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Abstract. Expandable meshes are structures built by bargaldted at the extremes and with
a passing articulation at the central knot. The ccadtion of these structures presents
numerous difficulties, but furthermore, in manyadiggies the deployment is influenced by
geometric incompatibilities in the intermediate pioss that add new and complex factors to
their analysis. Although the compatibility limitatis have already been studied by several
authors for slow-deployable grids by means of éicta quasi-static approach, it is obvious
that for temporary structures, speed of erectiod dsmantling is an important part of the
functionality of the product.

For the study of such phenomena, the authors pteseatynamic model of the structural
movement, analysing the deployment by means otilaaéms in the time domain and
idealising the actual structure as a model of rigars with elastic joints between them. Thus,
in our model a bar has 6 co-ordinates correspondimdpoth end nodes and 5 co-ordinates
corresponding to the three displacements and tvatians of the central rod.

One of the first explored possibilities with thietirod is the study of the phenomena of
incompatibility during the process of grid unfoldinTo note the importance of this effect we
are studying comparatively two similar meshes, Whose geometric incompatibilities are

meaningfully distinct. Likewise, we will see theartance that the speed of unfolding has,
directly related with the phenomena of dampingtha maximum efforts that support the
structure.
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1 Introduction

Expandable meshes are adequate for covering sattaatare flat or that have single curvature.
However, when having to cover double curvatuream@$ or depending on the shape of the
base module of the mesh, there is the problemeofifometry of the unfolding process, in that
it is not absolutely guaranteed. This occurs, daflfgcwhen using triangle base modules since
they add quite a lot of rigidity to the ensemblé #mey do not possess the flexibility of square
base modules in readapting their shape, converttoghombi, to accommodate to surfaces of
double curvature. For this reason, and indepenglehthe incompatibilities of the construction,
when covering surfaces of double curvature, asrgte@lomes [1], with meshes of triangular
modules, normally, two stable configurations aressile: the initial and the unfolded.
However, the geometry of the intermediate positisnsot feasible if taking into account that
the bars are straight segments. It must be corgldbat the bars bend due to flexion. For this
same reason, it is not feasible to perform recanstms of the expandable process from a
purely geometric point of view.

2 Definition of the problem

Consider a grid made of bars joined by their endsyapproximately their middle points in an
articulated way [2]. If we imagine these joints elements that form the structure and we
suppose that only these elements or nodes aredptud® their co-ordinates and velocities can
describe the movement of the structure. In thag,dhe equation of movement of the structure
can be written as follows [4]:

K.U+C+M.A=R (1)

whereK is the stiffness matriXx) the nodes co-ordinate matri®,the damping matrixyl the
nodes mass matrixA the nodes acceleration matrix aRdthe external forces matrix.
Continuing with the simplification of the model, \assume the lumped mass model, where the
mass matrix has terms corresponding to a spedstdlalition of the mass of the bar. Within
this model, the acceleration depends only on trde rem-ordinate and velocity, the external
forces and the first neighbours co-ordinates varify

Ai=Ai(U, Vi, m, U;, V)) (2)

beingA;, U;, Vi and mthe acceleration, co-ordinate, velocity and mésisei-node andl; and

V; the position and velocity of its first neighbours.

The mass distribution is very important in this rebbdnd was fitted for adapting it to the grid

and for obtaining a compromise between precisiah @alculation time. Therefore, each bar
was divided in three nodes of two different typesg (1)

With this kind of modelling we can simulate botle #rticulated joints of bars at their ends and
the typical joint of two bars at an intermediatéor his intermediate point divides, in general,

the bar in two different semibars.
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An important point to determine is the value - end node 2
mass point and mass and inertia of the central |
In our case the mass M and inertia | of the cen
node was taken as the mass and inertia of a bz
0.6 times the length of the actual bar. The mas:
end nodes was taken proportional to the len rigid rod
associated to each semibar, verifying:

Mo,

central node

M+m1+m2=Mass of the whole bar(3)
Thus, in our model a bar has 6 co-ordina™"™
corresponding to both end nodes and m1
co-ordinates corresponding to the three displacésyard two rotations of the central rod.
So, the whole structure will be formed first by pisiype nodes with a mass corresponding to
the sum of the mass of every semibar that endsitnntode and then by rod-type nodes joined
by their middle point.
For the modelling of the forces we consider eachilsar separately according to Fig.2.
For the values of stresses P, Q and M, the
quasi-static approximation is assume ? P

end node 1 Figure 1

. =1 - stresses modelling of a
taking these values from the equilibriur semibar

conditions and supposing that they are s
valid.

Resulting:
P= EA(LAL)/L (4)
Q=3EB/L? (5)
M=3EIl6/L (6) Q

'\ /
Figure 2

where E is the elasticity module of th.¢

material, A the section of the bar, L the lengthha semibarAL the variation of the length, |

the inertia moment of the section of the bar @nd the angle in radians. We have neglected

torsional effects.

After calculating both semibars, we obtain 6 seestue to internal forces over the central rod

and 2 stresses per end node. Repeating this primresgery semibar, and adding the external

forces and the stresses coming from their neigl#)aue can get both the resultant force that

acts over an end node and the force and momeritingsover the central rod.

2.1 Dynamic equations

In the previous section, we explained how the tastiiforceR over an end node and the
resultant forceR and momentM over a central node can be calculated. The equatio
movement of the i-end node can then be writterctlyes:

Ai:Ri/ m —}\Vi (7)
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And, assuming that the central rod can be treatedmmne-dimensional rigid body, the five (8, 9,
10) equations of movement of the k-central nodeirec[5] (Fig.3)

Ak:Rk/ My -)\Vk (8)
e /dE=May/I’ +(dd,/dt)’coDcoD-AdO,/dt (9)
dd/d=(Mcy/ I-2 (0O /dt)(ddy/dt) cosb,)/sin@-Addy/dt (10)

. . . * . . . z
whereA is the viscous damping factor,i$ the inertia of  centrai roa

the central rod, m is the mas§ and® are the Euler ™"
co-ordinates of rod k, and Ma and Mc are the ptaac

over the aand_caxis of the resultant moment M. ©
For solving the above mentioned equations, we tisec // c
semi-implicit method of Adams-Moulton of fourth erd -

that allows a reasonable balance between precassidn —— — —
calculation time. This method is a two step progce

beginning with the prediction step in which tt &
co-ordinates and velocities can be approximated by

Euler local coordenates

‘ Figure 3

U*(t+dt)=u(t)+dt(55v(t)-59v(t-dt)+37v(t-2dt)-Ov(Bdt))/24 (11)
v¥(t+dt)=v(t)+dt(55a(t)-59a(t-dt)+37a(t-2dt)-9adtt))/24 (12)

followed by the correction step :
v(t+dt)=v(t)+dt(9a*(t+dt)+19a(t)-5a(t-dt)+a(t-20i24 (13)

u(t+dt)=u(t)+dt(Ov(t+dt)+19v(t)-5v(t-dt)+v(t-2d1R4 (14)

The dt used was of the order of*5@g.

3 Meshes studied in this work

In this article, two expandable structures willdralysed. They are relatively similar as far as
geometry and general dimensions, characteristitsedbars and load applied, but substantially
different in the geometric incompatibilities thepdergo during the unfolding process [3].
Possible constructive incompatibilities were natsidered.

Common Characteristics With both, an attempt will be made to cover arifadius spherical

dome with an expandable mesh of third order, forimedross modules having a bar length of
approximately 1.80 m. in the folded position. A¢ theginning of the unfolding process, these
modules are not folded in totality, but cover a a@h from the pole of the dome. Vertical load
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is 10 kg at every node of the upper part, and 38tkge lower. To favour unfolding, constant
horizontal loads are considered at the upper notldse corners, and of 50 kg. that pull in the
radial direction. The bars are hollow tubular stsa@@ecm diameter and 2 mm wall thickness)
made of steel. During the unfolding process anthdtditate it, the mesh is supported on the
lower nodes, adjacent to the central node. Indhau@ation, the actual weight of the bar is taken
into account and correction for axial rigidity afiaction of the axial forces applied on the bars
IS made.

Differences Because the principal objective of this workashow the relevance of geometric
incompatibilities, a mesh with few or no incompdiiies, as the quadrangular modules type,
and another that, a priori, will have significamtompatibilities, as the triangular module, will
be chosen.

3.1 Quadrangular module mesh

This mesh was chosen for its few geometric incorbppéies when being unfolded, and a
generation process of the mesh that guarantees this

The generation process consists of starting atle at the
top of the dome. The scheme of the modules is di@wn
the surface of the sphere, starting from the twwbagonal
meridians that pass through the starting node.stérging
length of the module is drawn over these. The peitt on
the surface of the sphere is located at an eqs#hrdie
from the two previous points, and so on, suchnmadules
of equal sides are obtained at all times. This farin
generation has the advantage that all the barsofre
identical length and geometric incompatibility itn
T 1 . . present, and the disadvantage that not all modales
similar, being almost square at the top of the doamel

Fig. 4 transforming into rhombi at the corners.

The presence of double symmetry has the advantag®nly a quarter of the mesh has to be
studied. The starting position is nearly the sarmmeimatriangular modules, but with the
difference that a defined maximum unfolded posit®not presented. For this same reason, to
maintain it in an unfolded position it will be nasary to fix the edge points, and these will have
to guarantee the stability of the unfolded strugtur

3.2 Triangular module mesh

This mesh is chosen for its high incompatibilityiatermediate positions. The generation
process that we have used is based on projectitay enesh of equilateral triangles at the
equatorial plane, on the spherical surface, usipgimat proximal to the south pole, located 0.5
m below it, in this case.
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To achieve that at the moment «
unfolding the angles of all the bar
form angles that are similar, th
height of the mesh had to be modifie
progressively. Its maximum is in th
area proximal to the upper pole, i - o iy "

this area, the bars having lengths _ ] \

the order of 2 m, decreasing towar | | | \ ! EANN
the ends, where the bars have «
length of close to 1.60 m.

In the unfolding, the lower points
more proximal to the centre, are ust
as support, and the symmetry allov - W Al
having to analyse only half of thc % i\ ;\ I f'5| I .'I Tl
mesh. As starting position, a positic Wi Y [ Yk W WY A
proximal to total folding is chosen L AR AR A
with a spread of 10° from the pole, ¢ YL LATRXARKNAR KT X
mentioned before, and the unfolde X X } XYY VY YV I
position is set at 80° from pole. In thi AW I{ ﬁ\ /] AW W\ A
case, two positions must be define SR R

The guarantee of geometri

compatibility is dependent on these. Fig. 6
This is what will help to maintain '
the unfolded shape, having to fix edge points dkemprevious case not being so crucial.

4 Verification of incompatibilities

Before the calculation process is definite, firstiye would like to note the different behaviour
of both structures during the unfolding procesaitrial. For this, we proceed to eliminate
vertical loads, except for its own weight (to hgrecisely the minimum load needed for the
unfolding process), and a calculation is carriedassuming damping is null and another with
low damping.

The idea of this process is that the loads appliedo low, that when the mesh has a geometric
incompatibility, the loads will not be able to ogeme it and a “spring back” effect will be
produced.
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4.1 Quadrangular module mesh

The following graph depicts timefzsm
in seconds on the x-axis, and thm®
position of a point in metres on th
y-axis, and the flexional momer
given in the bars. The referenc

point taken and used fo

bars present a flexion of littlejssn 28
importance  and  practically®® ot 7
independent of the unfoldingem
process that is becoming moif®
stabilised if we consider ¢
minimum damping of 1 unit
(represented on the graph as a0l).
in the calculation. If damping is null (a00), itters a repeated cycle, going further beyond the
maximum unfolding point and returning, until sudiyereaching the initial point, without
flexional forces rising at any particular point.

Fig. 7

4.2 Triangular module mesh

In this case, the unfolding proce<szm

same scale as in the previous orf
it is observed that the meSlm
unfolds a bit, but as it continues t
unfold  incompatibilities

manifested. This creates

. . . g4
increase in the flexional stresses Momento 1 [

the incompatibility zone, L
producing a “spring back” effect jmm
As observed in the graphs, the
differences, in this case as
compared with the previous one, are notable: orotiee hand, the unfolding process is not
achieved and on the other, there is a direct cglaif the flexional stresses (to curve the bars in
the incompatibility zone, as already mentionedhim bars with the unfolding position.

e S eSS eSS ——m =l

Fig. 8
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5 Study of the complete unfolding

This is the principal section of this work, where will analyse the behaviour of both meshes in
a typical unfolding process. We will try to depiabove all, the differences that arise, as far as
the forces exerted on the bars and the influentleeoflegree of damping in this process.

5.1 Quadrangular module mesh

In the study of the unfolding, it is observed thia¢ influence of damping at the time of
unfolding the structure is a relation that is quihear for the damping range studied, although
having longer lags as damping is

increased.

30,00 o
F0.00 &

{5}

Axial and flexional stresses as
function of damping (al0... a90
are represented in the followin
graphs for a bar in the centre
region (node 28), that is among tr
most loaded. In both cases, it
observed that the forces var
without excessive abruptness ar
that the influence that the degre
of damping has on the value c

60,00
50,00

16 00

<4000+

=

[220,0
250,0
[240,0
200.0
160.0
120,0
20,00
40,00

il 1

-40.00
-20.,00
-120,0

maximum forces reached by ead
of the bars is relatively small.

-160,0

Precisely, the bars in which the
greatest variations appeared are those of the edgeg the ones that present the lowest force

values.

a30 a5 as0 agn

28

ago arn

a1o azo

0,699 1308 2,007 3.796 3,405 4194 4,803 5,607 fi.291 6991 7600 8.389 9,088 aray

Fig. 9

Lastly, let us observe the distribution of the &aiad flexion forces for an intermediate degree
of damping (50) and at a position proximal to tatafolding. It is clearly evident that the bars
receiving the most load are those of the centgabre

A [eas0]

Tiempo

b &xirnio

145 70

Fig. 10

b Timno

Flector

Tiempo 0.
b dxima

30,

Minirna |

Fig. 11
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5.2 Triangular module mesh

As already seen in thegs
study of incompatibilities |z 84
section, the forces on thé&zm
bars of this structure arefzo A e E

quite related with the fsBf RS
geometry of the [S0E= T :
unfolding. Now, once the [ o el v

: g Al 2 v
unfolding process is| Momenta1 [ mem

completed, this Momento 2 v
characteristic is observed:m[l =
much better.
Additionally,  whether |
the unfolding position is

a highly stable position or not is proven sinceeoricis reached, the structure Fig. 12
experiences a jolt, as if it stopped suddenly, ranakins in this position. This can

be perfectly observec
in one of the bars nea
the edge, as no. 84. Fc
simplicity sake, on the
graph only damping
curves of 10 and 5C
have been representel
Here, it is proven that
the forces increase
notably during the
unfolding process until
reaching relative
maximums or minimums toward the middle of the udifog, reducing the
maximums a bit as damping increases. The “bumgceft also observed at the
end of the unfolding and it remains in this posifithat is highly stable. At the
moment of the bump, it
is also verified that the
forces rise less if there
is damping that is a bi
high.

Lastly, we also observe
the distribution of axial
and flexional stresses
for an intermediate
degree of damping (50
and at a total unfolding
position. As in the

Tiempa [s]:
0,699 1,398 2,087 2,796 3,485 4,194 4,803 5692 6,291 6,991

Fig. 13
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previous case, it becomes evident that the celmral are the most loaded, although important
axial bars are also present at the edge.

5.3 Influence of the geometry on the forces

In the study of the unfolding of this last struettine influence of geometry (incompatibility) is
observed in the stresses. Thus, it is interestrighbw its relative importance with respect to
total forces. For this, we have proceeded withctileulation at the already unfolded position,
eliminating all external loads. Because the resithe forces at the final position will depend
little on the degree of damping, we have takenrd@rinediate one, as 30. In the following
graphs, this calculation is indicated w@B0and its continuation wite31, where the damping
of 30 was maintained.

B ana
{

Los The graphs show axial and flexional stressesadntral bar (bar 67) and one at the edge
(bar 84), that correspond with the bars presertiagyreatest value during the calcttidf. The
central bar (67) is the one with the greatest ssti@sses, that reduce their value by 2/3 (from
2062 to 1400 kg.) once the external loads are eéted. The moments are reduced to one half,
going from 155 to 72 m-kg.

Barra
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At the bar near the edge (bar 84), the axial stgease much lower, but have greater flexion
stresses. Interestingly, the opposite occurs invthan external loads are eliminated the forces
of these increase. The axial force goes from 2287t with a 23% increase and the moment
increases to a lesser extent, from 190 to 210 (10%)

6 Conclusions

After this analysis, we can conclude that geomatiompatibilities presented by some meshes
have a great repercussion on the forces that tlielyave to support. In some extreme cases, as
the one studied, maximum axial forces can be niddy 10 and flexional by 3, with the
consequent repercussion as far as the greater siomeaf the bars and cost, in general. We
should note that even when external loads are mdited, these meshes continue to be loaded,
indicating that in many cases it will be the geametvith its incompatibilities what will
generate the greatest part of the forces suppbytélde bars of this structure.

On the other hand, we should note that structuisstrong incompatibilities have advantages
as compared to others in that they are highly stabthe unfolded position, in many cases,
being able to rely on joining nodes at the edgétebthan with other meshes.

And lastly, we will note, in meshes with incompdtikes, the importance of damping in

maximum forces that it will support, not only dugithe unfolding, but also at the moment of
the “bump” when the final stable position is reathat this point a low damping factor can
produce peaks in the forces that in some casedugaitate or triplicate those that would be
produced with a greater damping.
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