90*(3/)&(3/Z)g(y)g(Z)dde (/7*(y)g(y)dy)2,

o= B2 [rwan - ([ ewswan) ([ waa)]
- / a”(y)g(y)dy + 2 ( / ’Y*(y)g(y)dy>2

- //7*(Z)<P*(y)Kb(y—Z)g(y)g(Z)dydz.

Lemma 4.5.17. The covariance between f/l\g and A\;ﬁ) 18

Cov (ﬁ;,g};) = 0.

Lemma 4.5.18. The variance ofg s

VCL'I" (A) = D4E+D11N+D5N7n+D12W+D8m,
where
Tl = D§+D§_2D57
12 = D7 —2Dy,.

The proof of Theorem 4.2.2 is a consequence of Lemmas from 4.5.11 to 4.5.18,
considering C} := D2, C := Dj, C3 :=2Di D} + D3y, Cf := D%, C: := D3* + D5,
and Cg := Dg.
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Chapter 5

Nonparametric Estimation in
Setup 2

5.1 Introduction

In this chapter, the nonparametric estimation of the mean of a transformation of a
continuous population in Setup 2 is considered. Following an analogous procedure
to that presented in Chapter 2 for the known w case and in Chapter 4 for Setup 1,
we present in Section 5.2 the density-based nonparametric estimator proposed for
bias correction in Setup 2 and some asymptotic results. In Section 5.3, a simulation

study is included.

5.2 Estimation for B3D in Setup 2

Let us consider the continuous population and the B3D context presented in Section
2.2.3 in Chapter 2.

Following parallel steps to those of that chapter, it is possible to define analogous

estimators to 4V and (), but for the general case of the mean of a transformation.

Using (2.7), we can observe that:

“(mm) = S [

- [awir >g”dy—0/ <y>f<>dy—3uv (5.1)

Equation (5.1) motivates the definition of a general estimator in Setup 2 for the
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known wsy case:

s T w1 g()eY) 11 &
W Nl T NE mm v 62

(1)

Since fiy’ is the sample mean of the simple random sample T; = v(Y;) /w1 (Y;), i =

1,..., N, its properties as a good estimator of u, are straightforward:
~ 1
B (7)) = =,
c

2
=) - 97
var (i) = 215
and
A
VN 2 < 5 N(0,1),

ar

where 0% = [v(z)?f(z)%g(z) " tdx — p2.

Since the sample weights g (Y;) /m (Y;) do not sum up to 1, a reasonable modi-

= (1)

fication of fiy, ’ is the following convex linear combination version:

1 X u(%) 1 & g (Yi)v(Y))

~ N Wy (YZ) N 4 Y;)

~(2) = i=1 = i=1

. ZN 1 S g(Y3) )
Ni:1 ws (Y;) NZ,:1 m (V)

The estimator in (5.3) can also be regarded as an empirical analogue of the expec-

E(25)
2 (tvy)

which is equal to p,, by just recalling equation (5.1) and

E(wzlm> = Jmgrwn=[swa=_

Note that the estimators ﬁ(l) and ﬁ(z) proposed in Chapter 2 are particular cases

tation ratio

of the estimators in (5.2) and (5.3) when considering v the identity function.

In general, the estimators in (5.2) and (5.3) are useless when the biasing func-
tion, ws, is unknown. However, we can obtain completely observable versions of

these estimators by estimating the densities involved, g and m.
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The Parzen-Rosenblatt kernel density estimators (Parzen, 1962; Rosenblatt, 1956)

based on the samples Y and Z can be used to estimate g(x) and m(x):

LN

g (x) = NZKb(I‘*Yi)
i=1

i (z) = %ZKh(w_Zi)
=1

where Kp(u) = (1/h)K (u/h), being K a kernel function and h and b two band-
widths. The biasing function, we, can be easily estimated as the ratio of both
estimated densities: Wy pp(z) = p(x)/gp(2).

Plugging these estimators into (5.2) and (5.3) leads to observable versions of ﬁ&”

=(2),

and fiy
N N .
ALhb 1 Z ;) 1 Z v(Y3)gp (Y3)
U N S, V) N ()
1% v(Y;) 1ZN: (Y)gb(YZ‘)
— — > v
oy Vi Pane (V) - N i (Yi)
2 — = - T . (5.4)

From now on, only the estimator fa%’h’b for Setup 2 and its analogous version for

the mean, p2Mt

, will be considered. For the sake of brevity these estimators are
denoted by ﬁy and /i, respectively, in the rest of the chapter, except when a more

explicit notation is needed.

5.2.1 Asymptotic results

To obtain the asymptotic mean squared error of ﬁv in Setup 2 we need the following
two assumptions:

Al1l. The density functions f, g and m are six times differentiable and all their first
six derivatives are bounded. Additionally f is bounded and g and m are bounded

away from zero.
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A12. The following integrals are finite:
/Q(y)zm(y)dy <00
/Q(k)(y)2m(y)dy <oo for k=2,4,6
W)~ m PP wldy < o for k=246

with
Qy) = (v(y) — pw)-

Theorem 5.2.1. Under the classical conditions on the bandwiths and the sample
sizes, i.e. h — 0, b — 0, nh — 0o, Nb — oo and N/n — oo, if Conditions A1, A11

and A12 are fulfilled, then the asymptotic mean squared error of fzv ]

2 [ ] [ ] [ ] [ ] [ ]
AMSE (i) = (01'62 + C§h2> + % TN A

Nb Nn N N2 Nnh
Cg N C§h? N Ceh? N Cpoh? N C ht N Co-b? N CP,h2b?

+ N2 n N N2b N N N 7

where the first three terms come from the squared bias and the rest of them from the
variance of the estimator. The constants C3,...,C}s are defined in the sketch of the
proofs (Subsection 5.5.1).

The simulations results in Section 5.3 below, show a very good performance of
the proposed mean estimator in Setup 2. However, Table 5.1 motivates to study the-
oretically the asymptotic properties of ,ﬁv under the non-standard conditions that
the two bandwidths, h and b, tend to positive constants when the sample size tends

to infinity.

The asymptotic mean squared error for the estimator under these non-standard
conditions is presented in Theorem 5.2.2 below. Three assumptions are needed.
A13. The kernel K is bounded.

A14. The density function m is bounded away from zero.
A15. The integral [(v(y) — py)?g(y)dy is finite.

Theorem 5.2.2. Let us assume h — hg > 0, b — by > 0, n — oo, N/n — oo, and

Conditions A1 and A13-A15. The asymptotic mean squared error for the estimator
fi in (5.4) is given by

3, G5, Cp G5

N Nn = NZ2

cye
N3’

AMSE (") = 1 + =2 + +
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where the first two constants are

1 [ K
ci = ( b*9(y)

2
R o)~ datdn)

v 1 Ky * g(y)*(v(y) — po)®
C 2 ( Ky xm(y)*

2
Kn(y — 2)g(y)dy — CT'W) m(z)dz

and C5°, C3*, C2* and C§* are defined in the sketch of the proofs (Subsection 5.5.2)

5.3 Simulations

The performance of the mean estimator, /i, proposed in Section 5.2, is studied via

simulation.

We consider again the population presented in Subsection 3.3 and the class of
weight functions described in (3.8). We simulate the sample Y from the biased
density g characterized in (3.9) and (3.10) and the sample Z from the twice biased
density m defined in (3.11) and (3.12).

We generated 103 pairs of datasets, each with sample size n = 102 in the case of
the sample Z and sample size N = 10° for the sample Y. Different combinations of

k and e are considered (see Figure 5.1).

Table 5.1: Comparison of the MSE of Z,Y and ﬁ for different values of k and & (n = 103,
N = 10°, trials=10%). hpt and b,y refer to the optimal bandwidths obtained by simulation.

ke MSE(Z) MSE®Y) MSE(1) hopt bopt

1.5 01 1.6-107' 81-1072 1.8-107* 049 12.33
1.5 1.5 1.6-107%2 3.8-1073% 14-10"° 1.19 15.28
1 15 72-100% 1.6-107% 8.0-10% 1.36 16.86
05 15 19-100% 39-107* 28-107% 1.78 30.18
01 15 34-107* 15-107° 4.4-1077 3.66 33.81
0.1 1.8 29-107* 82-1077 3.1-1077 830 44.04

Table 5.1 shows the good performance of ﬁ when compared with the classical
sample means. As expected, it is preferable to use the mean of the biased sample Y
due to the larger sample size, rather than the Z sample mean since it is twice biased.
Anyhow, ﬁ outperforms Y in all the situations. It is also observed how the optimal
bandwidths obtained by simulation, A,y and by, seem to contradict the classical

condition considered in Theorem 5.2.1 that they tend to zero when the sample sizes
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tend to infinity.
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Figure 5.1: Densities g (dotted black line) and m (dashed gray line) involved in the simu-
lated models for different values of k and e in Setup 2 for the biasing function, w (solid gray

line).

Figure 5.2 shows how, by choosing a suitable h, our proposed estimator performs

very well for a very wide range of values for the smoothing parameter b.



5.3. Simulations 65

500
50
5 -

o
05 7
0.05
0.005

0.005

0.1
0.01
o
0.001
1e-04
1e-05
T T 1
0.05 0.5 5 50 500

h h

Figure 5.2: Comparison of the M SFE of the proposed estimator as a function of h and b
with the MSE of Z (solid black line) and the M SE of Y (dashed gray line) for the particular
choice of k =1 and € = 1.5, with n = 102 and N = 10°. The red dot represents the minimal
value of the MSE.

5.3.1 Asymptotically-based simulations

To further study the properties of the proposed estimator, ﬁ, we carried out another
simulation study. In order to explore the optimal values of the bandwidths obtained
by simulation, we analyze how the optimal bandwidths behave when progressively
increasing the sample sizes in two different settings, k = 1.5 and e = 0.1 and k=1
and € = 1.5.

In the case of the smoothing parameter h, the results in Tables 5.2 and 5.3 show
that the optimal values obtained by simulation, Ay, do not tend to zero, but tend

to constant values in both settings considered.

The values obtained in Tables 5.2 and 5.3 for the optimal b, by, apart from
taking enormously high values, do not seem to tend to constant values. As Fig-
ure 5.2 showed, considering the optimal value for bandwidth h, the M SFE of the
proposed estimator is, from a certain value, a very flat function of the smoothing
parameter b. Thus the proposed estimator is rather stable for a wide range of values
for bandwidth b.

0.01

0.001

1e-04

1e-05
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Figure 5.3 shows how, from a certain value of b, the value of the M SE hardly

/
opt»

the value of the MSE, MSEy " is just one millionth greater than the value of the

MSFE in the optimal, M SE (/5,), we observe that this new bf)pt, with a much smaller

changes. Setting the value of the optimal h and taking a bandwidth b, b, ,, in which

value and giving approximately the same error, seems to tend to a constant value

in both settings.

Table 5.2: Comparison of the MSE of Z, Y and ﬁhopf’bopf for different sample sizes and the
choice of k = 1.5 and € = 0.1 in Setup 2. hop: and by refer to the optimal values obtained
by simulation. b, refers to the smallest value of the bandwidth b in which the value of the
MSE, MSEb;Pt, is less than or equal to one thousandth greater than in the optimal by,
considering the same hqp;.

n N MSE(Z) MSE(Y) MSE(i) hop byt MSEy by
10 100 0.163780 0.082726 2.5-1072 0.58 10% 2.5.-1072 11.67
20 400 0.162581 0.081857 1.2-1072 0.54 10¥ 1.2-1072 16.56

50 2,500 0.159506 0.081642 4.3-1072 0.51 10° 4.3-1072 21.83
100 10,000 0.159352 0.081691 2.2-1073 0.50 10'' 2.2.1073 24.38
200 40,000 0.158226 0.081697 9.7-10~* 0.49 10 9.7-107* 25.29
500 250,000 0.158147 0.081684 4.2-107%* 0.49 10*6 42.107* 26.24
103 106 0.157936 0.081661 1.8-10~* 0.49 10 1.8-107* 21.04

Table 5.3: Comparison of the MSE of Z, Y and ﬁhﬂpf’bom for different sample sizes and
the choice of k = 1 and € = 1.5 in Setup 2. hope and b,y refer to the optimal values obtained
by simulation. b, refers to the smallest value of the bandwidth b in which the value of the
MSE, MS’Eb;pt, is less than or equal to one thousandth greater than in the optimal by,
considering the same hqp;.

n N MSE(Z) MSE(Y) MSE(L) Thopt bopt MSEy = b

opt
10 100 35-1072 45-107% 4.0-1073 1.91 10 4.0-1073 26.24
20 400 22-1072 24-1073 1.2-107% 1.54 10%2 1.2-1073 32.73

50 2,500 1.3-107%2 1.7-107% 2.8-107% 1.44 10" 28-107* 40.83
100 10,000 1.0-1072 1.7-107® 1.1-107* 1.40 1030 1.1-107* 40.83
200 40,000 85-107% 1.7-1073 4.7-107° 1.38 10" 4.7-107° 46.45
500 250,000 7.6-107% 1.6-107% 1.8-107° 1.38 10%® 1.8-107° 79.24
103 106 72-107% 16-107% 80-10% 1.36 107 8.0-107% 29.31

This motivates studying the asymptotic behavior of the estimator under the non-
standard conditions that the two bandwidths (h and b) tend to positive constants

when n tends to infinity (see Theorem 5.2.2 above).
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Figure 5.3: Comparison of the M SE of the proposed estimator as a function of b for the
choice K = 1.5 and ¢ = 0.1 and different samples sizes of n and N = n?, using a suitable h
for each case.

5.4 Bootstrap algorithm

Since the sample X is not available in Setup 2, in this section we proposed a new

version of the bootstrap algorithm presented for Setup 1 (Subsection 4.4).

Considering relation (2.6) we can express:

m(x)/g(x) _ m(z)- f(x)

o@/f@) g2
for some constant c, i.e. )
R /)
e % o@)”
lz/f(x)da::/c- m(m)da::c /m(x)dx’
then ,

The bootstrap method proceeds as follows:
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1. Based on the original Z and Y samples, the estimated densities my,,, and gp,,;,
where hy;; and b,; denote suitable pilot bandwidths, are considered as the true

population densities in the bootstrap world.

2. The value of ¢ is estimated using 77, and g,

. 1
b= —F——,

f gbpil (:E)2 da
mh’pil (1‘)

which allows to obtain estimations of the density f:

pil *

by (2)?
M, (T)

fh ilsbpi (x) =
pilOpil f gbml (.%')2
———dx

and the bootstrap population mean:
M* = /:L‘ : fhpil)bpil ($)dx

3. Bootstrap resamples, Z* = (Z7,...,Z;) and Y* = (Y",...,Yy), of sizes n
and N respectively, are obtained from the estimated densities 7, and gs,,
as follows:

(a) Z =} + hpir - U;, where ©* = (¢7,...,17) is a simple random sample
obtained from the empirical distribution computed with the values Z =
(Z1,...,%Zy) and U = (Uy,...,U,), with U; simulated from the density
K (a N(0,1) when considering a Gaussian kernel), for i =1,...,n.

(b) Y;* =0} + by - Vi, where n* = (nf,...,ny) is a simple random sample
obtained from the empirical distribution computed with the values Y =
(Y1,...,Yy) and V = (V4,..., V), with V; simulated from the density
K (a N(0,1) when considering a Gaussian kernel), for i =1,..., N.

4. The estimator 2"b*

is computed using the resamples Z* and Y* and consid-

ering a very wide range of values for the smoothing parameters h and b.

5. Steps 2 and 3 are repeated a large number of times, B, in order to obtain an

approximation of the bootstrap mean squared error (M SE™*) of the estimator,
1 & 2
22,h,b,*
MSE*(h,b) = 7 3 (uj _ ,ﬁ) .
j=1

6. The bandwidths h* and b* that minimize the function M SE*(h,b) are consid-

ered as bootstrap bandwidth selectors.
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5.4.1 Simulations

The performance of the bootstrap algorithm is studied via simulation. We generated
100 pairs of datasets, each with sample size n = 103 in the case of the sample Z and
sample size N = 10° for the sample Y. For each pair of generated samples, an itera-
tive search of the bootstrap selectors is performed. This search consists of applying
the bootstrap algorithm 3 times using 100 resamples Z* and 100 resamples Y* each
time. In each search, a grid of size 5 is used for each bandwidth (25 combinations
of bandwidths), progressively reducing the area of this grid in each iteration of the
method.

The choice of the pilot bandwidths has a certain influence on the behavior of our
estimator. In this case we have used the bandwidths obtained by the Seather-Jones
method.

Table 5.4: Comparison of the MSE of Z, Y and ﬁz’h*’b* for different values of k and ¢
(n =103, N = 105, trials=100, B = 100). Median(h*) and Median(b*) refer to the median
of the bandwidths obtained using the bootstrap algorithm.

k e MSE(Z) MSEY) MSE(*"*") Median(h*) Median(b*)

1.5 0.1 1.58-107' 817-1072 2.35-1072 0.49 3.90 - 107
1.5 15 1.68-1072 3.81-1073 4.20-10~* 1.19 2.04-10°
1 1.5 7.26-107% 1.64-1073 3.74-107* 1.36 7.11-107
0.5 1.5 1.93-107% 3.97-107* 2.20-10"* 2.37 1.70 - 104
0.1 1.5 3.52-107* 1.61-107® 9.35-107° 5.08 - 102 29.58

0.1 1.8 292-107* 792-1077 1.99-10~* 1.48 - 102 4.40

Table 5.4 contains the true values of the M SFE of the classical estimators, the me-
dian of the bootstrap bandwidths h* and b* obtained from the algorithm presented
above and the mean squared error of the proposed mean estimator. The results
in this table show how, in the first four settings considered (more biased settings),
the estimator obtained with the bootstrap bandwidths outperforms the two classical
sample means, Z and Y. In the last two cases (less biased settings), our estimator
for the mean has a slightly worse behavior than Y, which is reasonable given that
bias in these situations is practically imperceptible and the size of sample Y is very
large (N = 10°).

In conclusion, in situations where the existence of bias is confirmed, the bootstrap
algorithm will be used. This will provide a better estimation than the one provided

by the samples involved. On the contrary, when we reject the presence of bias, we
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could directly use the estimator based on the sample Y.

5.5 Sketch of the proofs

5.5.1 Sketch of the proof of Theorem 5.2.1

A set of lemmas needed to proof Theorem 5.2.1 is listed below. Their detailed proofs
can be found in Appendix A.2. Along this subsection, Conditions A1, A1l and A12

are assumed for Lemmas 5.5.1-5.5.10.

Lemma 5.5.1. The difference ﬁv — Iy can be expressed as follows

2 A+ A0
H Hy = E‘ =
where N
A 1 gb(YZ)
N ; mh(ifz IU‘U)
and

considering c given by the relation

(5.5)

(5.6)

(5.7)

(5.8)

9y) _ . S
(y) g(y)’
The term in (5.6) can be splitted into different terms, A® = A%— A3+ A3— A3+ A¢,
where
~ 1 Y g(vy)
1 - N ZZ; m(Yz) (U(YZ) - :uv))
1R (V) (V) — m(Y))
A5 = N; m(YZ)Q (v(Yi) — o),
N ~ .
B o=y MO0 -
LN (3 (Y5) — g(¥) (Vi) — m(Y2))
A4 - le; m(yvz)g (U(Y;)*:U’v)a
e 1R (Y (YD) —m(Y)\ -
Il DV ( m(Y;) ) (0(¥2) = o)
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Since the terms A\Z and /Alg have some factors of quadratic nature whitin the sum
(ie. (9(Y:) —g(¥3))(1mn(Y:) —m(Y;)) and (1, (Y;) — m(Y;))?) it is expected that one

could prove negligibility of this terms. Thus we will consider

A® ~ AS — AS + A3,

Lemma 5.5.2. The expectation and variance of A® can be approrimated by
E (2’) E (2;) —E (25) +E (215) , (5.9)
Var (A\'> ~ Var (f/l\{) +Var (21}) + Var (A})

— 2Cov (A;,Eg) +2Cov <AI, Eg) —2Cov (Ag, ﬁg) . (5.10)

12

The proof of Theorem 5.2.1 proceeds by analyzing the expectations and variances

involved.

Lemma 5.5.3. The expectation of A is

Te . 1 ®;2 014 ob2 ob4
E(A) ~ Dlm_}—DQb +D3b —D2N—D3N
+ D3h% 4+ DER* 4 O(b°%) + O(RO), (5.11)
where
Dt = KO [+
. p2 (K
D5 = 2(2 )C/v(y)g”(y)dy,
. K
py = M)y,
24
K
DZ _ #2(2 )C2B' (Q”) ’
o 1K) a0
D: = 5 c“B* ('),

and
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Lemma 5.5.4. The variance of E{ 18
o\ _ D¢
Var <A ) = N
where
= CQ/B(y)d
with )
Yy 2
5 = v — Mo
(y) (0 (v(y) — o)
Lemma 5.5.5. The variance of j; 18
Te 01 . 1 . 1 . h2 . h4 . h4 ° h
VCLT’ (AQ) = D7; -+ ng + ng -+ Dloz + Dll; + DlQN + Dlgm
. h? . W . hO ho h8 h*
+ DMN—n+D15N—n+D16 +D17N+O<n)+O<Nn>, (5.12)
where
D2 = 'B*(Q?),
Dg = —-Dg— D3,
Dy = po(K*)e / U(y)dy,
Diy = p2 (K)e'B*(Q-Q),
. p2(K)? 1a(K) 4 e
Dy = (4) [ (@) - )] + ) e ),
oty = L] e iy - 5],
. M
Dis = 2(2 /{(y) ( )dy,
Dty = —palB)B (0 ) — K0 [ v ),
[ ] K2
oty = M0 [ etm
DIG — M?(K)/’M(K) C4 |:B.(Q// . Q(4)) N B.(Q//)B.(Q(4)):| + M6<K) C4B.(Q . Q(G))’
24 360
[ ] K K [ ] [ ]
Dty = LR [ ey )y - 5@y @)
being
f(y)3 2
’(7[) ) = V\Y)— W),
(y) g(y)g( (y) — )
fy)*
&) = LY (o) — o
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Lemma 5.5.6. The variance of 25 18

Var (E;)) = D;B% + D;g?\j + Dgo?\j + D;lﬁ + D;z% + D53%
+ Dz + Dy + Dloyeg +0 <?§) L0 (]%22) , (5.13)
where
DYy = CQ/B(y)dyzDé,
DYy = w0 | [ Way+ [+ @100 - m)ds].
D3y = M50 | [ae® s+ [+ - ma]
+ M(f)Qg [/ 5(y)g" (y)*dy — 4 </7(y)g”(y)dy>2
£ [P +2 [ g W]
Dy = 2 [uolK?) + KO)] [ i
D3y = —862/5(?/)6@ = —8Dg,
Dy = (KO | [ 36 iy + [ 2017 )y
- ( / Y(y)g" (y)dy + / ’/’(y)g(y)dy) ( / 'y(y)dyﬂ
+ m(ZKz)c2 [/ 5(y)9”(y)dy+/v(y)v”(y)dy] :
D3, = K(0)*¢ [/ 3(y)dy — (/v(y)dy>2] ,
D3y = 2 [uo(K?) + 2K(0)] [ aly)d,
D3; = 862/5(y)dy=8D5-,
with
o) = L) -
50) = Loy — oy
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Lemma 5.5.7. The covariance of A\{ and 21\5 18

~ e h? h* h®
CO'U ( I’AQ) = D27N +D28N + O <N) y (514)
where
. p2 (K
D37 = 2( ) 3/¢(y) "(y)dy,
. pra( K m® (y
D =
28 91 /7/)
Lemma 5.5.8. The covariance of AI and A§ is
Teo He . 1 . 1 . 1 ° b2
Cov ( 17143) = Dyt Daoyay T Pz + Py
b4 b2 b6
+ D33N+O<N2>+O<N> (5.15)
where
D3y = CQ/B(y)dy=Dé,
Dy = KO [aly)dy,
D3 = —2¢ [ Bly)dy = —2Dg,
o K
Dj = ”;%ﬂ/amfww+/vwv@w@—mm4,
o K
24
Lemma 5.5.9. The covariance of A\E and jg is
~ e h? h2b? h* h*b? h2b4
COU( 2,A3) D34N + D35 —— N +D36N + D37 —— N + D3g—— N
h? h? h* h* h2b? h8
+ D39N2b +D40N2 +D41N2b +D42N2 + Dis—5 e + 0 (N)
h2b8 hibt h® h2b* h4b?
o("v ) o (v )+0<N%)+0(N2)+0(N2)7 (519
where
. K)
D34 = (2 /w dy = D27,
. L (K // m" (v\d " "N (v)d
D35 = C(y (y)dy + | m"(y)7" (y)Q2y)dy
- ﬂ?&%/vu <w4

D3 = c/w@WMMmM—D%
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py, = k) { [cwm® g s+ [mr o
— 23'(9(4)) / v(y)g”(y)dy} :
D3 = H2(B)paK) UC )9 dy+/m )Qy)dy
— 2p() / v(y)g“)(y)dy} ,
[ ] K [ ]
Dy = F2UOKO [ [ cwm ey - @) [ <y>dy} ,
Djy = —2D34,
Dy, = [/C y)dy — B*(Q ))/v(y)dy},
DZQ = _2D367
DZ3 = _D§5?
with £ )3
Yy 2
= v — v
C(y) g(y)4( (y) — 1)
Lemma 5.5.10. The variance of A® s
Te 01 . 1 oi oi . i . 1 . L
Var (A ) ~ D}~ 4 Dy +4D6N — 12D <5 + D3 + Die— + Doy
. 1 . 1 h? . M ,h2 ,h4 . 0
b2 ht b h2p? h4b2 h2b4 h
+ 2D19N + D46N + D45N 2D55 —— N —2D5;—— N —2D5g—— N + Dlan
. h?2 h3 b h?2 4 h2b? ho
+ 14N7+D15N +D23N2+4D27N2+4D28N2+2D35NQ +O<n>
b0 hipt h4 b2 h6
+ o(N)+o< - )+0<N >+0< )+0<N2b>
where
DYy = D +20% = 2ue(K)E [y + KO [ aly)dy,
[ ] [ ] [ ] /’L K
Dy = Dyy+20g =0 | [ag s+ [+ D6 10)00) - )]

S 2 [/ 5(y)g" (y)?dy — 4 </V(y)g”(y)dy>2

/ ¥ (y)*g(y)dy + 2 / v(y)v”(y)g”(y)dy} :
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Djs = Dy —4D3 =

Ry / w<y>m<4>

The proof of Theorem 5.2.1 is a consequence of Lemmas from 5.5.3 to 5.5.10,
considering C} := D3/c, C5 = D}/c, Cg := DZ/C, Cy == D2/c?, Cf := Dg/c?,

[ [ cwmwray - By

Co := —12Dg/c2, C3 = D;/c2, cs = 1);4/c2 = D;O/c2, CYy == —2D3y/c?,
2D3, /.

5.5.2 Sketch of the proof of Theorem 5.2.2

The proof of Theorem 5.2.2 follows parallel lines to that of Theorem 5.2.1. The
proofs of the following lemmas are available in Appendix A.2. Along this subsection,
Conditions Al and A13-A15 are assumed for Lemmas 5.5.11-5.5.19.

Lemma 5.5.11. The expectation and variance of g*', being

A\*o — ;4\{0 N ;4\;0 + ;4\;0’

E (2*') —E (2’{') —E (ﬁ;‘) +E (ﬁ;‘;,') (5.17)
Var (g*') =Var (A\T) +Var (A\? + Var (ﬁ;')
— 2Cov (A’l“, ]{;‘) +2Cov (A*{', Aé') —2Cov (3',1%’) , (5.18)
where
B oo Ly Fxo() o
o= N;WU(Z Mv)7
i o= L é (K * g)(m)(ﬁhisg)(— Y()f;h m)) oy
ay }Vi B O 0w o),

Lemma 5.5.12. The expectation of A% s

—~ 1
B(A*) = Di*+Dj' . (5.19)
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where
Dy* = / v (y)g(y)dy,
K(O)/ (v(y) — )
D}* = —Di*+ dy,
with
vo (K * g)(y)
= 2 (u(y) — hy).
7" (y) (Kh*m)(y>( (y) — hw)
Lemma 5.5.13. The variance of ;1\*1" 8
Tke _ DE.
Var (Al ) = = (5.20)
with
D3 = / a**(y)g(y)dy — D;*?,
where (K \( )2
. b* g)\y 2
« = (y(y) — Uy) .
(y) (Kh*m)(y)2( (y) — 1)
Lemma 5.5.14. The variance of 21\;’ 18
Tke *01 *e 1
VCL’I" (A2 > = D4 E +D5 m (521)
where
2
i = [ ([ ey -Dit) mz)as
D3* = /90*’(3/)2((Kh)2 xm)(y)g(y)dy — /a*’(y)g(y)dy - Dy*,
where (K \(v)
™ (y) = m(v(y) — )
Lemma 5.5.15. The variance of ﬁg' s
Txe xe 1 *e 1 *e 1
Var <A3 ) = D6 N + D7 ﬁ + Dg m, (522)

where
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o = [ [ ke Koty - 2ty - [ v*'(y)g(y)dyrg@)dz

Kp xm)(y) 2
= / [/ WM(?J —2)g(y)dy — DT'] 9(z)dz,
Dyt = [// Kh ) M” Kh * m’;é’))Kb(y — 2)g(y)g(z)dydz

- / ¥ W)aly)dy / Mg@)dy]
- // Kh*m Kb( )g(y)g(Z)dde+3(/'Y*'(y)g(y)dy>2
— et + / (Mf((m)z*g)(y)g@)@

H” Mv)
i // Kh ) Kh o) (2) e — 2)2g(y)g(z)dydz
2

s { / Mmy—z)g(y)dy— / v*‘(y)g(y)dy] g(2)dz

- 2K [// Kh*muv V(K *m[)tz))Kb(y_Z)g(y)g(Z)dydz
_ /’y* (¥)9(y )dy/Mg(y)dy]
- 4/ / Ky(y — 2)g(y)g(2)dydz + 3D}*?

Kh*m

- [ Wty + / (M)Q«Kb)%g)(y)g(y)dy

MU MU) *®
// Kh*m Kh*m)( )Kb(y—Z)Qg(y)g(z)dydz—?,DG ,

DE = Kz()g)Q l/ (i) s (f Wg@)dyﬂ
[ // Kh*mMU Kh*m'L)Lv))Kb(y—z)g(y)g(z)dydz

+ 2 / Y (y)g(y)dy / mg(y)dy— p*'(y)g(y)dy]

T / / Kh ) Kb(y — 2)g(y)g(2)dydz — 4 ( / ’y*'(y)g(y)dy) ’

B 2
+ 2/@"'(21)9(3/)@-/(%) ((K3)? = 9)(y)g(y)dy




5.5. Sketch of the proofs

79

- // Kh*muv Kh*m)())Kb( 2)%g(y 2
/[/ ((y)_Kb( 2)g(y)dy — /7*'(y)g(y)dy] g(2)dz

2
o)~ )g(y)dy> ]

+
[\)

Ko+ ) )
2 2
- Kég) [/ (Gotmitr) s ([

v R Kh*mﬂv Kh*mx))

)9(2)dydz

Kp, «m)(y

b(y = 2)9(y)g(2)dydz

+2/’y*(y)()dy/( e Ll }

i // Kh*m b(y—Z)g(?J)L(J(Z)dydz_41)T-2
2
' /a - /<M> ((Kb)* * 9)()g(y)dy

- // Kh*muv Kh*ml)tz)))Kb(yz)QQ(y
with - o
p*.(y) = ﬁ(v(y) — ,uv) .

Lemma 5.5.16. The covariance of g‘f’ and gz’ is

Cov (A\*{',g?) = 0.

Lemma 5.5.17. The covariance of ][T' and 1%' is

)9(2)dydz + 2Dg®,

ke Axe *® 1 1
where
*® *o /.Lv *®
Dy® = // K ) () W — )99 (2)dydz — Dy ’

o A w - ([ 2t

Lemma 5.5.18. The covariance of ﬁ;' and ﬁj;)' is

Cov (E;',ﬁ;;’) = 0.

(y)dy> DI’} — D3* — Dg®.
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Lemma 5.5.19. The variance of A® s

71 [ ] [ ] 1 [ ] 1 *@ 1 [ ]' [ ]'
VCLT‘(A*) = DZE'F T1N+D5 M—F T2W+D§ m,
where
Dyl = D3*+ Dg* +2Dg°,
15 = Di*+2D5.

The proof of Theorem 5.2.2 is a consequence of Lemmas from 5.5.12 to 5.5.19,
considering C7® := (D3*/c)?, C3* := D}*/c?, C4® := 2D3*D3® /c* + D33 /%, O3
D3*/, O3 = (D3* e + Dig [, Cgt = D[,
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Chapter 6
Real data applications

The methods proposed in Chapters 4 and 5 are applied to several real data sets.
In Section 6.1, it is considered the US airlines data set with information of the ar-
rival and departure details of commercial flights. The air quality data set about the
emissions of different air pollutants registered in the city of A Coruna is studied in
Section 6.2. The content of this section was published in Borrajo & Cao (2020). In
Section 6.3 the customer churn data set from the Telco Company Vodafone ES is
considered. Finally, in Section 6.4 the proposed methods are applied to the study
of two COVID-19 data sets with information on asymptomatic, identified and hos-

pitalized cases.

6.1 Airline on-time performance

The airline on-time performance (AOTP) data set is available at http://stat
-computing.org/dataexpo/2009/the-data.html. It consists of nearly 180 million
records about flight arrival and departure details for all commercial flights within
the US, from October 1987 to May 2018.

In this context, we would like to estimate the mean arrival delay (in minutes) of
US flights for the whole year 2017. We use (4.4) considering as Y the whole data set
for the year 2016 (N = 5,617,658) and assuming that only the arrival delay time for
the flights of January 11th, 2017, X, (n = 14,568) is available. Since the first days
of January are atypical due to the holiday period and since weekends and Mondays
do not always accurately reflect the behavior of a normal labor day, we decided to
collect the data from the first available Wednesday (January 11th, 2017) in order to
obtain something close to a SRS of the true 2017 population.
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Figure 6.1: Densities involved in the case study with AOTP data. Densities of arrival
delays in 2016 (dashed black line), 2017 (solid gray line) and January, 11 2017 (dotted gray
line).

To illustrate the difference between the density functions of the arrival delay
of US flights in 2016 and 2017, two kernel density estimations have been plotted
in Figure 6.1. These density estimates are based on nearly 6 million data each.
Although the two estimated annual densities are very similar, they exhibit some
subtle differences, for instance the level of the density at the mode. Figure 6.1 also
contains the kernel density estimation based on the arrival delays of January 11th,
2017.

Table 6.1: p-values obtained using the two-sample Kolmogorov—Smirnov (KS) test for
equality of distributions and using the two-sample Student’s ¢-test for equality of means.

Variable KS test X Y t-test
Arrival delay  <8.5 x10715  4.742243 3.519290 0.005194

To test for sampling bias, we can use the two-sample Kolmogorov—Smirnov test

for equality of distributions and the Student’s t-test for equality of means. The
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p-values obtained in Table 6.1 allow to reject the null hypothesis in both cases, in

favour of the presence of bias and the non equality of means.

In this context, we computed the values of X and Y and we applied the boot-
strap bandwidth selection method presented in Subsection 4.4 in order to obtain
the values of h and b that provide a good performance of fi. As a benchmark, we
considered the sample mean of all the arrival delays in 2017, which would not be
known until the end of that year. Although this is a sample mean, it is based on

more than 6 million data, so we will consider that is approximately equal to the true

M= 2017

Table 6.2 shows the estimated value, 2" *" with the bootstrap bandwidth

selectors h* and b*. It is clear from this table that """

may perform extremely
well (nearly perfect) for a suitable bandwidth choice in comparison with the classical

estimators.

Table 6.2: Comparison of the full 2017 sample mean and the standard deviation with the
mean and variance of January, 11st 2017, the B3D sample mean and the standard deviation
(2016) and the proposed estimators [i and & for the bootstrap bandwidths (h*,b*).

Mean estimation Standard deviation estimation
H2017 X Y 02017 Sn,x SNy
4.326357 4.742243 3.519290 45.8648 48.46081 41.87338
(h*, b%) Q2 Gh b
(9.12,12.02) 4.326778 49.59647

As mentioned in Section 4.2, E(X?) can be estimated using the proposed general
procedure with the choice v(z) = 22. As a consequence, the variance and, there-
fore, the standard deviation can also be estimated. The estimated value for the

h*.b" 'is also shown in Table 6.2 for the same bandwidth values

standard deviation, &
considered in the mean estimation. In this case, the performance of our estimator is
slightly worse than that of the SRS sample but better than that of the big-but-biased
sample when comparing with the true ¢ = o9917. This happens because we have
not used a bootstrap method adapted for this parameter. Analyzing the behavior
of this estimator in a wide range of values, we observe that for a suitable choice of
the smoothing parameters (h = 3.02 and b = 19.05), our estimator would behave
significantly well (6"° = 45.85975), so it is logical to think that using an adapted

version of the bootstrap algorithm for the standard deviation, our estimator would
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improve its behavior.

6.2 Air quality in smart cities

Making a city smart has emerged as a strategy to mitigate the challenges of ur-
ban population growth and fast urbanization, provinding better quality of life to its
citizens (Chourabi et al., 2012). The important role of Big Data Analytics and In-
formation and Communication Technology in the development of smart cities initia-
tives is unquestionable (Hashem et al., 2016). Some of the economic, environmental
and social benefits and opportunities of using Big Data in smart city applications
are detailed in Al Nuaimi et al. (2015). There are many applications of Big Data
in differents domains of smart cities, such as city planning, environment, sustain-
ability, traffic management, transportation, security and education (Osman, 2019;
Al Nuaimi et al., 2015).

6.2.1 Motivation

Despite the many advantages of applying Big Data Analytics to urban data, some
authors have also identified some of its challenges, such as the importance of manag-
ing truthful and quality data (Al Nuaimi et al., 2015; Lim et al., 2018). This problem
is highly related to the idea that with enough data, numbers speak for themselves;

idea on which this thesis is based.

The present application focuses on the domain of public health in smart cities;
in particular, on urban air quality, since air pollution is one of the big concerns
for smart cities. Information about real-time air quality is of great importance to

protect humans from damage by air pollution (Zheng et al., 2013).

There are many methods and works using Big Data Analytics to predict the
air quality in smart cities. Martinez-Espana et al. (2018) compare several machine
learning methods in order to choose the most suitable for predicting the ozone level
in the Region of Murcia (Spain). In Ameer et al. (2019), four regression methods
based on machine learning techniques are proposed to predict air pollution and com-
pare their accuracy in terms of error rate and processing time, using multiple data
sets. A novel deep learning model based on Long Short Term Memory networks is
presented in Kok et al. (2017) to make predictions about air quality in smart cities.
In Ramos et al. (2018), the authors use the existing sensor networks in smart cities

to create and promote alternative pollution-free routes across cities depending on
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the level of pollution in each zone and apply the study carried out to Madrid (Spain).

However, none of these works deal with the problem of sampling bias in Big Data
Analytics for smart cities and air quality. This application deals with the particular
problem of urban air pollution in that context, using the nonparametric estimation

method proposed in Chapter 4.

Subsection 6.2.2 introduces the problem of air pollution by focusing on two spe-
cific pollutants. A real data set study is carried out in Subsection 6.2.3. It is a data
set with information of different variables of interest about air quality in the city
of A Coruiia, Galicia, NW Spain. The mean and the cumulative distribution func-
tion of the level of ozone (O3) and nitrogen dioxide (NOz) when the temperature
is greater than or equal to 30 °C is estimated based on 15 years of big-but-biased
data.

6.2.2 Urban Air Pollution

According to the World Health Organization (WHO), air pollution kills an esti-
mated number of seven million people worldwide every year, increasing deaths from
stroke, chronic obstructive pulmonary disease, lung cancer, heart disease and acute

respiratory infections (World Health Organization, 2020).

Air quality control and management have been one of the priorities of the envi-
ronmental policy of the City Council of A Coruna for several years. After conducting
an emission analysis, four automatic air pollution control stations were installed in

different points of the city, aimed at protecting human health.

The Air Quality Index (AQI) is a global indicator of the air quality of an area at
a certain time of the day, based on data provided by air quality monitoring stations.
The AQI is calculated from information related to different atmospheric pollutants:
sulfur dioxide (SO2), nitrogen oxides (NOgz y NOy), carbon monoxide (CO), tropo-
spheric ozone (O3), benzene (CgHg) and airborne particulate matter, smaller than
10 micrometers in diameter (PM10) and smaller than 2.5 micrometers in diameter
(PM2.5). The AQI value changes every hour depending on the values obtained by
the real-time surveillance stations. In case the air quality is poor, those responsible
for the surveillance network receive an alert by email, initiating the corresponding
action protocol (Ayuntamiento de A Coruna, 2020). This application focuses on the

levels of two of these pollutants: ozone (O3) and nitrogen dioxide (NO2).
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Ozone at ground level (tropospheric ozone) is formed by the reaction of pollu-
tants such as nitrogen oxides and volatile organic compounds emitted by vehicles
and industry. Solar radiation plays an important role in these reactions, since the
reactions are photochemical in nature and require high temperatures to be effective.
As a result, the highest levels of ozone pollution occur on sunny and hot days. Ex-
cessive ozone in the air can have a marked effect on human health. It can cause
breathing problems, trigger asthma, reduce lung function and cause lung diseases
(World Health Organization, 2020; Ayuntamiento de A Coruna, 2020).

Nitrogen dioxide is one of the most dangerous pollutants due to its toxic and
irritating nature, which causes significant inflammation of the airways. In addition,
it decomposes through light to form atomic oxygen, which is very reactive, and con-
verts molecular oxygen into ozone. The major emissions of NOg are of anthropogenic
origin, through combustion processes as heating, power generation and engines in
vehicles and ships. Nitrogen oxides mainly affect the respiratory system and can
cause bronchitis and pneumonia as well as a lower resistance to respiratory tract
infections (World Health Organization, 2020; Ayuntamiento de A Coruna, 2020).

Since high temperatures are related to high values of these pollutants, the prob-
lem of estimating their levels when the temperature is greater than or equal to
30°C is considered. To carry out this study, the bias correction method proposed in

Chapter 4, whose good performance has already been tested, is used.

6.2.3 Results

The air quality data set used is available in Ayuntamiento de A Coruna (2020). It
consists of nearly 126 thousands hourly records about the temperature, measured
in centigrades (°C), and the levels, in pug/m>®N, of O3 and NOy in the urban air of
A Coruna during the last 15 years. These data have been collected from the Santa

Margarita station, one of the four automatic air pollution control stations in the city.

We are interested in estimating the mean level of ozone and nitrogen dioxide
when the temperature is greater than or equal to 30 °C, since it is believed that
high temperatures may be associated with an increase in the levels of these harmful
pollutants in the air. For this purpose, we use (4.4), considering as Y the whole
data set for the last 15 years (N = 125,949 in the case of ozone and N = 126,056 for

nitrogen dioxide) and as X the data set with the level of ozone and nitrogen dioxide
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when the temperature is greater than or equal to 30 °C in the last 15 years (n = 275
and n = 267, respectively). The difference between the sample sizes according to

the variable considered is due to the missing data.
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Figure 6.2: Estimated probability densities involved in the case study with air quality
data. (a) Density of the ozone level in the last 15 years (solid black line) and its analogue for
temperatures greater than or equal to 30 °C (dashed gray line). (b) Density of the nitrogen
dioxide level in the last 15 years (solid black line) and its analogue for temperatures greater
than or equal to 30 °C (dashed gray line).

Figure 6.2 shows the density functions of the levels of ozone and nitrogen dioxide
with temperatures greater than or equal to 30 °C (dashed gray lines) when compared
to the general levels of the last 15 years (solid black lines). The two densities are
very similar for nitrogen dioxide, while they differ very much for ozone. The great
difference depending on the temperature in the case of the ozone level was expected,
since this connection has already been studied by several authors. Experiments
performed in Cardelino & Chameides (1990) show that high temperatures increase
the ozone level, while the effect on nitrogen oxides is uncertain. In Jhun et al.
(2014), not only is the relation between both variables analyzed, but also the effect
it has on ozone-related mortality, concluding that high temperatures increase ozone
level, which leads to a rise in the mortality rate. Furthermore, Meleux et al. (2007)
warn about how the increase in the ozone level will negatively affect human health,

agriculture and natural ecosystems due to climate change.

250
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In fact, we can use the two-sample Kolmogorov—Smirnov test (Kolmogorov, 1933;
Smirnov, 1939) for equality of distributions to test for sampling bias. The p-values
obtained (see Table 6.3) allow to reject the null hypothesis in both cases, in favour
of the presence of bias, but with a higher level of confidence in the case of ozone.
Table 6.3 also shows the p-values obtained using the Student’s t-test, which allow
to reject the equality of the means in the case of ozone with the usual significance
levels. However, the hypothesis of equal means for nitrogen dioxide is accepted using
the t-test.

Table 6.3: p-values obtained using the two-sample Kolmogorov—Smirnov (KS) test for
equality of distributions and using the two-sample Student’s ¢-test for equality of means.

Variable KS test X Y t-test
Ozone <22 x10716 6444 4535 <2.2 x1071'6
Nitrogen dioxide 0.001064 23.88 22.28 0.1411
Ozone Nitrogen Dioxide
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Figure 6.3: Boxplot of the four samples involved in the case study with air quality data.
(a) Boxplot of the ozone level for the Big-But-Biased Data (B3D) sample (left) and the
simple random sample (SRS) (right). (b) Boxplot of the nitrogen dioxide level for the B3D
sample (left) and the SRS (right).
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Figure 6.3 shows the presence of heavy right tails, as already observed in Figure
6.2. However, the proposed methods will not be affected by these observations, since
they are not measurement errors, but unusually high values of the levels of ozone

and nitrogen dioxide in those particular hourly records.

In this context, we computed the values of X and Y in each case. As the sample
mean for the two pollutants when the temperature is greater than or equal to 30°C
is not available, the real p is unknown. For this reason, in order to know which
values of h and b provide a good performance of our estimator, we use the bootstrap

bandwidth selection method presented in Subsection 4.4.

Ozone Nitrogen Dioxide
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Figure 6.4: Estimation of the mean squared errors of the proposed estimator as a function
of h and b, obtained by the bootstrap. (a) Mean squared error (M SE*) of the estimator for
the mean level of ozone. (b) MSE* of the estimator for the mean level of nitrogen dioxide.
The red dot represents the minimal value of the M SE™*.

Figure 6.4 shows the bootstrap mean squared errors of the proposed estimator
for bandwidth selection in the case of ozone and nitrogen dioxide, respectively. This
figure provides some estimate of the optimal values for the two bandwidths, those
that minimize the M SE*. These values of A and b will be the ones used in the pro-
posed method to estimate the mean level of both pollutants when the temperature is
greater than or equal to 30 °C. This figure also shows how relevant it is to properly
select the smoothing parameter b; otherwise, the M.SE* would increase significantly.
Once b has been chosen, it is also important to find a suitable h, although the range

in which the estimator works correctly is wider for this bandwidth.
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Table 6.4 shows the estimated values, 2™, for the bootstrap bandwidth se-
lectors h* and b*. Considering the study performed in Borrajo & Cao (2021), the
resulting bandwidths in the case of nitrogen dioxide are not surprising, since in sit-
uations of little bias it is expected to obtain high values for these parameters. More
surprising is the case of ozone (more bias), in which we would expect to obtain small

values for both parameters, which does not happen in the case of h*.

Table 6.4: Comparison of the full 15 years sample mean of the level of ozone and nitrogen
dioxide with the mean of the analogous sample when the temperature is greater than or equal
to 30 °C and the proposed estimator f for the values h* and b* obtained in the bootstrap
implementation.

Variable X Y h* b* JIRECELE

Ozone 64.44 4535 199.05 0.0397 67.94

Nitrogen dioxide 23.88 22.28 79.24 50 23.90
Ozone Nitrogen dioxide
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Figure 6.5: Estimated cumulative distribution functions involved in the case study with
air quality data. (a) Empirical distribution function of the ozone level in the last 15 years
(blue line), the analogue for temperatures greater than or equal to 30 °C (green line) and the
estimated distribution function using the proposed estimator (yellow line). (b) Empirical
distribution function of the nitrogen dioxide level in the last 15 years (blue line), the analogue
for temperatures greater than or equal to 30 °C (green line) and the estimated distribution
function using the proposed estimator (yellow line).
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As already mentioned, the proposed method allows to solve other problems, such
as, for example, the estimation of the cumulative distribution function. Although
this requires a specific bandwidth selection, for simplicity we will use those obtained
by the bootstrap algorithm for mean estimation. Figure 6.5 shows the estimated
distribution function using our proposed estimator. This figure exhibits important
differences in the case of ozone, which was expected, since the more bias, the more
the proposed estimator can benefit and beat the classical estimators based on the

two samples.

We can conclude that, in the case of estimating the mean and the distribution
function of the level of nitrogen dioxide, it is irrelevant to use the classical estimators
based on the two samples or our proposed estimator, since the results are very
similar. However, in the case of ozone, things change. Although the proposed
estimator gives a similar value for the mean and an estimated distribution function
close to the one obtained in the SRS case, the difference is big enough to take it
into consideration. This is a relevant issue due to the already mentioned problems

caused by high values of this pollutant. This is not surprising in view of Figure 6.2.

6.3 Vodafone

A real data set from the Telco Company Vodafone ES is considered. It consists of
nearly 2.5 million records and 176 variables concerning contracted services, appli-
cation consumption, participation in campaigns and billing of their clients, among
many other. We will focus on customer retention campaigns. According to the data

protection law, clients identifiers have been previously anonymized.

We are interested in estimating the mean and the cumulative distribution func-
tion of an index constructed for Vodafone customers. This index is a new variable
created from 14 significant variables that best reflect the costumer’s tendency to
leave the company. In this context, bias appears due to decisions taken by humans
in the past and has been learned by their predictive models. For this purpose, we
use (4.4), where Y is the data set with information of the target group (TG) for
retention campaigns (N = 194,010), which is a biased sample of the population
since it has been obtained from that biased models. The sample X is the data
set of the universal control group (UCG) (n = 1,466) in these campaigns. This
group corresponds to a simple random sample formed by the 1.5% of the company’s

customers.
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Figure 6.6: Estimated densities involved in the case study with Vodafone data. (a) Es-
timated densities of the index in the target group (dashed gray line) and in the universal
control group (solid black line). (b) Zoom of the left panel.

To illustrate the difference between the density functions of the index in the
TG and the UCG, kernel density estimations have been plotted in Figure 6.6 (a).
Although, at a first glance, the two estimated densities seem to be similar, the zoom
made in Figure 6.6 (b) exhibits some significant differences, such as the level of
density at the mode and the left tail.

In fact, we can use the two-sample Kolmogorov-Smirnov test (Kolmogorov, 1933;
Smirnov, 1939) to test for sampling bias. The p-value obtained (see Table 6.5) allows
to reject the null hypothesis, so we conclude the presence of bias. Table 6.5 also
shows the p-value obtained using the Student’s t-test, which allows to reject that

the means of the two populations are equal with the usual significance levels.

Table 6.5: p-values obtained for the two-sample Kolmogorov—Smirnov (KS) test and for
the two-sample Student’s t-test.

Variable KS test X Y t-test
index <2.2 x10716  1.901294 1.706327 <2.2 x10716

As mentioned in Section 4.2, the cumulative distribution function, F'(t), can also

be estimated considering v(z) = 1y,<) in the proposed general procedure.



6.3. Vodafone 93

An adapted version for the Kolmogorov-Smirnov distance of the bootstrap algo-
rithm proposed in Chapter 4 for the mean has been implemented. It is an algorithm
for automatic bandwidth selection which allows to find values of A and b that pro-
vide a good performance of the cdf estimator. Despite the fact that in Chapter 4 a
specific bootstrap algorithm for the mean was proposed, in order to obtain coherent
estimates of the cdf and the mean and to avoid a high computational cost, we used

the optimal bandwidths from this new algorithm to estimate both.

The bootstrap algorithm for automatic bandwidth selection in the cdf estimation

problem consists of:

1. Based on the original X and Y samples, the estimated densities fhpu and gp,,,

(hpit and by; denote the pilot bandwidths obtained from the rule-of-thumb

method) are considered as the true population densities in the bootstrap world.

2. Bootstrap resamples, X* = (X7,..., X}) and Y* = (Y}*,...,YR), of sizes n
and NN respectively, are obtained from the estimated densities fhpil and gy,
as follows:

(a) X7 =) + hpir - U;, where o* = (¢7,...,1y,) is a simple random sample
obtained from the empirical distribution computed with the values X =
(X1,...,X,) and U = (Uy,...,U,), with U; simulated from the density
K (a N(0,1) when considering a Gaussian kernel), for i = 1,... n.

(b) Y;* = nf + by - Vi, where n* = (n},...,n%) is a simple random sample
obtained from the empirical distribution computed with the values Y =
(Y1,...,Yy) and V = (V4,...,Vy), with V; simulated from the density
K (a N(0,1) when considering a Gaussian kernel), fori =1,..., N.

3. The estimator F** is computed using the resamples X* and Y* and consid-

ering a wide range of values for the smoothing parameters h and b.

4. Steps 2 and 3 are repeated a large number of times, B, in order to obtain
a Monte Carlo approximation of the bootstrap Kolmogorov-Smirnov distance

(dj;g) of the estimator,

B
* 1 Fh,b,x -
dics(h0) = 5 3 (sup 74 (@) = By )] )

=1 z€eR

5. The bandwidths ~2* and b* that minimize the function dj.¢(h, b) are considered

as bootstrap bandwidth selectors.
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Figure 6.7: Logarithm of the bootstrap version of the mean Kolmogorov-Smirnov distance
for the cdf estimator for the index as a function of h and b. (a) Considering as X the data
set of the UCG (n =1,466). (b) Considering as X a subsample of size n = 100 of the UCG.
The red dot represents the minimal value of the dg.

Figure 6.7 (a) shows the logarithm of the bootstrap version of the mean Kolmogo-
rov-Smirnov distance for this estimator. This figure provides some estimate of the
optimal values for the two bandwidths, those that minimize the bootstrap version

of this distance.

The values of X and Y have been computed (see Table 6.6) and the cumulative
distribution functions of the samples involved have been plotted (see Figure 6.8 (a)).
Table 6.6 shows the estimated value 4>™® (first row) and Figure 6.8 (a) depicts the
estimated distribution function using the bootstrap bandwidth selectors h* and b*.
These results exhibit a few differences with the estimator based on the SRS. This
was expected, since the “small” sample size (n = 1,466) is quite large in this data

set.

Table 6.6: Comparison of the sample mean of the index in the universal control group and

in a subsample of size n = 100 of this group (X) with the mean of the target group of the

retention campaign (V') and the proposed estimator, i, using the values h* and b* obtained
in the bootstrap implementation.

Variable n X Y h* b* it

index 1,466 1.9013 1.7063 0.1104 0.1662 1.8947
index 100 2.0251 1.7063 0.3339 0.5691 1.9563

Just to show the effect of n in the practical behaviour of the estimator, we con-
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sidered a simple random subsample of just 100 clients in the universal control group.
The second row in Table 6.6 and Figure 6.8 (b) shows how, in that case, our pro-
posed estimators for the mean and the cdf differ more from the classic estimators
based on the new SRS for this more moderate sample size (n = 100). In fact, the
new estimations for n = 100 are close to the ones obtained with the original X

(n = 1,466), whose good performance has already been shown.
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Figure 6.8: Estimated cumulative distribution functions involved in the case study with
Vodafone data. (a) Comparison of the empirical distribution functions of the index in
the TG (blue line), the analogue in the UCG (green line) and the estimated distribution
function using the proposed estimator (orange line) with h* = 0.1104 and b* = 0.1662.
(b) Comparison of the empirical distribution functions of the index in the TG (blue line),
the analogue in a subsample of size n = 100 of the UCG (green line) and the estimated
distribution function using the proposed estimator (orange line) with h* = 0.3339 and
b* = 0.5691.

6.4 COVID-19

In this section, an analysis about the age of infection with COVID-19 in Spain is
performed. Two databases from the Centro de Coordinacién de Alertas y Emergen-
cias Sanitarias (CCAES) are considered. One of them contains the results of the

National Study of sero-Epidemiology of the infection with SARS-CoV-2 in Spain
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(ENECOVID), carried out on a sample of 68,296 people obtained through strati-
fied two-stages sampling. This study was conducted in 3 rounds from April 27th
to June 22nd, 2020, showing an approximated national prevalence of 5%. An ad-
ditional fourth round, not considered here, corresponds to November 2020. The
other data set used contains the data of confirmed cases of COVID-19, which are
obtained from the information that the Autonomous Communities notify to the Na-
tional Epidemiological Surveillance Network (RENAVE), within the framework of
the National Surveillance Strategy (Strategy for early detection, surveillance and
control of COVID-19) and through the web platform of the Spanish Surveillance
System (SiVIiES). This second database contains information of more than 3 million
records about cases of infection identified until March 4th, 2021. In addition to the
variable age, there are other relevant variables, such as the one that indicates the
need for hospitalization. According to the data protection law, pacients identifiers

have been previously anonymized.

We address the problem of mean age estimation for COVID-19 patients in Setup
1 and Setup 2. For this purpose, we use (4.4) and (5.4), considering as X the sample
of the ages of the participants in the ENECOVID survey whose analysis showed the
presence of antibodies during the weeks of the study (n =4,555), as Y the ages of
the identified cases from RENAVE until May 11th, 2020 (N = 228,879) and as Z
a subsample of Y corresponding to the ages of the patients who were hospitalized
until that time (n =106,637). The reason for restricting the second data set is that
the criteria for conducting diagnostic tests changed on May 11th, 2020.

On the one hand, the design of the ENECOVID study, available at https://
portalcne.isciii.es/enecovid19/, guarantees that sample X is very close to a
simple random sample of the population in which we are interested. On the other
hand, sample Y is clearly biased due to the already known high presence of asymp-

tomatic cases among the population that are not identified by the health system.

It is reasonable to think that the bias mechanism is similar in both setups, since
the main characteristic to identify someone infected with SARS-CoV-2 is an increase
in the severity of their symptoms, as well as to hospitalize an already identified pa-
tient. To illustrate the difference between the density functions of the age of those
infected with SARS-CoV-2 in the samples considered, three kernel density estima-
tions have been plotted in Figure 6.9.
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Figure 6.9: Densities involved in the case study with COVID-19 data. Densities of the age
of the positive cases among the participants in the ENECOVID survey (dashed dark gray
line), the positive cases identified by RENAVE (dotted black line) and those who required
hospitalization (dashed light gray line) until May 11th, 2020.

To test the presence of sampling bias and the equality of means we use the two-
sample Kolmogorov-Smirnov test, throught the ks.test function, and the Student’s
t-test, respectively. The p-values obtained (see Table 6.7) allow to reject the null

hypothesis in both cases, so we conclude the presence of bias.

Table 6.7: p-values obtained for the two-sample Kolmogorov—Smirnov (KS) test and for
the two-sample Student’s t-test in both setups.

Setup  ks.test X Y A t-test
1 <22 x10716 4857 62.00 - <2.2 x10°16
2 <2.2 x10716 . 62.00 67.61 <2.2 x10716

Table 6.8: Comparison of some bias indices in both setups.

Setup i1 19 i3 i6
1 0.6457611 0.2152082 0.04953267 0.7357414
2 0.2988901 0.1488982 0.03567542 0.2208698

Table 6.8 shows the estimated values of some of the bias indices presented in
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Chapter 3. All the indices considered show that bias is greater in Setup 1 than in
Setup 2.

6.4.1 Setup 1

In this context, we computed the values of X and Y. Since the real mean of the
variable age in the population of COVID-19 pacients, u, is unknown, we use the
bootstrap bandwidth selection method presented in Subsection 4.4 in order to select
the values of h and b for the estimator (4.4).
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Figure 6.10: Bootstrap estimation of the mean squared error (MSE™*) of the proposed
estimator for the mean age of the infected with SARS-CoV-2 as a function of h and b in
Setup 1. The red dot represents the minimal value of the MSE*.

Figure 6.10 shows the bootstrap mean squared error of the proposed estimator
for bandwidth selection in Setup 1. This figure provides the bandwidths that min-
imize the M SE* and which will be used to estimate the mean age for COVID-19
patients. As it can be observed in this figure, the estimator works correctly for a

large number of combinations of h and b (region in purple).

Table 6.9 shows how the mean age of the COVID-19 cases identified by RENAVE,
62 years, is greater than that of the ENECOVID study participants who had passed
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the infection, 48.57 years. This makes perfect sense since during the first epidemic
wave, the diagnosis of severe cases that required hospitalization was prioritized, a
situation observed in older age groups. On the contrary, the ENECOVID survey
estimates the age of people who were infected with SARS-CoV-2 in that period,
regardless of whether they were symptomatic, asymptomatic or had contact with
health systems, therefore their mean age was lower than that of the cases notified
to RENAVE. This table also shows the values of the bootstrap bandwidth selectors
and the estimated value >""*". Regarding the analysis performed in Chapter 4,
the obtained values for the bandwidths and the mean estimator are not surprising,
since in situations in which bias is quite significant (see Table 6.8), we would expect

to obtain small values for both parameters and an estimation of u very close to X.

Table 6.9: Comparison of the mean age of the ENECOVID respondents who passed the
disease (X) with the mean age of the cases identified by RENAVE (Y') and the proposed
estimator [ for the values h* and b* obtained in the bootstrap implementation for Setup 1.

Variable X Y h* b* [2hb
Age 48.57 62.00 0.43 0.40 48.62

6.4.2 Setup 2

In Setup 2, we computed the values of Z and Y and we use the bootstrap method
proposed in Section 5.4 to select the bandwidths h and b that provide a good per-

formance of the estimator (5.4).

Since the sample X is not available in this setup, we proceed as shown in the
bootstrap algorithm in Section 5.4. Figure 6.11 shows the estimated density func-
tion fhpz'lvbpil for a suitable choice of the pilot bandwidths, h,; = 6.22 and b,; = 6.94.

The differences observed between the estimated density fh with h = 3.567 ob-
tained from sample X in Setup 1 (Figure 6.9) and the estimated density fp . b,
using samples Y and Z in Setup 2 (Figure 6.11) are due to the fact that the bias
mechanism, although similar, is not exactly equal. For the same reason, the esti-

mated mean from the density fj, i 1= 54.07, slightly differs from X = 48.57.

pilvb

Figure 6.12 shows the bootstrap mean squared error of the proposed estimator for
bandwidth selection in Setup 2. This figure provides the bandwidths that minimize
the M SE* and which will be used to estimate the mean age of COVID-19 pacients
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Figure 6.11: Estimated densities of the age of the positive cases identified by RENAVE
(dotted black line) with bp; = 6.94 and those who required hospitalization (dashed light

gray line) with hy; = 6.22 until May 11th, 2020, and resulting estimated density f (dashed
dark gray line).

Table 6.10 includes the values of the classical means, 62 year in the case of the
biased sample and 67.61 years in the twice biased sample. In this case, the difference
between the sample means is much smaller compared to that obtained in Setup 1.
This is due to the fact that in the first wave, many of the identified cases had severe
symptoms, requiring hospitalization many of them (46.6 %) and many others could
not be hospitalized due to the epidemic situation at that time. This table also shows
the values of the bootstrap bandwidth selectors and the estimated value 420" In
Setup 2, in which sample X is not observed, we would obtain an estimation of
/i = 53.84 years. Assuming that the true mean, p, is close to the value X = 48.57,
our estimation differs substantially from it but significantly improves those offered

by the classical estimators: Y = 62 and Z = 67.61 years.

Table 6.10: Comparison of the the mean age of the cases identified by RENAVE (Y') with
the mean age of those that required hospitalization (Z) and the proposed estimator ji for
the values h* and b* obtained in the bootstrap implementation for Setup 2.

Variable Y z h* b* ﬁlh*,b*
Age 62.00 67.61 9.18 13.57 53.84
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Figure 6.12: Bootstrap estimation of the mean squared error (MSE*) of the proposed
estimator for the mean of the age of COVID-19 pacients as a function of h and b in Setup
2. The red dot represents the minimal value of the MSE*.
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Chapter 7
Conclusion and further research

In Section 7.1 the main conclusions of the work developed in this thesis are included.
Section 7.2 contains some interesting challenges that remain as open problems. They

are considered to be dealt in the future.

7.1 Conclusion

In the era of big data, sampling bias is more present than before in statistical data
analysis. Testing for sampling bias is an extremely important issue in a big data
context. Several existing methods have been used to test for no sampling bias (i.e.
f =g in Setup 1 and g = m in Setup 2). Of course, the fact that N/n — oo makes

a difference with the classical asymptotic theory.

Assuming that our large-sized sample is coming from a distribution which is dif-
ferent from the one we are interested in, two setups are considered to correct for this
sampling bias. The first one assumes that another simple random sample (possibly
of small or moderate size) from the real population is available. The second setup
assumes that a doubly biased sample of small size is available. Both setups have
been studied in detail. Density-based estimators for the mean of a transformation
of the underlying population are proposed in both setups. The estimator in Setup
1 reduces to classical estimators (sample means of the transformation of either the
large-sized biased sample and the small-sized sample from the real population in
Setup 1) when using equal and extreme bandwidths. Similar comments apply to
Setup 2. Asymptotic properties and Monte Carlo simulations show the very good
performance of the proposed estimators and its rather stable behavior as a func-
tion of the two smoothing parameters needed. Moreover, both asymptotic theory

as well as simulations show that optimal bandwidths satisfy a non-standard limit
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condition, namely they tend to positive constants. This is a very striking condition
since implies inconsistency of the nonparametric density estimators. Anyhow, the
region for the bandwidths where the new estimator performs better than the sam-
ple means is rather wide. This makes the problem of bandwidth selection not so
critical. Bootstrap algorithms for bandwidth selection seems to work well in prac-
tice. Finally, several applications to real datasets show the good performance of the

methods proposed throughout this thesis.

7.2 Future work
The research carried out so far opens further interesting topics in the field:

e Half sampling devices could be useful when defining i to force independence
between the subsamples used for density estimation and those used for evalu-
ation of kernel estimators. Some loss of power of the methods is anticipated,

but the proofs for the asymptotic results would probably be simpler.

e Application of the methods proposed to the estimation of the variance-covari-
ance matrix and the correlation matrix. This would allow applying the results
to carry out principal component analysis (PCA) and linear discriminant anal-
ysis (LDA).

e Adaptation of the bootstrap algorithm to obtain the bandwidth selectors for

the estimation of the general parameter pi,.

e Extension of the methods proposed to the study of other type of variables,
such as the extension to categorical settings using, for instance, the estimators
proposed in Li & Racine (2003) or the extension to multidimensional X and

Y; including covariate dependence in the biasing weight.

e Adaptation of the proposed methods to the study of dependent samples of X
and Y, for example, considering X a subsample of Y obtained by an accep-

tance/rejection method.

e Developing an R package to apply the proposed statistical techniques to real

data sets.
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Appendix A

Appendix

A.1 Proofs of the results in Chapter 4

A.1.1 Proof of Lemma 4.2.1

Let us first remember the expressions of the estimators involved in Lemma 4.2.1:

N N ~
cny_ L o) 1 e e (V)
Y N L G ) TN a0 (43)
1 & o) 1 fn (V)
o hb N; Wb (Vi) _ N;U(YZ) v (Y3) 4
e A N ,
NZ iopp (1;) NZ: o (Y7)

Lemma 4.2.1. Consider two fized samples, X and Y, with sizes n and N, and equal
smoothing parameters, h = b. Then the extreme undersmoothing and oversmoothing
versions of the estimators in (4.3) and (4.4) is reduced as follows. If Condition A1
holds, then

hh—{go pt =Y, hh—>Holo it =Y.
Under Condition A2, and assuming there are no ties between any Y; and any Xj,
we have
lim ph™" =o0.

h—0+
Assuming there are mo ties in the union of the X and Y samples, Conditions A2,
A8 and A4 imply

lim [ﬂ’h’h = arg min min |y — X,|.
h—s0+ velVi Ynb i | il
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Finally, either assuming Condition A3 or A5 and defining by = (log N) /N we have

,&1 DNDN X A2 DNON ~ X

Proof. Starting from (4.3), straightforward calculations lead to

K (%5%)
Alhh
;Y;zw K (Y% -

Now, using Al, all the terms of the form K ($) have limit K(0) when h — oo.

Consequently,

1 N
Jim it Z Zz“ Ko NV

Parallel arguments can be used to prove that the denominator in (4.4) has limit 1

when h = b — oco. Thus limy,_,e0 42" hh =Y

To prove the second part of the lemma, recall that, using A2, all the terms of the
form K (a/h), with a # 0, in (A.1) have limit 0 when h — 0". As a consequence,
lim,_,o+ @Y™ = 0. Similarly, the limit of the denominator of (4.4) when h = b — 0%

127" we need to obtain the dominant

is also zero. So to study the limit behaviour of i
terms in the numerator and denominator in (4.4) when h = b. Its is very easy to

prove that the dominant term of (A.1) h — 0% is the same as the dominant term of

Ro s s ()

whose limit behaviour, in view of A2-A4, is the one of

bmin
K (1) Yo
nK(0)

where bpin = |Yi, — Xj,| = min B for the set B in A4. Parallel arguments show that
the limit behaviour of the denominator of (4.4) when h = b — 0% is the one of

bmin
K (%)
nK(0)
As a consequence,

lim >"" =Y, =arg min min |y — Xjl.

h—0+ ye{Yl,YN}je{l,ﬂ'L}
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~1,bn,

For the last part of the lemma, using (A.1) the estimator '?N*N can be ap-

proximated as follows

« (%)
A]_ ONON ZZ Ty 1/1 ~ ﬂlbe:bN (AQ)
] 1i=1 Z[ 1 ( NZ>

where

Y;— X>(YZ»—XJ»)

b N ZZ (

X, (A.3)
J Li=1 Ze 1 ( by )
Now, Condition A5 implies that
(s st Zz1 (%w ) j=1i=1 z=1K( %N')
Using this expression in (A.3) gives ‘ plbn by —Y} < by, which, together with
2,bn,bN

(A.2), implies abNN ~ gLONON ~ X In a similar way, the denominator of /i

in (4.4) can be proven to be approximately 1. Consequently 2NtV ~ X

When assuming Condition A3, the left-hand side of expression (A.4) can be
handled in the following way

n (Y X)(Yl—
ZZ K (5

if N is much larger than n. Consequently i~ *N ~ X and 2PN ~ X also when

1 n
~ — E min {|Y; — Xj|;i=1,...,N} ~0,
n 4

assuming Condition A3 and the lemma is proven. O

A.1.2 General weighted estimator in Subsection 4.2.3

Lemma A.1.1. The mean squared error of the estimator

= (A5)

18

b 00w - w0~ [ 10w - wiwa] swa. 0o
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Proof. The estimator in (A.5) can be expressed as the ratio:

~2,T @
v IELE
where
1 1
fip = 2 T(Ve(¥s) and 4§ = ()
i=1 i=1
So,
. ﬂT /:LT R R . ﬂ’T
T = = SE == 22 (g 1= ) — o = i — o + =2 (1 )
Ho Ko Ho
N M N ~ N
= [ — uv+%i(uo+1—u6)(1—u6)

Ho

iy .
= AT -+ AL )+H”(1—u6)2
0

= 1l = o+ e (L= 23) + (35 — po) (1= A3) + 15, (1 — f1)°
= A+B+C+D, (A7)

: NT NT nT NT ~2, NT
with A = A7 — 1, B =y (1 = i), C = (] — ) (1 = f15) and D = fiz”" (1 — (if)?,
where C' and D are negligible.

We now analyze the terms A and B:

E(A) = E(f,) — po = E((Y1)v(Y1)) — o, (A.8)
Var(4) = Var (i) = L2 (N) &), (A.9)
E(B) = pmE0—-y)=p [l —E(@)] =p[1—-E(T(1))], (A.10)
Var(B) = p2Var (1 i) = p2Var (i) = uV(N(Y” (A1)
Cov(A,B) = Cov(fiy — p, to (1 = f1))
= pCov (fiy, — pv, 1 — 1) = _MUCO'U , 40)
= —u,Cov (
1 N N
= Mvjvgjz:jzjc7 Vi), 7(Yj)
i=1 j=1
i N
= Vs > Cov (1(Yi)v(Y3), 7(Y3))

= —ECov (r(vi)o(v1), (M), (A.12)



A.1. Proofs of the results in Chapter 4 109

Using (A.7) and then (A.8)-(A.12) we have:

B (37 - m)”] = [BG) - )+ Var ()

~ [E(A)+ E(B))* + Var(A) + Var(B) + 2Cov(A, B)

= [BEOR)0) — it o [1— B ()]

b [Var (r(1)o(¥2)) + 2 Var (r(11)) — 2Cou (r(¥1)o(Y), 7(¥1))]
= [BEOD0) — ity — B (r(V))

£ Var (r(1)o(V0) + Var (nr(V)) — 2Cov (7(V)o(¥1), g7 (V)]

= [BMWI) B (FYD) + Var (r(o(Yi) — T ()
= B0 — m)) + 5 Var (V) () - m). (A13)
But
E(r()(e() = ) = [ 7)(0() - mu)(w)dy (A.14)

and

2

Var (r(Y1)(v(Y1) — ) =/ {T(y)(v(y)—uv)—/T(x)(v(x)—uv)g(x)dx] 9(y)dy.

(A.15)
As a consequence of (A.13), (A.14) and (A.15) we obtain (A.6). O
A.1.3 Proof of Theorem 4.2.1
Let us first state an auxiliary lemma:
Lemma 4.5.1. The difference i, — i, can be expressed as follows
N\ 2
L A(-B)
by —py =A+A(1—-B)+ —*-~ A 4.10
flo — ( ) 5 (4.10)
where
1K ()
A= — DV (0(Y) — 4.11
N 2 Gy ) ) (4.11)
and
S 1Y)
B=_% -2 4.12
N 2 9(Y3) (12
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Proof. Considering the estimator [ defined in (4.4), the difference fi, — p, can be

expressed as follows:

being A and B the terms defined in (4.11) and (4.12), respectively.

Intuitively B is a consistent estimator of
(L) - [ 190, _ .
= (15)) = [ et = [ foa=1, (A16)

so the most important term to study is ]1\, but for a final result, properties that
jointly consider A and B will be needed. For instance,
i i (s - A(1-B)
My — Ho 5 I3
~ ~ N 2
~ 1—B) ~ ~ o A(1—B)
— A+ ——=~(B+(1-B)) =4+ A(1-B)+ ——=—
B B
and this expression can be iterated as much as needed in terms of negligibility of

A

the term T for a suitable r € N.

o)
—

As a consequence of (A.16), we obtain (4.10).

The term A can be split in different terms:

221&4—22—23—244-257

where
i ;]i Ah(YZg)(E)f(E)(U(E)_Mv),
P ]bifm)(g;((x%));g(m(v(m—m,
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N - ‘ R B
A = Jbz(fh(iﬁ)—f(ig()i)f);(ﬁ) 9% vy — ),
=1 ?
~ 1 &AM (@) — g\
Ao = N;gm( %) ) (0(¥) = o)

Since the terms ﬁ4 and //1\5 have some factors of quadratic nature inside the sum
(ie. (fa(Yi) = f(Y2))(9(Yi) — g(Yi)) and (g5(Y:) — 9(Y7))?) they are negligible with
respect to other terms. Consequently,

A~ A+ Ay — A
Lemma 4.5.2. The expectation and variance of A can be approzimated by
E (Zx) ~ E (21) +E (/L) _E (23) , (4.13)
Var (4) = Var (4) +Var (42) + Var (4y)
+ 2C0v (21,22) —2Cow (21, 23> — 200 (EQ,Eg) o (414)

Proof. We may write some expression for the ratio fi,(Y;)/g5(Y;) involved in the
definition of A in (4.11):

i ) — f(Y0) | fu(¥h) (9(Y3) — gu(V3)
) o(¥)) %(Yi)( >

Applying similar techniques once more to the term f;,(Y;)/g5(Y;) in the right-

hand side of the previous expression gives:

)  f(YD) _ ) — fY3) | f(Y3) <9(Yi) —gb(Yi)>
w(Yi) 9(Yi) 9(Y7) 9(Y3) 9(Y3)

(Vi) = F(Y)\ (9Y0) = (YD) | fu(¥D) (9(¥2) — 3(¥2)
o (e ( )+ ( )

9(Yi) 9n(Y3)
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which can also be expressed as:

M) ) f) - f(G)  F(Y) (%(Yi) - g(i@))
aw(Yi)  g(Yi) ) 9(Y3) 9(Y3) g(Yi)A
o ((Y5) = F(Y)(9e(Ya) — g( ))+fh(Yi) <§b(lﬁ)—g(1€)>2
9(Y3)? a(Yi) 9(Y3)
The term A defined in (4.11) can be splitted in different terms:
2=K1+22—23—24+25,
where
A o= 2 o~ /() Y; A17
1 = N;g(iﬁ)(v( i) = M), (A.17)
N V) - f(Y)
Ay = N; o) (v(Y3) — ),
1N F) @) — g(v)
A3 = N; Z(K)Q (’U(YE)—MU),
s () — F00) (@(Y5) — 9(%0))
Ay = N; (V)2 (0(Y3) — ),
1N Al (V) — 9(Y)
Ao = N;gbm( S ) e =)

Since the terms @1 and 25 have some factors of quadratic nature inside the sum
(ie. (fa(Ye) = f(Y2)(9p(Y2) — (7)) and (gs(Y;) — 9(¥3))?) it is expected that one
could prove negligibility of this terms.

Thus we will consider
./21\ ~ //l\l + ./21\2 — A\g.
Since we want to obtain the mean and variance of }1\7 we proceed as shown in
(4.13) and (4.14). O

The proof of Theorem 4.2.1 proceeds by analyzing the expectations and variances

involved.

Lemma 4.5.3. The expectation OfA\ is

~ b2 bt
E ~ D— Dob? + D3b* — Dy— — D3—
(A4) 1Nb+ 2b° + D3 2N S

+  D4h* 4 Dsh* + O(b%) + O(hY), (4.15)



A.1. Proofs of the results in Chapter 4

113

where

with

£(h) = v L[

Dy = —”Q;K)/v(y)g”(y)dy,
Dy = -F 42(5) / v()g™ (y)dy
D= 28 [ sway
Dy = M [0 s
f(y)
(y) @(U(Z/)* v)

3 _ 1 > f(Y1)
i=1 Yi) - U)] N;E [9(Y1)( (Y1) — po)
f() _ [ i -
[Q(Yl)( ( 1)-%)] = | gy W)~ m)gly)dy
= [ vy =g [ £y = 1= =0

are identically distributed (but not independent) then

2=

E (Ez) -

Il
=

N 1 N
SLIES DL ) = EIE (m|%1)]

1=1 1
E(u(Y)I%) - J(¥1)
e >—uv>]

(K £)(¥) — F(12)
[ =T o) - m}
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_ /f(z) (/K(t)(v(z +ht) — uv)dt> i

_ /f(z) </ K(t)o(z + ht)dt) dz — i,

2
= /v(z)f(z)dz+ hM2(K)/’U”(Z)f(Z)dZ

2
4
b () / () f(2)dz + O(h) — iy
2 4
= L) / V() () + (K / WD) f(2)dz + O(H).  (A18)
Finally,
BAy) - 1iE[f<m<gb<m—g<m>( ) - )]
3 = Ni:1 g(Y})Q (AP L Mo
B SO @n(¥1) — 9(V1))
= | p (SO ) - i )
CFO)E (Y)Y — g(V1))
- o FER = i) - )
But since

N N
(Y1) = %ZKb(Yl -Y;) = (Kb(o) + ZKb(YI - Yé;))

L
; N
i=1 1=2
N
_ KO) N-1 1 : _K(O) N -1,
= Tt x N_ngb<m—n) =5 T % (),
we get
. _K0) N-—-1_r1.(-1 _K((0) N-1
E [gp(Y1)[Y1] = ~, Py E {Qb (Yl)’YI} = 1 T(Kb *g)(Y1).
Using this expression above we have:
K{0) N-1
o |5 T a0 - g
FE A =F Yi) — v
( 3) g<Y1)2 (U( 1) ,U)

/ f() (15\52) + %(Kb *9)(y) — g(y)>
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= Nb /f y) dy+/f( )(v(y) — po)dy

N1 / fy) [g(y) + M(;()b?g”(y) + ML(L!K) bW (y) + O(b°)

I (v(y) — po)dy

_ 2 "

+ — DY / f — p1y)dy + O(b9). (A.19)

From (A.18) and (A.19), since E(A) ~ E(A;) — E(A3), we get (4.15).

]
We now consider the terms in the right-hand side of (4.14):
Lemma 4.5.4. The variance of El 18
~ D6
Var (Al) = N
where
Do = [ Bwis
with )2
Y 2
B = v(y) — 1y~
() ) (v(y) = po)

Proof.

Ly [£00) L, [f()

vor (&) = X ver ) - m)] = gvar | E w0 - )]
1 f(n)? } < |:f(Y1) ])2
= —KF (Y1) — — | F v(Y; v
1
— /sy
L]
Lemma 4.5.5. The variance of 22 18
~ h? 4 h4 h
Var (A2> D7 + D8N + D9N n T D10; + DH; + DlQﬁ + D13m

h?2 h3 h6 ho h8 KA
D D Dig— +D 4.1
+ 45 + 1557, + 16 + 17N+O< )+O<Nn>’ (4.16)
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where
D7 = B(’UQ)_:U?M
Dg = —Dg— B(v?)+p2,
Dy = wl®?) [ 0w)ay
Dyg = pa(K)[B(v-v") = p,B(")],
2
i = P2 (g - Bwy) + 1) [y o) B0
2 " 2
D = LR IR ) — 2y - m?).
2 "
Dz = ”2<2K)/‘];((yy))(v(y)—uv)2dy,
Du = —m(K) [ / 0(u) " (v)dy + B(v v")—uvB@")},
D15 — :U’4 K2 /f(4 'uv)Qdy’
Dy = “2(24}5« o) = B BEW)
v 1) g, ) = B,
" (4)
Dy = 12 | /f (yg){y) W) (o) — 2y B(v”)B(v(4))],
where the operator B is defined by
- [ @ f@)ds
and
000 = L0 wlo)

Proof. In order to compute the variance of 21\2, let us rewrite the terms 7; as follows:

no= %Z il _gfg/j,)) — IO 4 v2) — o) = %an’
i=1 ’ =1

DY) — ), i=1,...,N;j=1,....,n.  (A.20)

Using (A.20), the variance of Ay can be written as

n

n N
VCLT ZZTIU N2n2 ZZZZCOU nzjankl (A'21)
=1

7,1]1 i=1 j=1 k=1
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Collecting all the equal terms in (A.21) gives:

-~ n—1 N -1
Var(As) = N Cov(mi,me) + N

1
Cov(n1,m21) + mVar(ml). (A.22)
We now work these covariance terms out:
Cov(m1,m2) = Cov(E (m1|Y1), E (m2|Y1)) + E [Cov(m, ma|¥1)].

But Cov(n11,m2/Y1) = 0, since
Kn(Y1 — Xq1) — f(V1)

1 = 91) (v(Y1) — o)
and
~ Kp(Y1 — Xo) — f(11) oY1) —
mz = 9(V1) (v(Y1) — po)

are conditionally independent on Y7 (because X; and Xy are independent).
On the other hand,

B = Eonap) = 20 I 0w) )
_ BiExG -Y)N] - () ey
= A (v(Y1) — pw)
_ e x f)() — f(N1) B
= o) (v(Y1) — ). (A.23)
Now

Cov(E (n1IY1), £ (m2[Y1)) = Var(E (Y1)

)
(Kn* f)(Y1) — f(Y1) 2
(L DI 03— |

{E <<Kh . f)g((i;))— IO (v, - M)f |

= b

with

E

(K * f)(V1) — f(Y1) 2
(F =T ) - ) ]

2
- / (F D=0 0y < ) ) gty

9(y)

_ / <<Kh*f>g<<y>)—f<y>> () — )2y

(NQ(QK) h2f"<y) + N4§f{) h4f(4)(y) + O<h6)>2
9(y) (

0(y) — pw)’dy
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2 " 2
= 2l [ LR )~ )y

pia (K ) pua(K) F ) D (y)
n 24;16/9@)(@@) — i) dy + O(h®)

and

[E ((Kh . f)g(é))_ IO (v MU)HQ

_ / (K= f)(y) — f(¥)
i 9(y)

2
(o(y) - mg(y)dy}
_ 2
= | [ = nw - 1) o) - MM

r 2
= | [ D - s - [ 1wt - mdy]

- (- -]
— :/f (/K v(z + ht) — uvdt> ]
_ _/f (/K z+ht)dt>dz—,%}

r7,2 4
= |G [V Er e+ fun) [ o6 + o)

_ “2(f> B (/ (z)f(z)dz>2

s 2B [ [ O+ o

Consequently:

Cov(mi,mz2) = Cov(E (mi1|Y1),E (m2|Y1)) = Var(E (n1|Y1))

- “2<f) pe ( [E - >dy—< / v"(Z)f(Z)dZ>2>
+ ( / I f(4) — ) dy

2

- / OO RUIBVE >dz) +O0S). (A.24)
Now we deal with the term Cov(n11,721) in (A.22):
Cov(mi,me1) = Cov(E (nm1|X1), E (n21|X1)) + E[Cov(ni, n21| X1)]

= Cov(E(mi|X1),E (n21|X1)),
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since C'ov(n11,m21|X1) = 0 because

Kn(Yh — X1) — f(11)
g(Y1)

mi = (v(Y1) — o)

and
Ky(Ys — X1) — f(Y2)
g(YZ) (U(Y'Q) - MU)

are conditionally independent given X (since Y; and Ys are independent). But

21 =

E(milX1) = E(nalX1) /Kh )—f(y)( (y) — o) g(y)dy

:/Kh - Xi1)( — o) dy — /f

= /K 0(X| + ht) — ) dt.

So,
Cov (E (mi1]|X1),E (n21|X1)) = Var (/ K(t)(v(X1 + ht) — ,LLU)dt>

~ Var ( / K(t)o(X, + ht)dt) |

On the one hand,

E [ / K(t)v(Xl—irht)dt] _ / < / K(t)v(x+ht)dt) f(2)dz

2

4
=+ %MQ(K) / V" () f(z)dx + %m(K) / oW (z) f(z)dx

6
+ %ouﬁ(m / v (2) f()dz + O(h®)

and consequently

(E [ / K(t)v(X; + ht)dt])z = 12 + R o (K) / V" () f(x)dx

4 2 4
N ZuxKF(/ﬁwmﬂme + Lo, [0 (@)
h6

+ g [ o0 @) @)z

6
b geB)u(E) [ V@ i@ds [ o 0@ @+ o). (425)
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On the other hand,

(/K X1+htdt) [//K 0(X1 + hs)K (H)u(X1 + ht)dsdt
- / < / / K(s)v(X1 + hs) K (£)v(X, +ht)dsdt> f(z)da

/ o) (@) + W2 (EF) / v(a)e"(2)  (2)da

4 4
4 pmlE) [v@)e® @) f@)ds + () [ @ fa)da

6
+ o) [ 0@ @) fa)da
6
4 gpram(K) V@ @) @)z + On). (A.26)

From (A.25) and (A.26), we obtain

Cov(nii,ne1) = Var (/ K(t)v(X1 + ht)dt) = B(v?) — i?

4
bR [B(o- ") — i BO")] + (K [B@) — B

4
4
b () [Bo- @) BO®)]
6
b i (K) [BO! @)~ BE)BW)]
6
b ot ne(K) [Bo o)~ BE©)] + 00, (A.27)

where the operator B is defined by

6) = / o) f(2)d

and in particular B(v) = p,.

We now examine the term Var(n1) in (A.22):
Var(mi) = Var[E(mu|X1)]+ E[Var(mi|Xi1)]

= Var < / K(t)v(X; + ht)dt) + E[Var(m|X1)],
since E (m1|X1) = [ K(t)(v(X1 + ht) — py)dt.
Now
Var(7711|X1) = (7]11’X1) [E (7711|X1)]

2
= 7711’X1 K(t)v(X1 + ht) dt—uv>
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and since

E [[E (mlyxl)ﬂ —E (/ K()o(X1 + ht)dt — “”)2]

_ B K / K(t)o(X) + ht)dt — E ( / K(t)o(X: + ht)dt)
VB ( / K(t)o(X, + ht)dt) - uv>2
~ Var < / K(t)o(X, + ht)dt> 4 (E ( / K(t)o(X, + ht)dt> - uu)2

we obtain

Var(mi) = Var </ K(t)v(X; + ht)dt> + E[Var(ni|X1)]

- Var </ K(t)v(X) + ht)dt> +E[E (n7]X1)]

~ Var < / K(t)o(X1 + ht)dt) _ <E ( / K(t)o(X) + ht)dt) _ MU>2
= E(nh) - (E (/ K(t)v(X, + ht)dt) — MU)Q

4
= BB ()] - (K BO + O(10)

2
E <<Kh(Y1 - Xl) — f(Yl) (’U(Y1> _ Mv)) ‘Y1>

= b g(Y1)

h4
— S(KPB") + ()

> [((Kh)2 « [)(Y1) — 2f (V) (K * f) (Y1) + f(V1)?
)2

(v(¥2) - W]
4

o
— (B + 00)
)

/(( 0 * )y) = 2f () K+ f)(y) + f(y)?
9(y)?

) (v(y) — 1o)g(y)dy

4

— (KB + 00)

_ /((Kh)Q*f)( y) = 2f (y) (K * )(y) + f(y)?

2
o) (v(y) = po)"dy

— TMQ(K)2B('I)”)2 + O(hY). (A.28)
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But,
(Kn)? = f)y) = [ (Kn)*(y—2)f(2)dz

Ky — ) f(2)dz = © / K(6)* f(y — ht)ds

|
= 1 s + 20z + 20 0y + 00
= 20U gy 220D gy o 0D 3 ) 1 o),

24
Now (A.28) becomes:

Vartn) = / ()" [“O(Kz)f(yHW(f)hf )+ P 30 1 0(09)

24
= 20) () + 250 ) + P )+ 00 )
b 000) - 1)y — (B 4+ 00
= (h )/0 dy—l—/,@’
b 10, [ 1 )> (o) = o Py = a2 [ 05" )
4)
+ “424 /f 2dy—“4‘1(5)}#/G(y)f(“)dy
- TNQ(KVB(U) +O0(h®). (A.29)

Now, using (A.24), (A.27) and (A.29) in (A.22) gives:
—~ n — 2 " 2
Var(d) = an [““f) ! ( [ ) = i ([ 15 )
)

+ ( / I ygf Oy — h)’dy
- /v”(z)f(z)dz/0(4)(2)]’(2)(12)]

+ N]\szl [B(v?) = p + h?pa(K) [B(v - v") — iy B(v")]
4
+ hZ#ﬂK)Q [B(v"?) = B(")?]
h4
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[ [ owa— [ s

2 "
el / P 0) oy ~ pation? / 0w)F" (4)dy

2
+ “4 K /f )2dy — f;()h4/9(y)f(4)dy
h4
— Z;@(K) B(v")? +O(h5)} . (A.30)
Shortening the expression (A.30), we obtain (4.16). O

Lemma 4.5.6. The variance of A\g 18

Var (A) = D L D Dt Dyt Dy 4 Dl
ar{Aaz ) = 18757 1977 2057 2182 27372 NN

1 1 1 b6 b2
+ D24NT()2+D25N73()+D26N3 + O + 0 , (4.17)

where
Dis = [ By,
D = 1) [ alig Wy + [+ 1000 - mts].

Dy = M) [ [awe®way+ [ v<4><y>f<y><v<y>—uv>dy}

k) [/ 5(y)g" (y)*dy — 4 </V(y)g”(y)dy>2

+ [ Y (W)9(y)dz + 2 / v(y)v”(y)g”(y)dy] :

Do = 2[uo(K?) + KO)] [ awis
Doy = —8/ﬂ(y)dy——8D18,
Das = pa(K)K(0) { [ sig @ity + [ 11" @y

— < / Y(y)g" (y)dy + / 7”(y)g(y)dy> ( / v(y)dyﬂ
i “2(52) [/ 5(y)g”(y)dy+/v(y)v"(y)dy} ,
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Dy = K(0)? [ / 5<y>dy—( / 'V(y)dy>2]7

Dy = =2 [mo(K?) +2K0)] [ aly)dy,
Do = 8/5(y)dy=8D187
with
o fy)? (1) — )2
L f(y)2 v B 2
é(y) = g(y)g( (y) — po)”.

Proof. To deal with the variance of 23 we first consider

) (a(Ys) —g(Yd) s
T = (V)2 (v(Yi) — o)
1 o (i KbY V) = g(Y) v 1l
NZ ¥y (o i)_ﬂv)—N;TU'

As a consequence, A3 can be written as
N N
~ 1
Az = 7N2 E E Tij-
i=1 j=1

To compute the variance of 23 we consider
R A ;| DX 1 XN
Va’f‘(Ag) = CO'U(Ag,Ag) :CO’U WZZTU’WZZTM

i=1 j=1 k=11=1
N
E COU(TZ‘j,Tkl).
,3,k,[=1

Thus, the variance of A\g can be written as:

~ N —1)(N -2 2(N —1)(N -2
Var(Asz) = ( ]2;3 )Cov(7'12,7'13) + ( ]\?g )COU(Tlg, T31)
N—-1)(N -2 N -1 N -1
( ]2,(5 )COU(T12,T32) + N3 Var(rma) (T12,T21)
2(N -1 2(N -1 1
+ %000(7127711) + %000(7127722) + mVar(nl). (A.31)

Lemmas A.1.2, A.1.3, A.1.4, A.1.5, A.1.6, A.1.7, A.1.8 and A.1.9 can be used in
(A.31) to conclude with the asymptotic expression (4.17). O
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Let’s deal with every one of these terms; but first, in order to save space, let us

write 7;; in a more compact form:
Tij = p(Y)(Kp(Y; = Y;) —g(Y3)), d,j=1,...,N

with

Lemma A.1.2. The covariance of T15 and T3 is

Cov(ra.ma) = M2(4K)2b4 [/ 5(y)g" (y)2dy — (/'y(y)g”(y)dy> 2]
+ Wfﬁ [ / 5(y)g" (v)9™ (v)dy
- ( / v(y)g”(y)dy> ( / v(y)g(“)(y)dy)] +0(%).  (A32)

Proof.
Cov(mia,113) = E[Cov(Ti2,13|Y1)] + Cov (E (112|Y1) , E (T13|Y1))
= Var (E(112[11)) = Var (¢(Y1) [(Kb * 9) (Y1) — 9(Y1)])
because
12 = (Y1) (Kp(Y1 — ¥2) — g(Y1))
and

713 = (Y1) (Kp(Y1 — Y3) — g(Y1))

are conditionally independent given Y; (so Cov(72,713|Y1) = 0) and

E(ri2lY1) = E(n3|Y1) = ¢oM1) [E[Ky(Y1 — Y2)|Y1] — g(Y1)]

= »(M) (K * g)(Y1) — g(11)] . (A.33)
Now
Cov(rizimia) = B (9(Y1)?[(Ky  9)(11) = 9(11)])
— (B (p(%) [(Ky * 9)(¥3) — g(V)DI
where

E (so(Yl)Q [(Ky * g) (Y1) — g(Yl)]Q) = /cp(y)2 (Kb +9)(y) — 9(y))* 9(y)dy
2
- / et |20 ) + M )b4g<4> () + 0(66)} o)y

_ IU’Q 64/(5 " )2d +/J‘2 b6/5 l/ dy+0(b8)
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and

E (oY1) [(Kp * g)(Y1) — 9(Y1)])
= / ()[<K)b2 "(y)+/m2(?b4g(4)(y)+0(bﬁ)] 9(y)dy

= 2B [ Wy + S0 [2w)g @iy +00). (430
Using these two expressions we obtain (A.32). O
Lemma A.1.3. The covariance of T2 and T31 is
CO’U(TH 7‘31) = MQ(QK) / ( ) /04
+ f b4/’y b4 (/fy dy) +0(%)
_ K bQ/Oé d +b4 |:,u4( )/ (y)g(4( )
K)? 2
+ (/7 y)dy — </v(y)g”(y)dy> )

Proof.

+0(b%). (A.35)

COU(Tlg,Tgl) = E[COU(T12,7'31|Y1)]+COU(E(7'12|}/1),E(7'31|Y1))
COU(E(T12|Y1),E(T31|Y1)).

We know that

E (m12|Y1) = (V1) [(Kp * 9) (Y1) — 9(Y1)]

and we can also deal with

E(mY1) = Elp(Ys)(Ky(Ys — Y1) —g(¥3))]

= /so(y) [Ki(y — Y1) — g(y)] 9(y)dy. (A.36)
Now
Cov(E(112|V1), E(131]Y1)) = E[E(112|Y1) E (131|Y1)]
— E[E(r2V1)] E[E (31]Y1)]
= E[E(r2N)E (t1|Y1)] — E(r12) E(731)
= E[E(m2[Y1) E (131|V1)] — [E(m12)]° .
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But since E (112]Y1) = (Y1) [(Kp * g)(Y1) — g(Y7)], equation (A.34) lead to:

B = L2 [ @iy + L5200 2wy + 00, (a3)
On the other hand, using the expression (A.36), we have:
E[E (112|Y1) E (131[Y1))]
= B [so(Yl) (Kb * g)(Y1) — g(Y1)] /w(y) [Ko(y — Y1) — g(y)] g(y)dy}

= /90(2) (K * 9)(2) — g(2)] (/ (y) [Kp(y — 2) —g(y)]g(y)dy) 9(z)dz
- / (2) [(Kp % 9)(2 9(y)dy — /w(y)g(y)Qdy] 9(2)dz

o601 | [ ot
S ECILTIE ( )dy) 9(2)dz
- ([ ewatvran (/ ) [(Ks ) - (]2

But
dy—/f )dy =0,

)
[etwatwras - [ 12w -

and
[ ety = 29y = [ o+ WK DG + vy
= 7(2)+ 'uz(;()bQ’y”(z) + 2(4 >b4 A D (2) + 019, (A.38)
and since

(K 0)(2) - a(2) = 2 p2g () 4 1D g ) o),

we conclude that

/1/4(K) b4g(4) (Z) + O(bﬁ)

BB (rolVh) B (71 )] = / o) 125 g ) + 1]

[ () + E2 oy o B ow%} o(2)dz

2
= 2By [y, 1 [ oton 29 Goz)a:
+ mf b4/cp dz+O(b6)
K

Al RUGYLIETE

+ b4 / v(z 2)dz 4+ O(b°). (A.39)
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Using (A.37) and (A.39) we get (A.35). O

Lemma A.1.4. The covariance of T2 and T3z is
Cou(riz,m) = [ By + malKOW [ ")) (0(0) ~ )iy

2
* M(f)* / 7" (v)*g(y)dy + ““f?lﬂ / YD) () (0(y) — )y

2 2
- M(f)b‘* (/v(y)g”(y)dy> +0(°). (A.40)

Proof.

Cov(ti2,132) = E [Cov(T12, T32|Y2)] + Cov (E (112|Y2) , E (132|Y2))
= Cov(E(112|Y2), E (132Y2)) = E [E (112]Y2) E (732]Y2)]
— E[E(m2Y2)] E[E (132|Y2)] = E[E (112[Y2) E (132|Y2)] — E(712) E(732)
= E[E(rulV) E (r2V2)] - [E(ra)] = E [[E (ral¥2)?| = [B(r2)]”

But
E(m2|Y2) = Elfp(Y1)(Ky(Y1 —Y2) —g(V1))] = /SO(Z»/) [Ky(y — Y2) — g(y)] 9(y)dy

and

E [[E (m|y2)]2] —E

(/ e(y) [Kp(y — Ya) — g(y)] g(y)dy) 2]

= b U/w(yl) (Kp(y1 — Ya) — g(1)) 9(y1)e(y2) (Kp(y2 — Y2)g(y2)) 9(y2)dyrdyo

-/ < [ eton) Gt =) - g(yn)g(yl)dyl)

</ o(y2) (Kp(y2 — 2) — g(yQ))g(yQ)dy2> o(2)dz
= / [/ o(y) (Kp(y — 2) — g(y))g(y)dyrg(z)d%

where
/«p(y) (Ko(y — 2) — 9(y)) g(y)dy = /@(y)Kb(y — 2)g(y)dy — /w(y)g(y)2dy
= [ ele+ K09l + )it~ [ Fw)0() ~ )y

_ 7(2)+M2(2K)b27”(z)+M42(f)b47(4)(z)+0(b6).



A.1. Proofs of the results in Chapter 4 129

So,

B (B (raVo)] = [2(Pg(e)dz + maKW [ 21" (2g(a)iz

s 22 [opepgeas + 000 [0 @) +00)

= [ B+ / ”(Z)f(Z)(v(Z)—uv)dZ

n “Q(f) b4/ '(2)2g(2)dz + b4/ Qe — w)dz + O().
Using now equation (A.37) for E(m) gives (A.40). 0

Lemma A.1.5. The variance of 119 is

2 2
Var(rma) = MO K / y)dy — /B (2K )6/5(y)gll(y)dy

- uz(K)52 [ g Wiy + o). (A1)

Proof. Let us consider

where

E(7'122)

Var(ri2) = E(th) — [E(m12))?,

E (le(V)(Ky(Yi — ¥2) — (V)]

//@(y)Q(Kb(y —2) — 9(¥))*9(y)g(2)dyd=

| [ etwr sty - 22ga(z v

2// V2 Ky (y — 2)%g(y)?g(2)dydz

[ [ ewratwoterava: = / c(wPo) ([ Kty - 2Pa(s) dy

/ 29() ( / Kily — )91 ) dy-+ [ oloat)*dy

/ LR )20y — b) dt) dy

/a(y)( K(t —btdt)dy+/6

uog@) [t + 25, s
# | ot

K2 | a(y)g”(y)dy — /5 (y)dy + O(b?). (A.42)

\V)

Using (A.37) and (A.42) we obtain (A.41). O
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Lemma A.1.6. The covariance of T2 and To1 is

Contriz, ) =0 [ aay 2 [ sy + 25 [y (a3
— (B [ I - ey + )63 [ @+ 0.
Proof. Let us now consider Cov(r12, 721 ):
Cov(ti2,721) = E(112721) — E(112)E(721) = E(119701) — [E(712)]%,

where

B(rizra) m)(Kbm Ya) — 9V (¥a) (KoY — Y1) — g(¥2))]
- / / — 9@l En(z — ) — 9(2))g ()9 (=)dydz

- //90 Wy — 2)°0(2)9(y)g(2)dyd=
- //SD(y)K”(y‘@ )9(y)g(=)2dyd=
- // YKy —2) dydz+// Vdyd:

— [ [ K= 2Prwnndz —2 [ [ Ky - )£ 0) - m)r(:)duds
+ </f — fby dy> =/7(y) (/Kb(y—Z) W(Z)dz> dy
= 2 [ )00 - ) ( / Kb<y—z>v<z>dz) ay. (A1)

The last integral in (A.44) has been dealt with in equation (A.38):

/ Ky — 2)y(2)dz = / K(z — y)1(2)d

= 2+ 22y 4 B0 4 0),

and consequently

YD) f W) (v(y) — po)dy + O1°). (A.45)
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On the other hand, the first integral in (A.44) is

/'v(y) </ Ky(y — Z)2V(Z)d2) dy = / </ ; — bt) dt> dy

= [ [Pl + £ 4 1100 )b3 1)+ 0 dy

24
2 2
- “O(bK)/a(y)der W(QK)b/v(y)v”(y)dy
+ M(zi(z)bg Y)W (y)dy + OFY). (A.46)

Now, using (A.45) and (A.46) in (A.44) we get

) = U7 [ iy [ stopay + 200 [

(KW / V) ) (o) — o)y + A ) / "y

- 1O [0 )0~ iy + O(b5). o

As a consequence of expression (A.37), we have:

B = "2 [ @ity + L5200 [ 299 )y +009)

Using the previous expression and expression (A.47), we have (A.43). O

Lemma A.1.7. The covariance of 112 and 111 s

Contris ) =PIV, T [ dy—</ o <>dy) (/ vway)]

- MQ(K) /() "(y)dy + 4 24 b3[/6 (A.48)
(4

N </7(y)g )(y)dy> </7(y)d'y>] B 2(4 )54/04(?;)9( ) (y)dy + O(b°).

Proof. Let’s deal now with the term:

Cov(ti2, 1) = Cov(E (m12/Y1), E (111|Y1)) + E [Cov(T12,T11|Y1)]
= Cov(E (p(V1)(Kp(Y1 —Ya) — g(Y1))|Y1) , 711)

since

= e (Y~ Y1) = 9) = o) (2 - 9() (A9

is a measurable function of Y; and then Cov(7i2,111|Y1) = 0.
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On the other hand,

Elp(Y1)(Kp(Y1 = Y2) —g(Y1)) V1] = @(Y1)(E(Kp(Y1 — Y2)[Y1) — g(Y1))
= (V1) [(Kp = g)(Y1) — g(Y1)].

Using the previous expressions we can obtain a simpler expression for Cov(112, T11):

Cov(raa, ) = B | 01) (8 2 )(¥1) = o) (1) (“12) = 91 ) |

- Bl (K 9) () ~ 90 E o) (12 - g )|

E
/sO(y)2 (Ky * 9)(y) — 9()) (KZ()O) — g(y)) 9(y)dy

- [0 [+ 0D [e 0wy + 00
[Kf)% o(V)] — E Wm} . (A-50)

o) (K2 9)w) — 90) (2~ g)) gy
/ b
= / o(y)? [“2(;{)62 "(y) + MZ(f)b‘lg“)(y) +0(bﬁ)}

(KS)) - g(y)> 9(y)dy = MQ(KQ)K(O)
S (QK) b? / a(y)g”(y)dy + wbg / ey

)g"(

- “42(f)b4 a(y)g™ (y)dy + O®°) (A.51)
and
B0 et -eboi) = 52 [owewis- [ 106 -
_ Kéo) / ~(y)dy. (A.52)

Using (A.51) and (A.52) in (A.50) we get (A.48). O
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Lemma A.1.8. The covariance of T2 and Tog is

Cov(T12,T22) = Kl()o)/a(y)dy— /ﬁ(y)der M(K;K(O)b [/V(y)v”(y)dy

- V' (y)g(y)dy Ty | - 22502 () 1) 00) — o)y
(frws) ( frw)] -2

+ “4(K2)4K(0) b [/7(9)’7(4)(9)@ - (/ 7(4)(y)g(y)dy> : </V(?J)d9>]

- [0 1) o) — o)y + O0) (A53)
Proof.
CO?}(Tlg, 7'22) = COU (E (7—12‘Y2) ,E (TQQD/Q)) + E [COU(TIQ, TQQ’YQ)]

= Cov(E(p(M)(Kp(Y1 = Y2) — g(V1))[Y2) , 722) ,

since C'ov(T12, T22|Y2) = 0 (because To3 is a measurable function of Y3).
On the other hand,

Elp(Y1)(Kp(Y1 = Ya2) — g(Y1))|Ya] = E[p(Y1)Kp(Y1 — Y2)|Ya] — E [y(Y1)[Y2]

— / o) Kn(y — Ya)g(y)dy — E[(¥1)] = / () Ky (Ya — y)dy

- / F@) @) — mo)dy = (v K3) (Ya).

Using the previous expressions and 722 = ¢(Y2) <K[()0) - g(Yg)), we have:
K(0)
Cov(1i2,722) = Cov | (v Kp)(Ya), p(Y2) — 9(Y3)

= B[ re) (52 - g0

- Bl ) E o) (0 - g0 |. (s
where
B |t ) e0) (57 - 900 )| = [rs ko) (52 - o)) sty
with
(KN = [2@Kul - 2z = [y - KD

= )+ 2 )+ P ) 1 00,
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Consequently,

E {(7 * K3)(Y2)p(Y2) (KISO) - g%))] = /v(y)w(y) (KZEO) = g(y)> 9(y)dy

+ M(QK)bQ/’(y (KZ()O—Q )g
+ “42( b4/ @) )(KZ()O—Q )) (y)dy + O(b°)
= Kéo) /a y)dy — /ﬁ y)dy + M(;()b/v(y)v”(y)dy
- “2<2K>b2 [ @rwie >—uv>dy+“4(@f“”b3 [ way
- [ ~ i)y + O) (A.55)
and
E[(y* Kp)(Ya)] /’Y*Kb dy—/’y( )9y )dy+m<2mbz/v”(y)g(y)dy
+ b4/7(4) y)dy + O(b°) = /f — wp)dy
+ 2 bz/v )b4/ D(y)g(y)dy + 0 (1°)
e @M@@+“ﬁ“f/<kmww+oW> (A.56)

The last factor in (A.54) is exactly the same as the equation (A.52). Now, using
(A.55), (A.56) and (A.52) in (A.54) results in (A.53). O

Lemma A.1.9. The variance of 111 is

Varry) = O [ Jawar- ([ w(y)dyﬂ
2K (0)

(y)dy + / B(y)dy. (A57)

Proof. Let us consider
Var(ri) = E(riy) — E(mu)?,

where the last term can be directly obtained from equation (A.52):

E(m)* = {E (sa(Yl) (KIEO) - g(H)))} 2 = Kff;)z </7(y)dy)2. (A.58)
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For the term E(72) we use the expression (A.49) for 717 to get:

sty = £ foo? (KO g}
- KISS)ZE[@m)?]—ngO) E[5(4)] + B [a(11)]
_ K£8)2/5(y)dy b( / dy+/ﬁ . (A59)
Using (A.58) and (A.59) we obtain (A.57). O

We will proceed now with the covariance terms in (4.14).

Lemma 4.5.7. The covariance between Xl and A\g 18

Cov (21,22) _ D27i]i+D28}§+O<}]i>, (4.18)
where
Do7 = M(QK)/H(Z/)J”"(y)dy,
Do = 8 Lo 10y
Proof. Let us define
o= L)~ )

Let us first consider Cov(Ay, Ay):

Cov(Ay, A3) = Cov

3

1
Cov(w;, njk) = 700'”("‘/177711% (A.60)

IIMZ ||M2

1
N
| &
:NTZ:

since Cov(w;, n;r) = 0 for i # j because w; and 7)), are independent for i # j.
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On the other hand,

Cov(wr,m1) = Cov <fy(y1)’ Kp(M1 — X1) — f(V1)

(ov1) = )

g(Y1)
- Bgi (Kn(Yi — X1) — f(Y1)) (v(Y1) — W]

= Elph) (K11 —Xl) —f(Yl))(U( Y1) = )l

since

E(y(11)) = / ()9 (y)dy = / F@) @) — ) = 0

and
t [Kh(YI _ggfll))_ T () - uv)]
_ 5 E [Kh(yl _gg/ll))_ ) (v, - ,uv)|Y1:|:|
- E e _9)((31/1))|Y1] - f(Yl)(U(Yl) - uv)]
= [T ) ety

= /(Kh*f)(y)(yu dy/f )(v(y) — po)dy

— /(/Kh —2) > v(y) — po)dy
_ /f </K v(z + ht) — uv)dt>dz
_ /fz</Ktvz+ht)dt)dz—uv

4
= ) [ feds + ) [ p)az + 00,
2 24

Thus:

B (7)) E [Kh(yl - X1) - f(M)

w0 - )] <o
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Consequently,

Cov(wi,mi1) = Elp(V1) (Ka(Y1 = X1) = f(V1)) (v(Y1) = )]
EEp(Y1) (Kn(Y1 — X1) — f(Y1)) (v(Y1) = p)[Y1]]
ElpM) (E[Kn(Y1 — X1)1] = f(1)) (0(Y1) = )]
E (1) (Kn + f)(Y1) = f(1)) (0(Y1) = po)]

= /w(y)((Kh*f)(y) FW) (w(y) — po)g(y)dy
/

() <u2(2)h2f”(y) +
= 2 [ )0 - m)dy
+ ——h /v(y)f(4)(y)(v(y) — po)dy + O(h®).

MO )+ 00) (o) — o)

Using the previous expression in (A.60) gives (4.18). O

Lemma 4.5.8. The covariance between ﬁl and 23 18

1 b?
D3p—+ + D31— + D32—
+ 30N2b+ 31372 + 32757

bt b2 b
+ D33N+O< >+O<N> (4.19)

Doy = /ﬁ(y)dyz Dag,

where

D = KO [aly)dy,

D = -2 [ Bly)dy = ~2Dss

D3y = “Z;K) [ / a(y)g” (y)dy + / V(W) f ) (v(y) —uv)dy} :
D33 = méf) [/a(y)g(4)(y)dy+/7(4)(y)f(y)(v(y) —uv)dy} :

Proof. Let us now consider Cov(Ay, As):

N N N
~ 1
C’ov(Al,Ag =Cov ( Zw“ N2 ZZTJk) =33 ZZZCov(wi,Tjk)
J=1 k=1 i=1 j=1 k=1
N-1
= Cov(wy, T12) +

1
e mCov(wl,ﬁl), (A.61)

since wy and 793 are independent and w; and 79 are also independent.

-1
Cov(wy, T91) +
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Let us study now the terms in (A.61):
Cov(wy, T12) = E[Cov(wi, 112|Y1)] + Cov(E (w1 Y1), E(112]Y1)).
But Cov(wy, 12]Y1) = 0 since wy is a function of Y7, E(w1]Y7) = w1 = (Y1), and

E(ri2[Y1) = Ep(Y1) (Kp(Y1 — Y2) — g(Y1)) [Y1]
= o) (E[Ky(Y1 — Y2)[Y1] — g(V1)) = (V1) ((Kp * g) (Y1) — g(V1))

E(w) = E((11)) = / () (y)dy = / F)wy) -

Cov(wy, T12) = Cov(E(w1|Y1), E(112|Y1)) = E [E(w1[Y1) E(712|Y1)]
- E[E (wlle)] [E(112]Y1)] = E (w1 E(112[Y1)] — E(w1)E(712)
= E[y(Y1)e(Y; )((Kb*g)(Yl) 9(11))]

- /5 (K3 % 9)(v) — (u)) 9(u)dy

= / a(y) <(2K) b’g"(y) + M;f) bt (y) + 0(66)> dy

= 22058 [ag Wy + M [l w000 (a6

and

Thus

Now consider

Cov(wi,m21) = E [Cov(wi, 721|Y1)] + Cov(E(wi|Y1), E(121|Y1))
= Cov(wl, E(T21|Y1)) =F [le(Tm’Yl)] — E(wl)E [E(7‘21|Y1)]
= E[w1E<7‘21‘Y1)].

But
B(ml¥i) = E [(¥2) (o(¥2 ~ Y1) ~ 9(42)) ] = [ (0) (Koo~ Y2) = 9(0)) o)y
Thus
Cov(wy, T21) = /7(2) (/ e(y) (Ko(y — 2) — 9(y)) g(y)dy> 9(z)dz
= [ [t 2) - 5010}z — iy

- / / Koy — 201() f(2)(0(2) — o) dydz

- / / F@) @) — ) F(2) (0(2) — po)dydz, (A.63)
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//f () — dydz—[/f —p)dy| =0 (A64)
//Kb —2)y (v(2) — po)dydz

_ /(/K V(x4 b)) F(2)(0(2) — pro)d=
-/ <v<z>+’“‘2<2K)b%”<z> all) s <><>+0<b6>) FE(E) — poz — )
:/5 d+“2(2Kb2 7( ) dz
+ B [0 e 0) - s+ 008). (A.65)
Using (A.64) and (A.65) in (A.63) we get:
Cov(wr, To1) /5 )dy +’“‘2 bQ/'y 110)dy
+ I [0 00 -y + 0. (4.66)
The last term in (A.61) is:

COU(wl,TH) =F (w17'11) — E(wl)E(nl) =F (wlTﬂ)

= E[yM)eM) (Ky(Y1 — Y1) —g(11))] = /'Y(y)@(y) (K(0) — g(v)) 9(v)dy

= [ (5~ at0) ar="" [atar— [ s (A.67)

Using (A.62), (A.66) and (A.67) in (A.61) gives (4.19). O

Lemma 4.5.9. The covariance between Eg and A\g 18

~ o~ h? h2v? ht hiv? h2pt
Cov <A27A3) D34 + D3s—— i + D3g— N + D37 —— N + D3g—— N
h? h2 ht ht h2v? h6
—— +Dyg—= + Dy1— +Dyo— + D
+ D39N2b+ 10z T Paiqry + Dazgg + Das— +0<N>

h2b5 hibt RS h2b? hib?
— — ], (42
+ O(N>+O<N>+O<N26>+O<N2>+O<N2>’( 0)
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where
b D
Da = L o)) Wy + [ 7600000 - iy
- / v"( ) )y / +(y) <>dy]
D3 = (4)
Dy = “Q(Kig ’[ / o) V)" Wy + [ SO W) )y
- 2 / v () f(y)dy / W)y (y)dy| ,
Das = PR L) gD man+ [ 160000 - wdy
~ 2 / V()1 (9)dy / 19D w)dy| .
Dy = MUK [ —/v”(y)f(y)dy/v(y)dy],
Do = —pa(K / 0(y) " (y)dy = —2Ds,
Dy = [/p )dy — /(4)(y)f(y)dy/v(y)dy]7
Diy = / )19 (y)dy = —2Dss,
Dys = —D35.

Proof. Let us consider COU(A\Q, A\g)i

N n N N
CO’U(A\Q,Ag COU( 1nzznlJ’NLZZ )

i=1 j=1 =11=1
| N NN
= WZZ > Cov(nij, i)
i=1 j=1 k=1 =1
N -1 1
= 32 Cov(n11, T12) (77117721)+m00v(7711,7'11)7 (A.68)

since 111 only depends on Y7 and X; and 7o3 only depends on Ys and Y3, then 71

and 7o3 are independent. Similiarly 7711 and 792 are also independent. Consequently:

Cov(nii,m3) =0 and Cov(m,m2) = 0.
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Let us now consider the three terms in (A.68):

Cov(mi,mi2) = E[Cov(mi,12|Y1)] + Cov(E(m1]Y1), E(T12|Y1))
= Cov(E(n1|Y1), E(T12|Y1)),

since Cov(n11,T12|Y1) = 0 because 111 and 712 are conditionally independent given
Y1 (m11 is only function of Y7 and X7, 719 is only function of Y; and Y and X; and
Y> are independent).

On the other hand, using expressions (A.23) and (A.33), we have:

Cov(ni1, m12) = Cov (E(m1|Y1), E(12|Y1))

_ Cov (<Kh +f Lg;f)‘ TOU (v2) = ), (V1) (Ko % 9) (V1) — gm»)

p (DO =IO 33) — o) (8 9) ) - 00
— E(m)E(m2) (A.69)

= Elo(M) [(Kn* )(V1) = FY)] (Kb * 9) (Y1) — g(Y)]] = E(11) E(712),

where
_ W) ey oy = W) e
The first term in (A.69) is

Elo(1) [(Kn x f)(Y1) - ()H(Kb*g)(Yl) 9(Y1)]]

_ / o(y) [(Kn * )(y) — F)] (K * 9)(y) — 9(v)] 9(y)dy
-/ a<y>[ >+“4(K)h4f<4><y>+0<h6>]

[N2(2K 62 // )b4 ()( )+O(66):| g(y)dy
o / o) ()9 ()
w2 et [ o) g )y + 102 [ o)1) )y
+  O(h5b?) + O(h**) + O(R%Y), (A.70)

where
f(y)
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On the other hand, since

(K= [)(Y1) = f(11)
9(Y1)
h2 4

= ) [@ 1@+ G [ oD@+ ow)

E(m) = E[E(mv)] —E[ (vm)—m}

and

E(m2) = ”2(2[() b’ / v()g" (y)dy + Méf) bt / () g™ (y)dy + O(°),

the second term in (A.69) is
2
B B(rm) = 2022 [ sty [0 Wy
v 22U it [ rwnay [0 whay (A7)
e [ W0 )y [0 )| + 0K+ 0t + O,
Plugging (A.70) and (A.71) into (A.69) leads to:

Cov(mi,2) = M(f)th [ / p() 1" ()g" (y)dy — / v (y) f(y)dy / v(y)g”(y)dy}

+ ’Q(I(igm [h264 < / P " ()9 (y)dy — / V"(y)f (y)dy / v(y)g(4)(y)dy>

+ ( / p() f D (y)g" (y)dy — / v (y) fy)dy / v(y)g”(y)dyﬂ + O(h%?)
+  O(R*b?) + O(R*9). (A.72)

Let’s deal now with the term Cov(n;1,721) in (A.68):
Cov(mi,m1) = E(mimo) — E(mi)E(m21) = E(maim21) — E(mi) E(i2),

since E(Tlg) = E(Tgl).

Thus, using that 791 is a function of only Y7 and Y5 we get:

Cov(mi,m1) = E(nuimi) — E(mi)E(mi2) = E[E(mim1|Y1,Y2)] — E(m)E(112)
= E[E(m|Y1,Y2)721] — E(n1) E(712)
= E[E(m|Y1)ra] — E(mi)E(Ti2), (A.73)

since 711 is independent of Y5.
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Using once more the expression (A.23) for E(n1|Y1), we have:
B (BmYi)m
— | S EDZIO0 033) — p)otra) (30 - Th) - 9(042)
— 5| IO 0w - )ermre - vi)
- | B IO ) )| (A.74)
Let us consider the two terms in (A.74):
p|Er = f“ﬁNwY>— DeRELT: - )]
= // i f) mELL v(y) = 1) p(2) K (2 — y)g(y)g(2)dydz
- /«Kmﬁxw—fwmwm—uw(/vwmuz—ww)@
= (@ ) = £~ ) ([ -+ 0K @)t ) a
= [ 6 = 1)) - ) () + 2 )
+ 1 00) +0) ) dy
= [ (P M) + 00 (v0) - )
(2000 + 25020 + P 0 + 00 ) ay
= 2B [ow) s ay+ “ﬁf)h‘* [ 059 w)ay (A75)
¥ ““f W / P W) (0(w) — o)y
+ K Ho{B)pa () oy / £ )y (y 1) dy
= B ~ )y

- O(h6) +O(h'vY) + 0O h2b6)
The second term in (A.74) is:

(Kn* f)(Y1) — f(Y1)
E[ h 9(1;1) 1(v(Y1)—uu)7(Y2)]

(E DY) — f()
- E[ o(11)

uwn—mﬂEmnﬂzm
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Ey(Yz)] = / dy—/f — fiy)dy = 0.

Plugging equation (A.75) and (A.71) into (A.73) gives:

since

Coulim,m1) Mh? [0y + 500 [ o) )y
T h2b2 { / )y ( — pw)dy
- / )Wy [+ <y>g"<y>dy]
Gy e [/ P W) () — )y
- / Y)Wy [ sy >dy]
o p2EOm(R) [ / FY@)Y (W) (v(y) — po)dy
-/ v<4><y>f<y>dy [y
+  O(h%) + O(h*b*) + O(R%b°). (A.76)
We finally deal with the last term in (A.68):
Covtmiim) = Elmiri) - Enn)E(r)

where the first term is

E(nuimi1) = E[E(nu|Y1)111]
p [ D) - 106)

(o(¥:) — >¢<m><Kb<0>—g<m>>}

g(Y1)
_ [EHW) =T K(0)
= [T ) — ot (2 - 90 ) st
= [ ) = £0t (52 ) o

)

= [ (P e+ i)+ o) ) o) (12 - ot ) ay

2
= m(KgK(O)};/ (v) - HQ(QK)h2/0(y)f”(y)dy

4 6
+ “4(I(QLK(O)Z/p(y)f(4)(y) y — ) /H(y)f“)(y)derO (hb>
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and the second one

2 4
E(nn)E(r) = <h2m<K) / v”(y)f(y)dy+%u4(K> / 0@ (y) f(y)dy+0(h6))
2
(Kéo)/%y)dy) = W}Z/v”(y)f(y)dy/v(y)dy

4 6
+ RO 0wt [way+o (%)

Consequently:

Cov(mi, ) =

- M(K)h‘l/G(y FD(y)dy + O (f) . (A.77)
We now plug (A.72), (A.76) and (A.77) into (A.68) to obtain (4.20). O

Lemma 4.5.10. The variance ofg is

Var (ﬁ) ~ D7% + Dgﬁ — 4D6$ + D%% + Dgﬁ + D44Nl?b + D24N§b2
+ Dzsj\;bQDrsgAf;zb2D41]\};;)+D10}:+D11}:+D12§$
+ D45(;3 - 2D:’)5h]2\7b2 - 2D37hj\fb2 - 2D3>8h]2\[b4 + DlgNin + D14]}\l;
+ D15]€1+D23]\I;2+4D27§; +4D28]]\1;2+2D35}i;)22+0 <f;6>
o3 o) () o(8) o)
being
Du = 2um(k?) [awy

Dys = MQ(f)Q [/ 3(y)g" (y)?dy — 4 (/’Y(y)g"(y)dy>2

s [ w2 [ v(y)v”(y)g"(y)dy} .

Proof. Consequence of Lemmas 4.5.2, 4.5.4, 4.5.5, 4.5.6, 4.5.7, 4.5.8 and 4.5.9. O
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Theorem 4.2.1. Under the classical conditions on the bandwiths and the sample
sizes, i.e. h — 0, b — 0, nh — oo, Nb — o0 and N/n — oo, if Conditions A1, A6

and A7 are fulfilled, then the asymptotic mean squared error of [i, is

Nb
Cs  Coh? | Cih? | Cuht | Cioh?h?
N n TN TN TN

C 2
AMSE (i) = <C'1b2++03h2> t N TN Nk

_|_

where the first three terms come from the squared bias and the rest of them from the
variance of the estimator. The constants Cy, ..., Cio are defined in the sketch of the
proofs (Subsection 4.5.1).

Proof. Consequence of Lemmas 4.5.3 and 4.5.10, considering Cy := Do, Cs := D1,
C3 := Dy, Cy := D7, C5 := Dg, C4 :== —4Dg, C7 := Dy, Cg := Dyy, Cy := Dy,
Cl() = —2D39, CH = D12 and 012 = —2D35. ]

A.1.4 Proof of Theorem 4.2.2
Using Lemma 4.5.1, in this case A can be expressed as:
A=A+ A5 — A — AL+ AL

where

oo 1 (Yi) = (Kn* f)(Yi) , +,
2 = NZ : (Kb*g;(ﬁ) (v(Y3) = po),

. 1 XL (K, = : K

A;, _ N;( h f)( ()I((big))(ngb g)( ))(U(Yi)—,uv),

- 1 X (fu(Y;) — (K * Ky * 9)(Y;

B e N;(n( ) — (K, J(f;éb:;()(;)) (Ko 9)0D) (0,
L TR W) (V) — (K% 9) (Vi)

A = N;gm( g ) 00 =

being EZ and E; negligible terms. Thus we will consider
A* = AT+ A — AS.

The proof of Theorem 4.2.2 follows parallel lines to that of Theorem 4.2.1.
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Lemma A.1.10. The expectation and variance of A* are
E(A47) = B(&%)+B(4;) - B (4), (A.78)
Var (A\*> = Var (fﬁ) +Var (21\;) + Var (A\i;)
+ 2C0v (E{,E;) — 2Cou (2*;,@;) — 2Cou (2’5,2;;) . (A79)

Proof. We may write some expression for the ratio th(YZ)
9(Y3)
fn(Y7) _ fn(Y7) ( 9 (Y2) L1 9 (Y2) )
(i) g(Yi) \ (K g)(Y5) (Ky+9)(Yi) )’

which gives:

fn(¥7) _ Fn(Y7) n fn(¥7) <(Kb*9)(Yz‘) —Qb(Yi)>
(Vi)  (Kpxg)(Yi) (Vi) (K * g)(Y3) '

As a consequence,

YD) (Enx V)  fu(Ys) = (K = f)(V5) +fh<Yi> ((ng)(l@)—gbm))
) (K x g)(Y3) '

W) (EKyxg)(Yi) (Kpxg)(Yi) a(Y;
i (Y5)
Gp(Y3)

Applying similar techniques once more to the term in the right-hand side

of the previous expression gives:

YD) (K= YD) fa(¥5) — (K = (V)

w(Yi)  (Kpxg)(Yi) (Kp * g)(Y3)
. (Kp + f)(Y5) ((Kb*g)(yi) —fib(Yi)>
(Kp * g)(Y3) (Ky * g)(Y3)
(50 = (En s )Y ((Kb xg)(Yi) — gbm)
(Kb * g)(Y3) (Kb * g)(Y3)
fn(Y7) <(Kb*9)(Yi) —Qb(Yz‘)>2
a(Y3) (Kp * g9)(Yi)

which can also be expressed as:

) (Kax HY)  _ fa(Yi) = (Knx ))(Y)
wYi) (Kpxg)(Yi) (Ky * g)(Y7)
(K x (V) (f]b(Yi) — (K * 9)(Yi))
(Ky * g)(Y7) (Ky * g)(Y7)
(fn(Ys) = (K * £) (Vi) (9(Y) — (Kb * g)(Y3))
(Ky * 9)(Y3)?
Fa(Y:) (gm — (K% g)(Yi))z
g(Yi) (Kb + g)(Yi) .

_|_

(A.80)
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Using (A.80) in the definition of A (expression (4.11)) gives:

A= Af 4+ A5 — A — A% + A,

where

7 i(Kh*f)()(v(y)— ) (A.81)

LN L By gy T |
N ; .

Ay e >0 BB D0 ), (A52)
i=1 ’
N

A NZ (K * f)( (>I((big))(1ﬁ)(§b*g)( ))(U(YQ)—M@)’ (A.83)

@
Il
i

(fn(Y) = (B = £) (Y1) (§6(Ys) — (Kb * 9) (V) L
(Kp * g)(Yi)? (v(Y;) — 1), (A.84)

f () (YD) — (Ko 9)(1)

)

Il
2]~
.MZ

@
I
—

&

Il
=)=
||M2

Since the terms ﬁj‘l and /Tg have some factors of quadratic nature inside the sum
(ie. (fu(Y) = (Kn* f)(Y3)(96(Y) — (Kp  g)(Y3)) and (g5(Y;) — (Kp * g)(Vi))?) it is
expected that applying results of the type by Mack & Silverman (1982) one could
prove negligibility of the terms (A.84) and (A.85).

Thus we will consider
A= A+ A — A3

Since we want to obtain the mean and variance of ﬁ*, we proceed as shown in (A.78)
and (A.79). O

We now consider the terms in the right-hand side of (A.78).
Lemma 4.5.11. The expectation of A* s
ns * * 1
where

D = / + (4)g(y)dy,

D; = Di- Kéo)/sa*(y)g(y)dy,
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with
* (Kh * )W)
T Ry g T
* (Kn * )()
oW = R W )
Proof.
)~ Ly [Ee N
1 N (Kp * f)(Y1) B B (K # [)(Y1)
RS B w0 - )| = B | G ) = )
(5 * )(w) o
/ (Kb*g)(y)( (y) = po)g(y)dy = D7 (A.86)

_ Fn(Y7) — (K = £)(Y7)
(K * 9)(Y3)

fori=1,2,..., N, are identical distributed (but not independent!!) then

N 1 &
E (43) =N 2 ) = 5 B =

(v(Yi) = p),

E(f(Y1)|Y1) — (K5, = [)(Y1)
(Kp*g)(Y1)

B (Kp* f)(Y1) — (Kp x f)(Y1) (V) — B

- E[ ra)y ) “”)} =0

Emy) = EEMmYN))=FE

(U(YI) - Nv)]

As a consequence,

E (2’5) = E(n}) =0. (A.87)
In view of (A.78),
. _<Kh * f)(ﬂ()}((ibg;m )gcb D) oy m]
. E ((Kh - f)(ﬁ()}({g:f;)(};lg@ D) iy W,Yl)]
[ f)(m)(fz;}[g:fg;’é]); (Ko 9)01) ( ys m} |
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But since

1 1 N
B) = YK -Y) = (Kb<o> Y A m)
=1

1=2

_ fiv(g) + N]; 1N1_ - ZKb Yi—Y;) = I%Z)HN]; L),
we get
Bl = S0 Vg i myw] = B0 Mol g ),

Using this expression above we have:

n Ky * Y\ (v(Y7) — .
E(A3) = E[( h {l)f(b:c]()(gfll))? o)

<I§v(2) n %(Kb ¥ 9)(V1) — (K * 9)(V3 ))}

_ (Kp = /) (Y1) (oY1) — po) (K(0) 1 .
- E[ (K * g)(11)?2 <Nb N(Kb 9)(Y1)>]

[ e (50 o)

_ K(O)/ (K * ()

5 (V(Y) — o)g(y)dy

(K = g)(y)
Kh * f 1
_ Y =_Di—. A.
N & 7o) — )9(y)dy = —Dy— (A.88)
From (A.86), (A.87) and (A.88), we obtain (4.21). O

We now consider the terms in the right-hand side of (A.79):

Lemma 4.5.12. The variance of g’{ 8

~\ _ D3
Var <A1> - 3, (4.22)
where
Dj =/a*(y)g( )dy — D}?
with
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Proof
var () = % i:; Var [m(v(m - Mv)}
e [
= Vo |G ) - )
- LR
- (B[RS em) - m])g}
= BB ) sty
- ([ e - mg(y)dy)Q} .
Shortening the previous expression, we obtain (4.22). 0

Lemma 4.5.13. The variance of A\E 18

-~ 1 1

where

. Kuly— 2) : :
pi = [ ([ St - sy~ [+ stan) £z
Dy o= [UDO ) gty [ o oty -

(Kb * 9)(y)?
Proof. In order to compute the variance of E;, let us rewrite the terms ;" as follows:
" fu(Y2) = (K * £)(V2)
;= v(Y:) — po
" Korgv) 007

%Z Kn(Yi — X5) — (Kp * £)(Y3)
j=1

) (Kp * 9)(Y7) (v(Y3) — pw)
1 & Ky ( K% )Y, 1 *
— ;Z n(Yi Kb*g)((Yh) F)( )(v(Yi)—Mv):nZ%
7j=1

with
Kn(Ys — X;) — (Kn x f)(Y3)

i = & = 9) (V)

(v(Yi) = po), (A.89)
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fori=1,...,N;5=1,...,n.

Now, using (A.89), A} can be written as

n

N
Ay = — Zzn;;. (A.90)
=1 j=1

Thus,

n n

N N
Var(A3) N2n2 Z Z Cov(n;;, Mr1)- (A.91)
i=1 j=1 k=1 [=1

Collecting all the equal terms in (A.91) gives:

ns 1 * *
Var(A3) = N2n2 [Nn(n — 1)Cov(niy, n12)

+ nN(N —1)Cov(nii,n51) + NnVar(niy)]. (A.92)
We now work these covariance terms out:
Cov(niy, i) = Cov(E (n11|Y1), E (n12|Y1)) + E[Cov(ni1, nia|Y1)] -

But Cov(n};,nis|Y1) = 0, since

Kn(Y1 — X1) — (Kp x f)(Y1)
(Kp * g)(Y1)

M = (v(Y1) — o)

and (Y — Xa) — (Ky» (V)

(Kb % g)(Yl) (U(Yl) - MU)

are conditionally independent on Y7 (because X; and X5 are independent).

* JR—
Mo =

On the other hand,

E(mhlY1) = Empplh) = EKn(1 _()I((lb)l};l)](;fl()Kh * [)(Y1)

_ BIEWX - YOIV = (Bn* )D) o
B (K * g)(Y1) (v(Y1) = pv)

_ (Kh*f)(yl)—(Kh*f)(Y'l) . - -
- (Kp % g)(Y1) (v(Y1) — ) = 0.

(v(Y1) = po)

So,

Cov(niy,Mia) = Cov(E (n1|Y1), E (m2|Y1)) = Var(E (n1;11Y1)) = 0. (A.93)
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Now we deal with the term Cov(nj;,n5;) in (A.92):
Cov(niy,m31) = Cov(E (1| X1), E (n21]X1)) + E [Cov(niy, 15,1 X1)]
= Cov (E(n)1|1X1), E (0211 X1)) = E (E (n1:1X1) E (03] X1))
— E(E]X1) E(E (15:1X1)) = E(E (011 X1) E (1211 X1))
— E() E (1) = E(E (n111X1) E (11511 X1))
since Cov(nj1, 51| X1) = 0 because

o KM - Xh) - (K x f)(N)
m (Kp # 9)(Y1)

(v(Y1) = o)

and
o _ Kn(Y2 —X0) - (Kp* f)(Y2) oy
21 = (Kb % g)(YZ) ( (YQ) HU)

are conditionally independent given X; (since Y; and Y5 are independent) and

E (1) = E(E (121Y2)) = 0.

But

B X0 = B ) = [ SO0 = 0 ) gt

then

Covtin o) ((/ R Kb 9)( Kh LW o) - uu)g(y)dy)2>
- /(/ e Kb*gKh*f)( )( (y)—uv)g(y)dy>2f(z)dz

= / ( / (I;;(*g)(;) (v(y) — 1) g(y)dy — / 7*(y)g(y)dy>2f(2)d»2- (A.94)

We now examine the term Var(nj;) in (A.92):

Var(nj,) = E (”ﬁ) + E(”Tl)z =L (ni‘f) =L [ (7711’Y1)}
since E(nj,) = E[E (n{;[Y1)] = 0.

So,

Var(niy) = E[E (nii|V1)]

B Kn(Yi = X1) = (K s ) o0\
-7 E<< <Kb*g><Y1> 00 =) m)
- [ Kb*g U DO ) — oty

- / Kb*; — )9 (y )dy—/a*(y)g(y)dy- (A.95)
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Now, using (A.93), (A.94) and (A.95) in (A.92) gives:

~ _N—l K (y—Z) * 2
Var(A) =" [ ([ G ot = watwias - [+ watian) f(z)dz]

1 ((Kn)* * f)(v) \
t wn [/W(v(y) —uv)Qg(y)dy—/a (y)g(y)dy]
1

[/ (/ (I[{(f;(*g)(y))( (y) — Mv)g(y)dy—/’Y*<y)g(y)dy>2f(z)dzl

1 ((Kn)" = f)(y) \
* N [/(Kb*g)()g( (y) - uy)Qg(y)dy—/a (v)g(y)dy

Kp(y — 2) . 2
_ /</ TaTI0 (v(y) —uv)g(y)dy—/v (y)g(y)dy> f(z)dZ] _ (A.96)

In order to shorten (A.96), we obtain (4.23).

Lemma 4.5.14. The variance of 2;; is
n * 1 * 1 * 1

where

D = [ / ¢ WKty - gy - [ v*(y)g(y)dyrmz)dz,

D7 = 2R 0) _//90*(11)90*(2)&(1/— 2)9(y)g(z)dyd=
- / 7 (W)g(y)dy / w*(y)g(y)dy]
- 4//7*(@/)@"(2)&(1/—Z)g(y)g(Z)dde+3 </7*(y)9(y)dy>2
- /a*(y)g(y)dy+/w*(y)Q((Kb)Q*g)(y)g(y)dy
+ [ [e e @mi - 2wy
- 3/ [/ ¢ (W) Koy — 2)g(y)dy — /7*(y)g(y)dyrg(2)dz,
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py = KO [ [ wratian ([ o watan) 2]

2Kb<0) [_/ / 0" ()" (2) Ko (y — 2)g(y)g(2)dydz

+ 2/7*(y)g(y)dy/s0*(y)g(y)dy— /5*(y)g(y)dy]
+ 4//7*(3/)@*(2)1(5(2/—Z)g(y)g(z)dydz—4 </v*(y)9(y)dy>2
+ 2 @ gty - / " ) ((K5)” * ) (w)g(v)dy

- / / — 2)%9(y)g(2)dyd=

+ 2/ [/ O (y) Kp(y — 2)g(y)dy — /7*(y)g(y)dyrg(z)dz_

Proof. To deal with the variance of /Alg we first consider

o By x H) ) (0(Ye) — (Ko x9)(Yi) vy i
Ty = (Kb*g)(yvl)g ( (}/Z) ,U,U), L..., N
and write
| N
'L N;
As a consequence,
N
(Kn = f)(Y; NZ:: b(Yi = Yj) — (K + g)(Y3) N
e Ko+ )07 ) =) = 5 27
where
« . B FY)(Ep(Yi = Y)) — (Ko *9)(Yi)) vy
A (Ko r (% =)
fori,j=1,..., N. Then
R | NN
A=1mD D.7 (A.97)

i=1 j=1
To compute the variance of A5 we consider

~ o | NN | NN
Var(A43) = Cov(A43,A3) = Cov WZZT{;’WZZTEZ

i=1 j=1 k=1 1=1

= N4 Z Cov (75, Ty)-
,7,k,l=1
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Thus, the variance of A\g can be written as:

N N —1)(N -2 . e 2AN—1)(N -2 y
Var(43) = ( ]2[(3 )COU(7127T13) + ( ]\Zg >CO’U(T12,T31)
N —1)(N —2) . s N -1 .
+ ( ]2](3 COU(7—1277—32) + WVGT(TIQ)
N -1 e xy o 2AN-1) .
T Wcov(ﬁ%Tm) + TCOU(TH:TH)
2(N -1 . 1 .
- (N3)Cov(712,722) + 3 Var(m). (A.98)

Let’s deal with every one of these terms; but first, in order to save space, let us

write 775 in a more compact form:

75 = ¢ (V) (K (Yi = Yj) = (K x 9)(Yi)), 4,5 =1,...,N.
Let us now study the terms in (A.98):
Cou(tiy, Ti3) = E[Couv(riz, 713|Y1)]+Cov (E (112[Y1) , E (113|Y1)) = Var (E (12[Y1))

because
Ty = ¢ (Y1) (Kp(Y1 — Y2) — (K3 * g)(Y1))

and
T3 = " (Y1) (Kp(Y1 — Y3) — (Kb x g)(Y1))

are conditionally independent given Y; (so Cov(7{y, 75|Y1) = 0). But
E(maV1) = E(m3/Y1) = ¢" () [E[Kp(Y1 = Y2) V1] = (K * g)(Y1)]
= ¢ (M) [(Kp * g)(Y1) — (Kp x g)(Y1)] = 0,

then
Cov(T1y, 113) = 0. (A.99)

Now consider

Cov(ria, 731) = E[Cov(ria, 731 [Y1)] + Cov (E (12|V1) , E (731|Y1))
= Cov(E(m2[1), E (m5:/1))
= E[E(m:N) E(75:[Y1)] = E[E (112|Y1)] E[E (75, Y1)] = 0. (A.100)

since E (179|Y1) = 0.
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‘We now deal with the covariance:

Cov(rly, i) = B [Cov(riy, Tip|Ya)] + Cov (B (112]12) , B (7| Y2)
= Cov(B(r}lY2), B (13a]12)) B [E (r}y|Y2) B (3]Y2)]
— BB ()] B [E (5lY2)] = E B (5]%2) B (75,1%2)]
— E(t}y)E(}) = BB (}]Y2) B (13]2)] = E |[E (7] Y2)P]

since E(11y) = E[E (115]Y1)] = 0.

But

E(r|Y2) = Elp"(Y1)(Ky(Y1 — Y2) — (Kb x g)(Y1))]

E
/ &) (Kol — Ya) — (K * 9)(u)] 9(v)dy

and consequently
Cov(riy, i) = B |[E (12]2))’]

=k

(/ 0" (y) Koy — Y2) — (K * 9) (y)] g(y)dy> 2]
B / [/ P (y) (Koly —2) — (Kb*g)(y»g(y)dyrg(z)dz
= /[/¢*(Q)Kb(y—z)g(y)dy—/7*(y)g(y)dy]29(z)dz. (A.101)

Let’s deal now with Var(r,):

Var(rly) = E(rif) - [E(riy)]” = E(ri3) = E [E(i31%3)]
= E[E(le" (M) (Y1 = Y2) = (Ky = 9) (V) 113 ) |
= B¢ () (B [K(% - Y2)2I1i]

- 2(KpxgM)E [Kb(Y1 Y2)[Y1] + (K * 9)(Y1)?)]
2

= Bl 00 (0 ) Y1>—2<Kb*g><m + (K= 9) (1))

= Elp*M)* ((K Y1) — (K * 9)(Y1)?)]

- [y (((Kb> D) - (Ko * 9)®)?) 9v)dy

= / ¢ (9)* ((Kp)? * 9)(v)g(y)dy — / o (y)g(y)dy. (A.102)



A.1. Proofs of the results in Chapter 4 158

. * * ).
Let us now consider Cov(1y, 757 ):

Cov(tiy,731) = E(rfyms1) — E(riy)E(r31) = E(tiyms)) — [E(riy))?
= E(T* 1) = E " (Y1) (Kp(Y1 — Ya) — (K * 9)(Y1))
©*( Kb(Yz —Yl) (Kb * g)(Y2))]

; // — (K% 9)(v)

Kb(z— ) (Kb*g)( ) 9(y)g(2)dydz

; //w )¢ (2) Koy — 2)°g(y)g(2)dydz

- / / ()" () Ky — 2)(Ky % ) (2)9(9)g(2)dyd=

+ ( / v*(y)g(y)dy) 2 : (A.103)

Let’s deal now with the term:

Cov(tiy, 1) = Cov(E(m2/Y1), E (m111Y1)) + E [Cov (s, 1|Y1)]
= Cov(E (m9Y1), E (41]Y1)) =0, (A.104)

since E (1]5|Y1) = 0.

We now compute the covariance Cov (77, T55):
Couv(Tia, T32) = Cov (E (15|Y2) , E (122]Y2)) + E [Cov(y, 75| Y2)]

= Cov(E (m3|Ya), E (135|Y2)) = E (E (1{2|Y2) 733) — E[E (115|Y2)] E (733)
= E(E (" (Y1) (Kp(Y1 — Y2) — (Kpx 9)(Y1))[Y2) 732)
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since Cov(7{y, 755|Y2) = 0 (because 73, is a measurable function of Y3) and since
E[E(m3|Y2)] = E(113) = E[E (112[Y1)] = 0.
On the other hand,

E[p*(V1)(Kp(Y1 — Ya) — (Kp x g)(Y1))|Y2]
- / &) (Ko(y — Ya) — (Ky * 9)()a()dy

K(0
Using the previous expressions and 755 = ¢*(Y2) (l()) — (Kp * g)(Yg)), we have:

Cov(riply) = E / S (W)l — Ya) — (K * 0)()g(v)dy

(@) (ZEO - (K g><z>> o(4)9(2)dyd=
- E0 [ [eu - a(w)g(z)dydz
- / (W)™ () Kily — 2)(Ky * 9) (2)g(v)g(2)dyd
- Kéo) / / ©*( 2)(Ky * 9)(y)g(y)g(2)dydz

+ ( w(y)(Kb*g)(y)g(y)dy)
K

- IEO)//W*(y)w*(z)Kb(y—z)g(y)g(Z)dydz
! </ "Wl )2 B // () () Koy — 2)g(y)g(2)dydz
- / / z)dydz. (A.105)

Finally, we study the term Var(r{)):
Var(y) = B(ri7) — E(m,)*,

where the first term E(TH)
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E(rif)

where

2
= 5o (512 - ) )

_ KO [*(11)?] —2

K(0)

E [¢*(Y1)*(Ky * g)(Y1)]
2

- 20 [rwewir+ [ @i (A-106)

And the last term:

B(riy)?

Var(ry)

= [ (00 (M0 e 0))]

- ([ew (Kf)o) (K g><y>) g(y)dy)2
) 2

160
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Expressions (A.99), (A.100), (A.101), (A.102), (A.103), (A.104), (A.105) and
(A.108) can be used in (A.98) to obtain (4.24). O
We will proceed now with the covariance terms in (A.79).
Lemma 4.5.15. The covariance between A\*{ and A\’ﬁ 18
Cov (A’{,EZ) = 0.

Proof. Let us define ( ')
. (Kpx )Y o(Y))
T Ry gy () ) )

Using this definition and the expressions for /?{ in (A.81), X; in (A.82) and in
(A.90) and for A% in (A.83) and in (A.97), we have

1 N
AT = Nz;w;(’
1=

and
] NN
Ay = 5D D T with 7= @ (Y)(Ky(Y = Y)) = (K * g)(¥:)
i=1 j=1
Let us first consider C’ov(ﬁ A;)
1 N 1 N n
Cov(A7, A3) = NZ nz Mk
=1 7j=1k=
1 N N n 1
= TZZ — 1777]k) NgnNnCO’U(WLnTl)
L

- N&w(wf,nm,

since Cov(w;,nj;,) = 0 for i # j because w; and 1}, are independent for ¢ # j.

But
Cov(wi,ny) = Cov(E(wilY1), E (m:[Y1)) + E[Cov(wy,ni;[Y1)]
= Cov(E(wi|Y1), E(m:|Y1)) =0,
since E (nf;]Y1) = 0. Consequently:
Cov(A}, A) =0
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Lemma 4.5.16. The covariance between A\* and A\* 18

b= // Ky(y — 2)9(y)g dydz_</,y ) |
Pio = b[/é*()uczy(/ ></7 >]
- /a*(y)g(y)dy+2 (/7*(y)g(y)dy)
B / / V(200" (W) Esly = 2)9(y)g(=)dydz.

~

Proof. Let us now consider C’ov(g 3):

where

L N N | NN
Cov(A7, A3) = Cov Zwl, ZZ ZWZZZCOU Wi i)
i=1 j=1k=1 i=1 j=1 k=1
1 * * * *
= 33 [N(N —1)(N —2)Cov(w], 793) + N(N — 1)Cov(wi, {5)

+ NN —1)Cov(wy,151) + N(N — 1)Cov(w], T99) + NCov(w], 11)]

N -1

N -1 * % 1 * %
= TCO’U(UJ177—12) + WCOU((Ul,TQl) + WCO'U(WI, 7'11), (A109)

since wi and 735 are independent and w] and 73, are also independent.

Let us study now the terms in (A.109):

Cov(wi,2) = E[Cov(wi, m2[Y1)] + Cov(E(wi V1), E(115|Y1))

= Cov(E(wi|Y1), E(1]5|Y1)) =0, (A.110)
since E(71,]Y1) = 0.
Now consider
Cov(wi,73) = E[Cov(wi,75;|Y1)] + Cov(E(wi|Y1), E(75:|Y1))

Cov(wi, E(151|Y1)) = E [wi E(15:|Y1)] — E(w]) E [E(73;]Y1)]
= EfwiE(m5[Y1)].
But
E(rhvh) = Ya2) (Kp(Ya — Y1) — (K3 * g)(Y2)) V1]

E
/ ) (Ko(y — V1) — (K = 9) () () dy-
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Thus
. (Kn * f)(2)
COU((’JDTQI) / (Kb*g (Z)

)
(/ " () (Bl — 2) — (K % 9)(y >>g<y>dy>g<z>dz

N / [l((h*f 2 — ()" (y) (Ku(y — 2) — (Kp * 9)(y)) 9(y)g(2)dydz
b* 9)(2)

= //7*(z)90*(y)Kb(y — 2)9(y)g(2)dydz — </7*(y)g(y)dy>2. (A.111)

The last term in (A.109) is:

(v(2) = )

Cov(wy, 1) = E(with) ( DE(T)

(w
[ K *f — 1)@ (Y1) (K,(0) — (Kb*g)(Yl))}
[
(

&

Kb*g

Kh*f

e D ) - )| Bl 04) (830) - (8 )31

E

« f)ly )

_ /(Kf;*g)( )(v( 0" (y) (K(0) — (Kp * 9)(y)) 9(y)dy
(Kn = f)(y)

- (/ (Ky % 9)(y)
v

" (4) (5(0) — (K % 9) (4) g(y)dy)

(o(y) - mg(y)dy)

(uy) - mg(y)dyﬂ

_ KZ()O) [/ 5 (9)g(y)dy — </ ¢*(y)g(y)dy> (/7*(y)g(y)dy>}

2

- [ s+ ( [+ wewa) - (A112)

Using (A.110), (A.111) and (A.112) in (A.109) gives (4.25). O
Lemma 4.5.17. The covariance between /Tg and A\g 18

Cov (/Al;,;l;) = 0.
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Proof. Finally, we consider C’ov(g’g, A\’g)

N n N
Ax Ax 1 * 1 *
Cov(A3, Az) = Cov Tmzzmjaﬁzszl
i=1 j=1 k=1 I=1
n N

N N
1 * * 1 * *
T 22 2 > Covlny i) = S NN = 1)(N = 2)Cou(iiy, 755)
i=1 j=1 k=1 I=1

+ nN(N —1)Cov(niy, 112) + nN(N —1)Cov(nyy, 731)
+ nN(N —1)Couv(niy, T52) + nNCouv(niy, 111)]
= 2 Covln, my) + —5 = Cov(iny, m21) + 575 Covlniy, 1), (A.113)

since nj; only depends on Y; and X; and 735 only depends on Y5 and Y3, then nj;

and 795 are independent. Similiarly 1}, and 75, are also independent. Consequently:
Cov(my,73) =0 and  Cov(niy, 1) = 0.
Let us now consider the other three terms in (A.113):

Cov(niy,m2) = E[Cov(niy, m2/Y1)] + Cov(E(ni; V1), E(115(Y1))
Cov(E(n1,|Y1), E(m3[Y1)) = 0, (A.114)

since F(nj;|Y1) = 0 and E(7]5|Y1) = 0.

Let’s deal now with the term Cov(n};,75;) in (A.113):

Cov(niy,731) = E[Cov(niy, 751 Y1)] + Cov(E(ni1 V1), E(75(Y1))
Cov(E(n1,|Y1), E(731Y1)) = 0, (A.115)

since E(nj;|Y1) = 0.

We finally deal with the last term in (A.113):

Cov(niy, 1) = E[Cov(niy, 11 [Y1)] + Cov(E(ni; Y1), E(711|Y1))
Cov(E(ni; /Y1), E(m{;/Y1)) =0, (A.116)

since E(nj;|Y1) = 0.

As a consequence of (A.114), (A.115) and (A.116) in (A.113), we obtain:

Cov(AS, A%) = 0.
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Lemma 4.5.18. The variance of;l\ is

V(I?" (A) = D4ﬁ+D11N+D5N7n+D12W+D8m,
where
Tl = D;—FDE—QD;,

Proof. Consequence of Lemmas A.1.10, 4.5.12, 4.5.13, 4.5.14, 4.5.15, 4.5.16 and
4.5.17. O

Theorem 4.2.2. Let us assume h — hg > 0, b — by > 0, n — oo, N/n — oo, and

Conditions A1 and A8-A10. The asymptotic mean squared error for the estimator

fiy 0 (4.4) is given by

AMSE(;)U):C{+72+—+

where the first two constants are

. Ky, * f(y) 2
o1 —( K;“ww@—mmm@)

. _ Kn(y — 2) az)?
¢ = [ ([ R e - sty - i) sega:

and C3, CF, C5 and Cg are constants depending on populational functions reported
in the sketch of the proofs (Subsection 4.5.2).

Proof. Consequence of Lemmas 4.5.11 and 4.5.18, considering C} := D32, C3 := Dj,
C3 :=2D;Ds + D%y, Cf == D%, Ct := D32 + D}, and C}, := Dj. O
A.2 Proofs of the results in Chapter 5

A.2.1 Proof of Theorem 5.2.1
Let us first state an auxiliary lemma:

Lemma 5.5.1. The difference ﬁv — Uy can be expressed as follows

=
=
<

|

|

12

|
=
=

where

1 <L (Y
NZ _Mv) (5'6)
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and N
1 95(Y3)
= ; .k (5.7)
constdering ¢ given by the relation
m(y) 9(y)
Proof. Considering the estimator i, defined in (5.4), the difference fiw — fy can be
expressed as follows:
N
1 9(Y3)
OO v ICLOERI
oy = —=L -
v v T N R - /\.7
1 Z 9v(Y3) B
N 2 1)
being A® and B® the terms defined in (5.6) and (5.7), respectively.
Considering the relation in (5.8), B* is a consistent estimator of
. g(Y)> <f(Y)) /f y) /
B*=E(——%|=cE|—%)=c | —= fly)dy =¢, (A.117
(77 o) Ok A
and we have that
. 9(Y) fY)
A - E Y — Mo - : E Y - Mo
(255w - >) e (! Y)@( )= )
fy) /
= =c¢ y)dy =c [ f(y)( dy
Jatew- 8
= C/f(y)v(y)dy—c uv/f dy=c-pp—c-ppy=0, (A.1l8)
SO We can express
o r k(B (| B\ & & B
Hoo Eo Eo Be® B' B B\o Eo
B £+ A* A* B*-B*\ B*-B°
B \B* B B Be
A\o A\o B* — B\o A\o (B\o _ B.)2
= —+t =" —F + =" =<
B* B* Be® B* Be2
- £+£ B._B\.+A\._A. B._B\. @ (EQ_BO)2N£
~ B* B* Be B* Be Be B2  B*
As a consequence of (A.117) and (A.118), we obtain (5.5). O
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The term A® defined in (5.6) can be splitted in different terms:

A* = Ay - A3+ A3 - A3+ A3,

where
it ;é I ) - o),
Ay = jlvé AT 2O (3 - )
A = }Vé B w() - )
B L il (3(Y:) — g()@gl)((g;m) = mOD) ey ),

Since the terms //l\z and ﬁg have some factors of quadratic nature whitin the sum
(i.e. (36(¥:) — g(¥2)) (i (¥:) —m(Y;)) and (1o (Y;) — m(Y;))2) it is expected that one
could prove negligibility of this terms.

Thus we will consider
A® ~ A — A3+ A3,
Lemma 5.5.2. The ezpectation and variance of A® can be approzimated by
E (2‘) E (21;) B (25) Vv E (25) , (5.9)
Var (%) = Var (4) +Var (43) + Var (43)
— 2C0v (43, 21;) +200v (A;, 215) — 200 (Ag, 2;) . (5.10)

12

Proof. We may rewrite the ratio g,(Y;) /i, (Y;) involved in the definition of A® in
(5.6):

which gives:
w(Yi) — w(Ys) n o (Vi) m(Y;) — 1 (Y3)
mp (Vi) m(Y) (Vi) m(Y;)
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As a consequence,

w(Ye)  g(Vi) _ g(Yi) —g(Ye) L gp(Yi) m(Yi) — mhn(Ys)
mp(Y;)  m(Y;) m(Y;) 1n(Yi) m(Y;)

Applying similar techniques once more to the term g,(Y;) /7, (Y;) in the right-

hand side of the previous expression gives:

oY) _ 9() _ »()—g(¥i) | g(¥i) m(Yi) — 1w (¥i)
in(Yi)  m(Y;) m(Y;) m(Y;)  m(Yi)
(V) — g(Vy) m(Yy) =i (Yi) (V) (m(Yy) —hn(¥i)\?
) e )
which can also be expressed as:
wYe) gVi) _ 9(Ys) —g(Y))  g(¥i) ma(Ys) —m(Ys)
(V) m(Y) m(Y)  om(Y)  m(Y)
_ @Y = g(¥i) (Vi) = m(¥i) | (Vi) <mh(Yz)_m(YZ)>2
m(Y;)2 1 (Y3) m(Y;)

Therefore, the term A® defined in (5.6) can be splitted in different terms:

A® = Ay — A3+ A3 — A3 + A2,

where

. 1)

Al - N ; m(yvl) (U(YL) - Nv)’
N (i (Y;) — m(Y;

Ay = Y SEES O ) - ),
=1 ¢
N 3 . —

i = > MO ) ),
=1 v
N (a(Y;) — 1)) (1 —m(Y;
=1 v

oo Ly @) () - m(vi))?

A5 T N; Ah(n)( m(Yz) > (U(}/i)_,uv)'

Since the terms A\Z and /Alg have some factors of quadratic nature whitin the sum
(ie. (9(Y2) —g(¥3))(1mn(Y:) —m(Y;:)) and (1, (Y;) — m(Y;))?) it is expected that one
could prove negligibility of this terms.
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Thus we will consider
A® ~ AS — AS + A3,

Since we want to obtain the mean and variance of A®, we proceed as shown in

(5.9) and (5.10). O

The proof of Theorem 5.2.1 proceeds by analyzing the expectations and variances

involved.

Lemma 5.5.3. The expectation of A® is

Te ° 1 072 04 ob2 ob4
E(A ) ~ D1m+DQb +D3b —DZN—DSN
+ D3$h? + DRt + 0% + O(n®), (5.11)

where

Dy = K(0)e / 2 (y)dy.

. K

D3 = u2(2 ) / V(y)g" (y)dy,
o . a(K) (4)

Dy = —, C/v(y)g dy,
. 12(K) 5

Dy = 5 *B* (),
o 1K) 2 e

Dy = 5y ¢ BT,

@(U(y) — [)
and
) = L9 00— )
9(y)? !
Proof. We now consider the terms in the right-hand side of (5.9)
- 1 Y; 1 & Y;
P(A) = § B S0 -mw)] = 5 S E R e )
_ g(Y1) [ 9(y)
= 5| S0 — )| = [ 20 0) - mlay
= o [ 2900~ watity = [vswy - [ 1)y
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Since the random variables

are identically distributed (but not independent) then

. 1Y 1Y
B(A3) = D B} = Y E() =E@m) = E[E )]
=1 =1
- ElE (g(Y1)<mZ52;1))2_ m(YI)) (v(Y1) — o) Y1>:|
= F _g(}/l)(E [m];,r(;(;l/)lg};l] — m(YI)) (U(Yl) - Nv):|
_ p [a0) (K m%;l) —0D) () - m}
- / (K ”28))2_ m(y))g(y)(v(y) — )9 (y)dy

- //< f/( f)@(y - z)m(z)dz> A = ),

- ¢ —y (v(y) — po)dy

_ 2 ? s E ? K(t f(z+ ht) Z>+zh—it—)ht) o) dt) i
= 2 m(z K(t)Q2(z + ht)dt

= /Q dz—i— ( ) 2 /Q”(z)m(z)dz
4
¢ MlK) T )02/9(4)( ym(z)dz + O(b9)

_ hQ“;(K)CZB‘(Q”)—i—hlglimgB'(Q(‘”)—l—O(hG), (A.119)
since [ Q(z)m(z)dz =0 and ()2
gy
mly) = cf(y)

Finally,
N P . — . a —
P () = x 7 | PO 00 | = B | PEU A o) )

= £ |p (P I 0 - i )|

E(gy(Y1)|Y1) — g(Y1)
E[ s <v<Y1>—uv>]
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BO) X w 9) (1) - g10)

=P m(¥h)

(v(Y1) = po)

K]'\(r(;) n %(Kb +9)(y) — 9(y)

= ) (v(y) — o) 9(y)dy

_ KO [ N—l f(y)(K *9)(y)
= e [ BB ew -y + e / 2D o) — gy

- C/f(y)(v(y)—uu = Nb /f — fiy)dy

(y) (Kb * g)(y) fly
g(by) (0y) = po)dy = Nb /

f() [g(y) + mbzy”(y) + A(t!)b‘*g(‘*)(y) + O(bﬁ)]
yay + 12K

1)

(
2

2(
2
VDT [ way
)

b46/7(y)9 D(y)dy + O(1°). (A.120)

0
b

K
4

N
(

N 1/f
—l—NNlc/
VA
) (N —

dy +

M4

(y
N

From (A.119) and (A.120), since E(A®) ~ —E(A}) + E(A\g), we get (5.11).

We now consider the terms in the right-hand side of (5.10):

Lemma 5.5.4. The variance of E{ 18

Var <A'> = g,
where
—
with
_ fy)? _ 2
B(y) ) (v(y) — pw)
Proof.
N .
Var (A') = ];2 ZVar [i((};% (v(Y3) ,UU):| %Var [51((};11)) (v(Y1) — po)
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= i 62
N 9(y)?
CQ/f(ZJ)Q 2 02/
= — v(y) — wy)dy = — | B(y)d
I g(y)((y) po)dy =+ [ Bly)dy
O
Lemma 5.5.5. The variance of 25 18
~ W1 .1 . 1 . h? . At ht h
VCW’ (AQ) :D7*+D8N7+D9ﬂ+D107+D11 +D12N +D13Nn
o h? h3 9 ho h8 h*
+ D14N +D15N + Dig— +D17N+O< >+O<Nn>’ (5.12)
where
D3y = C4B.(Q2),
Dg = —Dg-— D3,
Dy = e [ vwan
Dty = pa(K)c'BYQ-Q),
K)?2 K
DII — M2<4) [ (QIIQ) (Q”)} M4( )C4B.(Q'Q(4)),
K
Dty = | [ et a5 <ﬂ”> }
K2
D}y = 70 /5 ym” (y
2
Dy = B0 B ) — )6 [ vl )
° N4(K
Di; = o C4/§ (v)
K K K
DIG — /'LQ( ;Zﬁl( )64 |:B.(Q// . 9(4)) o B.(Q/I)B.(Q(4))i| + #ggo )C4B.(Q . Q(G))’

Dy = P [/ 5<y>m”<y>m<4><y>dy—B'(Q”)B'(Q“U],
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being
o fy)? o) — 2
o f(y)4 oly) — 2

Proof. In order to compute the variance of E;, let us rewrite the terms 1} as follows:

i j=1
with
ity = SR ZD =) (3 ), = 1 N = 1o

Using (A.121), ﬁ; can be written as

n

~ 1 N
5_]72277%
i=1 j=1
and

N n N n
~ “~o e 1 ° 1 M
Var(A2) = CO’U(A27A2) - COU mzznzj’ mzznkl
i=1 1 k=11=1

=1 j=

N n N n
= XY Contatyny). A122)

i=1 j=1 k=1 I=1

Collecting all the equal terms in (A.122) gives:

Te n—1 . . N -1 . . 1 .
Var(A3) = Tncov(nnanu) + TnCOU(mp n31) + mvar(ﬁ11)- (A.123)

We now work these covariance terms out:
Cov(nt1,ni2) = Cov(E (n11[Y1) , E (n72[Y1)) + E [Cov(niy, n7a|Y1)] -

But Cov(n};,n1,|Y1) = 0, since

o . 9V)(HER(Y1 —X1) —m
T = m(Y1)2

O (%) - o)

and . )Y — Xa) — m(h))

M = m(Y1)?

(v(Y1) = o)
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are conditionally independent on Y; (because X; and X5 are independent).

On the other hand,

E(hY1) = E(nb]}fl):g(Yl)(E[Kh(Y;zyi;)‘Yl]—m(Yl))

_9M) (B[ER(Xy — Y1) V1] —m(Y1))
- RSO ) -

_ () (K +m) (Y1) = m(Y3))
= &4 hm(m; 2 (0(Y) = ). (A.124)

(v(Y1) = pro)

Now

Cov(E (n111Y1), E (n12]Y1)) = Var(E (n,[Y1))
g(Y1) (Kp xm) (Y1) — m(Y1)) 2
( oL (o) - ) ]

- [ (AR 0D )]

= F

with

E

g(1) (Ko m)(¥i) — m(¥1)) :
( e (o(vi) ) ]

24
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and

g(Y1) (Kp x m)(Y1) — m(Y1))
[E( m(Y1)?

_ / 9(y) (K *m)(y
i m(y)?

B / 9(®)* (Kn x m)(y) =m(y))
m(y)?

o [T (K m) ) —mb), T
_ e / o (v(y) mdy]

- :c /Q( Kj, +m)( dy—C/f — Ho dy}
- |2 [ o m >dy}

= :02/9 </Kh —zmzdz)dyr

_ /m (/K z+htdt>dz]

_ /m dz+—u2 /m )Q" (2

) —m)

+ /m z)dz 4+ O( hﬁ)}
= [ /f — Iy dz+—u2 /m )Q"(2)dz
+ 4u4 /m 2)dz + O( hﬁ)}

= [,uQKc/sz”zdz

2
+ 4u4 /m 2)dz + O( hﬁ)}

= 711404 (/m z Q" (z dz>

+ h64/m Q" (2 dz/m (2)dz + O(h®).
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Consequently:

Cov(n1y, 7712) Cov(E (n111Y1) (7712’Y1) = Var(E (n1;|Y1))

Yo ( 2
_ “2 (K L1 (/ 1y — 1) ?dy — (/ Q”(y)m(y)dy> )
Yam” (y)m®)
N %hﬁé </f ) 9(5)5 ®) (o) — p)2dy
- [@wmay [ 2Vwmta) + 00
2
_ “2(5) hict (/§(y)m"(y)2dy—B'(Q")2> (A.125)

v L2 5t ([ etupu (D )y — 5@ B0 + 0,

Now we deal with the term Cov(n$;,n3;) in (A.123):

Cov(niy,m31) = Cov(E (11| X1), E (15:1X1)) + E [Cov(nfy, m51 | X1)]
= Cov(E (i |X1), E(13:1X1))

since Cov(n};,n5;|X1) = 0 because

Y1) (Kp(Y: — X1) — m(Y;
Ny = g1 (K ;L(Yl);) 1)) (v(Y1) — )

and
g(YV2)(Kp(Ya — X1) — m(Y2))
m(Y2)2 (U(YQ) - /’LU)

are conditionally independent given X; (since Y7 and Y5 are independent).

7751 =

But

2 - -m
BOmIX) = Bl = [ S =m0 ) -y
= & oKty - X0y - ¢ / F)((y) — )y

= /K X1+ht

So,

Cov (E (n}11X1),E (n3;1X1)) = Var <CQ/K(t)Q(X1 + ht)dt)

B[( [wacs )| - [o (& [ koo ma)]
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On the one hand,

[/K X1+htdt} /(/K +htdt> m(z)dz

= & [ 9m (@)do -+ (1) [ @m()ds

4
¥ %m(K) > [ 90 @pm(a)ds + On®)

= —,ug /Q” da:+—,u4 /Q (z)dz 4+ O(h®)

since [ Q(z)m(z)dz = 0, and consequently,

< [ /K Q(Xy + ht dt])Q = Tuz(K)%‘* (/ Q”(x)m(x)da:)2

4 ﬂﬂz(K)m( . / O (2)m(z)dz / QW (2)m(z)dz + O(h®) (A.126)
On the other hand,

p|(e [ Koo + ) dtﬂ

_ [//K Q(X, + hs) K )Q(X1+ht)dsdt]

_ /(//K Oz + hs) K Q(x+ht)dsdt> m(z)dz

= ¢ [ Q@Pmia)ds + Pn(K) [ 2 <>Q”<> ()da (A127)
4

+ ) [ 00 @m(ads + D (! 2 [
L K)c* | Q2)0® d

+ gm0t [ 020 @mw)ds
6

+ %NQ(K)M4(K)C4 / Q" ()W (z)m(z)dz + O(h®).

From (A.126) and (A.127), we obtain
Cov(nty,m5) = Var (cz/K(t)Q(Xl + ht)dt)

— C4B0(Q2) + h2u2(K)C4B.(Q X Q”) + T,UQ(K)204 [B.(Q//2) _ BQ(Q//)2]
+ }SM(K)C‘*B'(Q QM)
b (R [B@ ) - @ e

6
+ ?)%MG(K)C‘*B'(Q Q) £ O(h¥). (A.128)
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We now examine the term Var(n$;) in (A.123):
Var(n,) = Var[E@0h|X1)] + E[Var(ni [ X1)]

= Var (c /K t)QU X1 + ht) dt) + E [Var(n1X1)],

since E (n},|X1) = ¢ [ K()Q(X; + ht)dL.

Now

2
Var(nh | X1) = B (n21X1)~ [E (| X0 = B (n2]X1) ( / K(0QX) + ht) dt)

2 o] == (2 [ somtn aera)| - 5[(2 [ o+
</K X1+htdt>+E< /K X1+ht)d)>]
= Var(cQ/K(t X1+htdt) ( ( /K X1+htdt>>2

we obtain

") —E@h)’ =E[E (7711|Y1)] — E(E (n,]X1))*
2

m(Y1)2
gV (u(11) — W}

- [E c /K(t)Q(X1+ht)dt)r

E [((Kh)2 +m) (Y1) — 2m(Y1) (Kp * m)(Y1) + m(¥1)?
m(Y1)*
. ZNQ(K)2C2B.(Q//)2 —I—O(hG)

B / (Kp)? *m)(y) — 27772((1/;)(5% *m)(y) + m(y)Qg(y)g(U(y) — 1p)2dy

— L (K)2EBY ()2 + O(hS). (A.129)

th'/(y) + :u4(4[!(2)h4m(4)(y) + O(h6)
pa(K?)

3, (4) 5
51 h>m'* (y) + O(h?).
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Now (A.129) becomes:

2 2
vao:/[Wf”mw+”f”muw+M;)ﬁ<Nw+mﬁ>

2 24

( )3(;;( MU) dy— E,LLQ(K)Q 230(91/) —|—O(h6)

2
= ]f( /¢ )dy — /ﬁ )dy + ) /f m(
— o Kh203/¢1 ym” (y)dy +M424h3c4/£ym(4 (y)dy

— “4 h4 3/¢ y)dy — —MQ(K)%QB'(Q”)Q + O(h%). (A.130)

- <w(<>+“<)m’%wﬂmK%%#mn+mwQ+m@ﬂ-

Now, using (A.125), (A.128) and (A.130) in (A.123) gives:
var(ag) = "L [t (et a - 5 (@)

* Wh6c4 </ E(y)m” (y)m (y)dy — B* (") B* (Q(4))> i O(hs)]
N1

[c*B*(Q%) + h? s (K)c* B (- Q)

n

h74 2 4 °e/OI2\ _ per0n\2 h74 4 e .0
+ 4u2(K) ¢t [B*(Q"?) — B*(Q")?] + 12u4(K)C B*(©2- Q%)
b (R [ 0) - Fm% m“

6
+ ;&)MG(K)&B‘(Q-Q(G))+O(h8)] [ /qp

- /6 )y + F2 /5 m" (y)dy — pa(K h23/¢ m’(

7 [
+ 424h3c4/€(y)m (y)dy — 412h4c3/w (y)m™ (y)dy

h4
— ZM(K)QCQB'(Q”)Q - O(h5)} : (A.131)
Shortening the expression (A.131), we obtain (5.12). O

Lemma 5.5.6. The variance of 25 18

Ao o 1 . b? . b* o 1 o 1 . b
Var (A:s) =Disyy + Doy + Doy + Doy + Do + D3

1 1 1 bo b?
+ D24N3b2 + D25N3b + D26N3 +0 ~/) T @) N2 (5.13)
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where
DYy = CQ/B(y)dy=Dé,
DYy =m0 | [ Way+ [+ 100 - wd].
Dy = M5 | [ad® i+ (40000 - ]
+ Mf)zcz [/ 3(y)g" (y)*dy — 4 </7(y)g”(y)dy>2
o [Pt +2 [ g o]
D3y = 2 [ualK?) + K] [ aly
D3y = 802/5(y)dy = —8Dg,
D3y = pa(K)K(0) [ / 5(y)g" (y)dy + / )y (y)dy
- (/v(y)g”(y)dy+/'/’(y)g(y)dy> (/v(y)d@/ﬂ
+ M(QKZ)CQ [/ 5(y)9"(y)dy+/v(y)v”(y)dy] :
Dy = K(0)2 [ [~ ( | v(y)dyﬂ ,
D3y = =2 [uolK?) +2K(0)] [ aty)iy
D3; = 802/5(3/)61@/:81?5,
with
o) = L) -
0 = T ) - w

Proof. To deal with the variance of A\g we first consider

o _ 9(Yi)—g(Ys)

T = W(U(Yi) — Hy)
LI K- Y) gV RES
- N Pt m(Y;) (0(Yi) — po) = N ;Tij’
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where
o Ky(Yi—Y;) —g(V3) :
Tij = m(Y;) (v(Yi) — o).

As a consequence, A3 can be written as
N N
A% = S E E T
3T N2 i
i=1 j=1
To compute the variance of A§ we consider

N N
Var(d) = Conl5, B = Cov [ 153N S

i=1 j=1 k=1 I=1

= Z Cou(r, U,Tkl

1,7,k,l=1

Thus, the variance of ﬁg can be written as:

(N — 1)(N - 2) 2N — 1)(N — 2)

var(A) = TV ZDoourt, oty + 2T D cou (o, o)
(N —1)(N —2) . .. N-1 .. N-1
+ N3 Couv (T, T32) + WVW(TH) + TCOU(71277-21)
2(N —1 o o 2(N -1 o o N
+ (N3>00v(712, ) + ]\,3)00@(7'127 T3o) + WVGT(THQA-BQ)
Lemmas A.2.1, A.2.2, A.2.3, A.2.4, A.2.5, A.2.6, A.2.7 and A.2.8 can be used in
(A.132) to conclude with the asymptotic expression (5.13). O

Let’s deal with every one of these terms:

Lemma A.2.1. The covariance of 75 and {5 is

2 2
Coviryrty) = 2042 [ [ s wras - [+ wa) ]

v 2| [o)" e w)ay

- ([rwswan) ([0 war) | +ow). @iz

Couv(tiy, mi3) = E[Cou(riy, 7i3|Y1)] + Cov (E (112[Y1), E (133]Y1))

— Var(B(ehi1) = Var (D (0 4 ) (1) - )]

Proof.
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because
rhy = SOR (11 - 1) - g(10)
and v1) —
Th =~ ml(Yl)Nv (Kp(Y1 = Y3) — g(11))
are conditionally independent given Y7 (so Cov(70y, 773|Y1) = 0) and
B(hl) = B = SO (B - )] - (1)
= MO [ ) (41) - 9. (.134)
Now
B 2
Coutrtprty) = B |(“0RE ) [ 0) () — o001
2
- e (M g ) - 0] )
where

)
2
B /(v(%)"”) (K # 9)(y) — 9())? 9(y)dy
2
= /( ( )( ,uv) {M?(zK)lﬁ //(y)+/M2(mb4g(4)(y)+O(b6):| g(y)dy
= f b42/(5 // 2d + b6 2/5 // dy+O(bS)

since (considering relation (5.8)),

and

B (ML (5,900 - 1))

(Y1)
v(y) (K) " N4(K)
- / m(y) [22 V") + o b49(4)(y)+0(b6)]g(y)dy
= M2(2K>526/7(y)g”(y)dy+”4( >b4/ ()¢ (y)dy + O(b%).(A.135)

Using these two expressions we obtain (A.133). O
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Lemma A.2.2. The covariance of 75 and 73, is

Cov(T7y,T31) = 'uz(QK)chQ/a( )g" (y) dy+b4 2 [,u4 /a

2 2
+ M(f) ( / v(y)v”(y)g”(y)dy— )

+ O(b%). (A.136)

Proof.
Cov(1iy,731) = E[Cou(1y, 73,|Y1)] + Cov (E (115|Y1) , E (75, |Y1))
= Cov(E (Y1), E(15:Y1)) .
‘We know that

v(Y1) —

i (e 9) (1) — o)

E(ms[N1) =

and we can also deal with

B = 8|8 v - 1) - o) ]
= [ ) - gt (13T

Now
Cov (E(m15|Y1), E (13:Y1)) = E[E (m15|Y1) E (13,11)] — E'[E (t15|Y1)] E [E (731 |Y1)]
= E[E (oY1) E(m5:11)] — E(m12) E(731)
= E[E(HhV1) E (751 V1)] — [B(r5))*.

But since E (rf,|V1) = 0Lt (K, + g)(Vi) — g(¥1)], equation (A.135) lead to:

E(rhy) =& 2(2K)620 / W)g" (y)dy + © ( e / gD ()dy + OF). (A.138)

On the other hand, using the expression (A.137), we have:

)
)

EE (m{5|Y1) B (131|Y1)]

:E[ O [ g)1) - 9] [ 2 )( )  [Ky(y — Vi) - <y>]g<y>dy]
_/”(2(2) (K # ) (/ — Z)—g(y)]g(y)dy> g(=)dz
= [ g1 gt ([ i@ ~ )g(u)dy

-/ U(2<;>Mvg(y)2dy> s

=[O ) - ) [ L Kty - 2ty ) ol
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But

v(y) = o vog L [ TW) _. _
/ ) 9(y) dy = /g()( y)dy /f — pw)dy =0,
and

[k - gty = [ MO gy 2 )y
— o [ AWKy - 2y = [ 2+ oK
— c{7(2)—#“2(2]()1927”(2)%—Méf)b‘lfy(‘l)(z)—i-O(bﬁ) , (A.139)

and since

(K v 0)(=)  a(2) = 2 p2g () 4 1D g ) o),

we conclude that

BB (/Y1) E (/)] = ¢ / we) e [ ) 4 g ) + 00)

96+ 220 4 B0 ) 1 00| 9210
= 'U2(2I()b262/04(z)g”(z)d2+ /Mééiﬂb402/a(z)g(4)(z)dz
+ 'LL2(4K)2b462/’y(z)’y”(z)g”(z)dz—|—O(b6). (A.140)
Using (A.138) and (A.140) we get (A.136). O

Lemma A.2.3. The covariance of 115 and 73, s

Cov(rty, i) = ¢ / Bly)dy + (KW / () () (0(y) — o)y

+ ot [ (5000 00) - )y

9 2
- W(f) [/ 7" (y)?g(y)dy — </7(y)9”(y)dy> +O0(%).  (A141)

Proof.

Cov(rhy, Tiy) = B [Cov(rhy, T5|Ya)] + Cov (B (rhy|Ya) , B (5]Y2))

= Cov(E(m5|Y2), E (15,]Y2)) = E [E (115[Y2) E (75,]Y2)]

— E[E(r|Y2)] E[E(15]Y2)] = E[E (112]Y2) E (15,|Y2)] — E(112) E(732)
= BB (%) E(7/Y2)] - [B(hy)] = B |[E (11a]2)?| = (B
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But
B = 8|S v - ) - g1 i)
= /”(2(;)”” [Ky(y — Y2) — g(v)] 9(y)dy
_ . / v y;(y‘)"” Ky — Y2) — 9(0)] £(5)dy
— c/fy(y) [Kb(y — Y2) - g<y)])dy
and

E[[E (mhv2)| = B

( [Pt iy - )~ gt g(y)dyf
m(y)

- [3 / / () (K1 — Ya) — a(u1) v () (w2 — Y2)g(u2) dyldm]

| ( [ [ ) (i = 2) = o) 1(w2) (Kot~ ) — 9(02)) dyldyg) g(2)d>
= 62/ [/v(y) (Ky(y — 2) —g(y))dyrg(?:)dz,

where

/ () (Kl — 2) — 9(y)) dy = / (W) Ky — 2)dy — / ()9 () dy

= / (z+bt)K dt—/f

= () + 12y o 1 )b4v<><z>+0<b6>.

So,
B (B ()] = ¢ [2(Ra(e)ds + ()5S [ 220" ()21

4
., / Bly)dy + (K22 / 7 () F () (0(y) — ro)dy

oo / +'(= )2g(z)dz+u41(;{)b402 / Y27V (2)g(2)dz + O(b%)

2
+ 128 gty + 0 [400) 1) (00) — p)dy + 000)

Using now equation (A.138) for E(77,) gives (A.141). O

Lemma A.2.4. The variance of 17y is

2
Var(rfy) = ,uo(b / /ﬁ (2K )602/5(?/)9//(?/)dy

~ walKWE [ aly)g' )y + O0°) (A142)
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Proof. Let us consider
Var(rhy) = E(r33) = [E(mH)]

where

2
B = B ([”(Y” My (Y — 1) — gm»} )

m(Y1)

- / / <W>2(Kb<y—2>—g(y)>29(y)g(z)dydz

- [ (M) Rt

B 2/ / <v(y)_u>2K y = 2)9(y)’g(2)dydz

" / / < ) 3g(2)dydz

- / ( () ) 9) < / Kb<y—z)2g(z>dz> dy

- 2/<v(y)_uv>2 (v)* (/Kb(y—Z)g(z)dz> dy

e (MY awrar= [ o ( f et ) a
B / (/K ‘btdf>dy+c /6( )dy + O(F)

= 10U [aa D [ s

b
(KR / o(y)g" (y)dy — ¢ / Bly)dy + O(t?). (A.143)

Using (A.138) and (A.143) we obtain (A.142). O

Lemma A.2.5. The covariance of 115 and 73, is

2
Cortyrs) = L8 [aay—22 [ sy
+ 2Kb / y)dy — pa( )6262/7”(y)f(y)(v(y)—uv)dy
+ (22{)6502/7(11)7()(y)dy+0(b4)- (A.144)

Proof. Let us now consider Cov(Tfy, 73, ):

Cov(Tiy, 731) = E(113731) — E(T5) E(731) = E(119731) — [E(TfQ)]2 )



A.2. Proofs of the results in Chapter 5 187

where

Blryr) = B | “C

) " (K (Ya = 1) - g(¥2)

LKy (Ys — Ya) — g(17)) 2

D ) - o Da(wal) s

R e N 1C) R TR
= [ [ R - 92 (g g
_ v(y) — M . 1)(2:) — Mo )2 5

| [Py - " gl

- Mgy

m(y) Y
v [ [P g 2tz = 2 [ [ Kty - 200
- 22 [ [ Kol - 250)00) -~ m)r (g + ( [rwew —mdy)Q
= ¢ [a) ([ Rty - 271z ) a
- 2 [ F) ) - w) ( [ ot - 2)7(2)6&*) dy. (A.145)

The last integral in (A.145) has been dealt with in equation (A.139):

/Kb(y—Z)v(Z)dZ = /Kb(z—y)'v( )d

= ) + 22y 4 1 ) 1 00),

and consequently

2c2/ — Iiy) (/Kb — 2)y dz)dy—Qc /5

+ (K )5202/7 (W) f (W) (v(y) — po)dy

v e [0 1w ) - mdy + 0w, (A.146)

On the other hand, the first integral in (A.145) is

/v(y) (/Kb(y - Z)Qv(z)dZ> dy =/ </ —K(t)*y(y — bt) dt> dy

2 2
= /’y(y) [MO(bK)V(yH u2(2K V() + M4(24 )63 YW (y) + 0(65)} dy

2 2
= “O(f ) /a(y)dy+ W(QK )b/v(y)v”(y)dy

pa(K?)
24

pallT) s / ()7 (y)dy + O(F). (A.147)



A.2. Proofs of the results in Chapter 5 188

Now, using (A.146) and (A.147) in (A.145) we get

2 2
Bt = P82 [agay—22 [ ay+ 22502 [y

2

2
— uz(K)b2c2/7”(y)f(y)(v(y) — po)dy + M(zi()b?’@/v(y)v(‘”(y)dy

- Ml(f)b402 /7(4) W) (0() = po)dy + OF). (A-148)

As a consequence of expression (A.138), we have:
. K WK
E(thy) = m;)b%/v(y)g”(y)dy + M2(4)b40/7(y)g(4) (y)dy + O(t%).
Using the previous expression and expression (A.148), we have (A.144). O

Lemma A.2.6. The covariance of 115 and 77| s

Coutrty ity =" | [atg iy~ ( [~s war) ( [1an)]

p 2(2K) b / al(y)g” (y)dy + M(@f(mbr’g { / 8(y)9™ (y)dy (A.149)

_ </’y(y)g(4)(y)dy> (/V(y)dyﬂ _ u42(f)b462/a(y)g(4)(y)dy+0(b5),

Proof. Let’s deal now with the term:

Cov(1iy,m11) = Cov (E (115|Y1), E (m111Y1)) + E [Cov (s, 11 |Y1)]
= Cov (E (W(Kb(iﬁ - Y5) —g(M1)) Yl) 77'1.1> )

since

° U(Yl) -

™M1 =

Hho _ U(Y) Mo K 0)
oy (- —g(M) = ni(Yl) ( - g(Yl)) (A.150)

is a measurable function of Y7 and then Cov (7, 71|Y1) = 0.

On the other hand,

v(Y1) — iy (Kp(Y1 — Ya) — g(Y1))

o

.

—— o~ (BE(Kpy(Y1 = Y2) Y1) — g(Y1))

— Ky g) (Y1) — g(V1)].

=
|
=
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: : : : . . o e\,
Using the previous expressions we can obtain a simpler expression for Cov (s, 711 ):

o¥1) ~ o) ~ o (KO
P (1 g)(v1) — (1)) " (KO v )]

. {U(Yl) — (K, + g) (V) —g(Yl))] E {“(Yl) _ <K(O) - gm)ﬂ

Cov(rtyh) — E [

m(Y1) m(Y1) b
-/ ( ) )“”)2<<Kb*g><> o) (552 o)) sty
[ )64/ (y)9(4)(y)dy+0(66)]

[K 0, [U(Yl()YI)uU] E[(YI)]} (A.151)

S

_ 2
/(U(%(y)ﬂv) [MQ(QK)bQQ//(y) M2(K)b4 (4)( )+O(b6):|
<KZSO) — (y)> g(y)dy = M(K;K(O) be? / 3(y)g" (y)dy
_ MQ(QK) b2 / o) (w)dy + 4 2)4K(0)b362 / 3(y)g™ (y)dy
_ “42(f>b4c2 / a(y)g™W (y)dy + O(b°) (A.152)
and
K(0) . [v(Y1) = o _ K(©) [o(y) =
( E[ e } ~ Bl =5 / Dt gtu)dy
- [ 10w B0 [ (A-153)
Using (A.152) and (A.153) in (A.151) we get (A.149). m

Lemma A.2.7. The covari