
ML Models FOR REAL-TIME HYBRID SYSTEMS

Manuel I. Capel
Department of Software Engineering, 18071University of Granada, Spain

manuelcapel@ugr.es

Abstract

A correct system design can be systematically
obtained from a specification model of a real-time
system that integrates hybrid measurements In a
realistic industrial environment, this has been carried
out through complete Matlab / Simulink / Stateflow
models. However, there is a widespread interest in
carrying out that modeling resorting to Machine
Learning models, which can be understood as
Automated Machine Learning for Real-time systems
that present some degree of hybridation. An AC motor
controller which must be able to maintain a constant
air flow through a filter is one of these systems. The
article also discusses a practical application of the
method for implementing a closed loop control system
to show how the proposed procedure can be applied
to derive complete hybrid system designs with ANN.

Palabras clave: Automated Machine Learning, Real-
time embedded control systems, Cyber-physical
systems, Time series forecasting, Neural networks,
Energy efficiency.

1 INTRODUCTION
Automated Machine Learning (AML) methods for
design and implementation of Real-Time systems,
applied to the specification of non-functional user
requirements, such as timing constraints between
system actions, are also starting to be applied
successfully in the requirement specification, design
and implementation phases of cyber-physical systems.
Although AML methods help us to find a consistent
implementation of system requirements, however they
present serious application problems regarding fitness
calculation, overfitting, lack of scalability and a high
amount of time to compute the hyperparameters on
which real-time and control systems are dependable.
The problem above is worsened if we chose an
artificial neural network (ANN) to calculate the
hyperparameters by following an optimization method
as the gradient descent one. Therefore, we propose in
this paper to complement the expensive training phase
of artificial neural networks (ANN) with
hyperparameter updates carried out manually with the
help of tools widely used in the industry (Simulink and
Stateflow). The values of the hyperparameters can be

validated following a mixed approach that is based on
the interleaving of updates of the values with the
training of the neural network. This method could be
considered as very model-specific but, on the other
hand, it allows us to obtain efficiently and with time
constraints many hyperparameters of the cyber-
physical model, which lays the basis for obtaining a
great improvement over other approaches currently
more used for example, obtaining hyperparameters
using Bayesian optimization (HPO)[1].
 Our approach works better for modelling analogic
systems or those that capture measured data
continuously; and it is inspired in some prior results
obtained in solving prediction problems with ANN [9]
for Energy Efficiency systems; but if discrete
components are interrelated with continuous ones, the
common result is to produce inflexible models, with
parameters that are difficult to change at run time in
simulations.
 In hybrid state machines [10] the continuous
behavior described by a system of differential
equations associated must change as result of the
occurrence of discrete events too. Our approach gives
very compact and flexible specifications of complex
hybrid systems, however there are very few tools that
support this class of tools now. In our case, we
hypothesize that there is no major problem in building
a trained ANN that substitutes the PID controller a
closed loop control system to react and produce a
correct response even in the case of discrete events,
i.e., messages or signals that may modify the values of
the cyber-physical model’s hyperparameters.
 The remainder of the paper is structured as
follows. We first give some background on
Automated Machine Learning, which is the formal
foundation of our method. Then, the approach
proposed here is applied to solve an industrial problem
of a real-time feedback closed loop used to maintain
constant rotor speed of an induction motor driven by a
TriaC device such as the one used by an AC motor to
keep a constant air flow through a filter in HVAC
systems. The case study shows how the proposed
method can be applied to derive a hybrid system that
also contains discrete components. Finally, the
conclusions and the ongoing lines of work are
presented.

XLII Jornadas de Automática Computadores y Control

752

https://doi.org/10.17979/spudc.9788497498043.752

2 AUTOMATED MACHINE
LEARNING

Most real-time systems problems that can be solved
by algorithms or heuristics are characterized by
complexities such as non-convexity, nonlinearities,
discontinuities, variables of mixed nature, which
involve expertise in multiple disciplines, as well as to
face high dimensionality, which renders algorithms
ineffective, impractical, or inapplicable in Real-time
systems (RTS) implementation. There are no known
mathematically well-founded algorithms for finding
the best solution for RTS and for control problems, in
general cyber-physical domains, within a limited
amount of time. In order to solve such problems
practically, we are compelled to search new
optimization algorithms, which are typically
developed by using heuristics that, despite lacking
strong mathematical foundations, are capable of
reaching an approximate solution in a reasonable
amount of time to the aforementioned problems.
These so-called metaheuristic methods do not
guarantee that the exact optimal solution will be
found, but they can lead to a near-optimal solution in
a computationally efficient manner. Therefore,
metaheuristic methodologies are gaining an every day
growing popularity in a variety of application domains
due to their practical appeal and ease of
implementation.
 Most metaheuristic methods are stochastic in
nature and imitate a natural, physical, or biological
principle that resembles a search or optimization
process. Evolutionary algorithms, more specifically,
genetic algorithms and their evolution strategy;
particle swarm, ant colony, bee colony optimization;
simulated annealing, and a variety of other methods,
are among the most used nowadays.
 Metaheuristics have a certain advantage over
traditional optimization methods, namely,
• Can provide good solutions that can hinder

traditional methods for computationally easy
challenges involving large input complexity.

• Can yield sufficient solutions to difficult
problems, e.g., problems for which an exact
algorithm is not known and can be resolved in
reasonable time.

• In contrast to most conventional methods, they do
not require information on gradients and can
therefore be used with non-analytical black box or
simulation-based objective functions.

• Most of them are inherently stochastic or
deterministic heuristics that are specifically
designed for this purpose and have the ‘capacité’
to recover from local optima.

• Because metaheuristics can better deal with
interties in goals, they are also able to recover
from local optima.

• Most metaheuristics have only a few algorithmic
changes to handle multiple objectives.

2.1 ARTIFICIAL NEURAL NETWORKS
AND GRADIENT BASED
OPTIMIZATION

Complex numerical and symbolic calculations can be
made at incredible speed on modern parallel
computers. However, they cannot still be close to the
performance of human minds to carry out perceptual
tasks such as the recognition of language and images.
Computers need accurate input information and
sequentially follow instructions’ streams while the
human mind performs tasks in a highly distributed and
parallel mode. We can say, therefore, that a biological
neural network is the basis for the design of an
artificial intelligence neural network (ANN) and
thereof it must be considered as a computation model
that is intrinsically parallel and convenient to solve
very complex problems in the cyber-physical domain.

Figure 1: Artificial Neuron

 Just as the human brain is made up of
interconnected biological neurons, an ANN is made
up of artificial neurons connected and grouped at
different levels called layers. For a neural network to
obtain satisfactory results, it must have been
previously trained. The latter process consists of
adjusting each of the weights of the inputs of all the
neurons that are part of the neural network so that the
responses of the output layer fit as closely as possible
to the known data.

Figure 2: Simple Artificial Neural Network

2.1.1 Optimization and Gradient Descent

Modern parallel computers and graphics cards as
NVIDIA GPUs make currently possible to obtain the
gradient of model selection w.r.t. crucial
hyperparameters of cyber-physical models [1].

XLII Jornadas de Automática Computadores y Control

753

https://doi.org/10.17979/spudc.9788497498043.752

Following this approach, evaluations of the target
function results into a hyper-gradient vector instead of
single values that are usually obtained by other
methods such as the called hyperparameter
optimization (HPO).
 Thanks to parallel computing we can now handle
many hyperparameters of a model [2] [3] by deploying
gradient-based methods efficiently, more specifically,
our method for ANN applied to high-dimensional
HPO problems can perform the following tasks,
•optimize the learning rate of an ANN for each
iteration and layer separately.
•Calculate optimal weights for each layer in the ANN.
•Reduce likelihood of overfitting by L2 regularization
for each individual parameter of the model.
We can, therefore, overcome the backpropagation
through the complete training procedure of an ANN
by carrying out hyperparameter updates and by
following separate validation interleaved with the
training of the network. This method is highly model-
specific but, in return, it allows us to tune many
hyperparameters of the cyber-physical model, which
sets the ground for obtaining a great improvement
with respect to HPO carried out, e.g., by Bayesian
optimization.

2.2 FEATURE PROCESSING ALGORITHMS

To build arbitrary size ML pipelines our approach
proposes to use more than one algorithm and
dynamically add these algorithms to the parallel
calculation in order to enlarge the search space and
then to haste select the right algorithm and its
hyperparameters [4][5].

2.3 SCALABILITY
There are many machine learning problems which
cannot be directly tackled due to their scale. We
understand the term scale here as the size of the
configuration space and the highly computational cost
of individual model evaluations. There are currently
some successes in training the neural network with
small datasets and setting the hyperparameters of the
training procedure manually [6]. Our approach with
respect to cope with the scalability problem is to take
advantage of massive parallel computing and try to
full exploit large-scale computer clusters or the
thousand of SMs of GPU/CUDA multiprocessors.

2.4 OVERFITTING AND
GENERALIZATION

Overfitting is an open problem when we try to apply
ANN with a finite validation set and the calculation of
the model’s hyperparameters suffer from this problem
[7]. To reduce the amount of overfitting we can use a
different shuffling for each function that we need to
evaluate. This approach has shown to improve the
generalization accuracy and recall by deploying a
cross-validation strategy of the cyber-physical

models. We can also use the strategy of finding stable
optima instead optima in the objective function, as it
was noted in [8].

3 MODELING METHOD
In the proposed ANN-based method [9] to design a
real-time hybrid system with continuous and discrete
components, we use a typical design of a neural
network, in which we define the usual two main
phases: training and testing. The generated output of
the model, i.e., next values of variables of the cyber-
physical system, which represent the functional and
dynamic aspects of model, are used to feed
Simulink/Stateflow blocks.

Figure 3: Diagram of the approach to deploy the AC
Motor general model; there is only one neural network
that learns from input data and outputs the next value

4. REGULATION OF ROTOR SPEED
WITH AN INDUCTION MOTOR

An informal description of the user´s requirements
specification of a closed loop control system is
presented for controlling an AC motor (or induction
motor) in figure 4. The open loop control of the engine
is obtained by feeding it with a controlled voltage of
220 volts and 50 Hz. This control is carried out by
cutting the sinus wave, which represents the input
voltage using an electronic device named TriaC,
which operates as a very fast switch. The control line
of the TriaC is driven by a synchronization signal
(synch), which informs when the input voltage passes
through a zero value, at this moment the TriaC
automatically stops to conduct electricity.

If after switching the TriaC off, it is fed with current
several milliseconds later, it will be driven to
saturation by the signal texct and will start to conduct
until the input voltage passes through a zero value
again. The closed loop of control is obtained in this
case by calculating the precise time at which the TriaC
must be enabled, so the excitation time must be
calculated in real-time and in every cycle of the input
voltage. The system should address its own safety if
synchronization signal fails, or the TriaC overheats. If

XLII Jornadas de Automática Computadores y Control

754

https://doi.org/10.17979/spudc.9788497498043.752

the synch signal is missed out after passing a complete
cycle of the input voltage, then syncf is raised. Other
possible failure could happen if the TriaC overheated,
in this case the electronic device might short-circuit
and lead the engine to start working at the maximum
number of revolutions, which would cause the loss of
the engine after 1 second approximately.

Figure 4: Description of the operation of TriaC
device that controls the AC induction motor

 The combination of induction motor with TriaC
device can be used to control or maintain constant the
velocity of a centrifuge of washing machine, the air
flow through a filter, the speed of a vehicle, etc. From
now on we suppose that AC induction motor directed
by the TriaC device controls the air flow through a
filter.

4.1 SYSTEM MODEL DERIVATION

The high-level diagram can be seen in the following
figure 5, which includes five control flows: the
synchronization signal (synch), which informs when
the input voltage passes through zero value; the TriaC
overheating warning; two signals, the first one signals
the missing of synch and the second one signals TriaC
overheating; the reactivating (texct) signals can make
the TriaC returns to allow current to pass again. It also
includes 2 data flows: the first one gives the present
air flow through the filter (flow) and the second one,
the air flow reference value (ref).

Figure 5. System Context Diagram.

value, respectively. If the timeval is outside the
interval [0,1/freq*2], its value is saturated by the
maximum or minimum value. Then one Simulink
subsystem block can traditionally designed as the PID
controller with its interface made up of two ports: the
error signal (speed error signal) as the input port and
the corrected timeval as the output one (figure 6).

4.2 MATLAB/SIMULINK MODEL OF AN
INDUCTION MOTOR DRIVE
The model of an induction motor
http://lsi.ugr.es/~mcapel/miscelanea/motor has been
structured in 3 main blocks: (1) transforms the three
stator voltages va, vb, vc , with a phase of 2p/3 between
each two, into the rotating reference system dq; (2) the
block representing the induction motor itself (which
inputs the three phase voltages, the synchronous
angular speed we and the load torque); (3) this block
returns the expression of the model variables in the dq
system back to the three phases abc reference system,
since the latter one give us the standard graphical
representation of currents in the stator. Two specific
blocks have been designed to calculate the electrical
torque Me given by the motor and another to calculate
the rotor axis angular speed wr.

Finally, all the physical model constants given in
table I have been defined using IS physical units in a
m-file of Simulink, which has to be executed in Matlab
before opening the Simulink model of the system.

Fig.6. Simulink model of the final system

System

Sync
Generator

TriacTriac
Flow

sensor
Flow

sensor

air flow
ºC

sensor
ºC

sensor

overheat

ref

oheatf

syncf

texct

sync

0

XLII Jornadas de Automática Computadores y Control

755

https://doi.org/10.17979/spudc.9788497498043.752

Table I: Constants and variables of the physical variables of an induction motor

d: direct axis of the rotating reference system c*lm= 1/(1/cls+1/clr+1/cm): total reactance with the loses
for magnetizing (cm)

q: quadrature axis of the rotating referente system iqs, ids: currents of the q and d stator axis
s: subindex for the stator variable iqr, idr: currents of the q and d rotor axis
r: subíndex for the rotor variable p: number of poles of the motor
Fij=Fij, magnetic linkage, where i=q or d and j=s
or r

J: inertia momentum

vqs, vds: stator voltages Me: motor electrical torque (output variable)
vqr, vdr: rotor voltages Ml: load torque (input variable)
Rr, Rs: rotor and stator resistors we: stator synchronous speed (input variable)
cls: stator reactance (we Lls) wb=2×p×fb: angular speed corresponding to the electric

frequence of the motor feeding voltage.
clr: rotor reactance (we Llr) wr: rotor angular speed (output variable)

5. HYBRID SYSTEM SIMULATION

In order to carry out a simulation of the hybrid system
proposed in this paper, more components must be
added to the model. We need to construct the model of
a TriaC device, one for the AC Motor, and the sensor
of flow (i.e., a sensor to measure the speed of the rotor
as a tachometer does in trucks), the sensor of
temperature and one for the sync generator. This
model is implemented by using the Simulink/
Stateflow framework, as figure 6 shows, as usual.

5.1 PHYSICAL MODELING OF AN
INDUCTION MOTOR

The most difficult component to model is the AC
Motor since the rest of the other devices can be
modeled by means of simple switches or a
combination of them.
 The functioning of an induction motor is based on
the Physical principle of mutual induction between
electrical circuits traversed by a variable magnetic flux
F. According to the Faraday law, which is given by
the following equation:

(1)

the magnetic flux traversing a motor winding only
depends on the current conducted by the circuit. It
does not depend, for instance, on the number of poles
of the motor. We can assign a self-induction constant
L to any circuit being affected by magnetic induction,
according to the equation:

 (2)

Nowadays the winding of induction motors is made of
three windings, carrying each one of them a voltage
phase separated π rad. from the next phase, which

yields a rotating magnetic field in the stator, as figure
7 shows. The velocity of rotation is called the
synchronous speed, which is given as a parameter of
induction motors. If we short-circuit the rotor winding
–using a squirrel cage winding, for instance-, then the
motor will start rotating because the change in the
magnetic field direction yielded by the synchronous
speed of the stator we induces a current that produces
an electromagnetic force in the rotor. The difference
between the rotation velocity of the stator we and the
rotor’s one wr is named slip, which is also given as a
parameter of induction motors.

5.2 THE TWO-PHASE SYNCHRONOUS
ROTATING FRAME

We can assume a reference system that rotates at the
synchronous speed we of the stator to ease the
representation of the rotating and inductance
linkages by a system of coupled differential equations
that describe the physical induction and motor
dynamics, as figure shows. The induction motor is
therefore modeled by two reels, the first one is aimed
at conducting the current in the stator and it also
generates the rotating magnetic field. The second one
generates the induced magnetic field in the rotor. This
simple model allows us to describe the magnetic
coupling between the stator and rotor windings of an
induction motor very accurately.
 The first axis of the following figure is called the
direct axis and the second one, the quadrature axis. qe
is an additional variable representing the rotor angle
and it can be considered an additional state of the
induction motor model. An induction motor with a
squirrel cage rotor winding (short-circuited) will have
null vqr and vdr voltages. The constants and system
variables of the above linear differential equations
system are given in table I.

)(BN
dt
d

F×-=e

reelB iLN ×=F×

®

B

XLII Jornadas de Automática Computadores y Control

756

https://doi.org/10.17979/spudc.9788497498043.752

Figure 7: (a)Motor winding (b) Rotating reference system

5.3 CALCULATION OF THE
ELECTROMAGNETIC TORQUE
GENERATED BY THE MOTOR

We can derive a mathematical expression for
calculating the electromagnetic torque generated by
the motor. Since we know that the mechanical power
given by the motor is obtained from the
electromagnetic equation:

 (3)

 and the magnetic linkage only depends on the
angular speed and the magnetic flux Fij = we×Fij. The
mechanical power can be made equivalent to the
electrical torque Te generated by the motor, then we
can obtain:
 from the magnetic linkages Fds, Fqs, and currents,
which are obtained by solving a system of differential
linear equations with concrete values of p (the number
of poles) and we as the input data to the induction
motor model. The angular velocity wr of the rotor can
also be calculated since the load torque Tl and moment
of inertia J are also parameters of the induction motor
model. As the above equations show, the electrical
torque and the angular rotor velocity depend on the
number of poles of the rotor winding, on the contrary
of what happens with the magnetic couplings.

6. MATLAB/SYMULINK MODEL OF
AN INDUCTION MOTOR DRIVE

The model of an induction motor
http://lsi.ugr.es/~mcapel/miscelanea/motor has been
structured in 3 main blocks: (1) transforms the three
stator voltages va, vb, vc , with a phase of 2p/3 between
each two, into the rotating reference system dq; (2) the
block representing the induction motor itself (which
inputs the three phase voltages, the synchronous

angular speed we and the load torque); (3) this block
returns the expression of the model variables in the dq
system back to the three phases abc reference system,
since the latter one give us the standard graphical
representation of currents in the stator.
 Two specific blocks have been designed to
calculate the electrical torque Me given by the motor
and another to calculate the rotor axis angular speed
wr. Finally, all the physical model constants given in
table I have been defined using IS physical units in a
m-file of Simulink, which must be executed in Matlab
before opening the Simulink model of the system.

6.1 OBTAINED RESULTS

The results obtained with the two models (OLP and
CLP) were quite different. In the first case, it was only
considered an open control loop model; thus, only
after a constant time the TriaC is excited in every
cycle. In this case the disturbances in the system
response (wr) are remarkable. Rotor speed follows the
changes produced in the synchronous angular speed in
the stator (we) (figure 9), but any change in the value
of we provokes fast oscillations around the new value
in the rotor velocity. If we carry out a simulation with
the rotor velocity controlled by a PID, then we will
obtain better results (figure 8).

Moreover, if we take a plot of the electrical torque
output by the induction motor w.r.t. a constant load
torque, which is given as an input variable to the
system, we will take only important oscillations at the
beginning, while the system is trying to get a
stabilisation point. The oscillations shown in figure 8
represent about the 20% of the target value for the
torque Me, (300 Nm); these oscillations are caused by
dynamic conditions during motor functioning, as the
rotor axis friction.

we qeBwe qeB

qe isd

isb

we

Fs
Fsq

()sqsdbsdsqbmech iΦωiΦω
2
3P ××-××=

sdsq,Φ

 (4) ()dsqsqsds
b

e iFiF
ω
1

2
p

2
3T -÷

ø
ö

ç
è
æ=

XLII Jornadas de Automática Computadores y Control

757

https://doi.org/10.17979/spudc.9788497498043.752

7. CONCLUSIONS AND FUTURE
WORK

We have presented one method and application
derivation scheme to obtain a correct control system
with real-time features. Automated Machine Learning
methods together with a certain class of ANN will
allow us modeling continuous and discrete dynamic
systems, such as the AC motor controller that is the
case study. We have shown that PID (proportional
integrative differential) controllers can be substituted
by a trained neural network that has been used to
integrate continuous components in a hybrid real/time
system design without any accuracy or timeliness
losses. However, unlike other proposals that attempted
to overcome the same problem, our methodological
scheme is mainly a set of guidelines at moment, which
have proved to be of use for deriving a verifiable
model of a cyber-physical complex system. The
method has been defined for its easy integration in
industrial environments for simulation
(Simulink/Stateflow) and can be used with standard
libraries for neural networks development, such as
SkLearn [11] and PySpark. As future work, we plan to
develop a tool capable of automated code generation
of real-time and embedded system software for several
computing platforms.

References
[1] Maclaurin, D., Duvenaud, D., Adams, R. (2015)

Gradient-based Hyperparameter Optimization

through Reversible Learning. In: Bach and Blei,
pp. 2113–2122

[2] Franceschi, L., Donini, M., Frasconi, P., Pontil,
M. (2017) Forward and Reverse Gradient-Based
Hyperparameter Optimization. In: Precup and
Teh, pp. 1165–1173

[3] Pedregosa, F.: Hyperparameter optimization
with approximate gradient. In: Balcan and
Weinberger, pp. 737–746

[4] Almeida, L.B., Langlois, T., Amaral, J.D.,
Plakhov, A. (1999) Parameter Adaptation in
Stochastic Optimization, p. 111–134. Cambridge
University Press

[5] Baydin, A.G., Cornish, R., Rubio, D.M.,
Schmidt, M., Wood, F. (2018) Online Learning
Rate Adaption with Hypergradient Descent. In:
Proceedings of the International Conference on
Learning Representations (ICLR’18)

[6] Loshchilov, I., Hutter, F.(2016) CMA-ES for
hyperparameter optimization of deep neural
networks. In: International Conference on
Learning Representations Workshop track

[7] Cawley, G., Talbot, N. (2010) On Overfitting in
Model Selection and Subsequent Selection Bias
in Performance Evaluation. Journal of Machine
Learning Research 11

[8] Levesque, J.C. (2018) Bayesian Hyperparameter
Optimization: Overfitting, Ensembles and
Conditional Spaces. Ph.D. thesis, Université
Laval

[9] J.R.S. Iruela, L.G.B. Ruiz , M.I. Capel and M.C.
Pegalajar (2021). A TensorFlow Approach to
Data Analysis for Time Series Forecasting in the
Energy-Efficiency Realm. Journal Energies

Figure 8: Closed loop control response to changes in the stator speed

Figure 9: Response of the rotor to changes in the stator speed

XLII Jornadas de Automática Computadores y Control

758

https://doi.org/10.17979/spudc.9788497498043.752

(MDPI). In Energy Fundamentals and
Conversion, Time Series Forecasting for Energy
Consumption-Special Issue (in press)

[10] Maler, O., Manna, Z., Pnuelli,A. (1992) From
timed to hybrid systems. Proceedings of REX
workshop ”Real-time: theory in practice”,
Springer-Verlag.

[11] Feurer, M., Klein, A., Eggensperger, K.,
Springenberg, J.T., Blum, M., Hutter, F. (2015)
Efficient and robust automated machine
learning. In: Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M., Garnett, R. (eds.) Proceedings of
the 29th International Conference on Advances
in Neural Information Processing Systems
(NeurIPS’15). pp. 2962–2970 (2015)

© 2021 by the authors.
Submitted for possible
open access publication

under the terms and conditions of the Creative
Commons Attribution CC BY-NC-SA 4.0 license
(https://creativecommons.org/licenses/by-
ncsa/4.0/deed.es).

XLII Jornadas de Automática Computadores y Control

759

https://doi.org/10.17979/spudc.9788497498043.752

