
Real-time simulation of cable pay-out and reel-in with

towed fishing gears
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Abstract

Achieving real-time simulation of fast cable pay-out and reel-in manoeuvres with towed

fishing gears is a challenging task. This work presents two new simulation methods based

on simplified cable models for this kind of application. First, three numerical techniques

are proposed to enhance a classical spring-based cable model, increasing its computational

efficiency in manoeuvres that involve reeling the cable around a winch drum. Second, the

development of an efficient multibody modelling approach based on natural coordinates is

reported. The performance of these methods was assessed with two realistic examples. The

numerical experiments involved different values of cable axial stiffness and spatial discretiza-

tion levels, since these parameters were found to have a major impact on computational ef-

ficiency. The proposed methods achieved real-time performance in the simulation of systems

modelled with up to a few thousand variables. Each modelling approach has advantages and

limitations that must be considered when addressing a given application.

Keywords: Underwater cable dynamics, Let-out and reel-in manoeuvres, Fishing gears, Multi-

body dynamics
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1 Introduction

Towed fishing gears such as trawls and seines are responsible for 70% of the world fish catch

[58]. These gears are complex mechanical structures mainly comprised of netting and cables.

Increasing concerns about environmental impact and energy efficiency in the fishing industry

are driving the development of numerical models especially suited for these kinds of assem-

blies, aiming at designing new gears with improved catch capability and selectivity and reduced

environmental impact [25, 26, 31, 56].
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Figure 1: Components of a fishing trawl

Detailed information about the design and classification of fishing gears can be found in

[38]. Fig. 1 shows a representation of a trawl, the predominant type of towed fishing gear. It

consists of a flexible cone-shaped net that is pulled through the water by two long cables (0.5

- 3 kilometres) attached to winches on a fishing trawler. Towing speed ranges from 0.5 to 3.5

m/s. The net is made up of polygonal netting panels sewn to each other and is connected to

other elements to ensure its proper deployment and buoyancy. The vertical spread of the net is

provided by floats and weights placed on its upper and lower edges, respectively. The horizontal

spread is generated by lateral hydrodynamic forces on the doors. Trawl doors weigh between 0.5

and 5 tons and their surface area ranges from 2 to 12 m2, depending on the net size. Midwater

trawls work without contacting the seabed, while in bottom trawls the lower part of the net is

in contact with the sea floor.

A fishing haul has three stages: shooting, towing, and heaving. Shooting consists of paying

out the cables at constant speed, around 1-2 m/s, while the trawler sails until they achieve the

desired length and the gear gets completely deployed. During towing, the winch control system

regulates the cable length and tension to keep them within their admissible ranges. The cable

tension during this operation can reach up to several dozen tons. State-of-the-art control systems
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also attempt to maintain the symmetry of the gear, which can be affected by ocean currents.

To achieve this, they combine information from different sensors on the gear and trawler and

operate the winch to let out or reel in the cables at high rates. Modern electric winches can reach

reeling velocities of up to 250 m/min in less than 1 second, starting from rest. The towing stage

can last from 15 minutes to several hours. During heaving, the cables are reeled in; the control

system keeps their tension under a maximum admissible value to avoid damaging the gear.

Efforts to simulate towed fishing gears have mainly focused on the calculation of the static

equilibrium shape of the gear subjected to a constant water flow, although methods to deal

with dynamic equilibrium can be found in the literature as well. Authors have proposed differ-

ent methods to discretize the net and solve the resulting equations [28, 29, 40, 45, 47, 55],

experimental procedures to measure elastic properties of netting [44, 52, 53], models for hy-

drodynamic forces on the gear [6, 16], and methods to optimize gear design [26, 48].

A more challenging application is the simulation of towing in order to design and evaluate

new concepts of gear control [51]. This kind of co-simulation uses a dynamic model of the

fishing gear as plant model inside the simulation of the control system. In some cases, these

simulations are used in human-in-the-loop setups, i.e., applications that require real-time user

interaction with the control system. Efficient dynamic formulations are then required to deal

with the fast pay-out and reel-in motion of the cables in real-time.

Cable mechanics has been the subject of intensive studies during the last five decades. State-

of-the-art programs for the analysis of submerged cables use a spatial discretization of the con-

tinuous partial differential equations of the cable based on the finite element method [7] or

finite differences [17]. These approaches include the effect of all kinds of geometric and ma-

terial nonlinearities and their robustness allows one to simulate constant-length towing cables

with step-sizes of seconds [17]. However, their computational overhead prevents their use in

some applications that require real-time computations such as the above-mentioned human-in-

the-loop simulation of gear control systems, in which fast dynamics demands the use of small

integration step-sizes [23].

An approach to achieve high computational efficiency is to use simplified cable models at the

expense of neglecting some geometric and material nonlinearities, such as bending or torsional

stiffness and cross section reduction due to axial strain [41]. In practice, the validity of these

models is determined by the characteristics of the application under study. In fishing assemblies,

3
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the range of cable tensions and moderate torsion and curvature radius make these simplifica-

tions acceptable [50]. Often, simplified models discretize the cable as a sequence of segments

connected by joints that allow them to rotate with respect to each other; bending stiffness can

be modelled with torsion springs between bars [15]. These segments can be flexible or rigid

along their longitudinal axis, or a combination of both [14]. Linear spring models [29, 48],

are instances of the first kind; structural damping can be included in these flexible elements as

well [8, 59]. These models have been demonstrated to work well in the dynamic simulation of

towed gears, and they show good agreement with experimental results [50, 57]. If the cable is

discretized as a chain of rigid links, then multibody formulations can be employed to solve the

dynamics of the resulting model. This method neglects the axial flexibility of the cable, which

can be a valid assumption for stiff cables. The rope model described in [15] is a 2D example of

this second approach; only a few publications exist that use 3D multibody modelling in practical

marine applications [24], especially in the context of towed fishing gears [34].

Even with simplified cable models, real-time simulation of let-out and reel-in operations re-

mains an exacting task. The quick motion of the system, the changes in the free length of the

cable, and their effect on cable tension have to be considered and correctly dealt with. In prac-

tice, carrying out the integration with step-sizes in the range of milliseconds is mandatory. More-

over, the accurate modelling of cable behaviour, e.g., determining the contact region between

the cable and the seabed, demands the use of discretizations with a relatively large number of

elements, ranging from one hundred to a few thousands. Numerical methods able to perform

real-time integration of the resulting dynamics equations while keeping the simulation stable

have not been reported yet in the literature.

The present paper puts forward efficient computational methods for the real-time simula-

tion of manoeuvres with submerged cables and fishing gears. The main scientific contributions

of this work can be summarized as follows. First, it introduces three numerical improvement ap-

proaches to enhance the performance of classical spring-based cable models during reel-in and

reel-out manoeuvres. These alleviate the time-scale reduction caused by the shortening of cable

elements introduced when changes in cable length are represented with variable-size segments.

Second, it reports a new multibody model of the cable, based on natural coordinates, which con-

stitutes an efficient way to formulate the system dynamics, alternative to using spring models.

The system dynamics equations were solved making use of augmented Lagrangian and Hamilto-

nian formulations, whose application to real-time cable dynamics had not been reported yet, and
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integrated with simple time-stepping routines. Third, the efficiency of the multibody methodol-

ogy in the simulation of reel-in and reel-out motion was further improved via an acceleration-

level penalization of the dynamics of the wound cable segments. The use of these techniques

made it possible to achieve real-time simulation of let-out and reel-in manoeuvres with towed

fishing gears, using cable discretizations comprising up to one thousand segments.

2 System modelling

Two alternative approaches to cable modelling are introduced in this section. The first one is a

linear spring model and the second uses a multibody discretization.

2.1 Linear spring model of the cable

In the context of fishing operations, cables are traditionally modelled as a series of point masses

connected by linear spring elements [29, 57, 50] as shown in Fig. 2. This approach assumes that:

(a) the effect of the bending stiffness of the cable is negligible compared to its axial stiffness; (b)

the contribution of the rotational inertia of the cable to the dynamics is not significant; and (c)

the structural damping of the cable is less relevant than the one introduced by hydrodynamic

forces. These assumptions are valid in the context of towed fishing gears, where cable rotation

is negligible and the radii of curvature are large [49].

Spring i

EAi , Li

Spring i -1

Spring i +1

1ˆ im

im̂

Figure 2: Discretization of a cable into a chain of mass-spring elements
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A cable of length L and total mass m can be discretized into N springs and N point masses.

Fig. 2 shows the spring i connecting masses m̂i−1 and m̂i, whose coordinates (xi−1, yi−1, zi−1)

and (xi, yi, zi) are expressed in the global reference frame F0. The mass m̂i is calculated as half

the mass of the cable between points i − 1 and i + 1. The coordinates of all the point masses

define the 3N × 1 array of positions q = [x1, y1, z1, . . . , xN , yN , zN ]T. The cable dynamics

equations are given by

M̂q̈ = fe + f (1)

where M̂ is the 3N × 3N diagonal mass matrix, fe represents the elastic forces introduced by

the linear springs, and f is the vector of other generalized applied forces that act on the point

masses, which can be decomposed as

f = fd + fg + ff (2)

where fd contains the hydrodynamic forces, fg includes the weight and buoyancy, and ff is the

force due to contact with the seabed. These terms are obtained after assembling the forces that

act on each element of the discretized cable, denoted by the 3× 1 arrays f̃e, f̃d, f̃g, and f̃f . Terms

f̃d, f̃g, and f̃f are common to the linear-spring and multibody models, and their expressions are

provided in Section 2.5. Conversely, term f̃e belongs exclusively to the linear-spring model. The

magnitude of the force introduced in the system by each spring, f̃e, can be evaluated as

f̃e = EA
si − Li
Li

(3)

where si is the length of the spring, i. e., the distance between point masses m̂i−1 and m̂i, and

Li its natural length. EA denotes the cable axial stiffness per unit length, which typically ranges

from 105 N to 108 N [35, 36].

2.2 Multibody model of the cable

The cable can also be modelled as a multibody system composed of a chain of rigid segments, an

approach that has been used several times in the literature, e.g., [24, 54, 34]. Several coordinate

choices can be made in this case, and the selection has an impact on simulation efficiency and

stability. In this work, natural coordinates [22] were used to represent the cable and the other
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elements that compose the fishing gear. This modelling approach describes a mechanical system

using the coordinates in the global reference frame F0 of a set of representative points and

vectors fixed on the system bodies.

Figure 3: Discretization of a cable into an N -rigid-link chain

The cable is discretized into a chain of N rigid links of length Li and mass mi as shown

in Fig. 3. Link i is connected to the previous and the next ones in the chain through ideal and

frictionless spherical joints located at its extreme points Pi−1 and Pi. These points are defined

by their global coordinates (xi−1, yi−1, zi−1) and (xi, yi, zi), respectively. A constant distance

constraint

Φi = (xi − xi−1)
2 + (yi − yi−1)

2 + (zi − zi−1)
2 − Li2 = 0 (4)

is used to enforce the rigid-body behaviour of the link. With this modelling, the cable segments

can rotate freely about their longitudinal axes.

Array q defined in Section 2.1 contains the coordinates of the N points Pi. Similarly, the

N constraint equations Φi can be expressed as Φ = [Φ1, . . . , ΦN ]T = 0. The cable dynamics

equations can then be formulated as a system of 3N+N Differential Algebraic Equations (DAEs)

in the form

Mq̈ = f + fc (5a)

Φ = 0 (5b)

where M is the 3N × 3N block diagonal mass matrix and f and fc are the applied forces and

constraint reactions, respectively. It must be noted that M includes the rotational inertia of the
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cable and therefore is not the same as M̂.

Modelling the system with natural coordinates has significant advantages compared to other

coordinate choices used in multibody cable models described in the literature [15, 24, 34]. In

the first place, the Coriolis and velocity-dependent forces term is absent from the dynamics equa-

tions and the mass matrix M is constant. Moreover, it is not necessary to explicitly parametrize

the rotation of the bodies of the dynamical system, i. e., additional rotation variables such as Eu-

ler angles or Euler-Rodrigues parameters are not required to describe the motion, thus avoiding

well-known problems like singularities or gimbal locks [60]. Finally, the generalized coordi-

nates q are the same ones used in linear spring models, which enables the easy integration of

the multibody description with previously existing software for cable dynamics.

2.3 Modelling of let-out and reel-in operations

The dynamics of a cable during reel-in and reel-out around a winch drum were studied in

[27] and [32] with inextensible cable models, based on equations particularized for a certain

geometry. Even with these simplifications, the resulting dynamics equations were complex and

not suitable for real-time simulation. However, the reel-in and reel-out motion of the cable

around the winch drum does not need to be modelled in detail when simulating the motion

of fishing gears because the winch diameter, less than 2 m, is two or three orders of magnitude

smaller than the free length of the cable. Accordingly, the winch can be modelled as a point. This

enables the representation of cable reel-in and reel-out operations with variable-length cables

[24, 30, 34]. This approach was followed in this work as well.

Figure 4: Modelling of reel-in operations as element retraction
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Figure 4 illustrates the way in which the length of the free cable is reduced to model a reel-in

operation. The winch is located at point W . Let us assume that initially the cable is completely

deployed. When the reel-in process begins, the length L1 of the element closest to the winch is

decreased until it reaches a minimum limit, Lmin, which will be discussed in detail in Section

2.4. When this happens, the next element in the chain begins to be wound. In the following,

the element that undergoes reel-in is denoted with index w; cable elements with indexes i < w

are already fully retracted and their lengths are Lmin, as shown in Fig. 4. A reverse procedure is

followed in the let-out operation.

When the spring model in Section 2.1 is used, modifying Lw is equivalent to changing the

natural length of spring w. If the modelling is carried out with the multibody approach in Sec-

tion 2.2, the kinematic constraint in Eq. (4) can be modified with the introduction of a time-

varying element length Lw (t) to represent the shortening or extension of element w. Equation

(4) thus becomes a rheonomic constraint. Introducing a time-dependent cable-length in the

configuration-level expression of the kinematic constraints means that terms Φt = ∂Φ/∂t and

Φ̇t = d (∂Φ/∂t) /dt need be appended to their velocity-level and acceleration-level counterparts

[34]

∂Φw

∂t
= −2LwL̇w (6a)

∂Φ̇w

∂t
= −2

(
L̇2
w + LwL̈w

)
(6b)

2.4 Numerical improvement

Modelling reel-in and reel-out operations as changes in cable length can modify dramatically

the time scale of the problem. A simple way to represent reel-in with the spring model would

be considering that the cable dynamics in Eq. (1) describes only the behaviour of those cable

segments that are not wound around the winch drum. This way, applying a length reduction to

cable segment w means that a portion of it leaves the system described by Eq. (1). Consequently,

the mass of this element, mw, must be decreased together with its natural length Lw while its

effective stiffness, kw = EA/Lw, increases during the reel-in process. As a consequence, the

element dynamics becomes faster, and smaller step-sizes are required to carry out the numerical
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F. González et al.

integration of the motion, which results in a considerable computational overhead. Setting a

minimum value Lmin for the length that cable elements can reach partially alleviates these nu-

merical problems but introduces an error in positions due to the residual lengths of the retracted

cable elements.

Alternative solutions can be formulated considering that Eq. (1) represents the dynamics of

all the cable elements, including those wound around the winch drum. As mentioned before,

the winch can be modelled as a single point W , with which the lumped masses of the elements

with indexes i < w should be coincident during motion. These wound cable segments should not

contribute to the motion of the rest of the cable, which is described only by elements with i ≥ w.

It is possible to modify the physical properties of the wound elements to model this, improving at

the same time the dynamic behaviour of the simulation without affecting negatively the results.

Three approaches are proposed here to avoid the introduction of artificial high frequencies in

the cable dynamics during reeling-in.

The first method consists in softening the spring that is being retracted. Instead of using Eq.

(3), the elastic forces exerted by this spring can be calculated as

f̃e = EA
sw − Lw
Lw0

(7)

where Lw0 is a constant value, which can be set to match the length of an unwound cable

segment. If Eq. (7) is used, then the stiffness of cable segment w, kw = EA/Lw0, remains

constant in spite of the variation in its natural length Lw. On the other hand, the compliance

per unit length of the whole cable is increased; this will affect the tension in simulations that

involve soft cables or dynamic loads. The effect of softening on cable tension will be analysed in

Section 5.3.

The second strategy aims at keeping constant the natural frequency of the element in the

axial direction, given by ωaxialw =
√
kw/mw. This is done by adjusting the element mass mw

to balance the increment of stiffness. The effect of this arrangement will also be discussed in

Section 5.3.

Finally, the third strategy maintains the natural frequency ωaxialw by keeping constant both

the stiffness kw and the mass mw of cable element w.

Table 1 summarizes these three strategies, comparing their effects on element properties
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to those of the original unimproved model. It must be noted that methods 1 and 3 make the

resultant cable more compliant than the original one.

Table 1: Effect of numerical improvement approaches for the linear spring model on the physical
properties of the cable segment w that is undergoing reel-in

Method f̃e mw kw ωaxialw

0 - No improvement Eq. (3) ↓ ↑ ↑↑
1 - Softening Eq. (7) ↓ = ↑
2 - Mass adjustment Eq. (3) ↑ ↑ =

3 - Softening, fixed mw Eq. (7) = = =

Methods No. 0 and No. 2 use Eq. (3) to evaluate the elastic forces and therefore require

setting a minimum value of Lmin to prevent its denominator from becoming zero. In this re-

search, numerical experiments led to the selection of Lmin = 0.03 m to keep the stability of the

simulations. On the contrary, methods No. 1 and No. 3 dispense with Lmin as they use Eq. (7)

instead, hence removing the residual lengths of the retracted cable segments, which can be set

to zero.

In the multibody model in Section 2.2 the cable elements behave as rigid bodies along their

longitudinal axes and axial dynamics does not play a role in the stability of the numerical inte-

gration process. However, reducing the mass and length of an element still affects its rigid-body

dynamics and demands a decrease in the integration step-size to keep the simulation stable.

A possible workaround is penalizing the dynamics of the elements with indexes i ≤ w at the

acceleration level, to remove high-frequency components from their motion and bring it closer

to the ideal case, in which the point masses mi are coincident with the winch. This modification

is equivalent to introducing an additional term in the dynamics equations (5a)

(M + P) q̈ = f + fc (8)

where P is a diagonal matrix whose entries are 0 for those elements with i > w, and a penalty

factor pα for i < w. The value of pα is gradually increased or decreased for element w during the

reel-in or reel-out process. This method does not modify the global tension of the cable predicted

by the multibody model.
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2.5 External actions on the system

The submerged cable is subjected to the action of hydrodynamic forces caused by the velocity

difference between the cable itself and the surrounding fluid. Traditionally, in simulation of

fishing nets, fluid dynamics is modelled through Morison equations particularized for a uniform

current flow [33, 48, 57], discarding fluid-structure interaction. According to these expressions,

the hydrodynamic forces introduce drag along the normal and tangent directions on each cable

segment. These forces can be evaluated as a function of the cable element length Li and diameter

D as [43]

f̃ cabledn =
1

2
ρCdLiD |vn|vn (9)

for the normal direction and

f̃ cabledt =
1

2
ρCfLiD |vt|vt (10)

for the tangential one, where ρ is the fluid density, Cf and Cd are friction and drag coefficients,

and vt and vn are the tangential and normal components of the fluid velocity relative to the

cable segment. In this work, the inertial term of Morison equations due to the fluid dynamics is

considered to be negligible compared to the drag terms.

The contact with the seabed was modelled applying a normal contact force f̃cn to each node

i in contact with the sea bottom. The magnitude of this force is proportional to the indentation

yi − hs

f̃cn = −ks (yi − hs) (11)

where hs is the seabed depth. A tangential force f̃ct, approximated by the dynamic friction

expression

f̃ct = µsf̃cn (12)

was also applied to these elements. The seabed stiffness ks and the friction coefficient µs depend

on the characteristics of the seafloor and the cable nature.
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3 Computational methods

The choice of cable model determines the characteristics of the computational methods that can

be used in the forward-dynamics simulation of the system motion. If the linear-spring model

described in Section 2.1 is selected, the system dynamics is expressed by a system of Ordinary

Differential Equations (ODEs). The multibody model in Section 2.2, on the other hand, leads

to a system of DAEs. Fixed-step integrator schemes have been selected, since the computational

methods are intended to be used in real-time applications.

3.1 Numerical methods for the spring model

Equation (1) represents a system of 3N ODEs in which the second derivatives with respect to

time of the node coordinates, q̈, are the only unknowns. This system can be directly solved to

obtain q̈, and these accelerations subsequently integrated. In this work, the implicit, single-step

Newmark family of integrators [39] was selected to this end,

qk+1 = qk + ∆tq̇k +
∆t2

2
((1− 2β) q̈k + 2βq̈k+1)

q̇k+1 = q̇k + ∆t ((1− γ) q̈k + γq̈k+1) (13)

where γ and β are scalar dimensionless parameters, ∆t is the integration step-size, and subscript

k refers to the integration time-step. If γ = 1/2 and β = 1/4, then Eq. (13) becomes the well-

known trapezoidal rule method. This integrator was used in a fixed point iteration scheme in

the simulation of the linear spring cable model.

3.2 Numerical methods for the multibody model

Modelling the cable as a multibody system results in the dynamics expressed in the form of a

system of DAEs like the one in Eqs. (5). A large number of formulations to deal with such a

system have been proposed in the literature, e.g. [1, 22]. Selecting the right formulation for a

given problem is critical for efficiency. For the simulation of the cable model described in Section

2.2, we have selected global formulations based on the augmented Lagrangian method, which

are easy to implement and have shown good performance when dealing with moderate-size
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problems [12].

Following an augmented Lagrangian approach, it is possible to express the unknown con-

straint reactions as fc = −ΦT
qλ, where Φq = ∂Φ/∂q is the N × 3N Jacobian matrix of the

constraints and λ is a set of N Lagrange multipliers. The augmented Lagrangian algorithms de-

scribed in [5] and [4] follow this approach and, additionally, use a stabilized penalty method to

remove the violation of kinematic constraints. An iterative algorithm is thus obtained

(
M + ΦT

qαΦq

)
q̈ + ΦT

qλ = f −ΦT
qα
(
Φ̇qq̇ + Φ̇t + 2ξωΦ̇ + ω2Φ

)
(14a)

λj+1 = λj + α
(
Φ̈ + 2ξωΦ̇ + ω2Φ

)
(14b)

where subscript j stands for the iteration number. Term α is a scalar penalty factor, and coeffi-

cients ξ and ω play a role similar to Baumgarte’s stabilization parameters [2]. These parameters

must be adjusted for optimal performance in each simulation.

It is also possible to develop augmented Lagrangian algorithms starting from Hamilton’s

canonical equations

q̇ =
∂H

∂p
; −ṗ =

∂H

∂q
− fnc + ΦT

qλ (15)

where fnc are the non-conservative forces acting on the system, H is the Hamiltonian, and p

is the 3N × 1 canonical momenta term. Such methods were proposed for multibody dynamics

applications in [3] following a similar procedure to that used to develop the algorithm described

by Eqs. (14). The generalized velocities are obtained from

(
M + ΦT

qαΦq

)
q̇ = p−ΦT

qα

(
Φt + 2ξωΦ + ω2

∫ t

t0

Φdt

)
−ΦT

qσ (16)

where t0 is the initial time and σ are the formulation multipliers, which verify σ̇ = λ. The time

derivatives of the canonical momenta are evaluated as

ṗ = f + Φ̇T
qα

(
Φ̇ + 2ξωΦ + ω2

∫ t

t0

Φdt

)
+ Φ̇T

qσ (17)

and the multipliers σ are updated iteratively

σj+1 = σj + α

(
Φ̇ + 2ξωΦ + ω2

∫ t

t0

Φdt

)
(18)
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Two numerical integration formulas were combined with the multibody dynamics formula-

tions. The first one was the Newmark method in Eq. (13). The second was the explicit, single-

step forward Euler integration formula. This method has shown good performance and energy-

conserving properties when combined with the augmented Hamiltonian algorithm described by

Eqs. (16)–(18) [18]. The first order expression of the integrator used with Hamiltonian methods

is

yk+1 = yk + ∆tẏk (19)

where y =
[
qT pT

]T. The second order expression for the Lagrangian algorithm in Eq. (14) is

qk+1 = qk + ∆tq̇k+1

q̇k+1 = q̇k + ∆tq̈k (20)

The Newmark formulas were combined with the augmented Lagrangian dynamics equations

(14) in two ways. First, fixed point iteration with the system accelerations as primary integra-

tion variables was used. A second alternative was tested as well, which consisted of selecting

the generalized coordinates as primary variables instead to obtain an index-3 algorithm. This

required the introduction of the integrator formulas in the dynamics equations and the estab-

lishment of the dynamic equilibrium at time-step k + 1. The dynamics equations thus became a

system of nonlinear equations in the form

g (q, q̇) = 0 (21)

which was solved by means of a Newton-Raphson iteration scheme. The stability of the time

integration was ensured projecting the system velocities and accelerations onto the constraint

manifold defined by the kinematic constraints Φ = 0. The resulting equations are described in

detail in [10] and [11].

After a preliminary benchmarking stage, four multibody formalisms that showed the best effi-

ciency and accuracy properties were selected and evaluated. The augmented Lagrangian method

in Eqs. (14) was combined with the trapezoidal rule variant of Eq. (13) and the forward Euler

expression in Eq. (20); the resulting algorithms were labelled “AL+TR” and “AL+FWE”, respec-

tively. The augmented Hamiltonian method in Eqs. (16) – (18) was integrated using the forward
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Euler formula in Eq. (19); this combination was labelled “AH+FWE”. The last algorithm was the

index-3 augmented Lagrangian method with velocity and acceleration projections, “ALi3p”, rep-

resented by Eq. (21). These methods are summarized in Table 2.

Table 2: Summary of multibody methods used in the simulations

Method Formulation Integrator Iteration scheme Equations

AL + TR Aug. Lagrangian Trapezoidal rule Fixed point (13), (14)
AL + FWE Aug. Lagrangian Forward Euler None (14), (20)
AH + FWE Aug. Hamiltonian Forward Euler None (16)–(18), (19)
ALi3p Aug. Lagrangian Trapezoidal rule Newton-Raphson (21)

It must be noted that some criterion must be defined to stop the iteration algorithm when

an implicit integrator like the trapezoidal rule is used, in both fixed point and Newton-Raphson

schemes. In this research, the iteration was stopped when the norm of the difference between

the generalized coordinates sets qj and qj+1 obtained in two consecutive iterations of the solver

was less than a certain threshold value. With this criterion the number of iterations in each

integration time-step is not known a priori, which could compromise the ability of the method

to deliver real-time performance. For this reason, the number of iterations of the solver was

monitored during the simulations; it was found that it never went beyond ten. In practice, to

make sure that the simulation complies with real-time execution requirements, a fixed number

of iterations could be used as termination criterion.

3.3 Implementation details

The efficiency of a given multibody dynamics formulation critically depends on implementation

aspects. For this study, the multibody formulations described in Section 3.2 were implemented

using the techniques reported in [21]. Modelling reel-in operations as changes in cable length

using the rheonomic constraints in Eqs. (5b) allows one to keep the sparsity pattern of the

Jacobian matrix unaltered during the entire simulation. This, in turn makes the sparsity pattern

of matrix A = M + ΦT
qαΦq constant as well. Matrix A is the leading matrix of the linear

systems that need be solved to obtain the derivatives of the system variables y, as shown in Eqs.

(14a) and (16), and implied in Eq. (21). The linear solver can then reuse the original symbolic

factorization of A at every time-step during the whole motion, while updating its numerical
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values via optimized implementations of the rank-k update of the symmetric matrix ΦT
qαΦq and

its addition to M. Additionally, matrix A is guaranteed to be symmetric and positive-definite,

provided that a suitable value of the penalty factor α has been chosen, which enables the use

of solvers based on sparse Cholesky factorization like CHOLMOD [9], the one selected for this

research.

4 Test examples

The accuracy, applicability conditions, and efficiency of the methods described in Sections 2 and

3 were tested in the forward-dynamics simulation of two test cases.

4.1 Single cable

The first test example is shown in Fig. 5. A cable of length L and mass m is towed at constant

velocity −vf . This cable is made up of a steel core and polymer fibres, as it is common in

towed fishing gear applications. A point mass mp is attached to its free tip. This simple test

isolates the effect of the retraction process on the time scale of the system dynamics and enables

the performance analysis of both multibody and spring-based models, as well as the proposed

numerical improvement strategies. In addition, it can be reproduced easily, thus allowing the

comparison of results of different research works.

The physical parameters of the problem are summarized in Table 3. Since the spring and the

multibody models treat the axial cable stiffness EA in dissimilar ways, three different values of

this parameter were used to assess its effect on the performance of the computational methods.

Initially, the cable is aligned with the global x-axis. The test consists of a 300-s forward-

dynamics simulation of a reel-in manoeuvre, in which the cable is wound around the winch

drum at a constant length-reduction rate of vw = 100 m/min. During motion, the system is

subject to the action of gravity, g = 9.81 m/s2 acting along the negative y-axis, hydrodynamic

forces, and contact with the seabed. The values of the seabed stiffness and friction coefficient

were obtained from [42].
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Figure 5: Single-cable example used as test problem

Table 3: Physical parameters of the single-cable example

Parameter value

Total cable mass, m 1000 kg
Total cable length, L 1000 m
Cable diameter, D 0.02 m
Cable stiffness, EA 106, 107, 108 N
Towed mass, mp 200 kg
Depth to seabed, hs −100 m
Seabed stiffness, ks 104 N/m
Seabed friction coefficient, µs 1

Fluid density, ρ 1000 kg/m3

Normal drag coefficient, Cd 1.2

Tangent friction coefficient, Cf 0.08

Fluid velocity along x, vf 1.5 m/s

In order to represent the trawler motion while keeping the position of the winch fixed at the

origin of the global reference frame, the fluid and the seabed were assigned a velocity vf in the

opposite direction.

4.2 Fishing trawl

The second test example, shown in Fig. 6, consists in a simplified representation of a double-

cable fishing trawl, with the configuration depicted in Fig. 1. Each of the two cables that link the

net to the trawler has the same physical properties as the one described in Section 4.1.
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Figure 6: Schematic of the initial configuration of the fishing trawl

The fishing net is modelled as a mass-spring-damper system placed between the two opposite

sides of the entrance to the net. This model is a simplification of a real fishing net, intended to

make it possible to compare the performance of the different cable models. A detailed model

of a fishing net would demand a high number of extra variables, thus hampering the efficiency

comparison of the methods to simulate cables proposed in this research. The magnitude of the

elastic and damping forces, f̃nete and f̃netdp , introduced by this element are

f̃nete = EAnet
snet − Lnet

Lnet
= knet

(
snet − Lnet

)
(22)

f̃netdp = −cnetvnetdp (23)

where snet is the distance between the tips of the two cables N1 and N2, i. e., the horizontal

spread, and vnetdp is the velocity of elongation of the element. The natural length of the element

Lnet and its stiffness EAnet were chosen to match the horizontal opening of a physical net. The

damping coefficient cnet was estimated by fitting the dynamic response of the mass-damper-

spring system with a detailed model of a fishing net [50] subjected to opposite horizontal loads

on points N1 and N2.

The spring-damper element also experiences normal and tangent hydrodynamic forces, whose

magnitudes are respectively

f̃netdn =
1

2
ρCnetd Anet

(
vnetn

)2 (24)

f̃netdt =
1

2
ρCnetf Anet

(
vnett

)2 (25)
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where vnetn and vnett are the magnitudes of the normal and tangential components of the velocity

of the fluid relative to the spring-damper element and Cnetd and Cnetf are the normal and tan-

gential drag coefficients. The effective hydrodynamic area Anet is approximated as the area of a

rectangle defined by the nominal horizontal and vertical net opening.

The doors are modelled as point masses placed on nodes D1 and D2, at a distance Ld from

the end nodes of the cables,N1 andN2, at which the net is connected to the cables. Particularized

expressions of the hydrodynamic forces are used to evaluate the drag and lift forces undergone

by these elements. These expressions assume that the hydrodynamic forces are independent of

the orientation of the door [46, 50]

f̃doord =
1

2
ρCdoord Adoor

(
vdoor

)2
(26)

f̃doorl =
1

2
ρCdoorl Adoor

(
vdoor

)2
(27)

where Cdoord and Cdoorl are the drag and lift coefficients of the door, Adoor = hdoorwdoor is the

door surface area, with hdoor and wdoor the height and width of the door respectively, and vdoor

is the magnitude of the fluid velocity relative to the door. The contact between the seabed and

the doors is modelled with Eq. (12) for the tangent direction, replacing Eq. (11) with

f̃doorcn = −ks
(
yi − hs − hdoor/2

)
(28)

which takes into account the door height hdoor in the computation of the indentation.

The initial configuration of the system is sketched in Fig. 6. At t = 0 the two cables are fully

deployed and aligned in parallel with the global x-axis at coordinates z = 5 m and z = −5 m.

Points W1 and W2 denote the location of the two winches, which are mounted on the trawler.

The introduction of doors in the assembly makes the system motion 3D. Hydrodynamics lift

forces on the doors ensure the correct deployment of the fishing net, pulling points N1 and N2

apart from each other.

The physical parameters of the simulation are the ones shown in Table 3, plus additional

ones for the elements incorporated in the trawl, i.e., net and doors, contained in Table 4. The

equivalent parameters of the net are based on a bottom trawl model provided by a Spanish

company [13]. Similarly, the door parameters correspond to model Ovalfoil OF-13 by door maker

Morgère S. A. S. [37].
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Table 4: Physical parameters of the double-cable assembly

Parameter value

Mass of the net, mnet 3000 kg
Equivalent stiffness of the net, knet 103 N/m
Equivalent natural length of the net, Lnet 10 m
Equivalent damping of the net, cnet 104 Ns/m
Equivalent area of the net, Anet 20 m2

Normal drag coefficient of the net, Cnetd 1.2

Tangent friction coefficient of the net, Cnetf 0.08

Mass of the door, mdoor 2100 kg
Door height, hdoor 2.69 m
Door width, wdoor 3.45 m
Drag coefficient of the door, Cdoord 0.76

Lift coefficient of the door, Cdoorl 1.76

Initial x-distance between door and net, Ld 10 m
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Figure 7: Winch rate in Manoeuvre II, ωw = 0.3 rad/s

Two manoeuvres were simulated with this assembly:

1. Manoeuvre I: A 300-s reel-in operation in which the trawler speed vf and the winch veloc-

ity vw were increased linearly from zero up to their steady-state values, vf = 1.5 m/s and

vw = 100 m/min, during the first 20 s of the motion. This was done to avoid unrealistic

overshoots in the cable tension at the motion onset.

2. Manoeuvre II: A 400-s motion identical to the previous one until t = 200 s. From this point
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F. González et al.

on, the winch velocity was commanded to follow a sinusoidal profile with amplitude vw

and frequency ωw, as shown in Fig. 7. Such a profile imitates the actions of a winch control

system during the towing stage of the fishing process.

5 Results and discussion

The test problems described in Section 4 were simulated modelling the cable both as a chain of

linear springs and as a multibody system. All simulations were carried out in an Intel i7-4790K

processor at 4.0 GHz with 8 GB of RAM, running Windows 10 Pro. The solution obtained with

the unimproved, original linear-spring model, validated with experiments in [50], was taken

as reference in the numerical experiments shown next. The solutions delivered by the other

methods were considered correct when the trajectories of the points and the cable tension at the

winch matched those obtained with this reference method. In order to quantify the deviation

of these magnitudes with respect to the reference, a relative error for a magnitude y in each

simulation was defined as [20]

etotal =

√√√√ 1

ns

ns∑
i=1

(∣∣y (ti)− yref (ti)
∣∣

yref (ti)

)2

(29)

where ti is the timestamp of each magnitude sampling, ns is the total number of sampling

points, and yref is the reference solution. Simulations were considered correct if the deviations

remained below a 10 % error for the entire simulation.

5.1 Single cable

The motion of the first example was simulated discretizing the cable with N = 100 elements,

using the linear spring model with EA = 106 N and the multibody methods in Table 2. None

of the numerical improvements described in Section 2.4 were used in these initial simulations.

The simulation outputs were the x- and y-coordinates of the cable tip, at which the point mass

mp was attached, and the cable tension.

Fig. 8 shows that both simulation strategies, linear spring and multibody, yielded a very simi-
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Figure 8: x- and y-coordinates of point mass mp during the simulation of the reel-in manoeuvre
with the single cable

lar motion of the cable tip. As mentioned in Section 2.2, modelling the cable with the multibody

approach is equivalent to assuming that the cable has infinite axial stiffness. This removes the

elongation of the cable due to axial strain and introduces a slight difference with respect to the

position of the tip calculated with the spring model. This difference remained below 0.6 % of

the initial length of the cable for this manoeuvre.

As shown in Fig. 9, the simulation with the multibody approach correctly evaluated the cable

tension as well. It is worth mentioning that the infinite axial stiffness of the cable introduces an

overshoot during the initial seconds of the motion. Moreover, the output became noisy and

had to be smoothed by means of a moving average; the output cable tension ξ∗k at time-step
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Figure 9: Cable tension during the simulation of the reel-in manoeuvre with the single cable

k was evaluated as the average of the last np values of cable tension yielded by the solver,

ξk, . . . , ξk−np+1

ξ∗k =
1

np

np−1∑
i=0

ξk−i (30)

The simulation was repeated using the numerical improvement strategies described in Sec-

tion 2.4 and no significant differences in the motion or cable tension were observed. The selec-

tion of a particular multibody algorithm among those in Table 2 did not alter the output of the

simulation either.

The use of numerical improvements for the linear spring model introduced in Section 2.4

enabled considerable reductions of simulation runtime. Methods No. 1, No. 2, and No. 3 were

7, 26, and 117 times faster than the unimproved approach, respectively. The three strategies

curtailed the increase of the natural frequency of the cable elements during the reel-in process,

allowing larger step-sizes than the uncorrected method, e.g., from 0.016 ms to 2 ms in strategy

No. 3. These improvements in computational efficiency were proportional to the step-size incre-

ment since convergence was achieved with at most 2 iterations in each step of the fixed point

scheme.

The simulation was later repeated with higher values of cable stiffness, EA = 107 N and
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Figure 10: Effect of the numerical improvement methods in Table 1 on the elapsed time in the
simulation of the single-cable motion with the linear spring model, N = 100

EA = 108 N. As shown in Fig. 10, although the execution time augmented with cable stiffness,

the advantage of the methods over the unimproved one also increased, reaching 20 times faster

for strategy No.1, about 27 times for No. 2, and 300 times faster for method No.3. Raising the

cable stiffness brought the trajectory of point mass mp closer to the one obtained with multibody

methods. Cable tension remained practically unaltered.
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Figure 11: Effect of the acceleration-level dynamics penalization on the elapsed time in the
simulation of the single-cable motion with the multibody model, N = 100

Regarding the multibody model of the cable, all the evaluated formalisms delivered execu-

tion times under 30 s. The acceleration-level penalization in Eq. (8) managed to improve the
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efficiency of the methods, being up to 6 times faster in the case of approaches with single-step

integration routines, as shown in Fig. 11. The maximum value of the penalty factor pα ranged

between 10mi and 25mi, depending on the formulation.

Additional tests were run to determine the ability of the proposed methods to carry out

real-time simulations when the cable is discretized using more elements. Besides increasing the

problem size, raising N diminishes the length and inertia of the cable segments. For N = 1000,

i.e., Li = 1 m and mi = 1 kg, the moment of inertia of a cable segment is 0.083 kgm2, three

orders of magnitude smaller than for N = 100. This results in faster system dynamics and, as a

consequence, it is necessary to reduce the integration step-size to prevent the simulation from

turning unstable.

Table 5: Integration step-sizes and elapsed times in the simulation of the single-cable example
with the linear spring model and different numerical improvements

N 100 250 500 750 1000

EA = 106 N
∆t (ms) 0.12 0.12 0.10 0.09 0.08

Meth. 1 elap. (s) 32.0 78.0 180.0 318.2 457.4

∆t (ms) 0.5 0.3 0.2 0.15 0.15
Meth. 2 elap. (s) 9.1 33.1 94.7 192.7 278.8

∆t (ms) 2 1.2 0.8 0.6 0.5
Meth. 3 elap. (s) 2.0 7.4 22.1 45.9 71.8

EA = 107 N
∆t (ms) 0.08 0.06 0.042 0.035 0.03

Meth. 1 elap. (s) 48.2 172.6 428.3 836.0 1202.9

∆t (ms) 0.15 0.09 0.06 0.05 0.045
Meth. 2 elap. (s) 27.8 106.5 310.0 589.0 879.1

∆t (ms) 1 0.6 0.32 0.22 0.17
Meth. 3 elap. (s) 3.8 14.5 54.6 125.0 209.2

EA = 108 N
∆t (ms) 0.03 0.02 0.012 0.009 0.007

Meth. 1 elap. (s) 124.6 575.5 1479.8 3068.2 5114.3

∆t (ms) 0.045 0.03 0.02 0.015 0.012
Meth. 2 elap. (s) 88.6 330.8 949.5 1943.4 3165.2

∆t (ms) 0.45 0.22 0.11 0.07 0.055
Meth. 3 elap. (s) 8.3 39.7 158.4 394.2 649.0

Table 5 shows the integration step-sizes, ∆t, and elapsed times invested in the simulation of
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the example with the linear spring model and the numerical improvement methods described in

Section 2.4. As expected, as the number of elements N used in the discretization grows smaller

step-sizes are necessary to complete the simulation successfully. Stiffer cables required smaller

step-sizes as well and gave rise to increases in the computation times. The third method, which

combines spring softening with fixing the mass of the cable elements during reel-in, showed the

best performance, making it possible to attain real-time performance in most cases.

Table 6: Integration step-sizes and elapsed times in the simulation of the single-cable example
with the multibody methods and correction of the dynamics of the retracted segments

N 100 250 500 750 1000

ALi3p ∆t (ms) 2 2 2 1 0.7
elap. (s) 13.9 34.1 67.9 204.3 273.8

AL+TR ∆t (ms) 10 6 4 3 1
elap. (s) 4.0 14.0 41.2 80.7 150.6

AL+FWE ∆t (ms) 10 8 5 4 3
elap. (s) 1.6 4.8 14.9 27.6 49.3

AH+FWE ∆t (ms) 10 8 5 3 2
elap. (s) 1.6 4.8 15.1 36.5 73.5

The elapsed times obtained with multibody algorithms, together with the required integra-

tion step-sizes, are detailed in Table 6. Acceleration-level penalization of the dynamics of re-

tracted cable segments was used in all cases. Although real-time performance was achieved

in all cases, formalisms with single-step, explicit integrators were significantly more efficient,

especially for discretizations with N > 500 elements.

Figure 12 compares the performance of the linear spring and multibody methods in the

simulation of the single cable example. Only the most efficient algorithms are depicted in the

figure, namely the AH+FWE and AL+FWE multibody methods and integration with numerical

improvement No. 3 for the linear spring model. Moreover, this figure highlights the fact that

the elapsed time does not increase linearly with N , as a consequence of the need for a shorter

step-size ∆t when the cable segments become smaller.
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Figure 12: Elapsed times in the simulation of the single cable motion with the two most efficient
multibody formalisms and the linear spring model with numerical improvement No. 3 and three
different values of cable stiffness

5.2 Fishing trawl, Manoeuvre I

Manoeuvre I was simulated with the spring and multibody models using the numerically im-

proved algorithms described in Section 2.4.

Fig. 13 shows that both methods correctly captured the effect of introducing doors in the

assembly. As the reel-in operation progressed, the horizontal spread increased due to the hydro-

dynamic forces acting at the doors. The change of trajectory that took place around x = 850 m

was caused by the sudden introduction of contact forces when the doors reached the seabed.

The effect of changing the axial stiffness of the cable on the trajectory was negligible.

The tension in cables, represented in Fig. 14, reached its maximum value at t ≈ 25 s, once the

winch rate vw and the trawler velocity vf reached their maximum, steady-state values. From this

moment on, the tension steadily decreased due to the reduction in cable length and, therefore,

cable weight and resultant hydrodynamic forces. At t ≈ 100 s the doors reached the seabed and

friction forces introduced a significant increment, about 11%, in cable tension. The numerical

improvement approaches for the linear spring model did not introduce significant modifications

in the tension plot.

It was confirmed that the axial flexibility of the cable imposes a limit on the applicability

28



Real-time simulation of cable pay-out and reel-in with towed fishing gears

-50

-40

-30

-20

-10

0

10

20

30

40

50

500 600 700 800 900 1000

z-
co

o
rd

in
at

e 
o

f 
ch

ai
n
 t

ip
s 

(m
)

x-coordinate of chain tips (m)

Lin. Spring, port

Lin. Spring, starboard

MB, port

MB, starboard

-110

-90

-70

-50

-30

-10

500 600 700 800 900 1000

y-
co

o
rd

in
at

e 
o

f 
ch

ai
n
 t

ip
s 

(m
)

x-coordinate of chain tips (m)

Lin. Spring, port

Lin. Spring, starboard

MB, port

MB, starboard

Figure 13: Projection on the x-y plane and on the x-z plane of the trajectory followed by the tips
of the double cable during Manoeuvre I, simulated with linear-spring and multibody models

of multibody modelling, as highlighted by Fig. 14. In this figure, three different values of the

axial stiffness of the cable are represented, corresponding to EA = 109 N, EA = 108 N, and

EA = 107 N. The plots show that multibody modelling reproduced accurately these curves

when the axial stiffness of the cable was high enough, EA ≥ 108 N. However, lower values of

EA resulted in larger axial strains, which in turn modified the cable dynamics and brought them

further away from the ideally rigid behaviour predicted by the multibody simulation. Depending

on the application the prediction could still be considered acceptable for the case in which

EA = 107 N, especially after the initial transient has taken place, once the contact between the

cables and the seabed occurs at t ≈ 100 s. However, the results can no longer be considered

correct if EA < 107 N.
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Figure 14: Cable tension during Manoeuvre I obtained with the multibody model (MB) and the
linear spring approach with different values of the cable axial stiffness

Note that the multibody model predicted the correct tension also with low EA values in the

single-cable example, because in that case the cable tension was about 15 times smaller than in

the fishing trawl. The obtained results suggest that the use of the multibody method should be

restrained to problems in which cable tension does not exceed EA · 10−3.

Tables 7 and 8 show the elapsed times during the simulation of the manoeuvre with the

linear spring and the multibody models. The loads that the cable undergoes in this double-cable

assembly are one order of magnitude larger than in the previous test; moreover, the problem

now involves 6N variables and 2N constraints when each cable is modelled with N rigid seg-

ments.

Numerical improvement No. 3 delivered the best performance with the linear spring model,

followed by method No. 2. Simulating cables with higher axial stiffness EA made it necessary to

reduce the integration step-size; the simulation of the cable with EA = 108 N triplicated the ex-

ecution time of that with EA = 107 N. As it happened with the previous example, increasing the

number of cable segments caused a superlinear increment of the elapsed time, as the integra-

tion step-size had to be decreased. In spite of this, real-time simulation of the manoeuvre can be

achieved with both the multibody and the linear spring models. Among multibody algorithms,

those with single-step explicit integrator delivered again the fastest performances.
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Table 7: Integration step-sizes and elapsed times in the simulation of Manoeuvre I with the
fishing trawl example and the linear spring model

N 100 200 250 500

EA = 107 N
∆t (ms) 0.09 0.07 0.06 0.045

Method 1 elapsed (s) 108.1 270.5 392.6 1132.0

∆t (ms) 0.15 0.09 0.09 0.07
Method 2 elapsed (s) 59.4 185.6 239.5 689.0

∆t (ms) 1 0.8 0.65 0.3
Method 3 elapsed (s) 8.0 19.9 34.8 126.7

EA = 108 N
∆t (ms) 0.032 0.023 0.019 0.015

Method 1 elapsed (s) 312.1 895.4 1041.7 3756.4

∆t (ms) 0.045 0.035 0.03 0.02
Method 2 elapsed (s) 192.5 550.1 745.1 2089.4

∆t (ms) 0.5 0.25 0.2 0.1
Method 3 elapsed (s) 15.9 62.9 98.4 378.5

Table 8: Integration step-sizes and elapsed times in the simulation of Manoeuvre I with the
fishing trawl example and the multibody methods

N 100 200 250 500

ALi3p ∆t (ms) 3 2 2 2
elapsed (s) 18.9 55.4 69.1 158.6

AL+TR ∆t (ms) 5 5 4 1
elapsed (s) 6.6 27.2 42.5 155.8

AL+FWE ∆t (ms) 10 5 4 2
elapsed (s) 3.2 12.4 18.9 74.6

AH+FWE ∆t (ms) 9 4 3 1.5
elapsed (s) 3.6 15.2 25.1 99.6

5.3 Fishing trawl, Manoeuvre II

Dynamic effects during Manoeuvre I had a negligible impact on the system motion after the

completion of the initial transient phase. The aim of simulating Manoeuvre II is to study the
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F. González et al.

ability of the different simulation methods to correctly represent the system response when the

winch velocity vw changes rapidly and dynamic effects are no longer irrelevant. Such is the case

of operations in which control algorithms are used to regulate cable tension. After t = 200 s

in Manoeuvre II, the winch velocity follows a sinusoidal profile, alternating between reeling-in

and letting-out stages at a given frequency ωw. In practical fishing applications, this frequency

usually remains below 0.5 rad/s. In this study, two values were tested, ωw = 0.1 rad/s and

ωw = 0.3 rad/s. These were selected to match winch controller data from real manoeuvres. In

all these cases, it is expected that the axial stiffness of the cable affect the shape and values of

the time history of the cable tension. The higher the cable stiffness, faster system response and

higher tension peaks are to be expected. These effects will be more severe in systems in which

the cable tension varies faster.
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Figure 15: Cable tension during Manoeuvre II (ωw = 0.1 rad/s), obtained with the multibody
and the linear spring approaches

Figures 15 and 16 show the tension values obtained during the simulation of the manoeuvre;

the effect of the sinusoidal variation of vw is clearly noticeable after t = 200 s. Fig. 15 shows

the cable tension for ωw = 0.1 rad/s. The multibody methods approximated with a high level

of accuracy the tension undergone by stiff cables, with EA = 108 N. However, differences with

respect to the linear spring model results were observed with softer cables, with EA = 107

N. The multibody methods predicted a faster response and 16% higher tension peaks. This is a

consequence of neglecting the axial flexibility of the cable. The differences between both models

were much more remarkable for ωw = 0.3 rad/s, as shown in Fig. 16. In this case, the multibody
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Figure 16: Cable tension during Manoeuvre II (ωw = 0.3 rad/s), obtained with the multibody
and the linear spring approaches

models predicted tension peaks 8% higher than the linear spring with EA = 108 N. In the case

of the cable with EA = 107 N, however, the amplitude of the oscillations calculated with the

multibody methods was twice the value obtained with the linear spring model.

The above results confirmed that it is important to consider the axial stiffness of the cable to

obtain accurate values of the tension during fast-dynamics manoeuvres. Among the numerical

improvements described in Section 2.4, those that rely on cable softening, namely methods No. 1

and No. 3 for the linear spring model, also caused inaccuracies in tension because they changed

the total stiffness of the cable. Fig. 17 and Fig. 18 show the effect of this variation on cable

tension when performing Manoeuvre II with winch frequency ωw = 0.3 rad/s, for moderately

stiff and highly stiff cable, that is, EA = 107 N and EA = 108 N.

In spite of the change introduced in cable stiffness, softening the cable segments that were

retracted only caused the tension amplitude to decrease about 15% with respect to the values

evaluated with the non-softened cable. This divergence can be considered acceptable in most

practical fishing applications. For highly stiff cables, the effect of the softening strategy is even

less noticeable and the error in amplitude remains below 5%.
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F. González et al.

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400

C
ab

le
 t

en
si

o
n
 (

k
N

)

Time (s)

Without softening

With softening

Figure 17: Cable tension during Manoeuvre II (ωw = 0.3 rad/s), obtained with the linear spring
approach, EA = 107 N , with and without cable softening
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Figure 18: Cable tension during Manoeuvre II (ωw = 0.3 rad/s), obtained with the linear spring
approach for highly stiff cable, EA = 108 N , with and without cable softening

6 Conclusions

Employing appropriate numerical improvements, real-time simulation of let-out and reel-in ma-

noeuvres with submerged cables can be achieved using both linear-spring and multibody cable

models comprising up to a few thousand variables. The cable models and formulations described
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in this work were assessed with two realistic test problems that involved cable pay-out and reel-

in operations with towed fishing gears. The numerical experiments included towing cables with

different values of axial stiffness EA: soft (106 N), moderate (107 N) and stiff (108 N). Each mod-

elling approach has its advantages and limitations and these must be considered when selecting

one or another for a given application.

The proposed methods to improve the computational efficiency of reel-in simulation in

spring-based cable models, summarized in Table 1, can speed up the simulation by two orders

of magnitude. The speed-up became more significant with higher cable axial stiffness. The most

efficient technique was method No. 3, i.e., softening the wound cable elements while keeping

their mass and stiffness constant. This method achieved real-time performance in most cases.

However, method No 3 introduces changes in the total cable stiffness, and hence it may under-

estimate the cable tension in fast pay-out and reel-in operations with soft and moderately stiff

cables. In such scenarios, method No. 2 should be used if a very accurate prediction of cable

tension is required. This method only speeds up the simulation by one order of magnitude, and

hence it cannot achieve real-time performance in problems that involve fine discretizations or

stiff cables.

Concerning the multibody model, the proposed modelling approach based on natural coor-

dinates lead to real-time performance regardless of the formulation used to solve the dynamics.

Its excellent computational performance is due to its advantages over other coordinate choices

previously used in the literature: lack of explicit parametrization of the rotations, constant mass

matrix and absence of Coriolis and velocity-dependent force terms. The AL+FWE formulation

was the most efficient one in all cases. The AH+FEW formulation was a 30% slower, and the

two other tested formulations, ALi3p and AL+TR, were between two and four times slower,

depending on the problem.

The fastest multibody formulations were always faster than the linear spring methods. Their

advantage increased with the cable axial stiffness and the number of variables of the problem.

For problems with very low cable stiffness and coarse discretization (100 variables), multibody

methods were a 20% faster. In problems with high cable stiffness and fine discretization (3000

variables), multibody methods were five times faster. However, multibody methods overesti-

mated the cable tension in problems were the cable was subjected to large axial strains. In our

numerical experiments, this effect was noticeable when the cable tension exceeded EA · 10−3.

The effect increased when the winch switched between let-out and reel-in at fast rates, about
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0.3 rad/s.

Choosing between multibody and linear spring models can also depend on the implementa-

tion environment in which they are used. The linear spring model is simpler to implement and

also easy to combine with general ODE solvers, e.g., solvers for lumped-mass models of nets.

On the other hand, multibody models lend themselves to joint simulation with other rigid body

elements and assemblies, such as realistic models of the doors, anchors, and selective devices. If

necessary, both models could be combined by means of co-simulation.

Further improvements to both methods are possible and currently constitute open lines of

research. Inaccuracies in cable tension stemming from the infinite axial stiffness of the multibody

models can be mitigated using flexible multibody elements to model the cable. Also, variable-

length cables are particularly suitable for simulation with recursive, topological formulations for

multibody dynamics. A comparison between these methods and the global formulations used

in this research is necessary to determine whether they can actually reduce the computational

burden of the simulations. Finally, both approaches can benefit from the use of parallelization

techniques [19]. Parallel linear solvers could help reduce the elapsed time in the solution of

the systems of equations required by multibody simulation. Moreover, parallel implementations

allow to integrate each cable separately in fishing assemblies with multiple cables.
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[12] Dopico, D., Luaces, A., González, M., Cuadrado, J.: Dealing with multiple contacts in a

human-in-the-loop application. Multibody System Dynamics 25(2), 167–183 (2011). DOI

10.1007/s11044-010-9230-y

[13] Eurored: Eurored Vigo S. L. (2014). URL http://euroredvigo.com/es/. (accessed

07.09.2016)
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[18] González, F., Dopico, D., Pastorino, R., Cuadrado, J.: Behaviour of augmented Lagrangian

and Hamiltonian methods for multibody dynamics in the proximity of singular configura-

tions. Nonlinear Dynamics 85(3), 1491–1508 (2016). DOI 10.1007/s11071-016-2774-5
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[43] de la Prada, A., González, M.: Assessing the suitability of gradient-based energy mini-

mization methods to calculate the equilibrium shape of netting structures. Computers &

Structures 135, 128–140 (2014). DOI 10.1016/j.compstruc.2014.01.021
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