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Universitat Politècnica de València, Camı́ de Vera S/N, 46022, Valencia, Spain.

b Centro Universitario EDEM, Escuela de Empresarios, Muelle de la Aduana s/n, 46024, Valencia, Spain.
E-mails: macape7@etsii.upv.es,yaboa@upv.es,jpico@ai2.upv.es,pjcarbon@isa.upv.es

Abstract

Inside a cell, protein, production and biosensor path-
ways can be genetically engineered within a dynamic
regulation architecture that provides robustness to cell
factories. Here we investigated how the selection
of gene variants and their associated expression effi-
ciency and kinetic parameters can lead to a wide di-
versity of dynamic responses in terms of protein or
metabolite production. Results show that there is a
trade-off between gene expression efficiency and path-
way performance, and it can be eventually related
to the evolutionary fingerprint of each gene variant.
Therefore, the organism source of gene variants is a
factor that needs to be considered in the design of dy-
namic regulation for genetic circuits.

Keywords: dynamic regulation, biosensors, cell
factories, biomanufacturing.

1 INTRODUCTION

The current changing economic and structural con-
text promotes constant evolution in all industrial sec-
tors. Existing industries must face these changes, and
new industries are structured on the basis of the spe-
cific geopolitical scenario. Biomanufacturing aims to
be an industrial model of biochemical production that
adapts to market needs while respecting established
institutional frameworks. Industrial processes based
on biomanufacturing by means of biological processes
not only provide viable biological models at mass pro-
duction levels, but also offer cheaper and less risky
results at a smaller-scale, as these processes are in-
trinsic to biological production [13]. This type of in-
dustry based on biomanufacturing boosts the bioecon-
omy, which acts as a nexus between economy and
ecology, ensuring economic and technological devel-
opment while preserving and maintaining the planet’s
natural conditions. The development of the bioecon-
omy is underway in more than 50 countries [5], and
the industrial processes that promote it are expanding,
enhancing the current market opportunities.

Metabolic engineering is based on the modification of
organisms to engineer metabolic pathways to produce
substances that would not be produced biologically in

that organism (such as drugs or substances of phar-
macological and commercial interest). This is why
metabolic engineering is usually linked to genetic en-
gineering, whereby the DNA of organisms is uniquely
altered to express the genes of interest in the most op-
timal way possible. By using genetic modification and
metabolic engineering [8], production of metabolites
of interest can be achieved by dynamically adjusting
cellular metabolic parameters, such as, the kinetic con-
stant or affinity rate of target metabolite [7]. However,
maintaining a homogeneous and controllable produc-
tion of a metabolite in a biofactory is not so simple.
This is due to the time-varying and non-homogeneous
conditions of these production pathways inside the
cell, which are difficult to control by dynamic ad-
justments. In [2], a biosensor based model was pro-
posed to measure the naringenin production as a target
metabolite using bacteria as a host microorganim. The
biosensor is based on kaempferol, which is another
metabolite used as a proxy of the naringenin level. To
model a metabolic pathway dynamics, the kinetic pa-
rameters of a single enzyme variant for each enzyme
from the naringenin synthesis pathway are used.

Here we describe a new approach that takes into ac-
count the kinetic parameters of different enzyme vari-
ants that catalyses kaempferol from naringenin. Con-
sidering both enzyme parameters and phylogenetic
distances between host organisms (bio-producers), we
obtained the design space for tuning the biosensor dy-
namic.

2 OBJECTIVE OF THE STUDY

Naringenin is a flavonoid with broad pharmaceuti-
cal interest due to its antioxidant, anti-inflammatory,
cardioprotective, antitumor properties, among others
[10], and herein lies its pharmaceutical and com-
mercial interest. The construction of viable genetic
circuits capable of producing significant amounts of
naringenin must consider several factors. In [2],
the circuit itself considers the possibility of monitor-
ing naringenin production by synthesizing a biosen-
sor that consumes naringenin to provide a control sig-
nal. Therefore, there must be a trade-off between the
amount of naringenin consumed and the kaempferol
produced.
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The objective of this study is to assess how the vari-
ation of three fundamental parameters on which the
production of the biosensor will depend can impact
naringenin production. The aim is to identify the
proper conditions between kaempferol production and
naringenin degradation. In this regard, the two en-
zymes involved in the synthesis of kaempferol from
naringenin will be considered. For both F3H and FLS,
enzymes of study as shown in Figure 1, the parameters
to be analyzed are: Km, kcat and the F3H and FLS en-
zyme concentration respectively. The enzyme concen-
tration depends on the efficiency of gene expression in
the host organism. This expression efficiency can de-
pend on the phylogenetic distance from the organism
from which the gene originates to the host organism,
into which the gene is to be inserted [6]. This point
will be discussed in more detail in section 3.2 below.

For this purpose, we assumed a scenario where the
two genes that synthesize both enzymes are varying,
while all other genetic circuits remain constant. Since
experimental of enzyme parameters is not complete
for all known enzyme variants, in this study we in-
tend to sample the design space defined by the pa-
rameter ranges of each enzyme and evaluate their dy-
namic responses. In summary, the object of this study
is to assess the effect produced on a regulated sys-
tem described in [2] by varying the three parameters
mentioned above, in order to establish a relationship
between enzymatic efficiency (independent of phy-
logeny) and gene expression efficiency (directly de-
pendent on taxonomic distance).

3 MATERIALS AND METHODS

3.1 MODELING THE PATHWAY DYNAMIC
REGULATION ARCHITECTURE

Figure 1 shows the naringenin pathway, the biosen-
sor and the antithetic controller to dynamic naringenin
regulation. This genetic is considered our cell factory
inside the host organism. Our approach assumes that
for every k−cell, the kinetics of the enzyme-catalyzed
reactions involved in the naringenin metabolic path-
way from L-tyrosine to naringenin can be modeled as
the set of rate equations 1 obtained from mass balance
equations and considering dilution due to cell growth
rate µ.

d[Sk
0 ]

dt
= V0 − VS0

− µ[So] (1)

d[P k
i ]

dt
= VSi

− VPi
− µ[Pi] (2)

For each reaction, Vj are the fluxes
(molecules·min−1). Si and Pi is the number of
molecules of the substrates and products in the i

step of the pathway, respectively, i.e., L-tyrosine,
p-coumaric acid, p-coumaroyl-CoA, naringenin
chalcone, and naringenin, which is the product of
interest.

We assume that the flux V0 corresponding to the pre-
cursor L-tyrosine remains constant, and all fluxes Vj
obey Michaelis-Menten kinetics [2] as follows:

Vj = kcatj [Ej ]
[Sj ]

Kmj
+ [Sj ]

(3)

where kcatj is the catalytic rate of each enzyme
(min−1), and Kmj the Michaelis-Menten constant for
each substrate. The enzyme kinetic parameters were
obtained from Brenda [11].

The amount of the enzymes corresponding to each step
of the production pathway, i.e. TAL, 4CL, CHI and
CHS [2], were selected for a nominal case so that the
precursor flux V0 yields 1 g L−1 of naringenin as in
[2].

Similarly, for the biosensor, and using the same as-
sumptions as for the metabolic pathway, the kinet-
ics of the enzyme-catalyzed reactions involved in the
metabolic pathway from naringenin to kaempferol, i.e.
FLS and F3H, were modeled as:

d[Dik]

dt
= VN − VDi − µ[Di] (4)

d[Kak]

dt
= VDi − µ[Ka] (5)

where Vj are the fluxes of each reaction
(molecules·min−1), Di is Dihydrokaempferol,
and Ka is kaempferol, which is the effector flavonoid
measured by a biosensor promoter. As for the path-
way model 1, the flux VDi obeys Michaelis-Menten
kinetics:

VN = kcatF3H[F3H] [N ]
KmN+[N ] (6)

VDi = kcatFLS[FLS] [Di]
KmDi+[Di] (7)

The kinetic parameters were also obtained from the
Brenda database.

In Figure 1, the biosensor uses a Qdor protein and a
qdoR-PqdoI transcription factor that inhibit the pro-
duction of the anti−σ molecules [12]. Kaempferol
captures the QdoR transcription factor and inacti-
vates it. Further details of the transcription/translation
(TX/TL) model are given in [2].

Finally, for the controller in Figure 1, we consider
a model based on ordinary differential equations for
the antithetic feedback integral controller proposed in
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Figure 1: Schema of the dynamically regulated cell factory for naringenin production. A. The production pathway
in the forward chain converts l-tyrosine into (2S)-naringenin, the target product. B. The reverse chain consists of
a biosensor that contains two enzymes, FLS and F3H, that convert naringenin into kaempferol, a molecule that
can be detected by means of transcription factor QdoR. C. An antithetic integral controller as in [2] regulates the
overexpression of enzymes in the production pathway in order to cope with perturbations such as variations in
availability of precursors.

[1, 9]. The antithetic mechanism relies on the mu-
tual annihilation between σ protein and its co-factor
anti−σ, leading to an integral-like behavior controller.

This predictive model has been used in this study vary-
ing three main parameters which are explained in the
following sections.

3.2 EFFECT OF GENE VARIANT
SELECTION ON THE DYNAMIC
RESPONSE

As mentioned in section 2, there is a taxonomic rela-
tion between the efficiency of the enzyme expression
in the host organism and the organism source of the
gen. The efficiency of gene expression is determined
by many factors, including the solubility of the protein
in the organism, the underlying non-toxicity of its pro-
duction in the host, the maximum amount of protein
produced, among other factors [6].

Two organisms having similar genomes (whose tax-
onomic distance is short) present similar phenotypes.
However, the greater the taxonomic distance between
two organisms, the more differences there will be in
the expression of their genes, resulting in different cel-
lular environments. Therefore, to achieve efficient en-
zyme expression it is reasonable to consider that the
more genetically similar two organisms are, the bet-
ter the protein is expressed and the higher concentra-
tions can be reached. For this reason, and in order
to analyze the trade-off between efficiency of expres-
sion and performance of the regulation circuit, we as-
sumed that the closest taxonomic sources should ex-
press more enzyme concentration in the host [6]. In
this study, we have considered differences among the
concentration parameters as function of the enzyme
variant for each enzyme involved in the target path-

way, i.e. the kaempferol metabolic pathway.

Table 1 list the kinetic parameters for both enzymes
F3H and FLS, and their respective taxonomic dis-
tances between the host and the target organism from
they were obtained. Kinetic parameters were collected
from BRENDA and Uniprot databases. As shown,
for Kcat values, the available information is scarce.
The simulations were therefore performed using a con-
strained working range for both kcat and Km, as ex-
plained in the next section. It should be noted that
these kinetic values do not depend on the affinity be-
tween the host organism and the gene source.

Taxonomic distances have been calculated using the
enzyme selection tool Selenzyme [4], which allows
the entry of both host and enzyme reaction of study.
This is considered to be useful for the implementation
of more structurally robust genetic circuits. Here, we
have introduced the Escherichia coli organism entry as
a host, but it should be noted that similarly other hosts
and organism families could be used for future stud-
ies. Table 1 illustrates how the kinetic constants vary
depending on the organism to be considered. In the
study, a concentration range was also performed. The
concentrations of both enzymes were varied in a range
from to determine the effects produced on kaempferol
production. This will be discussed in more detail in
section 4.
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Table 1: FLS parameters of interest
FLS variants

Enzyme variant Organism Phylogenetic Distance Km Kcat
Trifunctional UDP-glucose
4,6-dehydratase/UDP-4
-keto-6-deoxy-D-glucose Arabidopsis thaliana 29 0,116 2860
Flavonol synthase/
flavanone 3-hydroxylase Arabidopsis thaliana 29 0,059 -
Jasmonate-induced
oxygenase 2 Arabidopsis thaliana 29 0,0093 -
Bifunctional dihydroflavonol
4-reductase/flavanone
4-reductase Pyrus communis 30 0,001 -
Flavonol synthase/
flavanone 3-hydroxylase Citrus unshiu 31 0,045 -
Leucoanthocyanidin
dioxygenase Zea mays 29 0,0584 6,6
Bifunctional dihydroflavonol
4-reductase/flavanone
4-reductase Malus domestica 31 0,01 -

F3H variants
Enzyme variant Organism Phylogenetic Distance Km Kcat
Flavanone 3-dioxygenase 3 Oryza sativa subsp.

japonica (Rice) 30 0,0063 -
Flavone synthase Petroselinum crispum 31 0,005 -
Naringenin;2-oxoglutarate
3-dioxygenase (Fragment) Petunia hybrida 29 0.0056 -
Naringenin;2-oxoglutarate
3-dioxygenase Arabidopsis thaliana 29 0,024 -
flavanone 3-dioxygenase Artemisa annua 31 0,045 -
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4 RESULTS

All computational simulations were performed using
the metabolic pathway model in equations (4-7), and
the model in [2] for the antithetic controller dynamics.

To implement the enzymatic analysis, the study has
been approached in two ways: considering the differ-
ences between kinetic parameters and, on the other
hand, considering the difference in F3H and FLS
concentrations underlying the taxonomic distance be-
tween host organism and gene-provider.

In terms of phylogeny, the sequences of the enzymes
F3H and FLS (coded by the biosensor genes) from or-
ganisms phylogenetically closer to the host organism
(E. coli) are assumed to be the most efficient in terms
of expression. As a matter of fact, the similarity be-
tween genes from closer organisms is greater than be-
tween taxonomically distant organisms, so they will
be better candidates in terms of structural viability [3].
In other words, if the host and target organisms are
phylogenetically close, the enzyme expression in the
host is assumed to be greater and thus more protein
concentrations will be reached. For this reason, con-
sidering more than one possible enzyme variant for the
F3H and FLS enzymes is highly relevant in both narin-
genin degradation and kaempferol production. To de-
termine the effect of the different variants, we worked
in a range of different concentrations for each of the
enzymes and, as expected, we obtained variations in
both naringenin degradation and kaempferol produc-
tion, being greater the higher the concentration of pro-
tein synthesized.

Regarding enzyme kinetics, multiple kinetic scenarios
will be simulated taking into account different possi-
bilities of values depending on the enzyme variant, and
several data (kaempferol production) can be obtained
generating a range of values for the kinetic parame-
ters of both enzymes. Kaempferol production is used
as a substrate for the biosensor explained in [2], high
values of this enzyme should be avoided in order to
diminish biosensor leakage of the target. Focusing the
study on the variation of kaempferol production was
therefore considered relevant.

For the study, kinetic variations of F3H and FLS have
been taken into account in order to evaluate the amount
of kaempferol produced in relation to the kcat/Km ra-
tios of both enzymes. The kinetic parameters of both
enzymes have been assumed to be equivalent, i.e. the
efficiency calculated as kcat/Km is the same for both
enzymes in each simulation performed.

The study data were obtained by using different values
of the enzymatic parameters of F3H and FLS enzymes
into the dynamic model proposed in [2]. The values
of 4Km have been varied from 0.001 from 1 mM. The
values of kcat have been varied from 0.01 to 10 s−1.

Figure 2 shows how kaempfrol production depends
on the biosensor enzymatic efficiency. Enzymatic ef-
ficiency which is the ratio kcat/Km. Results show
a kinetic efficiency range between 0.7 and 1, where
kaempferol production increases. kcat (s−1) must be
at least in the order of 103 higher than Km (mM) to
obtain a relevant increase in kaempferol production,
and thus biosensor. Therefore, this range is considered
decisive for selecting a variant enzyme pair to show
good sampling results.

In Figure 3, the variation of naringenin production
(g/L) in relation to the variation of kaempferol pro-
duction (g/L) is shown. It can be seen that the initial
and final naringenin amounts are saturated (1.0265 g/L
maximum; 0.016 g/L minimum), so there is only one
range of kaempferol that actually affects naringenin
production.
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Figure 2: Kaempferol production (g/L) depending on
enzymatic efficiency based on kcat/km ratio
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Figure 3: Naringenin production (g/L) depending on
Kaempferol production (g/L)

In other words, there is a range where naringenin pro-
duction is affected as a result of the controller ac-
tion. The conversion of naringenin as a substrate into
kaempferol must be carefully tuned and, whenever
possible, to interfere as little as possible with narin-
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genin production in order to generate a representative
level of sensing.

As the enzymatic efficiency increases, the amount of
naringenin consumed to generate kaempferol is con-
siderably small until the amount of kaempferol reaches
4 × 10−6g/L. However, when productions above
5 × 10−6g/L are reached, the amount of consumed
naringenin starts to be significantly high and this can
compromise naringenin production. Kaempferol pro-
duction has to be appropriately tuned, so the selection
of enzymes has to be based on the trade-off between
enzymatic efficiency and naringenin degradation.

5 CONCLUSIONS

We improved the performance of the kaempferol-
biosensor for different enzyme variants in the narin-
genin metabolic pathway proposed in [2], as an ex-
ample of efficient dynamic pathway regulation. We
have analyzed the impact of selecting different vari-
ants, with their associated parameters, in the dynamic
response of the regulated circuit. Interestingly, we
observed that increasing the kinetic efficiency of the
biosensor led to a higher production of kaempferol,
which, in turn, decreased the production of the target
molecule naringenin. These results show that an ap-
propriate selection of the biosensor enzymes is neces-
sary in order to avoid excessive cross-talk and leakage.

However, efficiency of enzymes can often be con-
sidered as a competing objective with expresion ef-
ficiency, as enzyme expression efficiency depends
directly on organisms genetic similarity and conse-
quently on their taxonomic distance. Such distant se-
quences are generally less efficient in terms of expres-
sion in the host. Therefore, a trade-off needs to be
achieved by means of a design tool. To that end, Selen-
zyme, the enzyme selection tool [4], has been used to
obtain the phylogenetic distances of the target organ-
isms to E. Coli, in order to qualify the gene expression
efficiency. This can ensure the highest possible simi-
larity between the genetic structure of the host and the
target is of crucial relevance to ensure the expression
efficiency of the introduced gene.

As a future work and using new available data, this
gene-variant analysis could be improved by including
other gene indicators like the genetic sustainability,
enzyme efficiency ratio, among other parameters. The
potential for automation of enzyme selection offers
great prospects for the future in the chemical and bio-
chemical industry. Without automated processes, en-
zyme selection is costly and inefficient due to the test-
ing requirements needed to select the correct enzymes.
Through automation, only the enzymes of greatest in-
terest are selected as the object of study.
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Jérôme Maury, and Ana Rute Neves. Novel
biosensors based on flavonoid-responsive tran-
scriptional regulators introduced into escherichia
coli. Metabolic engineering, 21:2–8, 2014.

[13] Roland Wohlgemuth, Tomasz Twardowski, and
Alfredo Aguilar. Bioeconomy moving forward
step by step–a global journey. New Biotechnol-
ogy, 61:22–28, 2021.

© 2021 by the authors. Submit-
ted for possible open access pub-
lication under the terms and con-

ditions of the Creative Commons Attribution CC BY-NC-
SA 4.0 license (https://creativecommons.org/licenses/by-nc-
sa/4.0/deed.es).
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