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Abstract: We present a prototype to identify eye states from electroencephalography signals captured
from one or two channels. The hardware is based on the integration of low-cost components, while
the signal processing algorithms combine discrete wavelet transform and linear discriminant analysis.
We consider different parameters: nine different wavelets and two features extraction strategies.
A set of experiments performed in real scenarios allows to compare the performance in order to
determine a configuration with high accuracy and short response delay.

Keywords: discrete wavelet transforms; DWT; electroencephalography; EEG; linear discriminant
analysis; LDA; ocular states

1. Introduction

During recent decades, eye gaze analysis and eye state recognition have made up an ac-
tive research field due to their direct implication in emerging areas such as clinical diagnosis
or Human–Machine Interfaces (HMIs). The ocular state of the user and his/her gaze move-
ments can reveal important features from its cognitive condition, which can be crucial for
health care purposes but also for the analysis of daily life activities. Hence, it has been studied
and applied in several domains such as driver drowsiness detection [1–3], robot control [4],
infant sleep–waking state identification [5] or seizure detection [6], among others [7,8].

Different techniques have been proposed for studying eye gaze and eye state, such as
Videooculography (VOG), Electrooculography (EOG) and Electroencephalog-

raphy (EEG). In VOG [9,10], several cameras record videos or pictures of the user’s eyes
and, by applying image processing and artificial vision algorithms, provide an accurate
analysis of the eye state of the user. In EOG [11–15], some electrodes are placed on the
user’s skin near to the eyes in order to capture the electrical signals produced by the ocular
activity. On the other hand, in the EEG technique [16,17], the electrical signals produced
by the brain are measured using electrodes placed on the scalp of the user. The computa-
tional complexity associated with the algorithms employed in the image-based methods,
such as VOG, is considerably higher than those used in EOG and EEG due to the costly
process of analyzing and classifying multiple images [18]. The EOG method seems to be
an interesting technique for building HMIs based on eye movements or blinking, but the
placement of electrodes on the user’s face might be uncomfortable and not usable in practi-
cal applications [19]. Thus, the EEG technique is an attractive solution for developing new
interfaces that, based on the eye state of the user, can analyze and infer its cognitive state
(relaxed, stressed, asleep, etc.), which could be crucial information for the implementation
of real applications.

EEG is a popular technique for neuroimaging and brain signal acquisition widely used
in the study of brain disorders [20] and in Brain–Computer Interface (BCI) systems [21].
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EEG has several advantages such as its high portability and temporal resolution, its rela-
tively low cost, and its ease of use [22,23] when compared to other brain signal acquisition
techniques such as Magnetoencephalography (MEG), Electrocorticography (ECoG)
or functional Magnetic Resonance Imaging (fMRI). Particularly, EEG-based eye state
detection has been applied in several domains, such as, for example, clinical diagnosis
and health care. In this regard, Naderi et al. [6] propose a technique based on EEG time
series and Power Spectral Density (PSD) features and on the use of a Recurrent
Neural Network (RNN) for its classification. Their technique distinguished a relaxed and
open eye state from an epileptic seizure with an accuracy of 100%. In another study on the
same data set, Acharya et al. [24] propose the employment of Convolutional Neural Net-
works (CNNs) for the development of a Computer-Aided Diagnosis (CAD) system that
automatically detects seizures. Their technique achieves an accuracy, specificity, and sensi-
tivity of 88.67%, 90.00%, and 95.00%, respectively. Moreover, EEG-based eye state detection
has been successfully applied for automatic driver drowsiness detection. Yeo et al. [25]
proposed to use Support Vector Machine (SVM) as classification algorithm to identify
and differentiate EEG changes that occur between alert and drowsy states. Four main EEG
rhythms (delta, theta, alpha and beta) were employed for extracting different frequency
features, such as dominant frequency, frequency variability, center of gravity frequency
and the average power of dominant peak. Their method reached a classification accuracy
of 99.30% and was also able to predict the transition from alertness to drowsiness with an
accuracy over 90%. Furthermore, EEG eye state identification has been employed for the
interaction with BCIs. For instance, Kirkup et al. [26] present a home automation control
system for a rapid ON/OFF switch appliance. This calculates a threshold employing alpha
band to determine the user’s eye state and control external devices.

Due to the wide variety of areas where the EEG eye state detection can be applied,
several methods have been presented to achieve higher classification accuracies. In this
sense, Rösler and Sunderman [27] tested 42 classification algorithms in terms of their
performances to predict the eye state. For this purpose, a dataset containing the two
possible ocular states was recorded using the 14 channels of the Emotiv EPOC headset.
The reported results showed that standard classifiers such as naïve Bayes, Artificial
Neural Networks (ANNs) or Logistic Regression (LR) offered poor classification
accuracies, while instance-based algorithms such as IB1 or KStar offered significantly
higher results. The latter classifier achieved the best performance with a classification
accuracy of 97.30%. However, it took at least 20 minutes to classify the state of new
instances. Moreover, the dataset included the data of only one subject, so the authors
cannot assure that the obtained results are generalizable. Several works have presented
new classification methods based on this dataset. For example, Wang et al. [17] proposed
to extract channel standard deviations and averages as features for an Incremental
Attribute Learning (IAL) algorithm and achieve an error rate of 27.45% for eye state
classification. In a more recent study, Saghafi et al. [28] propose to study the maximum
and minimum values in the EEG signals in order to detect any eye state change. Once
this change has been detected, the last two seconds of the signal are low-pass filtered
below 8 Hz and passed through Multivariate Empirical Mode Decomposition (MEMD) for
feature extraction. These features are fed into a classification algorithm to confirm the eye
state change. For this purpose, they tested ANNs, LR and SVM. Their proposed algorithm
using LR as a classifier detected the eye state with an accuracy of 88.2% in less than 2 s.
Hamilton et al. [29] proposed a new system based on eager learners (e.g., decision trees) in
order to improve the classification time achieved by Rösler and Sunderman [27]. For this
purpose, three ensemble learners were evaluated: a rotational forest that implements
random forests as its base classifiers, a rotational forest that implements J48 trees as its base
classifiers and is boosted by adaptive boosting, and an ensemble of the rotational random
forest model with the KStar classifier. The results achieved in the study showed that the
approach using J48 trees and adaptive boosting offered accurate classification rates within
the time constraints of real-time classification.
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Although the aforementioned papers show methods to detect eye states with high
accuracy, they usually gather the brain activity using a large number of electrodes and
voluminous EEG devices, which might be cumbersome and uncomfortable for real-life
applications. In order to avoid these limitations, we present an EEG-based system that
employs a reduced number of electrodes for capturing the brain signals. For this purpose,
we extend our prototype presented in [16] to the case of two input channels in order to build
a multi-dimensional feature set that improves the detection rates and reduces the response
time of the system. We study and compare two algorithms with low computational
complexity for eye state detection. For feature extraction, we employed the Discrete
Wavelet Transform (DWT), which presents lower computational complexity than other
widely known algorithms such as the Fast-Fourier Transform (FFT) [30]. For feature
classification, we applied Linear Discriminant Analysis (LDA), a popular technique in
BCI systems, which also presents low computational requirements [23,31].

The paper is organized as follows. Section 2 shows the theoretical background of
DWT and features classifiers. Section 3 describes the proposed system. Section 4 defines
the materials and methods employed in the experiments. Section 5 shows the obtained
results. Finally, Section 6 analyzes these results and Section 7 presents the most relevant
conclusions of this work.

2. Theoretical Background

Brain signals captured by EEG devices need to be analyzed and processed for their
posterior classification and subsequent translation into a specific mental state. This task is
developed by a signal processing unit, whose two main tasks are feature extraction and
feature classification. The feature extraction process aims to find the most relevant values,
called features, that best describe the original raw EEG data [32]. These features are sent to
a classification algorithm, which is responsible for estimating the mental state of the user.
In this section, we will present DWT as the feature extraction technique and LDA as the
classification algorithm employed throughout this work.

2.1. Wavelet Transform

Wavelet Transform (WT) is a mathematical technique particularly suitable for
non-stationary signals due to its properties of time-frequency localization and multi-rate
filtering, which means that a signal can be extracted at a particular time and frequency and
can be differentiated at various frequencies [33].

Wavelets can be defined as small waves limited in time, with zero-mean, finite energy
over their time course and band-limited, i.e., they are composed of a relatively limited
range of frequencies [34,35]. Wavelet functions can be scaled in time and translated to any
time point without changing their original shape. WT breaks down the input signal into a
set of time-scaled and time-translated versions of the same basic wavelet. The set of scaled
and translated wavelets of a unique mother wavelet ψ(t) is called wavelet family, denoted
as ψa,b(t) and obtained as follows

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
, (1)

where t denotes time, a, b ∈ R and a 6= 0. Wavelet function in (1) becomes wider when a
decreases and is shifted in time when b varies. Therefore, a is called the scaling parameter
that determines the oscillatory frequency and length of the wavelet, while b is called the
translation parameter.

There are two types of WT: Continuous Wavelet Transform (CWT) and DWT.
The idea behind CWT is to scale and translate the basic wavelet shape and convolve it with
the signal to be analyzed at continuous time and frequency increments. However, analyzing
the signal at every time point and scale is time consuming. Moreover, the information
provided by the CWT at close time points and scales is highly correlated and redundant [34].
DWT is a more efficient and computationally simpler algorithm for the wavelet analysis [36].
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In this case, discrete a and b parameters based on powers of two (dyadic scales and
translations) are usually employed.

The DWT algorithm based on multi-resolution analysis can be implemented as a
simple recursive filtering scheme composed by a pair of digital filters, high-pass and
low-pass, whose coefficients are determined by the wavelet shape used in the analysis.
In Figure 1, we can see the scheme for the DWT-based multi-resolution analysis. The signal
is decomposed into a set of Approximation (A) coefficients, which represent the output of
the low-pass filter, and Detail (D) coefficients, which are the output of the high-pass filter.
The features extracted from these wavelet coefficients at different levels can reveal the inner
characteristics of the signal. Hence, both the selection of a proper mother wavelet and the
number of decomposition levels are of critical importance for the analysis of signals using
DWT [37].

x(n)

h(n) ↓2

D1
32 - 64 Hz

g(n) ↓2

A1
0 - 32 Hz

h(n) ↓2

D2
16 - 32 Hz

g(n) ↓2

A2
0 - 16 Hz

(Gamma)

(Beta)

h(n) ↓2

D3
8 - 16 Hz

g(n) ↓2

A3
0 - 8 Hz

(Alpha)

h(n) ↓2

g(n) ↓2

A4
0 - 4 Hz

(Theta)

D4
4 - 8 Hz

(Delta)

Level 1

Level 2

Level 3

Level 4

Figure 1. Filter scheme for a multi-resolution DWT of an EEG signal sampled at 128 Hz, where g(n)
and h(n) represent the impulse response of the high- and low-pass filters, respectively, and ↓ 2
represents downsampling by a factor of 2.

The DWT has been widely applied in EEG signal processing, particularly as a feature ex-
traction method that feeds a classification algorithm for mental state recognition. For instance,
it has been applied for the classification and analysis of Event-related Potential (ERP)
signals [38,39], self-regulated Slow Cortical Potentials (SCPs) [40], single-sweep ERPs
[41], among others. It has been also applied for Motor Imagery (MI) data classifica-
tion [42,43] and for the characterization and classification of epileptic strokes through EEG
recordings [33,44,45].

2.2. Linear Discriminant Analysis

The main goal of LDA is to project the original multidimensional data into a lower
dimensional subspace with higher class separability [46,47]. For this reason, it is also
widely used as a dimensionality reduction algorithm as well as a classifier. LDA assumes
that all the classes are separable and that they follow a Gaussian distribution. Let us
consider a binary classification problem with training samples D = {(x(n), y(n)), (x(n +
1), y(n + 1)), . . . , (x(n + N − 1), y(n + N − 1))}, where x ∈ Rd is the input feature vector
and y ∈ {−1, 1} is the class label. LDA seeks a hyperplane in the feature space that
separates both classes. In the case of a multi-class problem with more than two classes,
several hyperplanes are used [23]. The optimal separating hyperplane can be expressed as

f (x) = w · x + b, (2)

where w is the projection vector and b is a bias term. The projection vector w is defined
as [48]

w = Σ−1
c (µ1 − µ2), (3)
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whereµiistheestimatedmeanofthei-thclassandΣc=
1
2(Σ1+Σ2)istheestimated

commoncovariancematrix,i.e.,theaverageoftheclass-wiseempiricalcovariancematri-

ces[48].Thecorrespondingestimatorsofthecovariancematrixandthemeanarecalculated

asfollows

Σ=
1

N−1

N

∑
i=1

(x(i)−µ)(x(i)−µ)T, (4)

µ=
1

N

N

∑
i=1

x(i). (5)

Oncetheprojectionvectorhasbeencalculatedinthetrainingphase,thepredicted

classforanunseenfeaturevectorxisdeterminedbysign(f(x)).Thus,theassignedclass
toxwillbe1iff(x)>0and−1otherwise.

ThisclassificationalgorithmwillbeappliedoverthefeaturesextractedwiththeDWT

inordertoestimatetheocularstateoftheuser.Therefore,itwillfaceabinaryclassification

problem,i.e., openeyestate(oE)or closedeyestate(cE)state.

LDAisprobablythemostusedclassifierforBCIdesign[32].Ithasbeensuccessfully

appliedindifferentBCIsystems,suchasP300spellers[49],MI-basedapplicationsforpros-

thesesandorthosiscontrol[50,51],amongothers[23,52].LDAhasalowercomputational

burdenandfasterratesthanotherpopularclassifierssuchasSVMorANN,whichmakes

itsuitableforthedevelopmentofonlineBCIsystems[23,31].

3.ProposedSystem

Figures2and3showthehardwarecomponentsofthedevelopedsystemandits

procedureforeyestateidentification,respectively.First,thebrainactivityoftheuser

iscapturedbytheEEGdevice,thenthisactivitysignalisprocessedanddecomposed

bytheDWT.Theobtainedcoefficientsarethenemployedtoextractthefeatures,which

finallyfeedtheclassificationalgorithmthatestimatestheuser’socularstate.Thefollowing

3

2

1

sectionsdescribethisprocedureindetail.

Figure2.Proposeddevicedetails.(1)Sensors;(2)amplifiers;(3

DWT
Feature
extraction

LDA

EEG
signals

Wavelets
coefficients

Extracted
features

Predicted
eye state

)ESP32module.

Figure3.BlockdiagramforexperimentsbasedonfeatureextractionwithDWT.

3.1.EEGDevice

Forcapturingthebrainactivityoftheuser,wehavedevelopedalow-costEEGdevice

thatusesatotaloffourelectrodes:twoinputchannels,andthereferenceandground
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electrodes. This device is an extension of the prototype presented in our previous work [16]
with an additional input channel.

The signal captured from each input channel (depicted in element 1 of Figure 2) is
amplified and bandpass filtered between 4.7 and 29.2 Hz. Towards this end, we use the
AD8221 instrumentation amplifier followed by a 50 Hz notch filter to avoid the interference
of electric devices in the vicinity of the sensor wires, a second order low-pass filter, a second
order high-pass filter and a final bandpass filter with adjustable gain (see element 2 of
Figure 2). Once the brain signal has been captured, amplified and filtered, the ESP32
microcontroller [53] is responsible for its sampling (shown in element 3 of Figure 2).
A sampling frequency of 200 Hz is employed.

3.2. Feature Extraction and Classification

Once the brain signals of the user have been captured and digitized, they are analyzed
and decomposed with the DWT for extracting the features. Thanks to the dual core nature
of the ESP32, complex processing tasks such as DWT and its subsequent classification can
be performed while the signal is sampled.

As previously described, the coefficients extracted by the DWT at different levels can
reveal the inner characteristics of the signal. Thus, both the selection of a proper mother
wavelet and the number of decomposition levels are of primary importance for the analysis
of the brain signals [37]. The number of decomposition levels is based on the dominant
frequency component of the signal. Therefore, the levels are chosen such that those parts
of the signal that correlate well with the frequencies needed for signal classification are
retained in the wavelet coefficients [37]. In our system, in order to decompose the signal
according to the main EEG rhythms, the number of levels of decomposition is 4. Hence,
the signal is decomposed into four detail levels, D1–D4, and one final approximation level,
A4. Table 1 shows the wavelet coefficients and their EEG rhythm equivalence.

Table 1. Wavelet coefficients and EEG rhythm equivalence.

Levels Frequency Band (Hz) EEG Rhythm Decomposition Level

D1 50–100 Noise 1
D2 25–50 Beta-Gamma 2
D3 12.50–25 Beta 3
D4 6.25–12.50 Theta-Alpha 4
A4 0–6.25 Delta-Theta 4

According to these decomposition levels and their equivalent EEG rhythms, those
detail and approximation coefficients are studied and employed for extracting the features
and estimating the ocular state of the user. To this end, we propose two schemes based on
different feature sets defined from data obtained in alpha and beta rhythms. It is important
to note that alpha rhythms correspond to the detail coefficients of level 4 (D4), while beta
rhythms correspond to the detail coefficients in level 3 (D3).

Let PD3 be the average power of wavelet coefficients at D3, PD4 be the average power
of wavelet coefficients at D4 and R = PD3/PD4 as the ratio between these two average
powers. Thus, the first scheme, termed as Scheme 1, will employ the ratio R = PD3/PD4
as the only feature for eye state identification. Conversely, in the second scheme, termed as
Scheme 2, two different features are extracted from the wavelet coefficients: the standard
deviation of the coefficients of level D4 (SD4) and R = PD3/PD4. In both cases, the LDA
classification algorithm is applied for the eye state identification.

4. Materials and Methods

To evaluate the suitability of the proposed system, we have carried out a series of
experiments with a participant group who agreed to participate in the research. This
participant group included a total of 7 volunteers with an average age of 29.67 (range
24–56). The participants indicated that they do not have hearing or visual impairments.
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Participationwasvoluntaryandinformedconsentwasobtainedforeachparticipantin

ordertoemploytheirEEGdatainourstudy.

OurEEGprototypewasusedtocapturethebrainactivityofthesubjects.Goldcup

electrodeswereplacedinaccordancewiththe10–20internationalsystemforelectrode

placement[54]andattachedtothesubjectsscalpusingaconductivepaste.Electrode–skin

impedanceswerebelow15kΩatallelectrodes.

Severalstudieshaveprovedthatthealpharhythmpredominatesintheoccipitalareaof

thebrainwhensubjectsremainwiththeireyesclosedanditisreducedwhenvisualstimulation

takesplace[55–57].Inaccordancewiththeseworks,theinputchannelsoftheEEGdeviceswere

locatedintheO1andO2positions.Moreover,tooptimizethesetuptimeandEEGsignalquality,

thereferenceandgroundelectrodeswereplacedintheFP2andA1positions,respectively,

wheretheabsenceofhairfacilitatesitsplacement[58](seeFigure4

NASION

INION

Fp2Fp1

T4C4CzC3T3

O1 O2

T6T5

F8F7

A2

).

Figure4.Anatomicalelectrodedistributioninaccordancewiththestandard10–20placementsystem

usedduringtheelectroencephalographymeasurements. Thegreencirclerepresentstheinput

channels,whilegrayandblackborderedcirclesrepresentreferenceandground,respectively.

Alltheexperimentswereconductedinasound-attenuatedandcontrolledenviron-

ment.Participantswereseatedinacomfortablechair,andaskedtoberelaxedandfocused

onthetask,tryingtoavoidanydistractionorexternalstimulus.Experimentswerecom-

posedof2tasks:thefirstone,60sofoEandthesecond,60sofcE.Inordertosimulate

areal-lifesituation,thesubjectcouldfreelymovehisgazeduringtheeye-opentasks,

withouttheneedtokeepitatafixedpoint.Theprocedurewasconvenientlyexplainedin

advanceallowingtheparticipantstofeelcomfortableandfamiliarwiththetestenviron-

ment.Moreover,possibleartifactswereminimizedbyaskingthemnottospeak,moveor

blink(oratleastaslittleaspossible)throughouttheoEtask.Electrode–skinimpedance

wasbelow15kΩatalltheelectrodes.

Atotalof10tasks(i.e.,10min)werecontinuouslyrecordedforeachparticipant,which

correspondsto5tasksofoEand5tasksofcE.Eachtaskwasseparatedbyasoundalert,

whichindicatedtheusertochangethestate.AlltheexperimentsstartedwithoEasthe

initialstate(seeFigure5).Thecapturedsignalswerefilteredbetween4and40Hzandthe

meanofthesignalwassubtracted.

Sinceanessentialfeatureofourstudyistoprovideareliablesystemwithhigh

accuracyrates,severaltypesofwavelets,alreadyusedinpreviousworksforEEGanalysis,

wereevaluatedandcomparedforextractingthefeatures.Inparticular,ninetypesof

waveletsweretested:db2,db4,db8,coif1,coif4,haar,sym2,sym4,andsym10.

Moreover,overlappedwindowshavebeenusedforextractingthefeatures. Wehave

consideredtimewindowsofDsecondsandanoverlappedtimeslotofdseconds.Itis

importanttonotethat,usingthistechnique,theresponsetimeofthesystemisdirectly

relatedtoDandd,i.e.,thedecisiondelay,whichisthewaittimeforanewclassifier

decision,isgivenbyD−ds.Hence,inordertofindtheshortestresponsetimewitha
reliableaccuracyrate,wehaveevaluatedoursystemusingseveralwindowsizes,ranging
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from 1 to 10 s. The size selected for d was constant for all the experiments: 80% of the size
of D.

oE cE oE . . .  cE

60 s

10 min

Sound
alert

Figure 5. User’s experiment flowchart.

To avoid classification bias, a 5-fold cross-validation technique is applied for training
and evaluating the classifier—that is, 80% of the data were used for training the algorithm
and the remaining 20% were used for testing it. In our experiments, it means that 8 out of
the 10 min (4 min for each eye state) were used to train the LDA classifier and the remaining
2 min (1 min for each eye state) were used for testing it. This process was repeated 5 times
using each minute of each eye state once for testing the classifier. Therefore, the accuracy
results shown throughout this work correspond to an average of all these executions using
the different training and test sets.

5. Experimental Results

In this section, we present the results obtained for both feature schemes, i.e., using
only one extracted feature or two features. Moreover, for each scheme, we compared
different wavelet types and window sizes. The results obtained using the data from only
one electrode located at O2 were compared to those obtained using both electrodes located
at O1 and O2 positions. The main goal of this experiment is to determine which mother
wavelet, feature scheme and number of input channels offer the best performance in terms
of accuracy and response time.

5.1. Scheme 1: One Feature

The experiments for this scheme were carried out using the ratio R as the only feature
for eye state classification. In order to compare the different wavelet types, we employed
overlapped windows of 10 s and a decision delay of D− d = 2 s.

Table 2 shows the mean accuracy from all the subjects obtained for each wavelet type,
for both eye states and using the data from one and two channels. The results achieved
for cE are significantly higher than those achieved for oE, regardless of the wavelet type
and the number of channels. In the case of cE, all the accuracies are above 86%, while in
the oE case some drop to 71% and none of them exceed 86%. For most of the wavelets,
using more channels does not imply an improvement in the performance, since similar
results are obtained using one- or two-channel data. In addition, the number of filter
coefficients for each mother wavelet is also shown. The number of operations for applying
the multi-resolution analysis of the input signal is directly related to this filter length.

From Table 2, we can see that coif4 offers the highest accuracy for oE and high results
that exceed 91% for cE; thus, it could be the best choice for implementing the system. In this
regard, for robustness analysis, Table 3 shows the accuracy obtained for each subject using
coif4 as the mother wavelet. The results follow the same pattern described before, where
cE offers better classification accuracy than oE and similar results are achieved using one
or two sensor data. All subjects except one (Subject 5) show accuracies above 80% for
any condition and even some of them, such as Subjects 1, 3 and 6, present results higher
than 89%.



Appl. Sci. 2021, 11, 5051 9 of 18

Table 2. Average accuracy (in %) of all the subjects obtained for each wavelet type and ocular state for
one and two sensor data using Scheme 1. Bold values indicate the highest value of each column. Filter
length column represents the number of filter coefficients employed for the multi-resolution analysis.

Wavelet Filter Length
Closed Open

O1 and O2 (%) O2 (%) O1 and O2 (%) O2 (%)

db2 4 86.29 86.97 74.63 72.11
db4 8 88.23 89.83 81.03 79.43
db8 16 92.46 92.69 85.14 84.00
coif1 6 86.97 87.89 76.34 75.54
coif4 24 91.66 92.46 85.37 84.23
haar 2 86.74 89.03 73.14 71.09
sym2 4 86.29 86.97 74.63 72.11
sym4 8 90.17 91.31 81.49 80.00
sym10 20 94.63 92.46 84.46 82.29

Table 3. Average accuracy (in %) obtained for each subject and ocular state for one and two sensor
data using Scheme 1, coif4 as mother wavelet, a window duration of 10 s and a delay of D− d = 2 s.

Subject
Closed Open

O1 and O2 (%) O2 (%) O1 and O2 (%) O2 (%)

1 100.00 100.00 94.40 91.20
2 83.20 84.00 84.80 83.20
3 100.00 100.00 96.00 96.00
4 93.60 96.80 80.80 80.80
5 77.60 79.20 68.00 61.60
6 98.40 98.40 89.60 90.40
7 88.80 88.80 84.00 86.40

Mean 91.66 92.46 85.37 84.23

A second set of experiments was conducted in order to determine the performance of
the system for short delay times, which is an important aspect when implementing BCIs in
real-life scenarios. Figure 6 shows the accuracy obtained for each subject and ocular state as
a function of the window size. In these experiments, we considered a constant overlapped
time slot d with a duration of the 80% of the window size D. Therefore, the decision delay
of the system will be 20% of D, i.e., if D = 1 s the delay would be D − d = 0.2 s. It is
apparent that there exists a trade-off between the window size and accuracy of the system,
i.e., as window size increases the obtained accuracy improves and vice versa. For short
window sizes the classifier offers low accuracies, especially for the oE case, where none of
the subjects exceeds 75% with the shortest window size, D = 1 s, and one of them, Subject
5 (Figure 6e), shows an accuracy below 50%. Moreover, as presented in the previous results
in Tables 2 and 3, similar accuracies are achieved for one and two-channel data.

5.2. Scheme 2: Two Features

For this scheme, two extracted features were employed for the prediction of the eye
state of the user: SD4 and the ratio R. Windows with a duration of 10 s and a delay
of D − d = 2 s were employed. From one realization of the cross-validation process,
the extracted features of the training set are represented in Figure 7, where the decision
boundary of LDA is also marked.

The signals corresponding to three windows are shown in Figure 8 with their detail
coefficients D3 and D4. Three situations are compared: oE without artifacts (Figure 8a–c),
oE with blink artifact (Figure 8d–f) and cE state (Figure 8g–i). Figure 7 marks the features
corresponding to these three windows. We see that they have been correctly classified, even
the one with the blink artifact since the window size is larger than the artifact duration.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure6.AccuracyobtainedforeachsubjectasafunctionofthewindowsizeusingScheme1.

Figures(a–g)representtheaccuracyforSubjects1to7,respectively.Figure(h)showstheaverage

accuracyofallthesubjects.
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Figure 7. Training features and LDA decision boundary for one training set of the cross-validation
process. oE-Blink, oE-No blink and cE * represent the features obtained from the signals shown
in Figure 8.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. EEG signals captured from one of the participants from channel O2 and its wavelet
decomposition for levels 3 and 4: (a–c) show the signal captured for oE without artifacts, its detail
coefficients from D3 and D4, respectively; (d–f) show the signal captured for oE with one blink
artifact, its detail coefficients from D3 and D4, respectively; (g–i) show the signal captured for oE, its
detail coefficients from D3 and D4, respectively.
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Table 4 shows the mean accuracy of all the subjects obtained for each wavelet type and
ocular state for one and two sensor data. All the wavelet types offer high performances for
both eye states with an average accuracy above 91%, regardless of the number of channels
employed. Similar results are obtained with one or two sensors, although the latter are
slightly better. In addition, we can see that db8 offers the highest results for 3 of the
4 conditions, thus it could be the best choice for implementing the system.

Table 5 shows the accuracy obtained for each subject, each eye sate and for one and
two sensor data using db8 as mother wavelet, a window duration of 10 s and a delay of
D− d = 2 s. Results from oE are higher than those achieved from cE. Results from one
and two channels are similar, so the use of only one channel could be enough for a reliable
performance of the system.

Table 4. Average accuracy (in %) of all the subjects obtained for each wavelet type and ocular state for
one and two sensor data using Scheme 2. Bold values indicate the highest value of each column. Filter
length column represents the number of filter coefficients employed for the multi-resolution analysis.

Wavelet Filter Length
Closed Open

O1 and O2 (%) O2 (%) O1 and O2 (%) O2 (%)

db2 4 93.49 91.31 98.29 96.57
db4 8 94.06 92.80 98.86 97.71
db8 16 94.40 93.83 99.31 97.60
coif1 6 93.71 92.91 98.17 96.80
coif4 24 94.40 93.71 99.09 97.49
haar 2 93.37 91.54 97.94 96.11
sym2 4 93.49 91.31 98.29 96.57
sym4 8 93.94 93.03 98.06 97.03
sym10 20 94.40 93.03 98.63 97.37

The second set of experiments are used to determine the performance of using one or
two sensors for short delays. Figure 9 depicts the accuracy obtained for each subject and
ocular state as a function of the window size. As in previous experiments, the overlapped
time slot d was selected to be 80% of the window size D; therefore, the delay in the response
will be 20% of D. As occurred in Scheme 1, there exists a trade-off between the window
size and the accuracy of the system, i.e., as window size increases the obtained accuracy
improves and vice versa. Furthermore, the results obtained with the data from one sensor
or two sensors are very close for large window sizes. However, in some subjects, such as
Subjects 1, 3 and 5 (Figure 9a,c,e), the accuracy obtained for short window duration with
two sensors is higher than the one obtained only with one sensor. This can also be seen
in Figure 9h, which depicts the average accuracy for all the subjects. Here, we can clearly
observe that, for short window sizes, the data from two sensors offer better accuracy rates.

Table 5. Average accuracy (in %) obtained for each subject and ocular state for one and two sensor
data using Scheme 2, db8 as mother wavelet, a window duration of 10 s and a delay of D− d = 2 s.

Subject
Closed Open

O1 and O2 (%) O2 (%) O1 and O2 (%) O2 (%)

1 100.00 100.00 100.00 100.00
2 84.00 80.00 96.00 89.60
3 100.00 100.00 100.00 96.00
4 95.20 95.20 100.00 100.00
5 93.60 95.20 100.00 100.00
6 92.00 91.20 100.00 98.40
7 96.00 95.20 99.20 99.20

Mean 94.40 93.83 99.31 97.60
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure9.AccuracyobtainedforeachsubjectasafunctionofthewindowsizeusingScheme2.

Figures(a–g)representtheaccuracyforSubjects1to7.Figure(h)showstheaverageaccuracyofall

thesubjects.



Appl. Sci. 2021, 11, 5051 14 of 18

6. Discussion

Several solutions have been proposed during recent decades for the detection of the
eye state through EEG activity [17,27,29]. However, these solutions usually capture the
brain signals using large and voluminous devices, which are cumbersome and uncomfort-
able for the final user. The main goal of the presented study is to develop a new system for
eye state identification based on an open EEG device that gathers the brain activity using a
reduced number of electrodes. For this purpose, the DWT and the LDA were applied for
feature extraction and feature classification, respectively.

Furthermore, different feature schemes are compared in order to determine which of
them offers the best classification accuracy and response time. From Tables 2–5, we can see
that the scheme, which considers two features (SD4 and the ratio R) offers higher results
than those achieved by the scheme composed of a single feature for all the mother wavelets
(Tables 2 and 4) and six of the seven subjects (Tables 3 and 5). This difference becomes
more apparent for the oE case, especially when small window sizes are employed (see
Figures 6 and 9). Moreover, considering that for the real implementation of the system
an average accuracy greater than 80% is required for both ocular states, we can see from
Figures 6h and 9h that Scheme 2 achieves it at 2 s, while Scheme 1 needs 6 s.

Several shapes for wavelet functions have been proposed for the analysis of EEG
signals, such as Haar, Daubechies (db2, db4 and db8), Coiflets (coif1, coif4) or Symlets
(sym2, sym4, sym10). However, depending on the application or analysis where they
are involved, a particular wavelet family will result in a more efficient performance than
the others [33–35,59]. Therefore, the selection of an appropriate mother wavelet is crucial
for the correct performance of the system. From Tables 2 and 4, we can see the average
results obtained for each wavelet type for both ocular states. For Scheme 1 with a single
feature, there are remarkable differences between each one of the wavelets. Furthermore, it
can be observed that the results for cE are significantly higher than those obtained for oE.
Conversely, for Scheme 2, the results obtained by the different wavelets are very similar
and there is no big differences between oE and cE. Therefore, this second approach should
be selected for the implementation of the system in a real scenario since it offers more
robust results.

The response time of the system is also a key aspect when developing real-time and
online applications. Consequently, we tested our system for small window sizes with short
response times. Figures 6 and 9 show the results for each subject and eye state using coif4
with a single feature and db8 with the two features, respectively. As previously mentioned,
Scheme 2 offers higher accuracy and more robust results than Scheme 1, especially for
the oE case and small window sizes. Moreover, similar results are achieved for one and
two-channel data in the case of Scheme 1. However, for Scheme 2, the results obtained by
the two-channel data are higher for some subjects. This difference is more apparent for
small size windows (see Figure 9a,c,e).

Taking into account the filter lengths shown in Table 2, the number of operations
needed to compute the db8 in Scheme 2 is considerably lower that the needed to compute
the coif4 used in Scheme 1.

We can conclude that Scheme 2, composed by the two features, is the most suitable
option for implementing the system since it offers the best performance in terms of accuracy
and response time. There is no significant difference between the use of one or two sensors
for large window sizes; however, we consider that the use of both channels could be more
suitable for the system since in some subjects it did show an improvement for small window
sizes. Therefore, considering this system configuration with two input channels and two
extracted features, an average accuracy of 77.93% for cE and 90.62% for oE was obtained for
the shortest window size, D = 1 s, with five of the seven subjects being above 70%. Using
a window size of D = 3 s, six of the seven subjects achieve an accuracy above 81% in both
ocular states and, with D = 5 s, those six subjects exceed 86% of accuracy in both eye states.
The response time of the system is 20% of D, and therefore it would be 0.2 s for D = 1 s,
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0.6 s for D = 3 s and 1 s for D = 5 s. Thus, the system offers a reliable classification accuracy
for short response times, suitable for the implementation of non-critical applications.

7. Conclusions

We have presented a system for EEG eye state identification based on an open EEG
device that captures the brain activity from only two input channels. We apply the DWT
for decomposing the gathered signals and extracting the most relevant features for its
subsequent classification. The performance of two different feature sets are compared in
terms of accuracy and response time. We also compare the performance achieved when
using one or two input channels. The results show that, for most users, using two channels
does not improve the system performance significantly. On the other hand, the feature
set composed by the two features (standard deviation and ratio between coefficients of
alpha and beta bands) offers the best accuracy for the shortest response times, achieving an
average classification accuracy with two sensors of 90.60% and 97.25% for closed and open
eyes, respectively, with a response time of 1 s. Future work includes increasing the number
of participants in the experiments and considering subjects with mobility disorders.

Author Contributions: F.L. and F.J.V.-A. implemented the software; F.J.V.-A. developed the hardware
prototype; P.M.C. and A.D. designed the experiments; F.L. and O.F. performed the experiments and
the data analysis; F.L. and A.D. wrote the paper; P.M.C. and F.J.V.-A. revised the manuscript; A.D. and
P.M.C. led the research. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been funded by the Xunta de Galicia (by grant ED431C 2020/15 and grant
ED431G2019/01 to support the Centro de Investigación de Galicia “CITIC”), the Agencia Estatal de
Investigación of Spain (by grants RED2018-102668-T and PID2019-104958RB-C42) and ERDF funds
of the EU (FEDER Galicia & AEI/FEDER, UE); and the predoctoral Grant No. ED481A-2018/156
(Francisco Laport).

Institutional Review Board Statement: Not applicable for studies involving researchers themselves.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in the study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Acronym
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network

BCI Brain–Computer Interface

CAD Computer-Aided Diagnosis

cE closed eye state

CNN Convolutional Neural Network

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

ECoG Electrocorticography

EEG Electroencephalography

EOG Electrooculography

ERP Event-related Potential

fMRI functional Magnetic Resonance Imaging

FFT Fast-Fourier Transform
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HMI Human–Machine Interface

IAL Incremental Attribute Learning

LDA Linear Discriminant Analysis

LR Logistic Regression

MEG Magnetoencephalography

MEMD Multivariate Empirical Mode Decomposition

MI Motor Imagery

oE open eye state

PSD Power Spectral Density

RNN Recurrent Neural Network

SCP Slow Cortical Potential

SVM Support Vector Machine

VOG Videooculography

WT Wavelet Transform
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