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The  new  opportunities  generated  by  the  data-driven  economy  in  the manufacturing  industry  have  caused
many  companies  opt  for it.  However,  the  size  of time  series  data  that need  to  be captured  creates  the
problem  of  having  to  assume  high  storage  costs.  Moreover,  these  costs,  which  are  constantly  growing,
begin to have  an  impact  on  the profitability  of companies.  Thus,  in  this  scenario,  the  need  arises  to develop
techniques  that  allow  obtaining  reduced  representations  of  the  time  series.  In  this  paper,  we present  a
Compression
Smart manufacturing
Time series

lossless  compression  method  for industrial  time  series  that  allows  an  efficient  access.  That is, our  aim  goes
beyond  pure  compression,  where  the  usual  way  to access  the  data  requires  a  complete  decompression
of  the  dataset  before  processing  it. Instead,  our  method  allows  decompressing  portions  of the dataset,
and  moreover,  it allows  direct  querying  the  compressed  data.  Thus,  the  proposed  method  combines  the
efficient  access,  typical  of  lossy  methods,  with  the  lossless  compression.

© 2021  The  Author(s).  Published  by  Elsevier  B.V.  This  is an open  access  article  under  the  CC
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1. Introduction

The application of data processing and exploitation technolo-
gies in different sectors, aided by the widespread promotion of Big
Data tools and other synergistic technologies like Cloud Computing
and the Internet of Things (IoT), has led to the concept of a data-
driven economy (European Commission, 2014) being coined as one
of the cornerstones of global economic development. Furthermore,
the manufacturing industry is one of the key targets where this
data-driven economy is being deployed globally, leading to the
emergence of the idea of Smart Manufacturing as a global-scale
overarching term encompassing numerous initiatives and strate-
gies (e.g., Industry 4.0 (Kagermann et al., 2013)) addressing the
use of data exploitation for optimizing and transforming manu-
facturing businesses. In this way, data has emerged as a significant
facilitator for boosting manufacturing competitiveness around the
world in recent years, and companies have begun to appreciate the

strategic relevance of data (Tao et al., 2018).

In Smart Manufacturing scenarios, the majority of the acquired
data are time series generated by large-scale sensor networks
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onitoring the continuous functioning of the manufacturing pro-
esses or equipment to be analyzed. As a result, the volume of
cquired data (i.e. time series data from sensors collected 24
ours a day, 7 days a week) is rapidly increasing (Risse, 2018;
hou, 2019). Such is the growth pace that in 2015 the manu-
acturing industry was  already generating more than 1000 EB
f data annually and it is expected to increase by 20 times in
he next 10 years (Yin and Kaynak, 2015). As a consequence,
roblems are arising related to the considerable costs associated
ith the resources needed to store them (Villalobos et al., 2020,

019).
In order to reduce data storage costs, the oldest data is routinely

liminated to make room for new data, resulting in the loss of valu-
ble historical data for further analytic processes (Amazon, 2020).
ong-term data, on the other hand, is acknowledged as critical in
mart Manufacturing scenarios (Kusiak, 2017).

Time series reduction techniques and time series compres-
ion techniques are the two  primary types of approaches that can
e used to generate reduced representations of time-series data.
he first type are often lossy techniques, which means that when
ebuilding a time series from its reduced representations, some
ata is lost. These techniques are primarily aimed at lowering the

imensionality of time-series data in order to facilitate further
ata analysis. The second type are lossless compression techniques,
hich focus on encoding data in a much more compact format that

aves storage space without loosing data. One problem of these
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final types of techniques is that they usually require decompress-
ing the entire dataset in order to access the data (which can be
a slow process that hinders the management of the data for the
analysis).

In this work, we present Direct Access Compression of time series
(DACTS), a new lossless compression method designed for time
series from industrial environments. DACTS is based on a grammar-
based compressor, RePair (Larsson and Moffat, 2000). Grammar
compressors use a grammar to replace frequent sequences of
original symbols with new shorter symbols. Thus, although the
application of the proposed method (DACTS) could be interesting
for different types of time series, it is in environments such as Smart
Manufacturing where this type of method acquires a greater rel-
evance. Some reasons for this are: (1) industrial time series, are
usually large time series captured by sensor networks operating
almost uninterruptedly, that contain numeric measurements of a
variety of equipment parameters and physical magnitudes. In those
type of series, repeating patterns can be found that could bene-
fit the reduction potential of DACTS method. (2) In many cases,
industrial machine controllers are programmed in an inefficient
way, in terms of capturing data for analytical purposes. For exam-
ple, sometimes, they may  be sending a constant value for several
hours, to indicate that the machine is operating in manual mode
and these data are stored anyway, occupying an unnecessarily
space that increases data storage costs. Therefore, the reduction
potential of DACTS method can also be interesting in this situa-
tion.

However, the normal RePair does not allow direct access, that
is, given a position of the original file, we do not know where
it is represented in the compressed file, and thus, if we  want to
find it, we have to decompress from the beginning until finding
that position. In order to overcome this limitation, we added addi-
tional data structures to achieve that capability of direct access.
Moreover, to be able to efficiently query the compressed data, sim-
ple direct access is not enough, therefore we have also included
other data structures and designed efficient query algorithms. In
summary, the main characteristics of the proposed technique,
are: it performs an efficient lossless compression of time-series,
it allows decompressing portions of the time series without the
need for decompressing from the beginning and, it is capable of
efficiently querying the compressed data. This opens the way  to
run analysis queries directly on lossless compressed data, break-
ing in this way, the traditional dichotomy in the field of industrial
time series storage, where if a lossless compression technique is
used, analysis procedures could require too much time to be feasi-
ble, whereas if a lossy type reduction technique is used, some data
are lost.

In order to show the behaviour of the proposed technique we
present two different experiments; first, we compare our method
to the state of the art in pure compression. These methods have
to decompress the complete dataset in advance to query them.
In this case, at the price of slightly worse compression where
data are highly repetitive, DACTS is up to 20 times faster when
querying. In the second experiment, we compared DACTS with
a real time series database management system. In this case,
our method was up to 1300 times faster when answering the
queries.

The outline of the paper is as follows. In Section 2 some related
work that consider on the one hand, techniques to generate reduced
representations of time series data; and on the other hand, several
previous data structures defined to deal with compressed informa-
tion, are presented. In Section 3 the main technical details related

to DACTS are explained. In Section 4 an experimental evaluation is
presented. Finally, Section 5 shows our conclusions and directions
for future work.
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. Related work

In this section, we  present first some works that have consid-
red data reduction and compression techniques for time series,
nd then some proposals of data structures defined to deal with
ompressed information.

.1. Techniques to generate reduced representations of time series

Data reduction and compression techniques represent a
esource with the potential to reduce the cost associated with the
torage of time series, by obtaining a reduced or compressed rep-
esentation of the data which is much smaller in volume than the
riginal data, while maintaining the information as complete as
ossible. If some information is lost, then, the compression will be

ossy, whereas if the original information can be recovered from
he reduced representation, the compression will be lossless.

With regard to time series reduction techniques, besides allow-
ng to obtain reduced representations of the time series, they also

ake it possible to optimize some data analysis techniques associ-
ted with time series processing (Aghabozorgi et al., 2015; Lin et al.,
003), such as time series similarity search, time series clustering,
nd time series data mining, where most of the algorithms scale
oorly to high-dimensional data. Various studies have addressed
he representation of time series through the application of reduc-
ion or approximation techniques to time-series data. For example,
n Fu (2011), a very thorough classification of different techniques
or the reduced representation of time-series data is provided,
rouping them in families and identifying the most representative
echniques in each family. Indeed, the selection of reduction and
pproximation techniques that are analyzed and compared is sim-
lar across various references discussing time series data mining
Fu, 2011; Wang et al., 2013; Esling and Agon, 2012; Palpanas et al.,
004; Gordevičius et al., 2012).

Moreover, it is worth mentioning that this type of techniques
s mainly designed to preserve enough information about the time
eries to support indexing or specific data mining algorithms over
re-processed datasets, rather than compressing the raw time
eries (Blalock et al., 2018). As a result, they are techniques that
enerate loss (which could hamper the analysis of the data) and
sually targeted for a particular analysis scenario (e.g., a particular

evel of down-sampling may  not work well for all kind of analysis
hat are susceptible to be applied over a time series). For that reason,
ther approaches are advocating for compression techniques that
reserve what it is given (i.e., lossless compression) and leave pre-
rocessing (e.g., dimensionality reduction or frequency filtering)

or further processes.
With regard to lossless compression techniques for time-series

ata, different approaches have been appearing during the last
ears that allow representing the time-series data in a much more
ompact representation without losing data. In (Blalock et al.,
018), these approaches are reviewed together with the most rep-
esentative techniques for each for them. The reviewed approaches
nclude, among others, XOR differentiation, directly applying
eneral-purpose compressors, delta encoding and then applying
nteger compressors, or predictive coding and byte-packaging.

oreover, Sprintz is also presented as the state-of-the-art algorithm
eveloped for the Internet of Things time series, tending to achieve
igher compression ratios and decompression speed (Blalock et al.,
018).

However, most of those techniques do not support random
ccess, and thus, all the data must be decompressed even when

ccessing a small portion of it. Compression techniques that allow
ccessing the data without requiring to decompress all the data
re thus desirable, as they allow data to be stored in a com-
ressed format while also allowing applications to perform random
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Fig. 1. Example o

data access decompression (Silva de Moura et al., 2000; Brisaboa
et al., 2007, 2008, 2013; Klein and Shapira, 2016; Külekci, 2014;
Vestergaard et al., 2020). Specifically for time series, in (Vestergaard
et al., 2020), it is shown a compression technique with random
access, that is, it is capable of recovering portions of the original
data, that later should be processed with a normal algorithm for
uncompressed data. Instead, there is a new family of methods pro-
viding direct access that are equipped with specific algorithms to
solve queries directly on the compressed data, that is, without a
decompression procedure (Silva de Moura et al., 2000; Navarro,
2016). In this work, we present a compression method for time
series with that capability.

2.2. Compact data structures

In the last years, a significant research effort has been made
to design data structures that not only store compressed informa-
tion with random access, but are capable to run complex queries
directly on the compressed data. In order to approach, and some-
times overcome, the querying performance on uncompressed data,
these methods do not always decompress the affected zone and
then execute the query on the decompressed data, which could be
clearly slower than querying the uncompressed data, but they are
able to understand the compressed data and therefore execute the
query on them. Moreover, in many cases, indexes or other types of
data structures are added to the compressed data to speed up the
querying process. These methods are called compact data structures
(Navarro, 2016).

DACTS makes use of two previous techniques that are shown
next.

2.2.1. Re-Pair
Re-Pair is a compression method based on creating a grammar

and using it to replace pairs of symbols of the original sequence with
a new symbol defined by the grammar. In our case, we  consider a
sequence of integers I (called terminals). The compression proceeds
as follows:

1. It computes the most frequent pair of integers ab in I;
2. a new rule s → ab is created and added to a dictionary R. s is a

new symbol not present in I;
3. every occurrence of ab in I is replaced by s; and
4. steps 1–3 are repeated until all pairs in I appear only once (see
Fig. 1).

The resulting compressed sequence is called C. Observe C in
Fig. 1, every symbol represents a phrase (a sequence of one or

o
t
a
t

3

air compression.

ore of the integers in I), for example, a W represents the sequence
99999.

However, original symbols that were not compressed may
emain in I, those symbols are called terminal symbols; otherwise,
he symbol is defined in R and is called non-terminal symbol. Com-
ressing a sequence with Re-Pair can be computed in linear time
nd a phrase may  be recursively decompressed in optimal time (i.e.,
roportional to its length).

.2.2. DACs
If we have a sequence of numbers, one way to compress them

s to try to use the exact number of bits to represent the number
�log2(number)� bits). However, by doing this, we  lost the ability
o access the ith number in the sequence. Several methods have
een devised to be able to use variable-length representations of
umbers that allow accessing to the ith number (Brisaboa et al.,
008; Klein and Shapira, 2016; Külekci, 2014) without the need to
ecompress the entire sequence.

This approach opens the way  to keep the data always com-
ressed and decompress exclusively the portions of the data
eeded for a certain purpose.

In this work, we use Directly Addressable Codes (DACs)
Brisaboa et al., 2013), which have been shown to be able to com-
ress a sequence of integers with very fast direct access to the ith
umber.

Given a sequence of integers X = x1, x2, . . .,  xn, DACs take the
inary representation of those numbers and rearrange them into

 level-shaped structure as follows: the first level, B1, contains a
equence of n numbers. Each number of that level has n1 bits, which
re the n1 least significant bits of the binary representation of each
riginal symbol. A bitmap C1 indicates for each position 1, 2, . . ., n
hether the binary representation of each integer requires more

han n1 bits (1) or not (0). In the second level, B2 stores the next
2 bits of the integers which have a 1 in B1. A bitmap C2 marks
he positions that need more than n1 + n2 bits, and so on until all
umbers in X have all their bits represented. The number of levels

 and the number nl of bits at each level is computed in order to
btain the best compression.

Observe in the example of Fig. 2 that the 6th number of the
riginal sequence is a 5. Below X, we can see the DAC representation
sing chunks of 2 bits in all levels. Therefore, the 6th chunk of 2 bits
f B1 is 01, the least significant 2 bits of the binary representation

f 5. Obviously, we need an additional chunk to represent a 5, thus
he 6th bit of C1 is set to 1 to indicate this. In the second level, there
re only two chunks of 2 bits, in order to know which of those
wo  correspond to the original symbol at position 6, we  count the
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Now, the process is much simpler. The pointer takes us to posi-
Fig. 2. Example Dac.

number of 1s bits until the 6th position of B1, which is 2, then our
number is the second chunk of B2.

In compact data structures, counting the number of 1 bits (or
0 bits) until a given position is a very common operation called
rank. More formally rankb(B, p) counts the number of occurrences
of bit b in bitmap B up to position p. This operation can be solved in
constant time (see (Munro, 1996), for example), using n + o(n) bits
of total space (in practice, approximately 5% extra space over the
original bitmap).

3. A detailed description of DACTS

In this section, we present how we combine Re-Pair and DAC
with additional data structures to make DACTS more suitable for
industrial time series compression, and the algorithms to run
queries on it.

Let us consider that we have a sequence of numbers N, if they
are floating-point numbers, we multiply them to transform them
into a sequence of integers I. Compression is achieved in DACTS by
compressing I with Re-Pair.

Nevertheless, as shown in Fig. 1, in C we do not have a direct way
to obtain the ith original symbol. Observe that, each symbol in C

represents an undetermined number of symbols from the original
sequence. This means that Re-Pair is not a compression method
with direct access, and thus, for example, to access the integer at
position 11, we  have to decompress from the beginning.

t
i
t

Fig. 3. Original sequence and its r
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The typical solution to this is to add a directory indicating, every
 integers, the position of those integers in the compressed data.
otice that we are representing time series, thus the positions on

he sequence I correspond with time instants. Therefore, for those
ime instants that are multiple of d, we can directly obtain their
ositions in the compressed data, and from that position on, we
ecompress normally until reaching the information of the desired
ime instant.

However, in Fig. 3, observe that position 12 of I is represented
ithin the symbol at position 3 of C and, that position represents

he integers of the original sequence from position 10 to position
5. Therefore a pointer to the symbol in C including a time instant

 is not enough; instead, that pointer must have two parts: (1) the
osition in C of the symbol including xi, and (2) an offset inside that
ymbol. Therefore the pointer to position 12 must be 3 : 2, that is,
he symbol at position 3 of C, and within it, an offset of 2 from its
eginning (see Fig. 3).

Let us suppose that we  want to obtain the value at position 10.
n the directory, we obtain the entry pointing to the closest time
nstant lesser or equal to 10, in our case, time instant 5: 〈0 : 5〉.
ypically, now we  simply continue decompressing until reaching
osition 10. However, observe that we are now located at symbol

 (position 0), and the next one is T , but we  do not even know how
any time instants T covers, so we  lost the synchronism achieved

y accessing a sampled position, and therefore, the only solution
s to decompress all symbols from W onwards, until reaching time
nstant 10.

In our example, we have to decompress W ,  which requires
 steps (rules W → VU,  V → UU, and U → 99), we  obtain the
equence 999999, and we know that the time instant 5 is the sixth
. Then, we process T , which requires 2 steps (rules T → S7 and

 → 88) and we obtain the sequence 887, so we know that the 7
s at time instant 8. We  continue reading the terminal 7, which
orresponds to time instant 9. Hence, we proceed with the next
ymbol (W). Therefore, after decompressing W ,  we know that the
rst value of 999999 is our target.

This process would be very slow. To solve this, for each rule of
, we  add the number of time instants that it covers, as shown in
ig. 3 under the title span.
ion 6 of the first W ,  but from R, we  know that W spans 6 time
nstants, so that position is the last one of W ,  so we do not need
o decompress it. Then, we  read the T , and we check in R that T

epresentation with repair.
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spans 3 time instants, so it reaches time instant 8. Since it does not
contain the desired time instant (10), we do not decompress it. The
next symbol 7 is a terminal, so we know that it is at time instant
9. Finally, when we reach the second W ,  we know that we  have to
obtain the first symbol of W .  Hence, we have to decompress W to
obtain its original sequence 999999, and then we have obtained our
target. Observe, that we have only decompressed the last symbol.

With this, we have seen the method to obtain the integer from
a given position, but the typical query requires extracting a portion
of several contiguous time instants. The obvious solution is that,
once we have reached the first time instant of the query, we simply
decompress symbols of C until reaching the last time instant of the
queried period.

In industrial environments, as seen, typical queries also include
summarizing or even analysis queries. In this work, we imple-
mented two additional queries:

1. Given a time series S[1.  . .n] and a time interval [b, e] within
1. . .n, return the minimum and maximum values within [b, e].

2. Given a set of time series S1, . . .,  Sm, of size n and a time interval
[b, e], where b ≤ e ≤ n, compute the Euclidean distance between
S1 and S2, . . .,  Sm in the time interval [b, e] and sort S2, . . .,  Sm
according to that distance.

The naive solution to both queries is to decompress the time
interval [b, e] and proceed accordingly with the processed query.

To improve the speed, we add to each rule in R the maximum
and minimum values of the symbols covered by the rule. Observe in
Fig. 3 that the non-terminal T corresponds to the original sequence
887, so in R we set the minimum value to 7 and the maximum to 8.

Now, let us suppose that we want to obtain the maximum and
minimum values in the range [6,  11] of the sequence I. By using the

same process to access a position, we reach the symbol T that covers
from time instant 6 until time instant 8. Instead of decompressing
it, in the rule at R, we already have the maximum and minimum

values in that stretch. Therefore, we know that the maximum value
is 8 and the minimum is 7 without decompressing that symbol.
Next, we process the terminal 7 corresponding to time instant 9,
so the minimum and the maximum do not change. Then, we  reach

c
f
i
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 W ,  which covers from time instant 10 to time instant 15. The
aximum and minimum of symbol W is 9, so that means all values

etween 10 and 15 are 9, thus we  can conclude that the maximum
alue is 9 and the minimum is 7 without decompressing any of the
ymbols.

Moreover, the use of those minimum and maximum values in
he rules are not only useful for solving the min/max query. This can
lso help in the rest of the operations when the minimum and the
aximum values are equal, we know that all the symbols covered

y that rule are the same without decompressing it. For example, let
s suppose that we want to recover the sequence between positions

 and 5. We  access the first symbol W ,  and from the information in
, we  know that W covers 6 time instants, so it is enough to solve
ur query, and, in addition, since min  = max  = 9, all those 6 time

nstants are 9s, so we  can solve the query simply outputting 9999.
bserve that again, we  can solve the query, without decompressing
nything.

The span, min, and max  fields of the entries of R are compressed
ith DACs.

Next, we show the algorithms of the three queries more for-
ally.

.1. Extract

Algorithm 1 shows the pseudocode for extracting the integers
etween time instant tb and te. Line 1 obtains a reference to the
ymbol in C including the time instant tb. For this, a call to the
unction First returns the tuple 〈currS, ptrC, ti, tj〉, where currS is that
ymbol, ptrC is a pointer to its position in C, and ti and tj are the time
nstants covered by that symbol.

The loop of Line 3 simply decompresses the symbols of C one by
ne from that obtained after the call to First until reaching te.

lgorithm 1. Extract(tb, te)

Algorithm 2 shows First. It starts by accessing the directory cor-
esponding to the closest sampled position previous to tb. t′

b
is

djusted to the time instant indicated by the offset of the direc-
urrently processed symbol of C (currS). The loop of Line 6 simply
ollows C until reaching tb, adjusting always t′

b
and t′e to the time

nstants covered by the current symbol (currS).
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Algorithm 2. First(tb)

Algorithm 3 shows the decompression of a symbol from C.
Observe that, we do not check if the minimum and maximum val-
ues of a symbol are equal, in order to avoid decompressing the rule.
The reason is that in practice, in this query, the costs of obtaining
those values from the DACs storing them and the check outweigh
the benefits.

Algorithm 3. Decompress(currS, tb, te, ti,tj)

3.2. Minimum and maximum

The computation of the minimum and maximum is basically the

same process as the extract query. Algorithm 4 shows the pseu-
docode. With respect to Algorithm 1, the only difference is that
instead of using the function Decompress, it uses a different function
called MinMax.

6



Computers in Industry 132 (2021) 103503
A. Gómez-Brandón, J.R. Paramá, K. Villalobos et al. 

Algorithm 4. Extremes(tb, te)

In turn, MinMax (shown in Algorithm 5) is basically the same as
Decompression, but now, it takes advantage of having stretches with
the same min/max value. This can be seen in Lines 2–9, where if the
minimum and maximum values stored in R for the current symbol
are equal, those values are used and then the decompression is not
needed.

Algorithm 5. MinMax(currS, tb, te, ti,tj)
7
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Table  1
Trace of the stacks.

Stack1 Stack2

Step 1 <T,1,6,8> <X,3,6,7>

Step 2 <S,1,6,7>
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<7,1,8,8>

Step 3 <7,1,8,8> <A,4,8,10>

3.3. Similarity

Algorithm 7 shows the function Similarity that given two  time
series (S and S ) and a time interval [t , t ], it computes the
1 2 b e

Euclidean distance of the time series in that time interval.
By using the function First, it obtains the symbol in C of each time

series covering tb. Then, it adds each of those symbols to its corre-

E
r
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8
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ponding stack: Stack1 and Stack2 are initialized with the symbol
rom S1 and S2, respectively. The processed symbol at any given
tep is obtained from those stacks.

In t1 and t2, the algorithm keeps account of the last time instant
hat has already been processed in each time series.

In order to take advantage of Re-Pair and the minimum and max-
mum values stored at the rules, the algorithm uses the concept of
un to denote a time interval of a time series that has the same
alue. In Lines 6 and 7, the algorithm uses the function NextRun to
btain the next run from the currently processed symbol.

Lines 10 and 11 compute the parts of the current runs of both
ime series that overlap, that is, the time interval where both time
eries have the same value, and then, in Lines 12 and 13, the
uclidean distance is computed for that stretch. This process is
epeated until reaching the last time instant of the queried time
nterval.

lgorithm 6. NextRun(Stack, tb, te)
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obtained result is sim = 3.

Table 2
Trace of similarity function.
A. Gómez-Brandón, J.R. Paramá, K. Villalobos et al. 

Algorithm 7. Similarity(S1, S2, tb, te)

Let us illustrate the algorithm with the two time series in Fig. 4,
and assuming that we want to compute the euclidean distance
between time instants 6 and 8.

Lines 1 and 2 of Algorithm 7 obtain a pointer to the first symbol
of each time series containing the time instant 6. Line 3 adds them
to the stacks. The result can be seen in Table 1 in Step 1. The symbol
of C1 containing the time instant 6 is the symbol T at position 1
and, in the case of C2, it is the symbol X at position 3. Observe that
the tuples pointing to those symbols also contain two additional
values, ti and tj , that indicate the time interval corresponding to
those symbols, that is, T spans between time instants 6 and 8, and
X spans between time instants 6 and 7.

Line 7 triggers the call S1.nextRun(Stack1, 6, 8). In Table 3, we
can see its trace under the label (1)S1.nextRun(Stack1, 6, 8). Line
2 pops the top of Stack1. CurrS is T , so the if of Line 3 is false
and then the flow jumps to Line 7, where T is decompressed
obtaining the pair 〈S, 7〉 (see columns LeftS and RightS in Step 1 of
(1)S1.nextRun(Stack1, 6, 8) in Table 3). tm is the time instant where
the right symbol starts, in our case, 7 starts at time instant 8. Since
the time interval [tm, tj] = [8,  8] intersects our query time interval
([6, 8]), the symbol 7 is added to Stack1, as seen under Step 2 of
Table 1. Next, the RightS symbol (S) is treated, it covers from time
instant ti = 6 until time instant tm − 1 = 7, which intersects [6,  8],
so it is also added to Stack1 (see Step 2 of Table 1). Next, a new
iteration of the do-while loop extracts the top of Stack1, which is
a S that covers from time instant ti = 6 until time instant tj = 7.
Since, R1[S]. min  = R1[S]. max  = 8, then Line 4 sets sol to 〈8, 6, 7〉
(see Step 2 of (1)S1.nextRun(Stack1, 6, 8) in Table 3). This ends
(1)S1.nextRun(Stack1, 6, 8).

Next, in Line 9, the algorithm issues S2.nextRun(Stack2, 6, 8). We
can see in Table 3 under the label (1)S2.nextRun(Stack2, 6, 8), that
it processes the top of Stack2, which includes the symbol X of C2.
Observe in R2, that X has the same maximum and minimum value
(9), so the if of Line 3 of Algorithm 6 is true and thus, in the variable
sol, it is stored a 9 with the time instants ([6,  7]) covered by that
symbol (see Step 1 of (1)S2.nextRun(Stack2, 6, 8) in Table 3), and
the do-while loop is broken.

Since after removing the top of Stack2 the stack was  empty, the

flow reaches Line 15 of Algorithm 6, where the next symbols of C2
is read, that is, ptrC = 4 and currS = A adjusting ti = 8 and tj = 10.
Since that interval intersects [6,  8], the tuple 〈A, 4, 8, 10〉  is added
to Stack2, as seen in Step 3 of Table 1.

9

Therefore, after the two calls to the nextRun function, run1 and
un2 have the values shown in Step 1 of Table 2. Both are runs of two
lements, in fact, in this example, they cover exactly the same time
nstants. Lines 10 and 11 of Algorithm 7adjust the overlapping time
nstants of both runs, which in our example are obviously [i, j] =
6, 7], and then the distance of that interval is stored in sim. Observe
hat we are adding the values of a period of time (in this example of

 time instants) in just one step. This speeds up the computation.
Next, Line 14 of Algorithm 7 sets t1 = 7 and t2 = 7 the last time

nstant processed so far in the time series, and the loop returns
o Line 6. Line 7 issues again S1.nextRun(Stack1, 6, 8). That call is
hown in Table 3 as (2)S1.nextRun(Stack1, 6, 8). It extracts the top
f the Stack1, which is 〈7, 1, 8, 8〉. Given 7 is a terminal, its mini-
um and maximum values are the same, and thus the variable sol

s set to 〈7, 8, 8〉 (see Step 1 of (2)S1.nextRun(Stack1, 6, 8) in Table 3).
fter removing 〈7, 1, 8, 8〉 from Stack1, it is empty, so the if of Line
4 takes the flow to line 15, where the pointer to C1 is moved to
osition 9, and then CurrS is set to 7. However, that symbol corre-
ponds to a time instant outside of our queried time interval [6, 8],
nd then nothing is added to the stack.

The flow returns to the similarity function, to Line 8, and thus a
econd call (2)S2.nextRun(Stack2, 6, 8) is issued. This call pops the
uple < A, 4, 8, 10 > from Stack2. Since R2[A]. min = R2[A]. max  =
, sol is set to < 8, 8, 10 > and the do-while loop is broken. Since
tack2 is empty, Lines 15 and 16 of nextRun move the pointer to C2
o position 5, but that position surpasses the time instant 8, and
hus nothing is added.

Returning to the similarity function, we  have the state shown
n the Step 2 of Table 2. � = 1, i = 8 and j = 8, so a 1 is added to
im. Since both stacks are empty, then the process ends, and the
tb te t1 t2 sim run1 run2 � i j

Step 1 6 8 0 0 0 <8,6,7> <9,6,7> 1 6 7
Step  2 6 8 7 7 2 <7,8,8> <8,8,10> 1 8 8
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Fig. 4. Two time series.

Table 3
Trace of NextRun function.

Call CurrS ptrC ti tj LeftS RightS tm sol

(1)S1.nextRun(Stack1, 6, 8) Step 1 T 1 6 8 S 7 8
Step 2 S 1 6 7 <8,6,7>

(1)S2.nextRun(Stack2, 6, 8) Step 1 X 3 6 7 9 9 <9,6,7>
Step 2 A 4 8 10

(2)S1.nextRun(Stack1, 6, 8) Step 1 7 1 8 8 <7,8,8>
Step 2 7 2 9 9

8
1

s
t

a

m
i
w
r

(2)S2.nextRun(Stack2, 6, 8) Step 1 A 4 

Step 2 Y 5 

4. Experimental evaluation

For our experimental evaluation, we implemented DACTS in
C++, using components from the SDSL library1 (Gog et al., 2014).
Our implementation also uses a balanced version of Re-Pair by G.
Navarro2 to build the grammar, and represents the extra informa-
tion on non-terminals using DACs with an unlimited number of
levels and without a predefined chunk size.

As baselines, we also included in our experiments three
well-known general purpose compressors. Gnu gzip,3 a Ziv-
Lempel-based compressor, the powerful p7zip4 compressor,

which is an LZMA compressor with a dictionary of up to 4 Gigabytes,
and snappy,5 which is used, among others, by Influx, MongoDB, or
Cassandra.

1 https://github.com/simongog/sdsl-lite
2 http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
3 http://www.gzip.org/
4 http://p7zip.sourceforge.net/
5 http://google.github.io/snappy/

4
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fi
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10
 10 <8,8,10>
1 14

For running queries on these baselines, the compressed time
eries is completely decompressed before running a C program over
he uncompressed data.

Finally, we also included a compression method with random
ccess, the plain dac, using also the implementation of SDSL library.

In all experiments, the data are initially stored on disk. We
easured elapsed (or clock) time. The times of extract and min-

mum/maximum queries are resulting from running 500 queries
ith random time intervals. In the case of similarity queries, we

un 100 different random intervals.

.1. Datasets

The datasets are from two  different origins. First, real data from
xtrusion machines of a factory that wants to keep its name con-
dential, these data were used since this company is part of the
&D project that finances this work. The datasets gather the data of

hree different sensors during 100 days and in 7 different machines.
epending on the sensor, the data distribution is different.

These are the datasets used in extract and minimum and maxi-
um queries (see the details of these datasets in Table 4):

https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.gzip.org/
http://www.gzip.org/
http://www.gzip.org/
http://www.gzip.org/
http://www.gzip.org/
http://p7zip.sourceforge.net/
http://p7zip.sourceforge.net/
http://p7zip.sourceforge.net/
http://p7zip.sourceforge.net/
http://p7zip.sourceforge.net/
http://google.github.io/snappy/
http://google.github.io/snappy/
http://google.github.io/snappy/
http://google.github.io/snappy/
http://google.github.io/snappy/
http://google.github.io/snappy/


A. Gómez-Brandón, J.R. Paramá, K. Villalobos et al. Computers in Industry 132 (2021) 103503

Table  4
Details of the datasets.

Dataset Description Machine type Sensor type Avg Interval
Extract MinMax

Avg Interval
Similarity

#Points Samp Freq

M1-7ZE6BE Accumulated machine stop
time in the last 24 h

Extruder Machine Counter 1949259 1883 7675823 1 Hz

M2-PS4EK1 Temperature of an
extruder machine’s tilting
servo

Extruder Machine Thermal 1949259 1653 7553234 1 Hz

M2-VMTKD6 Melting temperature of an
extruder machine

Extruder Machine Thermal 1949259 9474 7553234 1 Hz

7ZE6BE  Accumulated machine stop
time in the last 24 h

Extruder Machine Counter 11293184 1301750 52454444 1 Hz

PS4EK1  Temperature of an
extruder machine’s tilting
servo

Extruder Machine Thermal 11293184 1614791 44249009 1 Hz

VMTKD6 Melting temperature of an
extruder machine

Extruder Machine Thermal 11293184 1733745 52454444 1 Hz

all  Mixture Extruder Machine Mixture 38804747 n/a 149157897 1 Hz
PHM-10  Ion current impacting the

beam grid determining the
amount of ions accelerated
through the grid assembly

Ion mill etch tools Counter 19059987 472380 82189440 1 Hz

meter 19059987 472380 82189440 1 Hz

Table 5
Compression ratio of 22 columns of file 01 M01  DC train.

Column gzip p7zip DACTS Snappy

3 0.35% 0.30% 0.74% 4.97%
4  0.40% 0.35% 5.78% 5.15%
5  0.21% 0.13% 4.58% 4.86%
6  0.36% 0.26% 0.54% 4.90%
7  0.94% 0.83% 1.26% 5.94%
8  12.00% 7.20% 18.94% 21.48%
9  13.46% 9.22% 25.79% 28.75%
10  30.47% 19.91% 52.97% 51.10%
11  16.18% 10.86% 29.34% 32.96%
12  24.77% 16.47% 49.41% 40.21%
13  7.63% 5.29% 11.72% 23.04%
14  11.54% 7.74% 22.80% 23.26%
15  7.16% 5.13% 11.49% 21.96%
16  8.66% 6.14% 13.79% 23.14%
17  0.69% 0.59% 0.94% 5.24%
18  0.14% 0.06% 0.17% 4.73%
19  0.30% 0.22% 0.59% 4.85%
20  0.68% 0.64% 0.97% 5.57%
21  1.58% 1.00% 26.50% 8.74%
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•

•

to the wafer
PHM-18  Wafer rotation speed

setting
Ion mill etch tools Accelero

• M1-7ZE6BE joins 100 days of sensor 7ZE6BE in machine
I JKH JJAHTT.

• M2-PS4EK1 joins 100 days of sensor PS4EK1 in machine
I DXR RSQESL.

• M2-VMTKD6 joins 100 days of sensor VMTKD6 in machine
I DXR RSQESL.

• 7ZE6BE joins the 100 days of sensor 7ZE6BE in 7 different
machines.

• PS4EK1 joins the 100 days of sensor PS4EK1 in 7 different
machines.

• VMTKD6 joins the 100 days of sensor VMTKD6 in 7 different
machines.

• all joins 7ZE6BE, PS4EK1, and VMTKD6.

To provide values on a public domain dataset, we used the
dataset PHM DATA Challenge 18: Etching tool fault detection (PdM).6

This dataset contains 24 time series coming from different sensors.
The time series are divided into 20 files, given their size.

To select the time series used in our experiments, we run
gzip, p7zip, snappy and DACTS on 22 columns (the other 2 were
the timestamp and the identifier of the tool) of just one file
(01 M01  DC train). Each column corresponds to the time series of
one sensor.

As seen in Table 5, the best compression is achieved by p7zip,
followed by gzip, since they are typical compressors that aim at
obtaining good compression power. DACTS is close to gzip in some
columns, like 6, 7, 17, 18, 19, and 20. In others, DACTS is still clearly
better than snappy, whereas there are a set of columns where they
are on a par (4, 5, 9, 10, 11, 12, and 14). However, there are three
columns were DACTS perform worse than all the rest, columns 21,
22, and 23. DACTS requires datasets where there are repetitions of
the same sequences of numbers. Therefore, it is likely that in small
files this may  be harder to find, as in this experiment, where the
original data were only 12 Mbytes. In the rest of experiments, we

join the 20 files, so the data of one sensor are 314 Mbytes. In those
larger files, DACTS clearly improves the compression achieved by
snappy in columns 21, 22, and 23, where DACTS achieves a 8.22%

6 https://github.com/makinarocks/awesome-industrial-machine-datasets

•

t
m
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22  1.47% 0.89% 29.95% 8.59%
23  2.51% 1.42% 28.05% 10.46%
24  0.47% 0.38% 1.21% 5.06%

.03%, and 8.68%, whereas snappy obtains a 9.75%, 7.99%, and 9.25%,
espectively.

For the rest of experiments, we  chose columns 10 and 18. Col-
mn  10 represents those sensors where DACTS has more problems,
ince in this column, DACTS obtained the worst results. Column 18
s a representative of the sensors where DACTS nearly meets or
urpasses the compression performance of gzip.

For the similarity queries, we used three sets of datasets:

Extrusion daily datasets: formed by the datasets of one day of one
sensor of one machine.
Extrusion 100 days datasets: formed by the datasets joining 100
days of one sensor of one machine.
PHM datasets: the 20 original train files.
We preprocessed all datasets to transform them into integers. If
he original numbers were floating-point numbers, in the extrusion

achines, we  took the first two decimal digits and multiply them
y 100 to obtain integer numbers; in the case of the PHM, since the

https://github.com/makinarocks/awesome-industrial-machine-datasets
https://github.com/makinarocks/awesome-industrial-machine-datasets
https://github.com/makinarocks/awesome-industrial-machine-datasets
https://github.com/makinarocks/awesome-industrial-machine-datasets
https://github.com/makinarocks/awesome-industrial-machine-datasets
https://github.com/makinarocks/awesome-industrial-machine-datasets
https://github.com/makinarocks/awesome-industrial-machine-datasets
https://github.com/makinarocks/awesome-industrial-machine-datasets
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Fig. 5. Two  portions of the time series M1-7ZE6BE and PHM-10.

ract time (sec.).

Table 6
Compression ratios.

Size (Mb) gzip p7zip dac DACTS Snappy

M1-7ZE6BE 29.28 0.29% 0.17% 30.73% 0.67% 4.99%
M2-PS4EK1 28.81 2.20% 1.90% 44.53% 5.93% 9.16%
M2-VMTKD6 28.81 0.78% 0.63% 28.91% 1.55% 5.87%
7ZE6BE 200.10 0.27% 0.15% 30.07% 0.25% 4.96%
PS4EK1 168.80 2.19% 1.87% 44.53% 4.59% 9.17%
VMTKD6 200.10 0.71% 0.55% 25.39% 1.23% 5.87%

s
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d

t
s
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Fig. 6. Ext

numbers were smaller, we took the four first decimal digits and
multiply them by 1000. Fig. 5 shows the shape of two portions of
the datasets.

Column Avg Interval Extract MinMax of Table 4 gives the average
size of the query intervals used in the queries Extract and Mini-
mum/Maximum and column Avg Interval Similarity gives the average
size of the query intervals used in the Similarity queries.

4.2. Compression

Table 6 shows the original size (in Megabytes) of the datasets
and the compression ratio7 achieved by the compression methods
of this study.

In the case of the extrusion machines, in the shorter files, DACTS
behaves worse, the differences with gzip are between 0.38 and
3.73 percentage points and with p7zip between 0.5 and 4.03 per-
centage points. As the datasets increase in size, repetitions increase,
and then Re-Pair performs better. In midsize datasets, DACTS per-
forms better than gzip in 7ZE6BE, and the differences in the other
two datasets are 0.68 and 2.4 percentage points, in the case of

p7zip, differences are between 0.1 and 2.72 percentage points. In
the largest dataset, differences are small, 0.90 percentage points
with gzip and 1.09 percentage points with p7zip.

7 The size of the compressed file as a percentage of the original file.
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12
all  568.99 0.99% 0.80% 35.73% 1.89% 6.53%
PHM-10 313.50 35.29% 23.06% 60.16% 58.63% 55.85%
PHM-18 313.50 0.12% 0.03% 78.91% 0.10% 4.72%

Mention apart is dac, with a typical compression of “symbol by
ymbol”, that is, for each original symbol, in the compressed file
here is also one (shorter) symbol, it is not able to compress to the
ame level as the rest. The main feature of dac is its capability of
ecompressing from any given point.

In the case of the PHM datasets, as explained, in column 10,
he results of DACTS are poor. Re-Pair requires datasets with long
ections that are equal to others. This is also the basis of gzip and
7zip,  but the direct access of DACTS has a price, DACTS considers
he original sequence of data as 32-bit integers, whereas gzip and
7zip considers the original data as a sequence of bytes. Therefore,

zip and p7zip find more repetitive sections.

However, as seen in the results of column 18, in the industrial
nvironment, it is likely that the repetitiveness of the data may yield
lmost the performance of gzip, indeed, in this column, DACTS
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Fig. 7. Time to obtain min/max (sec.).
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Fig. 8. Time to sort by

obtains better compression than gzip. In any case, in our experi-
ments, in the worst case, DACTS obtains compression ratios around
those of snappy, a widely used compressor.

This can also be seen in the improvements in small vs medium
and big datasets. In small files, the chances of finding repeating
sections are lower. This can be seen by comparing the small and
medium files of the same sensor, for example, in the dataset M2-
PS4EK1 the compression ratio of DACTS is 5.93% with a gap of 4.03

percentage points with p7zip.  However, in the dataset PS4EK1,
DACTS improves to 4.59% with a gap of 2.72 percentage points with
p7zip.

d
e

f

13
idean distance (sec.).

.3. Extract

Fig. 6 shows the extract time. Here it is where we  can see the
enefits of having the ability of starting the decompression from

ntermediate points of the compressed file. DACTS is between 1.17
nd 5.47 times faster than gzip, between 2.33 and 4.07 times faster
han p7zip, and between 2,72 and 12.86 times faster than snappy.
bviously, the reason is that in classic compressors, a complete

ecompression of the dataset is required before performing the
xtract operation.

As in the rest of the experiments, PHM-10 is the worst scenario
or DACTS, observe, for example, that DACTS is only 1.17 times
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Fig. 9. Extract time (seconds in logar

faster than gzip. The reasons are that the input file is larger (only
58.63% of compression) and the non-terminal symbols (repetitive
sections) are smaller. The additional information of the rules rep-
resenting the non-terminal symbols is one of the key factors to
speed up the queries on compressed data, and thus, the smaller the
sections covered with non-terminals, the lower the acceleration.

Comparing with a native direct access method (dac), we still
have better results: between 1.46 and 9.02 times faster, if we
exclude the PHM-10 dataset, where dac is 1.30 times faster.
Although dac only has to decompress the exact portion of the
dataset needed to solve the query, the problem is that its com-
pression ratio is really poor, and thus it has to process (including
reading) much more data. This is especially noticeable in PHM-18
and all, where its performance is close to the naive general pur-
pose compressors.

4.4. Minimum and maximum

Fig. 7 shows the time to obtain the minimum and maximum.
The improvements in this query are even better since, as explained,
DACTS can obtain from R the minimum and maximum values of the
non-terminals used in the compressed sequence C, thus without
needing to decompress them.

DACTS is between 1.21 and 8.83 times faster than gzip, between

2.09 and 6.56 faster than p7zip,  and between 2.14 and 20.75 times
faster than snappy. Except in PHM-10, where dac is 1.11 times
faster, dac shows mediocre results, it is between 2.14 and 20.75
times slower than DACTS.

5

t

14
c scale) in the InfluxDB experiment.

.5. Similarity

In the case of the daily datasets, the experiments take the time
eries of the first day and compute the Euclidean distance in a ran-
om time interval between that time series and the remaining 99
ays of the same sensor and machine, and then, it sorts the 99 days
ccording to that distance. In the case of the 100 days datasets,
he experiment takes the 100 days of one sensor and machine, and
omputes the Euclidean distance with respect to the 100 days of
he same sensor in the other 6 machines. Again, once this was  com-
uted, the machines are sorted according to the computed distance.
inally, in the case of the PHM, the experiment takes one of the
0 original files and computes the Euclidean distance with the 19
emaining files.

Fig. 8 shows the results. In the daily datasets, gzip is between
.95 and 2.58 times slower and snappy between 1.98 and 2.79 times
lower. p7zip is penalized by its slower decompression speed,
specially in this experiment, where it has to decompress 100 rela-
ively small files, and thus it is between 8.2 and 9.44 times slower.
inally, dac is almost on a par in the 7ZE6BE and, 1.35 and 1.63
imes slower in the other two.

In the 100 days datasets, p7zip improves with longer files,
hereas the rest worsens, especially dac. gzip is between 2.53 and

.14 times slower, snappy between 2.31 and 5.87 times slower, dac
etween 2.38 and 6.79 times slower, and p7zip is between 2.24 and

.69 times slower.

Finally, in the PHM datasets, again PHM-10 shows the difficul-
ies of DACTS with this dataset, it is only 1.21 times faster than
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Fig. 10. Time to obtain min/m

gzip, 2 times than snappy, 2.36 than p7zip,  while dac is 1.27 times
faster. However, the case of PHM-18 shows the other side of the coin;
DACTS is 9.5 times faster than gzip, 7.35 times than snappy, 7.62
than p7zip,  and 11.67 times faster than dac.

The reasons for the improvements in this query are, in part, also
related to the additional information in the rules, which also helps
in this query.

4.6. A brief comparison between DACTS and InfluxDb

In this experiment, we compare DACTS with a real Time Series
Data Base (TSDB) management system, InfluxBD, to show the dif-
ferences in the behaviour of both systems considering the same
scenario. For the experiment, the datasets considered in Section
4.1 have been formatted to the line protocol8 required by InfluxDb
to represent each point of data (i.e., each measurement), and then,
they have been inserted into an InfluxDb instance.

We are aware that both systems are different in nature and that
therefore, their comparison may  not be fair. However, we believe
that it is interesting to compare our novel proposal against such a

widespread system in the area of time series management. InfluxDB
is a real TSDB management system that, to answer a query, needs
to access data on the disk, and also search the data by timestamp,
while in DACTS data is accessed directly by position in memory.

8 InfluxDb Line Protocol Syntax: https://docs.influxdata.com/influxdb/v1.8/write
protocols/line protocol tutorial/#syntax.

i
s

d

15
econds in logarithmic scale).

his comparison has been included just to give a general idea of
he differences between InfluxDB and DACTS.

Moreover, it is worth also mentioning that in DACTS we have
mitted the timestamps of the time series (since we  are working
ith periodic time series sampled at 1Hz (i.e., a measurement per

econd) and we  already store the initial timestamp) and the stan-
ard data representation in InfluxDb (i.e., the line protocol) requires
he timestamp of each data point for inserting the data into the
atabase.

Fig. 9 shows the time required by the extract operation. The
mprovement of DACTS in time is between 49 and 132 times faster.

Fig. 10 shows the results for the computation of the minimum
nd maximum values. Here the improvements of DACTS range from
5 times to 715 times faster.

Finally, in the similarity experiment shown in Fig. 11, DACTS is
etween 3.7 and 1306 times faster.

The experiments were conducted on an Intel® CoreTM i7-3820
PU @ 3.60GHz (4 cores) with 10MB of cache and 64 GB of RAM,
unning Debian GNU/Linux 9 with kernel 4.9.0-8 (64 bits), gcc ver-
ion 6.3.0 with -O9 optimization and on a Google Compute Engine
nstance for the InfluxDb evaluation. The used machine for this

nstance has been a n1-highmem-49 (4 vCPUs, 26 GB RAM) with a
tandard persistent disk.

9 Machine types in Google Compute Engine: https://cloud.google.com/compute/
ocs/machine-types.
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Fig. 11. Time to sort by Euclidean 

5. Conclusions

In this work, we have presented DACTS a lossless compressor
for time series captured in industrial scenarios. We  took Re-Pair,
a compression method especially suited for datasets with a high
level of repetitiveness, and we modified it in two aspects. First,
Re-Pair does not provide random access to a given position with-
out decompressing from the beginning. The typical solution to this
problem is to sample regular positions, however, a sampled posi-
tion might point to a position of the compressed sequence that
contains a non-terminal, and thus, it represents several original
terminals. Therefore, to solve that problem, we added an offset to
the pointers. The second improvement is to use additional infor-
mation in the rules of the grammar in order to speed up the queries
over the compressed data.

DACTS shown in the experiments that it is well suited for repet-
itive datasets, where it can obtain a compression power close to
gzip and even better in some cases. In the cases where the dataset
does not contain repetitiveness, the compression, and also the
access times, worsens. Still, it maintains, even in the worst cases,
a compression power around that of snappy, a widely used com-
pressor.

The main feature of DACTS is the improvement in speed. DACTS
is up to 12.86 times faster than its competitors in extraction time.

Thanks to the additional information in the rules, the improvement
during the computation of the minimum and maximum values of
a time interval are even better, up to 20.75 times faster. In the case
of the similarity queries, the improvement is up to 11.67 times

V
&
O
B

16
ce (seconds in logarithmic scale).

aster. The only exception is the hardest dataset for DACTS, PHM-10,
here dac is 1.30 times faster when extracting, 1.11 when obtain-

ng the minimum and the maximum, and 1.27 times faster when
unning the similarity queries. In this dataset, there are less repet-
tive sequences, this worsens the compression, and as explained,
his decrease of repetitiveness affects DACTS to a greater extent
han gzip and p7zip.  But not only compression is affected, with
ess repetitiveness the sequences of symbols covered by rules are
horter. DACTS is faster when it deals with longer sequences of sym-
ols therefore when the sequences of symbols covered by rules are
horter the answering time of queries increases.

As future work, we  will work on improving compression, and
eveloping new analysis queries.
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