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Random forest‑based prediction 
of stroke outcome
Carlos Fernandez‑Lozano1,2, Pablo Hervella3, Virginia Mato‑Abad4, 
Manuel Rodríguez‑Yáñez5, Sonia Suárez‑Garaboa4, Iria López‑Dequidt5, Ana Estany‑Gestal6, 
Tomás Sobrino3, Francisco Campos3, José Castillo3, Santiago Rodríguez‑Yáñez4* & 
Ramón Iglesias‑Rey3*

We research into the clinical, biochemical and neuroimaging factors associated with the outcome 
of stroke patients to generate a predictive model using machine learning techniques for prediction 
of mortality and morbidity 3-months after admission. The dataset consisted of patients with 
ischemic stroke (IS) and non-traumatic intracerebral hemorrhage (ICH) admitted to Stroke Unit of 
a European Tertiary Hospital prospectively registered. We identified the main variables for machine 
learning Random Forest (RF), generating a predictive model that can estimate patient mortality/
morbidity according to the following groups: (1) IS + ICH, (2) IS, and (3) ICH. A total of 6022 patients 
were included: 4922 (mean age 71.9 ± 13.8 years) with IS and 1100 (mean age 73.3 ± 13.1 years) with 
ICH. NIHSS at 24, 48 h and axillary temperature at admission were the most important variables 
to consider for evolution of patients at 3-months. IS + ICH group was the most stable for mortality 
prediction [0.904 ± 0.025 of area under the receiver operating characteristics curve (AUC)]. IS group 
presented similar results, although variability between experiments was slightly higher (0.909 ± 0.032 
of AUC). ICH group was the one in which RF had more problems to make adequate predictions (0.9837 
vs. 0.7104 of AUC). There were no major differences between IS and IS + ICH groups according to 
morbidity prediction (0.738 and 0.755 of AUC) but, after checking normality with a Shapiro Wilk test 
with the null hypothesis that the data follow a normal distribution, it was rejected with W = 0.93546 
(p-value < 2.2e−16). Conditions required for a parametric test do not hold, and we performed a paired 
Wilcoxon Test assuming the null hypothesis that all the groups have the same performance. The null 
hypothesis was rejected with a value < 2.2e−16, so there are statistical differences between IS and ICH 
groups. In conclusion, machine learning algorithms RF can be effectively used in stroke patients for 
long-term outcome prediction of mortality and morbidity.

Stroke is the second leading cause of death and the third leading cause of disability in the world. Approximately 
15 million people will experience a stroke episode every year worldwide of which 33% is left with a permanent 
disability, whereas 40% of the cases will result in death, and by 2030 will result in the annual loss of over 200 
million (death or disability) globally1. Developing an appropriate long-term management plan and studying the 
progress in the management of stroke patients is necessary in order to organize healthcare structures for the com-
ing years1–5. Predicting functional outcome after stroke would help clinicians make patient-specific decisions6–10.

Machine learning (ML) provides a promising tool for disease evolution prediction and it is being increas-
ingly used in biomedical studies. The application of ML in healthcare is widely anticipated as a key step towards 
improving care quality, and would play a fundamental role in the development of learning healthcare systems. 
Large scale studies in the general literature provide evidence in favor of some classier families such as Random 
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Forest (RF) in terms of classification performance11,12. RF has recently been used successfully in a wide range of 
biomedical applications, such as the automatic detection of pulse during electrocardiogram-based cardiopul-
monary resuscitation or in breast cancer diagnosis using mammography images13–18.

As to stroke, most studies focus on the use of ML methods to detect ischemic stroke (IS) lesions using neuro-
imaging data19–23 and outcome estimation24–28. It has only been recently, however, that a study evaluated stroke 
outcome prediction at 3 months also in a group of non-traumatic intracerebral hemorrhage (ICH) patients 
using a nationwide disease registry27. Previous studies concluded that ML techniques can be effective to predict 
functional outcome of IS long-term patients or for prediction of symptomatic intracranial haermorrahe follow-
ing thrombolysis from CT images. However, all works agree on the need to carry out further studies in order to 
confirm results, incorporate new variables and resolve their limitations or weaknesses.

Taking into account the prevalence of cerebrovascular diseases, accurately predicting stroke evolution is 
essential to stratify the rehabilitation care that should be administered, especially to patients with the best chance 
of recovery. The administration of rehabilitative therapies to those who are unlikely to benefit from them is 
inefficient for the Healthcare System and inconvenient and unproductive for patients. A predictive model that 
identifies stroke patients at risk of deterioration would make it possible to select/follow-up patients for reperfu-
sion treatments, and increase the control of therapeutic homeostasis, thus addressing the needs of each patient 
individually. Furthermore, regarding to new regenerative cellular or molecular therapies, it is essential to identify 
the most suitable patients to respond accurately to treatments. We hypothesized that models developed with ML 
techniques based on the demographic, clinical, biochemical and neuroimaging variables obtained in the first 
48 h after stroke are accurate stroke mortality and morbidity predictors at 3 months.

Results
We included in the study 6022 patients; 4922 (81.8%) presented with IS and 1100 (18.2%) with ICH. We excluded 
228 patients, who died during the first 24 h, and 84 with no follow-up at 3 months. The 65 features of the different 
groups included in the experimented dataset are shown in Tables 1, 2 and 3. Figure 1 lists flowchart of patient 
groups with their functional outcome and divided into morbidity and mortality.

Of the 4922 IS patients valid for this study, 55.2% were male and 44.8% female; the mean age was 
71.9 ± 13.8 years. According to the TOAST classification, 1127 patients were classified as atherothrombotic 
(22.9%), 1786 as cardioembolic (36.3%), 428 as lacunar (8.7%) and 1520 as undetermined (30.9%). Poor func-
tional outcome at 3 months was found in 47.5% of IS patients, thus showing a morbidity of 33.4% and a mortality 
of 13.2%.

Of the 1100 ICH patients, 58.5% were male and 41.5% female; the mean age was 73.3 ± 13.1 years. ICH etiol-
ogy was related with 506 hypertensive patients (46%), 114 with amyloid angiopathy (10.4%), with 156 antico-
agulants (14.2%) and 323 with other causes (29.4%). 58.6% of ICH patients showed poor outcome at 3 months, 
with a morbidity of 27.6% and a mortality of 30.2%.

Using the filter feature selection, the dataset was reduced to only 7 variables: National Institute of Health 
Stroke Scale score at admission [NIHSS (0)]; NIHSS score at 24 h [NIHSS (24)]; NIHSS score at 48 h [NIHSS 
(48)]; Axillary temperature at admission [T(0)]; Early neurological deterioration [ED]; Leukocytes at admission 
[LEU (0)]; and blood glucose at admission [GLU (0)] as with these variables, RF was much more stable and 
deviations or variations between experiments could be reduced.

Table 1.   Demographic variables of the experimented dataset of patients summarized by group.

IS + ICH (n = 6022) IS (n = 4922) ICH (n = 1100)

Demographic variables

Age (years) 72.1 ± 13.7 71.9 ± 13.8 73.3 ± 13.1

Female gender (%) 44.5 44.8 41.5

Arterial hypertension (%) 66.7 63.7 60.7

Diabetes mellitus (%) 23.4 24.1 20.4

Alcohol consumption (%) 12.2 11.5 15.4

Smoking (%) 15.4 16.4 10.7

Dyslipidemia (%) 35.4 35.1 36.7

Peripheral arterial disease (%) 5.7 5.9 4.6

Ischemic heart disease (%) 10.8 11.3 8.6

Atrial fibrillation (%) 20.8 24.1 18.1

Previous transient ischemic attack (%) 5.4 6.1 2.5

Previous ischemic stroke (%) 13.1 13.6 9.8

Previous intracerebral hemorrhage,% 2.4 0.9 9.8

Previous anticoagulants (%) 9.5 8.5 14.1

Previous platelet antiaggregants (%) 22.9 24.4 16.5
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Prediction of mortality.  Figure 2A shows the most important variables for the model associated to IS, ICH 
or IS + ICH patient groups in relation to the mortality prediction. The value shown is, in all cases, the sum of the 

Table 2.   Clinical and neuroimaging variables of the experimented dataset of patients summarized by group.

IS + ICH (n = 6022) IS (n = 4922) ICH (n = 1100)

Clinical/Neuroimaging variables

Stroke on awakening (%) 8.3 9.1 4.6

Previous mRS 0 [0, 1] 0 [0, 1] 1 [0, 1]

Time from stroke onset, minutes 239.1 ± 175.2 240.8 ± 167.4 231.3 ± 206.1

NIHSS score at admission 13 [7, 19] 13 [8, 19] 13 [7, 18]

NIHSS score at 24 h 8 [13, 16] 7 [3, 15] 12 [6, 19]

NIHSS score at 48 h 7 [2, 15] 6 [2, 14] 12 [4, 20]

Early neurological deterioration (%) 7.7 5.8 16.5

TOAST

Atherothrombotic (%) – 22.9 –

Cardioembolic (%) – 36.3 –

Lacunar (%) – 8.7 –

Undetermined (%) – 30.9 –

Others (%) – 1.2 –

Intravenous fibrinolysis (%) – 22.7 –

Thrombectomy (%) – 5.2 –

DWI at admission (ml) – 33.3 ± 76.9 –

TC volume 4th–7th day (ml) – 51.1 ± 82.3 –

Hemorrhagic transformation of IS

IH1 (%) – 7.0 –

IH2 (%) – 3.1 –

PH1 (%) – 1.7 –

PH2 (%) – 1.2 –

Etiology of ICH

Hypertensive (%) – – 46.0

Amyloid (%) – – 10.4

Anticoagulants (%) – – 14.2

Others/Undetermined (%) – – 29.4

Hematoma volume at admission (ml) – – 40.3 ± 46.2

Hematoma volume 4th–7th day (ml) – – 51.9 ± 48.1

Total hematoma volume (ml) – – 68.3 ± 53.1

Volume of hypodensity (ml) – – 15.2 ± 17.9

Hematoma growth (ml) – – 11.9 ± 27.6

Topography

Deep hemispherics (%) – – 50.0

Lobar (%) – – 39.6

Cerebellar (%) – – 4.7

Breinstem (%) – – 3.8

Primary intraventricular (%) – – 1.9

Axillary temperature at admission (ºC) 36.4 ± 0.7 36.4 ± 0.7 36.6 ± 0.8

Blood glucose at admission (mg/dl) 137.6 ± 56.3 137.3 ± 57.9 138.9 ± 48.1

Sedimentation rate (mm) 26.4 ± 23.1 26.5 ± 23.1 26.2 ± 23.1

Glycosylated hemoglobin (%) 6.1 ± 2.1 6.1 ± 2.3 5.8 ± 0.9

LDL cholesterol (mg/dl) 101.9 ± 42.9 112.5 ± 44.4 109.6 ± 35.2

HDL cholesterol (mg/dl) 41.2 ± 18.5 41.8 ± 18.5 38.8 ± 18.3

Triglycerides (mg/dl) 118.3 ± 63.1 121.2 ± 65.1 109.4 ± 50.7

Platelets (× 103/ml) 215.4 ± 82.9 217.7 ± 83.7 203.3 ± 77.9

Hemoglobin (g/dl) 13.7 ± 1.9 13.8 ± 1.9 13.5 ± 2.1

DBP at admission (mmHg) 81.9 ± 16.1 81.5 ± 15.8 84.3 ± 17.2

SBP at admission (mmHg) 152.9 ± 27.3 152.5 ± 27.3 155.5 ± 27.4
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importance obtained by the algorithm for the variable in each of the experiments internally.
The most important variables, taking into account the three groups of patients analyzed, were NIHSS (48) 

and NIHSS (24). In the IS and ICH patient groups, the importance of ED, T (0) and NIHSS (0) should be high-
lighted. NIHSS (0) was also observed to be more important in patients with ICH than in those with IS when 
the models do not have data from both types of patients. It seems, however, that its importance is significantly 
reduced when the model has the complete set. Finally, LEU (0) and GLU (0) are variables that help balance the 
results for the complete model, reducing the variability of the individual IS or ICH models among all variables.

The variation obtained between all the repetitions performed in area under the receiver operating charac-
teristics (ROC) curve (AUC) terms is detailed in Fig. 2B,C for the three experiments performed. The complete 
problem with two types of patients is the most stable with a minimum deviation between experiments (median 
of 0.904 ± 0.025 of AUC and 0.825 ± 0.030 of accuracy (ACC)). On the other hand, the ICH problem is the one 
in which RF has more problems to make adequate predictions as the range of results varies in more than 20 
AUC points between the best (0.9837 of AUC with 0.94 of ACC) and the worst experiment (0.7104 of AUC and 
0.6122 of ACC) and values for 100 repetitions of 0.875 ± 0.048 of AUC and 0.8 ± 0.052 of ACC. This prediction 
is therefore the most complex for the model.

As to the IS problem, RF presented similar values to those of the IS-ICH prediction problem although vari-
ability between experiments is slightly higher (0.909 ± 0.032 of AUC and 0.833 ± 0.040 of ACC). This led us to 

Table 3.   Molecular markers and outcome at 3 months of the experimented dataset of patients summarized by 
group.

IS + ICH (n = 6022) IS (n = 4922) ICH (n = 1100)

Molecular markers

Leukocytes at admission (× 103/ml) 8.9 ± 3.1 9.1 ± 3.2 8.8 ± 3.3

Fibrinogen at admission (mg/dl) 443.9 ± 101.7 444.5 ± 101.8 444.1 ± 101.5

C-reactive protein admission (mg/dl) 2.7 ± 3.8 3.6 ± 4.2 5.2 ± 5.2

Microalbuminuria (mg/24 h) 7.9 ± 26.2 5.9 ± 25.9 16.7 ± 30.0

NT-pro-BNP levels (pg/ml) 915.9 ± 1563.7 1581.2 ± 1886.1 1013.8 ± 3620.2

Outcome at 3 months

mRS 2 [1, 4] 2 [0, 4] 3 [1, 6]

Poor outcome (%) 49.6 47.5 58.6

Morbidity (%) 35.0 33.4 27.6

Mortality (%) 16.3 13.2 30.2

Figure 1.   Flowchart of patient groups and functional outcome.
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conclude that there is enough information within the selected variables so that when RF has enough patients 
in the dataset, the model predicts very accurately which patients are most likely to die on the basis of the data 
collected at admission. It was also observed that when there is a greater amount of data and patients are strati-
fied into the three categories, the model is much more stable, and results are better. A 2D-heatmap of mortality 
predictions against NIHSS (48) and NIHSS (24) is detailed in Fig. 3 in order to explain the decision boundary 
of the model. Note that the misclassified items are highlighted and that the intensity of the colors also indicates 
the certainty of the prediction. We showed the IS + ICH group as it was the most stable for mortality prediction 
(0.904 ± 0.025 of AUC).

Prediction of morbidity.  Figure 4A shows that NIHSS (48) and NIHSS (24) are again the most important 
variables for the model associated to the three groups studied in relation to morbidity prediction. However, it 
seems that the variables ED for the IS and total groups, and GLU (0) for ICH patients provide relevant predic-
tive capacity. NIHSS (0) was identified by the model as a variable with negative effects on classification for the IS 
patient group as it worsens prediction. For the ICH patient group, however, NIHSS (0) is a key variable.

Figure 4B,C shows that there were no major differences between the IS and IS + ICH groups (0.738 and 0.755 
of AUC and 0.683 and 0.700 of ACC) but with the ICH (0.667 of AUC and 0.618 of ACC).

AUC with 7 input variables.  Figure 5 shows the comparison of ROC curves for the most important vari-
ables of the ML model associated to the groups IS + ICH, IS or ICH patients in relation to the mortality and 
morbidity prediction. IS + ICH and IS patient groups curves revealed NIHSS (24) and NIHSS (48) variables with 
the best AUC values obtained for both morbidity [0.677 (CI 95% 0.662–0.692) vs. 0.703 (CI 95% 0.686–0.719); 
and 0.669 (CI 95% 0.654–0.684) vs. 0.697 (CI 95% 0.680–0.713)] and mortality [0.888 (CI 95% 0.876–0.900) vs. 
0.892 (CI 95% 0.878–0.906); and 0.897 (CI 95% 0.885–0.908) vs. 0.899 (CI 95% 0.885–0.913)] prediction.

The ICH group presented NIHSS (0) and NIHSS (24) with the best AUC values obtained for morbidity [0.591 
(CI 95% 0.553–0.629) and 0.588 (CI 95% 0.550–0.626)]; and NIHSS (24) and NIHSS (48) for mortality [0.865 
(CI 95% 0.838–0.891) and 0.873 (CI 95% 0.847–0.899)] estimation.

Figure 2.   Mortality prediction for IS + ICH, IS and ICH groups. (A) Main variables for the machine learning 
model: NIHSS score at admission [NIHSS (0)]; NIHSS score at 24 h [NIHSS (24)]; NIHSS score at 48 h [NIHSS 
(48)]; Axillary temperature at admission [T(0)]; Early neurological deterioration [ED]; Leukocytes at admission 
[LEU (0)]; and Blood glucose at admission [GLU (0)]. (B) AUROC values obtained. (C) ROC curves for the 
Random Forest classifier.
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Discussion
It is difficult but essential to accurately predict functional outcomes after stroke. Outcome prediction plays an 
important role in long-term decision making, patient treatment, organization of Health Centers, and domestic 
conditions. Plans could be developed on the basis of a better prediction of the degree of recovery of each patient 
with appropriate and individualized rehabilitation measures that take into account the domestic and economic 
conditions, leading to shared decisions with patients, relatives, and sociomedical centers27,29.

The conventional approach to the evaluation of stroke outcomes data resorts to classical statistical models 
(logistic regression). Logistic regression models identify and validate predictive variables. Their main advantage 
is that they can be easily implemented and interpreted24. ML algorithms have the potential to outperform con-
ventional regression because they are able to capture nonlinearities and complex interactions among multiple 
predictor variables. They can also handle large-scale multi-institutional data, with the added advantage of easily 
incorporating newly available data to improve prediction performance, and a better handling of a large number 
of predictors30.

A recent systematic review found that ML was not superior to logistic regression in clinical prediction 
modeling31. However, inconsistent conclusions have been often found when comparing the performance of clas-
sical models to different machine learning algorithms in clinical applied studies. These studies agree that further 
research is needed to assess the feasibility and acceptance of ML applications in clinical practice32,33. Different 
research works have proposed strategies for stroke prediction based on ML algorithms with excellent results, 
but with a great diversity in the variables analyzed (clinical, molecular markers or imaging), calibration/training 
protocols performed, and models implemented (neural networks, tree-based and kernel-based methods). Some 
limitations of these previous studies are due to: (1) the low sample size used, (2) the characteristics of the patients 
evaluated; most of the studies only evaluate IS sub-groups, such as, IS patients treated with rTPA or endovascular 
intervention, (3) studies used demographic, clinical, molecular or neuroimaging variables independently and 
uncorrelated, and (4) the small number of variables used in ML models. Asadi et al. performed dichotomized 
modified Rankin Scale (mRS) models of acute ischemic stroke (n = 107) and presented 0.6 AUC of ANN and 70% 

Figure 3.   2D-heatmap of mortality (EXT) predictions against NIHSS(48) and NIHSS(24). Model results are 
shown for the IS + ICH group, as it was the most stable for mortality prediction (0.904 ± 0.025 of AUC). Red 
areas correspond to patients who do not die (0), blue areas correspond to patients who die (1), and misclassified 
items are highlighted.
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accuracy of SVM24. Bentley et al. developed an SVM model to study acute ischemic stroke patients (n = 116) at 
risk for symptomatic intracranial hemorrhage using CT brain images23. Monterio et al. applied ML techniques 
(RF, Xgbosst, SVM and Decision tree) to predict the functional outcome of ischemic stroke patients (n = 425) 
treated with Recombinant Tissue Plasminogen Activator (rtPA) 3 months after the initial stroke. They started 
using only the information available at admission and then they went on to analyze how prediction improves 
by adding more features collected at different points in time after admission. The ML approach achieved AUC 
of 0.808 when using the features available at admission and as new features were progressively added, AUC 
increased to a value above 0.9025. Heo et al. researched into the applicability of machine learning-based models 
with a prospective cohort of 2604 patients with acute ischemic stroke. The AUC obtained was 0.888 for DNN 
model, 0.857 for RF model, and 0.849 for logistic regression model26. Recently, Lin et al. used a Taiwan Stroke 
Registry (n = 40,293) to evaluate several ML approaches (SVM, RF, ANN, and HANN) for 90-day stroke out-
comes prediction. ML techniques presented over 0.94 AUC in both ischemic and hemorrhagic stroke using 
preadmission and inpatient data27. Alaka et al. concluded that both logistic regression and ML models had 
comparable predictive accuracy at 90 days when validated internally (AUC range = [0.65–0.72]) and externally 
(AUC range = [0.66–0.71]) in acute IS patients after endovascular treatment (n = 614–684)28.

In our study, we analyzed a ML model of stroke prediction at 3 months using the Hospital’s Stroke Registry 
(BICHUS) on the basis of demographic, clinical, molecular and neuroimaging variables. Mortality and morbidity 
were evaluated by identifying the main variables for the ML model. Data were studied as a whole (IS + ICH) or 
as independent subsets. Our ML classifiers exhibited high performance with over 0.90 AUC in the three groups 
evaluated in relation to the mortality outcome. The IS group had the best results (n = 4922). The model indicates 
that the most relevant variables are NIHSS (48) and NIHSS (24). In addition, the variable NIHSS (0) is also 
important for the ICH patients (n = 1100). The rest of the variables provide information marginally, although 
the importance of T(0) and ED should not be disregarded. On the other hand, AUC over 0.75 was found in 
the three groups evaluated in relation to the morbidity outcome. The model developed indicates that the most 
relevant variables are NIHSS (48) and NIHSS (24), although ED for the IS group and GLU (0) for the ICH 

Figure 4.   Morbidity prediction for IS + ICH, IS and ICH groups. (A) Main variables for the machine learning 
model: NIHSS score at admission [NIHSS (0)]; NIHSS score at 24 h [NIHSS (24)]; NIHSS score at 48 h [NIHSS 
(48)]; Axillary temperature at admission [T(0)]; Early neurological deterioration [ED]; Leukocytes at admission 
[LEU (0)]; and Blood glucose at admission [GLU (0)]. (B) AUROC values obtained. (C) ROC curves for the 
Random Forest classifier.
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provide predictive capability. Compared to ROC curve analysis of the 7 input variables, ML classifier has a high 
performance in three groups, with the NIHSS (0), NIHSS (24) or NIHSS (48) as the most influential predictors.

The findings in this report are subject to at least four limitations. First, this was a retrospective, single-center 
study with a relatively small clinical dataset. The intrinsic need for large training datasets may affect the accuracy 
of ML models in studies that could be overadjusted by irrelevant clinical predictors, or some predictors may be 
underestimated, thus increasing random errors. It is important to note that the variables selected in our study 

Figure 5.   Comparison of ROC curves of 7 variables selected for machine learning experiments for mortality 
and morbidity prediction at 3 months of the different patient groups evaluated. (A,B) Morbidity and mortality 
of IS + ICH group. (C,D) Morbidity and mortality of IS group. (E–F) Morbidity and mortality of ICH group.
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had been previously identified by means of a T-test and supervised by expert neurologists. However, in the future, 
both training and validation procedures will need to include a multicenter dataset and a prospective study to 
verify the model and the variables obtained. Second, the IS and the ICH patient groups were unbalanced. We 
consider, however, that the two types of stroke should be studied independently to find both differences and 
similarities. Third, we used RF machine learning algorithms, although other models like DNN or deep logistic 
regression could be used for comparison purposes. Four, we used typical clinical variables as inputs for the ML 
model, and we did not stratify patients in different subgroups, which could improve the results presented. We 
consider that it would be useful to evaluate the common variables from a clinical point of view, so once again 
emphasis is on the importance of NIHSS, axillary temperature and blood glucose. The major strengths of the 
present study include the large sample size (6022 patients; 4922 with IS and 1100 with ICH), which enabled study 
of the combination of different stroke types in detail (IS + ICH, IS, and ICH). Furthermore, to derive a global risk 
score for stroke, we have evaluated/interrelated demographic, clinical, biochemical and neuroimaging variables. 
Another distinctive feature of this analysis compared with previous studies is that we also included molecular 
markers associated with inflammation (leukocytes, fibrinogen and C-reactive protein), endothelial and atrial 
dysfunction (microalbuminuria and NT-proBNP).

Conclusions
Machine learning algorithms, particularly Random Forest, can be effectively used in long-term outcome pre-
diction of mortality and morbidity of stroke patients. NIHSS at 24, 48 h and axillary temperature are the most 
important variables to consider in the evolution of the patients at 3 months. Future studies could incorporate 
the use of imaging and genetic information. Furthermore, the robust model developed could be used in other 
applications and different scopes with similar data; such as traumatic brain injury, or dementia (Alzheimer’s 
and Parkinson’s disease).

Materials and methods
Patient selection.  The dataset used in this research work consisted of patients with IS and ICH admitted to 
the Stroke Unit of the Hospital Clínico Universitario of Santiago de Compostela (Spain), who were prospectively 
registered in an approved data bank (BICHUS). All patients were treated by a certified neurologist according to 
national and international guidelines. Exclusion criteria for this analysis were: (1) patients who died during the 
first 24 h, and (2) loss of follow-up (personal interview or telephone contact) at 3 months.

The analysis of the data for this study was retrospective, from September 2007 to September 2017. This 
research was carried out in accordance with the Declaration of Helsinki of the World Medical Association 
(2008) and approved by the Ethics Committee of Santiago de Compostela (2019/616). All patients or their rela-
tives signed the informed consent for inclusion in the registry and for anonymous use of their personal data for 
research purposes.

Demographic, clinical, molecular and neuroimaging variables.  The registry includes demographic 
variables, previous medical history and vital signs. Blood samples for hemogram, biochemistry and coagulation 
tests were obtained and analyzed at the central hospital laboratory. Neurological deficit was evaluated by a certi-
fied neurologist using the National Institute of Health Stroke Scale (NIHSS) at admission, and every 24/48 h 
during hospitalization. The modified Rankin Scale (mRS) was used to evaluate functional outcome at discharge 
and at 3 months33,34.

Effective reperfusion of IS patients was defined as ≤ 8 points in the NIHSS during the first 24 h. Early neu-
rological deterioration was defined as ≥ 4 points in NIHSS within the first 48 h with respect to baseline NIHSS 
score. Poor functional outcome was defined as mRS > 2 at 3 months, morbidity as 3 ≤ mRS ≤ 5, and mortality as 
mRS = 6. Ischemic stroke diagnosis was made using the TOAST criteria35.

Computed Tomography (CT) was performed in all patients and Magnetic Resonance Imaging (MRI) in 
selected patients at admission. Follow-up CT scan after fibrinolysis or thrombectomy was performed in all IS 
patients at 24 h, and CT at 48 h or when neurological deterioration was detected and between the 4th–7th day. 
ICH and perihematomal edema volumes were calculated using the ABC/2 method36. ICH topography was clas-
sified as lobar when it predominantly affected the cortical/subcortical white matter of the cerebral lobes or as 
deep when it was limited to the internal capsule, the basal ganglia or the thalamus. All neuroimaging tests were 
analyzed by a neuro-radiologist supervised by the above certified neurologist.

Outcome endpoints.  The objective of this research work was to identify the main predictors for the 
machine learning model in order to generate a predictive model using machine learning techniques for the 
prediction of mortality and morbidity of stroke patients according to their stratification to one of the following 
groups: 1) IS + ICH, 2) IS, and 3) ICH.

Machine learning.  We used the RF algorithm for the prediction of mortality and morbidity of stroke 
patients. RF is an ensemble learning method, i.e., a strategy that aggregates many predictions to reduce the vari-
ance and improve the robustness and precision of outputs37–39. A remarkable characteristic of the RF is that it 
provides an internal measure of the relative importance of each feature on the prediction. This model generally 
works very well for any type of problem, regardless of size and even if the data are unbalanced or missing37. It also 
makes it possible to analyze the importance of the variables used by the model. To this end, the Gini importance 
index was calculated. This index measures the increase in impurity of each variable in the model when selected 
in the random distribution process. Each time a node selects a variable, the Gini impurity index for the two child 
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nodes is lower than in the parent. It is not a simple final summation of the values obtained in all the trees for 
each variable but a weighting.

Generally speaking, all ML algorithms have a number of hyperparameters that must be optimized to obtain 
the best results for the particular problem they are analyzing. We used R40,41 and the following packages: mlr42 
to calculate the best number of trees (ranging from 500 to 1000); Random Forest43 or our experiments; and 
ggplot244 graphics for data analysis.

Data pre‑processing.  Balanced classes in classification problems are critical for ML algorithms. When 
analyzing the problem, we initially obtained prediction values in AUC lower than 0.65 in the best of cases using 
65 features and four different ML algorithms, which is considered a bad performance value for prediction. This is 
mainly due to the fact that in our dataset there is a high percentage of patients who survived versus patients who 
died, and we found noise and correlation between features, confounding the predictors. These numbers show 
an unbalanced problem that needs to be addressed since a predictive model for patient death is being generated.

The following are the two main approaches to balance the data: (1) oversampling the minority class or (2) 
undersampling the class where the data has more examples. Although these are very powerful techniques that 
are able to increase the performance of the classifiers, they must be handled cautiously, more so in medical prob-
lems, to prevent overadjustments or the loss of generation capacity in the models when new synthetic samples 
are included (oversampling) at the learning phase of the algorithms45. In this work, undersampling methods 
(random undersampling from the majority class) were assessed for class balancing purposes. To ensure that 
the undersampling process is fair and that the generalization capability of the models is not biased we ran 100 
repetitions, each with a different random undersampling, of a tenfold cross-validation experiment to observe 
the behavior and the stability of results. The more stability the better the random removing process. This means 
that the remaining samples of the majority class captured the underlying knowledge of the class.

The experimental design developed to analyze the original data included: a data preprocessing phase and 
the balancing of the subclasses; a tenfold cross-validation and 100 repetitions. For each of these repetitions, the 
position of each patient in the dataset was randomized. The preprocessed data were also randomized to avoid 
any potential process-related bias.

The problem was broken down into six different but complementary and informative problems: mortality and 
morbidity prediction with IS, ICH or IS + ICH patients. This approach sought to analyze more exhaustively the 
differences between the different types of patients when predicting death/poor outcome and to analyze whether 
the variables with more weight in the prediction were the same in all the cases.

In order to identify which of the 65 variables available are the most informative, we performed feature selec-
tion. There are mainly three different approaches for feature selection in machine learning: filter, wrapper and 
embedded46. Filter methods assess the relevance of each feature by looking only at the intrinsic properties of the 
data (independent of the algorithms). We calculated a feature relevance score (T-test) on the training data, and 
low-scoring features were removed choosing a manual cut-off point to reduce the variance of the models (see 
Supplementary Fig. S1 and Supplementary Material).

Statistical analysis.  For the descriptive study of the quantitative variables, results were expressed as per-
centages for categorical variables and as mean (SD) or median (quartiles) for the continuous variables, depend-
ing on whether their distribution was normal or not. The Kolmogorov–Smirnov test was used for testing the 
normality of the distribution. To measure the performance of the model we used the area under the receiver 
operating characteristics (ROC) curve (AUC or AUROC)47. To train and validate the model we used tenfold 
cross validation. AUC results are presented as mean ± SD calculated over the tenfold validation sets. To test 
whether an AUC of logistic regression and ML models prediction could obtain similar results, ROC curve analy-
sis was used to compare the 7-input variables selected for ML experiments of the different patient groups as 
potential morbidity and mortality clinical markers at 3  months. The statistical descriptive analysis was con-
ducted in SPSS 25.0 (IBM, Chicago, IL) for Mac.

Data availability
All data are available within the text of the manuscript. Further anonymized data could be made available to 
qualified investigators upon reasonable request.
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