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Abstract. Expandable meshes are structures built by bars articulated at the extremes and with 
a passing articulation at the central knot. The calculation of these structures presents 
numerous difficulties, but furthermore, in many typologies the deployment is influenced by 
geometric incompatibilities in the intermediate positions that add new and complex factors to 
their analysis. Although the compatibility limitations have already been studied by several 
authors for slow-deployable grids by means of a static or quasi-static approach, it is obvious 
that for temporary structures, speed of erection and dismantling is an important part of the 
functionality of the product. 

For the study of such phenomena, the authors present a dynamic model of the structural 
movement, analysing the deployment by means of calculations in the time domain and 
idealising the actual structure as a model of rigid bars with elastic joints between them. Thus, 
in our model a bar has 6 co-ordinates corresponding to both end nodes and 5 co-ordinates 
corresponding to the three displacements and two rotations of the central rod.  

One of the first explored possibilities with this method is the study of the phenomena of 
incompatibility during the process of grid unfolding. To note the importance of this effect we 
are studying comparatively two similar meshes, but whose geometric incompatibilities are 
meaningfully distinct. Likewise, we will see the importance that the speed of unfolding has, 
directly related with the phenomena of damping, in the maximum efforts that support the 
structure.  
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1 Introduction 

Expandable meshes are adequate for covering surfaces that are flat or that have single curvature. 
However, when having to cover double curvature surfaces or depending on the shape of the 
base module of the mesh, there is the problem of the geometry of the unfolding process, in that 
it is not absolutely guaranteed. This occurs, especially, when using triangle base modules since 
they add quite a lot of rigidity to the ensemble and they do not possess the flexibility of square 
base modules in readapting their shape, converting into rhombi, to accommodate to surfaces of 
double curvature. For this reason, and independently of the incompatibilities of the construction, 
when covering surfaces of double curvature, as spherical domes [1], with meshes of triangular 
modules, normally, two stable configurations are possible: the initial and the unfolded. 
However, the geometry of the intermediate positions is not feasible if taking into account that 
the bars are straight segments. It must be considered that the bars bend due to flexion. For this 
same reason, it is not feasible to perform reconstructions of the expandable process from a 
purely geometric point of view. 

 

2 Definition of the problem 

Consider a grid made of bars joined by their ends or by approximately their middle points in an 
articulated way [2]. If we imagine these joints as elements that form the structure and we 
suppose that only these elements or nodes are loaded, then their co-ordinates and velocities can 
describe the movement of the structure. In that case, the equation of movement of the structure 
can be written as follows [4]: 
 

 K .U+C+M .A=R (1) 

where K  is the stiffness matrix, U the nodes co-ordinate matrix, C the damping matrix, M  the 
nodes mass matrix, A the nodes acceleration matrix and R the external forces matrix. 
Continuing with the simplification of the model, we assume the lumped mass model, where the 
mass matrix has terms corresponding to a specific distribution of the mass of the bar. Within 
this model, the acceleration depends only on the node co-ordinate and velocity, the external 
forces and the first neighbours co-ordinates verifying: 
 

 A i = A i(Ui, V i, mi, Uj, V j) (2) 

being A i, Ui, V i and mi the acceleration, co-ordinate, velocity and mass of the i-node and Uj and 
V j the position and velocity of its first neighbours. 
The mass distribution is very important in this model and was fitted for adapting it to the grid 
and for obtaining a compromise between precision and calculation time. Therefore, each bar 
was divided in three nodes of two different types (Fig.1) 
With this kind of modelling we can simulate both the articulated joints of bars at their ends and 
the typical joint of two bars at an intermediate point. This intermediate point divides, in general, 
the bar in two different semibars.  
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An important point to determine is the value of 
mass point and mass and inertia of the central rod. 
In our case the mass M and inertia I of the central 
node was taken as the mass and inertia of a bar of 
0.6 times the length of the actual bar. The mass of 
end nodes was taken proportional to the length 
associated to each semibar, verifying: 
 
 
 M+m1+m2=Mass of the whole bar (3) 
 
Thus, in our model a bar has 6 co-ordinates 
corresponding to both end nodes and 5 
co-ordinates corresponding to the three displacements and two rotations of the central rod.  
So, the whole structure will be formed first by point-type nodes with a mass corresponding to 
the sum of the mass of every semibar that ends in that node and then by rod-type nodes joined 
by their middle point. 
For the modelling of the forces we consider each semibar separately according to Fig.2. 
For the values of stresses P, Q and M, the 
quasi-static approximation is assumed, 
taking these values from the equilibrium 
conditions and supposing that they are still 
valid.  
 
Resulting: 

 P= EA(L-∆L)/L (4) 
 Q=3EIθ/L2 (5) 
 M=3EIθ/L (6) 

where E is the elasticity module of the 
material, A the section of the bar, L the length of the semibar, ∆L the variation of the length, I 
the inertia moment of the section of the bar and θ is the angle in radians. We have neglected 
torsional effects. 
After calculating both semibars, we obtain 6 stresses due to internal forces over the central rod 
and 2 stresses per end node. Repeating this process for every semibar, and adding the external 
forces and the stresses coming from their neighbours, we can get both the resultant force that 
acts over an end node and the force and moment resulting over the central rod. 

2.1 Dynamic equations 

In the previous section, we explained how the resultant force R over an end node and the 
resultant force R and moment M  over a central node can be calculated. The equation of 
movement of the i-end node can then be written directly as: 

 A i=Ri/ mi −λvi (7) 
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And, assuming that the central rod can be treated as a one-dimensional rigid body, the five (8, 9, 
10) equations of movement of the k-central node become [5] (Fig.3) 

 Ak=Rk/ mk -λvk (8) 

 d2Θk/dt2=Mak/I
*+(dΦk/dt)2cosΘkcosΘk-λdΘk/dt (9) 

 d2Φk/dt2=(Mck/ I
*-2 (dΘk/dt)(dΦk/dt) cosΦk)/sinΘ-λdΦk/dt (10) 

 
where λ is the viscous damping factor, I* is the inertia of 
the central rod, m is the mass,  Θ and Φ are the Euler 
co-ordinates of rod k, and Ma and Mc are the projection 
over the a and c axis of the resultant moment M. 
For solving the above mentioned equations, we used the 
semi-implicit method of Adams-Moulton of fourth order 
that allows a reasonable balance between precision and 
calculation time. This method is a two step process, 
beginning with the prediction step in which the 
co-ordinates and velocities can be approximated by 
 
 

 u*(t+dt)=u(t)+dt(55v(t)-59v(t-dt)+37v(t-2dt)-9v(t-3dt))/24 (11) 

 v*(t+dt)=v(t)+dt(55a(t)-59a(t-dt)+37a(t-2dt)-9a(t-3dt))/24 (12) 

followed by the correction step : 
 v(t+dt)=v(t)+dt(9a*(t+dt)+19a(t)-5a(t-dt)+a(t-2dt))/24 (13) 

 u(t+dt)=u(t)+dt(9v(t+dt)+19v(t)-5v(t-dt)+v(t-2dt))/24 (14) 

The dt used was of the order of 10-5seg. 

3 Meshes studied in this work 

In this article, two expandable structures will be analysed. They are relatively similar as far as 
geometry and general dimensions, characteristics of the bars and load applied, but substantially 
different in the geometric incompatibilities they undergo during the unfolding process [3]. 
Possible constructive incompatibilities were not considered. 

Common Characteristics: With both, an attempt will be made to cover a 10 m radius spherical 
dome with an expandable mesh of third order, formed by cross modules having a bar length of 
approximately 1.80 m. in the folded position. At the beginning of the unfolding process, these 
modules are not folded in totality, but cover a 10º arch from the pole of the dome. Vertical load 
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is 10 kg at every node of the upper part, and 30 kg at the lower. To favour unfolding, constant 
horizontal loads are considered at the upper nodes of the corners, and of 50 kg. that pull in the 
radial direction. The bars are hollow tubular shapes (4 cm diameter and 2 mm wall thickness) 
made of steel. During the unfolding process and to facilitate it, the mesh is supported on the 
lower nodes, adjacent to the central node. In the calculation, the actual weight of the bar is taken 
into account and correction for axial rigidity as a function of the axial forces applied on the bars 
is made. 

Differences: Because the principal objective of this work is to show the relevance of geometric 
incompatibilities, a mesh with few or no incompatibilities, as the quadrangular  modules type, 
and another that, a priori, will have significant incompatibilities, as the triangular module, will 
be chosen. 

3.1 Quadrangular module mesh 

This mesh was chosen for its few geometric incompatibilities when being unfolded, and a 
generation process of the mesh that guarantees this.  

 The generation process consists of starting at a node at the 
top of the dome. The scheme of the modules is drawn on 
the surface of the sphere, starting from the two orthogonal 
meridians that pass through the starting node. The starting 
length of the module is drawn over these. The next point on 
the surface of the sphere is located at an equal distance 
from the two previous points, and so on, such that modules 
of equal sides are obtained at all times. This form of 
generation has the advantage that all the bars are of 
identical length and geometric incompatibility is not 
present, and the disadvantage that not all modules are 
similar, being almost square at the top of the dome, and 
transforming into rhombi at the corners. 

The presence of double symmetry has the advantage that only a quarter of the mesh has to be 
studied. The starting position is nearly the same as in triangular modules, but with the 
difference that a defined maximum unfolded position is not presented. For this same reason, to 
maintain it in an unfolded position it will be necessary to fix the edge points, and these will have 
to guarantee the stability of the unfolded structure. 

3.2 Triangular module mesh 

This mesh is chosen for its high incompatibility at intermediate positions. The generation 
process that we have used is based on projecting a flat mesh of equilateral triangles at the 
equatorial plane, on the spherical surface, using a point proximal to the south pole, located 0.5 
m below it, in this case.  

Fig.  4 
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 To achieve that at the moment of 
unfolding the angles of all the bars 
form angles that are similar, the 
height of the mesh had to be modified 
progressively. Its maximum is in the 
area proximal to the upper pole, in 
this area, the bars having lengths in 
the order of 2 m, decreasing toward 
the ends, where the bars have a 
length of close to 1.60 m. 

In the unfolding, the lower points, 
more proximal to the centre, are used 
as support, and the symmetry allows 
having to analyse only half of the 
mesh. As starting position, a position 
proximal to total folding is chosen, 
with a spread of 10º from the pole, as 
mentioned before, and the unfolded 
position is set at 80º from pole. In this 
case, two positions must be defined. 
The guarantee of geometric 

compatibility is dependent on these. 
This is what will help to maintain 
the unfolded shape, having to fix edge points as in the previous case not being so crucial. 

4 Verification of incompatibilities  

Before the calculation process is definite, firstly, we would like to note the different behaviour 
of both structures during the unfolding process in a trial. For this, we proceed to eliminate 
vertical loads, except for its own weight (to have precisely the minimum load needed for the 
unfolding process), and a calculation is carried out assuming damping is null and another with 
low damping. 

The idea of this process is that the loads applied are so low, that when the mesh has a geometric 
incompatibility, the loads will not be able to overcome it and a “spring back” effect will be 
produced. 

 

 

 

Fig.  5 

Fig.  6 
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4.1 Quadrangular module mesh 

 The following graph depicts time 
in seconds on the x-axis, and the 
position of a point in metres on the 
y-axis, and the flexional moment 
given in the bars. The reference 
point taken and used for 
constructing this graph (one of the 
corners) is continuous, and goes 
beyond the unfolding point 
substantially, as the most loaded 
bars present a flexion of little 
importance and practically 
independent of the unfolding 
process that is becoming more 
stabilised if we consider a 
minimum damping of 1 unit 
(represented on the graph as a01). 
in the calculation. If damping is null (a00), it enters a repeated cycle, going further beyond the 
maximum unfolding point and returning, until suddenly reaching the initial point, without 
flexional forces rising at any particular point.  

4.2 Triangular module mesh 

 In this case, the unfolding process 
is not completed. In the superior 
part of the graph, prepared at the 
same scale as in the previous one, 
it is observed that the mesh 
unfolds a bit, but as it continues to 
unfold incompatibilities are 
manifested. This creates an 
increase in the flexional stresses in 
the bars, and in this case, the 
external forces cannot overcome 
the incompatibility zone, 
producing a “spring back” effect. 
As observed in the graphs, the 
differences, in this case as 
compared with the previous one, are notable: on the one hand, the unfolding process is not 
achieved and on the other, there is a direct relation of the flexional stresses (to curve the bars in 
the incompatibility zone, as already mentioned) in the bars with the unfolding position. 

Fig.  7 

Fig.  8 
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5 Study of the complete unfolding  

This is the principal section of this work, where we will analyse the behaviour of both meshes in 
a typical unfolding process. We will try to depict, above all, the differences that arise, as far as 
the forces exerted on the bars and the influence of the degree of damping in this process. 

5.1 Quadrangular module mesh  

 In the study of the unfolding, it is observed that the influence of damping at the time of 
unfolding the structure is a relation that is quite linear for the damping range studied, although 
having longer lags as damping is 
increased. 

 Axial and flexional stresses as a 
function of damping (a10... a90) 
are represented in the following 
graphs for a bar in the central 
region (node 28), that is among the 
most loaded. In both cases, it is 
observed that the forces vary 
without excessive abruptness and 
that the influence that the degree 
of damping has on the value of 
maximum forces reached by each 
of the bars is relatively small.  

Precisely, the bars in which the 
greatest variations appeared are those of the edge, being the ones that present the lowest force 
values.  

Lastly, let us observe the distribution of the axial and flexion forces for an intermediate degree 
of damping (50) and at a position proximal to total unfolding. It is clearly evident that the bars 
receiving the most load are those of the central region. 

 

Fig.  10 Fig.  11 

Fig.  9 
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5.2 Triangular module mesh 

 As already seen in the 
study of incompatibilities 
section, the forces on the 
bars of this structure are 
quite related with the 
geometry of the 
unfolding. Now, once the 
unfolding process is 
completed, this 
characteristic is observed 
much better. 
Additionally, whether 
the unfolding position is 
a highly stable position or not is proven since once it is reached, the structure 
experiences a jolt, as if it stopped suddenly, and remains in this position. This can 
be perfectly observed 
in one of the bars near 
the edge, as no. 84. For 
simplicity sake, on the 
graph only damping 
curves of 10 and 50 
have been represented. 
Here, it is proven that 
the forces increase 
notably during the 
unfolding process until 
reaching relative 
maximums or minimums toward the middle of the unfolding, reducing the 
maximums a bit as damping increases. The “bump” effect is also observed at the 
end of the unfolding and it remains in this position, that is highly stable. At the 
moment of the bump, it 
is also verified that the 
forces rise less if there 
is damping that is a bit 
high. 

 Lastly, we also observe 
the distribution of axial 
and flexional stresses 
for an intermediate 
degree of damping (50) 
and at a total unfolding 
position. As in the 

Fig.  12 

Fig.  13 

Fig.  14 
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previous case, it becomes evident that the central bars are the most loaded, although important 
axial bars are also present at the edge. 

5.3 Influence of the geometry on the forces  

In the study of the unfolding of this last structure the influence of geometry (incompatibility) is 
observed in the stresses. Thus, it is interesting to know its relative importance with respect to 
total forces. For this, we have proceeded with the calculation at the already unfolded position, 
eliminating all external loads. Because the result of the forces at the final position will depend 
little on the degree of damping, we have taken an intermediate one, as 30. In the following 
graphs, this calculation is indicated with a30 and its continuation with a31, where the damping 
of 30 was maintained. 

Los The graphs show axial and flexional stresses of a central bar (bar 67) and one at the edge 
(bar 84), that correspond with the bars presenting the greatest value during the calculation. The 
central bar (67) is the one with the greatest axial stresses, that reduce their value by 2/3 (from 
2062 to 1400 kg.) once the external loads are eliminated. The moments are reduced to one half, 
going from 155 to 72 m·kg.  

Fig.  15 

Fig.  16 

Fig.  16 
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At the bar near the edge (bar 84), the axial stresses are much lower, but have greater flexion 
stresses. Interestingly, the opposite occurs in that when external loads are eliminated the forces 
of these increase. The axial force goes from 220 to 270, with a 23% increase and the moment 
increases to a lesser extent, from 190 to 210 (10%). 

6 Conclusions 

After this analysis, we can conclude that geometric incompatibilities presented by some meshes 
have a great repercussion on the forces that they will have to support. In some extreme cases, as 
the one studied, maximum axial forces can be multiplied by 10 and flexional by 3, with the 
consequent repercussion as far as the greater dimension of the bars and cost, in general. We 
should note that even when external loads are eliminated, these meshes continue to be loaded, 
indicating that in many cases it will be the geometry, with its incompatibilities what will 
generate the greatest part of the forces supported by the bars of this structure. 

On the other hand, we should note that structures with strong incompatibilities have advantages 
as compared to others in that they are highly stable in the unfolded position, in many cases, 
being able to rely on joining nodes at the edges better than with other meshes.  

And lastly, we will note, in meshes with incompatibilities, the importance of damping in 
maximum forces that it will support, not only during the unfolding, but also at the moment of 
the “bump” when the final stable position is reached. At this point a low damping factor can 
produce peaks in the forces that in some cases can duplicate or triplicate those that would be 
produced with a greater damping. 
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