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Abstract: If G = (VG, EG) is a graph of order n, we call S ⊆ VG an isolating set if the graph induced
by VG − NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the
isolation number of G, and it is denoted by ι(G). It is known that ι(G) ≤ n

3 and the bound is sharp.
A subset S ⊆ VG is called dominating in G if NG[S] = VG. The minimum cardinality of a dominating
set of G is the domination number, and it is denoted by γ(G). In this paper, we analyze a family of
trees T where ι(T) = γ(T), and we prove that ι(T) = n

3 implies ι(T) = γ(T). Moreover, we give
different equivalent characterizations of such graphs and we propose simple algorithms to build
these trees from the connections of stars.

Keywords: domination number; isolation number; trees; algorithms

1. Introduction
We start by introducing the basic notation. Let G = (VG, EG) be a simple, undirected,

finite graph of order n. The open neighbourhood of a vertex v ∈ VG, denoted NG(v), is the
set of neighbours of v; thus, NG(v) = {u ∈ VG, uv ∈ EG}. The closed neighborhood of v
is the set NG[v] = NG(v) ∪ {v}. The degree of a vertex v ∈ VG, denoted by dG(v), is the
number of neighbours of v, so dG(v) = |NG(v)|. A leaf in a graph G is a vertex of degree 1
in G and a support vertex is a vertex adjacent to a leaf. A strong support vertex is adjacent
to at least two leaves.

The set of leaves of G is denoted by Ω(G) and the set of all support vertices of G is
denoted by Supp(G). The subgraph of G induced by S ⊆ VG is denoted by G[S] and the
subgraph obtained from G by deleting all vertices in S, and all edges incident with vertices
in S are denoted by G− S. We say that a set X ⊆ VG is a two-packing one if dG(u, v) > 2
for any two vertices u, v ∈ X.

A subset S ⊆ VG is called dominating in G if NG[S] = VG. The minimum cardinality of
a dominating set of G is the domination number, and is denoted by γ(G). A dominating set
of cardinality γ(G) is called a minimum dominating set or γ(G)-set. There is extensive liter-
ature on dominating sets in graphs. In particular, we refer to the books by Haynes et al. [1]
and Yero [2] for a revision of theoretical, algorithmic and application aspects of domination
in graphs.

In [3,4], the authors introduce the definition of an isolation number of a graph and
consider bounds on it in terms of order and degree. For a family of graphs F , they call
a set of vertices S, an F -isolating set if the graph induced by the set VG − NG[S] contains
no member of F as a subgraph. In particular, {K1}-isolating sets coincide with the usual
dominating sets.

The vertices not dominated by a {K2}-isolating set form an independent set. In the
sequel, we use an isolating set instead of a {K2}-isolating set. The minimum cardinality of
an isolating set of a graph G is denoted ι(G) and is called the isolation number of G. An
isolating set of cardinality ι(G) is called a minimum isolating set or ι(G)-set. In [4], the
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authors proved that ι(G) ≤ n
3 and the bound is sharp. In a recent paper [5], this bound has

been improved for outerplanar graphs by considering the number of vertices of degree 2.
Our work focuses on the characterization of trees considering the concept of an

isolating set. We first study the relationship between isolation and domination numbers
for such graphs, and then we investigate the trees for which the ι(G) = n

3 bound is
reached. An important contribution of this work is the characterization of trees for which
ι(G) = γ(G) (see Theorem 5). We also provide different equivalent conditions of the fact
that ι(G) = n

3 (see Theorem 8) and we show that, in particular, trees such that ι(G) = n
3

verify that ι(G) = γ(G).
Using the theoretical description of the trees, we obtain algorithms to build trees with

the condition ι(G) = γ(G) and ι(G) = n
3 . We show several examples of the utilization of

these algorithms to obtain ad hoc networks.
This work is organized as follows. Section 2 presents theoretical results to characterize

trees for which the domination number is equal to the isolation number. In Section 3, we
deal with the study of a family of trees T such that ι(T) = n

3 . These kinds of trees are a
particular case of trees with γ(T) = ι(T). Section 4 presents an algorithm to build this
family of trees to determine the most important parameters studied in this paper. Finally,
Section 5 is devoted to the conclusion.

2. Study of Trees with Domination Number Equal to Isolation Number
We begin by giving an exact value of the isolation number for paths.

Theorem 1. If Pn = (v1, . . . , vn) is a path with n ≥ 3 vertices, then ι(Pn) = d n−1
4 e.

Proof. The set S = {vi ∈ VPn : i ≡ 3(mod 4)} is an isolating set of cardinality d n−1
4 e of

Pn for n ≡ 0, 1, 3(mod 4), and S ∪ {vn} is an isolating set of cardinality d n−1
4 e of Pn for

n ≡ 2(mod 4), so we obtain that ι(Pn) ≤ d n−1
4 e.

Now, let D be an isolating set of Pn. Since D is isolating, there are no four consecutive
vertices in VPn − D and the distance d(vi, D) = min{d(vi, w), w ∈ D} ≤ 2, for i ∈ {1, n}.
Thus, we have ι(Pn) ≥ d n−1

4 e.
We can characterize trees T for which ι(T) = γ(T). Let F be the family of trees T that

can be obtained from a sequence T1, . . . , Tj (j ≥ 1) of trees such that T1 is a star K1,p (p ≥ 2)
and T = Ti; and if i ≥ 1, Ti+1 can be obtained from Ti by adding a star K1,r(r ≥ 2) and an
edge xy, where x is a vertex at a distance two from a leaf of Ti and y is an end vertex of a
star K1,r.

The following observation gives the immediate properties of trees belonging to the
family F , and Figure 1 shows an example.

Figure 1. Example of a tree from the family F . The black dots correspond to vertices in set Supp(T).

Observation 1. If T ∈ F , then Supp(T) forms a maximum 2-packing, and it is the unique
γ(T)-set not containing leaves.
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Observation 2. Let T be a tree of order n ≥ 3 such that Supp(T) is a dominating set of T and
forms a maximum 2-packing. If P = (v0, v1, . . . , vm) is a longest path in T, we have dT(v2) = 2
and v3 /∈ Supp(T). Since Supp(T) is a dominating set of T, we also get v3 at a distance 2 from a
leaf. Thus, T′ = T − NT [v1] is a tree, and we can obtain T from T′ by attaching the star NT [v1]
and the edge v2v3. Therefore, T′ ∈ F implies T ∈ F .

As consequence of the above observations, we have the following characterization of
trees belonging to the family F .

Theorem 2. Let T be a tree of order n ≥ 3. VT = NT [Supp(T)] and Supp(T) forms a maximum
2-packing if, and only if T ∈ F .

Proof. We prove T ∈ F by induction on n. If n = 3, then T = K1,2 ∈ F . Assume the result
holds for every tree T′ of order k ≤ n− 1. Now, we take T of order n. We are going to see
that if P = (v0, v1, . . . , vm) is a longest path in T, then T′ = T − NT [v1] ∈ F . In fact, using
the hypothesis, we have that Supp(T′) = Supp(T)− {v1} is a maximum 2-packing in T′

and VT′ = NT′ [Supp(T′)]. Hence, by induction, T′ ∈ F . By Observation 2, we infer that
T ∈ F . We finish the proof using Observation 1.

We have the following consequence of Theorem 2.

Theorem 3. Let T be a tree of order n ≥ 3. T ∈ F if, and only if |NT [x] ∩ Supp(T)| = 1 for
every vertex x ∈ VT .

Proof. Assume first that T ∈ F . By Observation 1, |NT [x] ∩ Supp(T)| ≥ 1 for every
x ∈ VT . If there exists a vertex x such that |NT [x] ∩ Supp(T)| > 1, then there are two
vertices a, b ∈ Supp(T) with dT(a, b) ≤ 2 which contradicts that Supp(T) is a 2-packing.
Now, if for every x ∈ VT is |NT [x] ∩ Supp(T)| = 1, then VT = NG[Supp(T)] and Supp(T)
is a 2-packing, so the result holds from Theorem 2.

The following result is a characterization of trees T with γ(T) = ι(T).

Theorem 4. Let T be a tree of order n ≥ 3. γ(T) = ι(T) if, and only if |NT [x] ∩ Supp(T)| = 1
for every vertex x ∈ VT .

Proof. Assume γ(T) = ι(T) = l. Let D be a minimum dominating set of T. First, we verify
by contradiction that

∀x ∈ Supp(T), NT [x] ∩ Supp(T) = {x}. (1)

∀x /∈ Supp(T), |NT [x] ∩ Supp(T)| ≤ 1. (2)

If x ∈ Supp(T) and there exists a vertex x′ ∈ NT(x) ∩ Supp(T), then S1 = D− {x} is
an isolating set of T. If x /∈ Supp(T) and there are s1 6= s2 two different support vertices
such that s1, s2 ∈ NT(x), then S2 = (D − {s1, s2}) ∪ {x} is an isolating set of T. In both
cases we have a contradiction with γ(T) = ι(T).

Now, we prove by induction on l that

∀x ∈ VT , |NT [x] ∩ Supp(T)| ≥ 1. (3)

If γ(T) = ι(T) = 1, then T is a star, and the result holds. Assume that Equation (3)
is true for trees T′ with γ(T′) = ι(T′) < l. Let T be a tree with γ(T) = ι(T) = l, and
let D be a minimum dominating set not containing leaves of T. Let P = (v0, . . . , vm) be
a longest path of T. From Equation (1), we have NT [v1] ∩ Supp(T) = {v1}, and then
v2 /∈ Supp(T). We verify that dT(v2) = 2, by contradiction as follows. If dT(v2) > 2,
then |NT [v2] ∩ Supp(T)| ≥ 2. Hence, {v2} ∪ (D− (NT [v2] ∩ Supp(T))) is an isolating set
of T, and we have a contradiction. Then we can consider the tree T′ = T − NT [v1] and
γ(T′) = ι(T′) = |D − {v1}| = l − 1. By induction, Supp(T′) is a dominating set of T′.
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Using that Supp(T) = Supp(T′) ∪ {v1}, we conclude that VT = NT [Supp(T)], and the
Equation (3) holds.

Now, we assume that every x ∈ VT is |NT [x] ∩ Supp(T)| = 1. By Theorem 3 we have
T ∈ F .

We prove by induction on s = |Supp(T)| that Supp(T) is a minimum isolating set
of T and γ(T) = ι(T) = s. If s = 1, then T is a star and γ(T) = ι(T) = 1. Assume the
result holds for trees with s′ < s support vertices. Let T be a tree with s = |Supp(T)| > 1
support vertices. Take P = (v0, v1, . . . , vm) a longest path in T and T′ = T − N[v1]. Then,
T′ is a tree with Supp(T′) = Supp(T) − {v1} and |NT′ [x] ∩ Supp(T′)| = 1 for every
vertex x ∈ VT′ . By induction, Supp(T′) is a minimum isolating set of T′ and s − 1 =
γ(T′) = ι(T′). By Observation 1, Supp(T) is a γ(T)−set. Now, let W be a minimum
isolating set of T. Therefore, the set W ∩ T′ is an isolating set of T′. From the fact that
v0, v1 ∈ VT − NT [W ∩ T′], we have that W ∩ T′ is not an isolating set of T. Then,

s− 1 = ι(T′) ≤ |W ∩ T′| < |W| = ι(T) ≤ γ(T) = s

and we conclude that ι(T) = s = γ(T).

The next theorem, which characterizes trees T with equality γ(T) = ι(T), is a final
consequence of the results above.

Theorem 5. Let T be a tree of order n ≥ 3. The following are equivalent:
1. T ∈ F ;
2. Supp(T) is a γ(T)-set which forms a 2-packing of T;
3. |NT [x] ∩ Supp(T)| = 1 for every vertex x ∈ VT ;
4. γ(T) = ι(T).

3. Extremal Trees
In this section, we will find the extremal trees, such as ι(T) = n/3. We first introduce

the following theorem proved in [4].

Theorem 6. Let G be a connected graph on n ≥ 3 vertices, and different from the cycle C5. Then,
ι(G) ≤ n

3 , and this bound is sharp.

We will characterize all trees for which the equality holds. We also show that these
trees are special cases of graphs from the familyF for which γ(G) = ι(G). From Theorem 1,
we have that some paths are extremal trees.

Observation 3. Let Pn be a path with n ≥ 3. Then ι(Pn) = n
3 if, and only if either n = 3 or

n = 6.

LetR be the family of trees T that can be obtained from a sequence T1, . . . , Tj (j ≥ 1)
of trees such that T1 is a path P3 and T = Tj; and, if i ≥ 1, Ti+1 can be obtained from Ti by
adding a path P3 and an edge xy, where x is a vertex at a distance two from a leaf of Ti and
y is a leaf of a joined path P3. From the construction, we have the following result.

Observation 4. For a tree T with at least three vertices, T ∈ R if, and only if T ∈ F and
dT(s) = 2 for every s ∈ Supp(T).

Figure 2 shows an example of a tree from the family R. The support vertices are
in black.

The following results show that trees for which the equality ι(T) = n
3 holds are exactly

the trees belonging to the familyR.

Lemma 1. Let T be a tree of order n ≥ 3. If T ∈ R, then ι(T) = n
3 .
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Figure 2. Example of a tree from the familyR. The support vertices are in black.

Proof. From Theorem 6 we know that ι(T) ≤ n
3 for any tree T. Let T ∈ R; thus, T contains

k copies of P3 for some k ≥ 1. Let D be an ι(T)-set of T. From the construction of T, at least
one vertex of every P3 must belong to D, so ι(T) = |D| ≥ k = n

3 . Thus, ι(T) = n
3 .

Theorem 7. Let T be a tree of order n ≥ 3. We have that ι(T) = n
3 if, and only if T ∈ R.

Proof. The necessary condition follows from Lemma 1. To prove the sufficiency, we use
induction on n. We show that if T /∈ R, then ι(T) < n

3 . If n = 3, then T = P3, so T ∈ R; let
n = 4. Then T = P4 or T = K1,3, ι(T) = 1, and the result is true. Assume the result holds
for every T′ with less than n vertices.

Let P = (v0, . . . , vl) be a longest path in a tree T with n > 3 vertices, chosen in a way
that dT(v1) is as big as possible, and let D be an ι(T)-set of T. Assume first that dT(v1) > 2,
and let T′ = T − {v0}. Observe that dT(v1) > 2 implies T′ /∈ R, because v1 ∈ Supp(T′).
If T′ /∈ R, then by induction ι(T′) < n(T′)

3 and using the fact that ι(T′) = ι(T) and
n(T′) = n(T)− 1, finally we obtain ι(T) < n

3 .
Let now dT(v1) = 2 and assume first dT(v2) > 2. If dT(v2, Ω(T)) = 2, then let

T′ = T − {v0, v1}. Notice that v2 ∈ D and ι(T′) = ι(T). If T′ /∈ R, then by induction
ι(T′) < n(T′)

3 and using the fact that ι(T′) = ι(T) and n(T′) = n − 2, finally we obtain

ι(T) < n
3 . If T′ ∈ R, then, from Lemma 1, ι(T′) = n(T′)

3 , and we also obtain the final
inequality. If dT(v2, Ω(T)) = 1, then v2 is a support vertex of T; thus, considering also
T′ = T− {v0, v1}, we conclude that T′ /∈ R, and similarly as for the case dT(v2, Ω(T)) = 2,
we obtain the desired inequality.

Let now dT(v2) = 2 and consider T′ = T− {v0, v1, v2}. If T′ /∈ R, then by induction
ι(T′) < n(T′)

3 , and since ι(T′) = ι(T)− 1 and n(T′) = n− 3, we obtain the final inequality.
Consider the case when T′ ∈ R. Then by Observation 4, Lemma 1 and Theorem 5,

we have that Supp(T′) is a γ(T′)-set and l′ = γ(T′) = n(T′)
3 = n−3

3 . Since Supp(T′) is
a dominating set of T′, Supp(T) = {v1} ∪ Supp(T′) is a dominating set of T, and then
Supp(T) is a minimum dominating set of T. We get γ(T) = 1 + γ(T′) = 1 + n(T′)

3 = n
3 .

Since (by our assumption) T /∈ R, by Observation 4 we know that either T /∈ F , or there
is a support vertex s ∈ Supp(T) with dT(s) 6= 2. This last condition does not hold since
dT(v1) = 2 and dT(s) = 2 for any s ∈ Supp(T′); thus, T /∈ F . By Theorem 5, we have
ι(T) < γ(T), and finally, we get ι(T) < n

3 .

The results above can be summarized as follows.

Theorem 8. Let T be a tree of order n ≥ 3. The following are equivalent:
1. T ∈ R
2. γ(T) = ι(T) = n

3
3. ι(T) = n

3
4. Supp(T) is a 2-packing γ(T)-set with n

3 vertices.
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4. Algorithms
The pseudocode in Algorithm 1 shows the implementation of the procedure described

in Section 2 to build trees of the family F . The function receives a tree T of the family F ,
a star K that is to be appended to the tree, and a set C made up of all the nodes in T that are
a distance 2 from any leaf. These nodes are all the possible points of connection for the star.
The function returns an updated tree that results from connecting a leaf l ∈ K to a node v
chosen from C, and an updated set C.

Algorithm 1 Build tree

1: function GROWTREE(T, C, K)
2: v← CHOOSE(C)
3: S← NEIGHBOURS(v)
4: if SIZE(S) = 1 then . v is a leaf, S its support
5: SL← LEAVES(S)
6: if SIZE(SL) = 2 then . S has two leaves: v and w
7: C ← C− (SL− v) . remove w from C
8: end if
9: end if

10: l ← ANYLEAF(K) . l can be any leaf of K
11: T ← T ∪ K ∪ {(v, l)} . grow T by connecting v ∈ T and l ∈ K
12: if SIZE(K) = 3 then
13: C ← C ∪ {l}
14: else
15: C ← C ∪ LEAVES(K)
16: end if
17: return T, C
18: end function

The procedure to update C is the following: if K had more than three vertices (i.e.,
more than two leaves), all its leaves are added to C. If it had three vertices (two leaves),
only l is added to C. Additionally, if the chosen vertex v was a leaf, and its support had
exactly two leaves (v and another vertex w), w is removed from the set C because it will no
longer be at a distance 2 from another leaf (v will not be a leaf after the connection).

This function allows an incremental build of a tree by using the outputs T and C as
inputs for the next iteration, together with the new K to be appended to the tree. For the
first iteration, T can be a star, and C all its leaves.

Different methods can be used to select a vertex v from the set C. For instance, we
consider three connection schemes: (1) The vertex with maximum degree, (2) the vertex
with minimum degree, and (3) a randomly selected vertex. Figure 3 shows an example of
the trees obtained with the three connection schemes in a simulation with 50 stars with
five vertices each. We observe that the form of the tree obtained by selecting the vertex
with minimum degree (Figure 3b) is similar to the tree for a randomly selected vertex
(Figure 3c).

Calculating a minimum dominating set of a graph T is an NP-hard problem [6].
The computation of an isolating set can be done from the dominating set by exploring
the connectivity of the graph obtained when a set of vertices is removed. When done this
way, it is also a NP-hard problem. However, in Section 2, we have determined that the
support set for a tree from the family F is both a minimum dominating set and a minimum
isolating set. In addition, when the graph is built using Algorithm 1, the supporting set can
be incrementally constructed by adding the support of the star appended at each iteration
to it.
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(a)

(b)

(c)

Figure 3. Example of trees obtained using different strategies for choosing the vertex to connect a
new star to the tree: (a) the vertex with maximum degree, (b) the vertex with minimum degree, and
(c) a randomly selected vertex.

Calculating a minimum dominating set of a graph T is an NP-hard problem [6].
The computation of an isolating set can be done from the dominating set by exploring
the connectivity of the graph obtained when a set of vertices is removed. When done this
way, it is also a NP-hard problem. However, in Section 2, we have determined that the
support set for a tree from the family F is both a minimum dominating set and a minimum
isolating set. In addition, when the graph is built using Algorithm 1, the support set can be
incrementally constructed by adding the support of the star appended at each iteration
to it.

Algorithm 1 can be used for building different trees from the family F . In order to
simplify the comparison among the results, we will show results obtained for stars with the

Figure 3. Example of trees obtained using different strategies for choosing the vertex to connect a
new star to the tree: (a) the vertex with maximum degree, (b) the vertex with minimum degree, and
(c) a randomly selected vertex.
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Algorithm 1 can be used for building different trees from the family F . In order to
simplify the comparison among the results, we will show results obtained for stars with the
same number of vertices. Figure 4 shows the ratio |Supp(T)|/|T| when the tree is obtained
by connecting two stars while varying the number of vertices in each star from 3 to 50.
The maximum value corresponds to a path of three vertices, that is, to a graph from the
familyR. This is the same result obtained in Section 3.

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Num. of vertices

|S
u

p
p

(T
)|

 /
 |

T
|

Figure 4. Values of |Supp(T)|/|T| for two stars and a number of vertices in each star between 3 to 50.

In order to compare the strategies for building the tree, we have characterized each
tree considering the degree and the diameter. These measures have a great importance in a
large number of applications (see, for instance [7,8]): Vertices with high degrees tend to
play central roles in many graphs and are considered by many to be the focal points of
graph functionality; on the other hand, the diameter provides information about the cost
associated to send information between vertices of a graph. Figure 5 compares the graph
parameters for trees constructed by connecting from 2 to 30 stars with five vertices. The size
of the supporting set is the same for all strategies because it is equal to the number of stars
used to construct the tree. From the results in Figure 5 corresponding to the degree, we
show the value obtained by averaging the degree of all vertices in the tree, the minimum
degree and the maximum degree. For all the strategies, the average degree is similar, but
the maximum value increases with the number of stars for the approach where the vertex
with the maximum degree is chosen. This is a reasonable result, because this procedure
produces a centralized graph where only one vertex is chosen for all the connections.
For the other two approaches, the method produces a wide area network. Finally, in the
results in Figure 5 corresponding to the diameter, we can see that the first strategy produces
a tree with a short diameter, while in the other strategies the diameter increases with the
number of stars. We also observe that the results obtained when choosing the vertex with a
minimum degree (Figure 5b) are similar to those obtained when the vertex is randomly
selected (Figure 5c).
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Figure 5. Degree (minimum, average and maximum value) and diameter obtained using different
strategies for choosing the vertex to connect a new star to the tree: a) the vertex with maximum
degree, b) the vertex with minimum degree, and c) a randomly selected vertex.

Figure 5. Degree (minimum, average, and maximum value) and diameter obtained using different
strategies for choosing the vertex to connect a new star to the tree: (a) The vertex with maximum
degree, (b) the vertex with minimum degree, and (c) a randomly selected vertex.
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5. Conclusions
We have studied the characterization of trees taking into account the relationship

between the isolation number and the domination number. We have found conditions to
guarantee the equality of both numbers. For such trees, a minimum dominating set can be
found by computing the supporting set. We have also determined extremal trees for which
the maximum bound of the isolation number is achieved.
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