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Abstract

Augmented Lagrangian methods represent an efficient way to carry out the forward-

dynamics simulation of mechanical systems. These algorithms introduce the constraint forces

in the dynamic equations of the system through a set of multipliers. While most of these for-

malisms were obtained using Lagrange’s equations as starting point, a number of them have

been derived from Hamilton’s canonical equations. Besides being efficient, they are gener-

ally considered to be robust, which makes them especially suitable for the simulation of

systems with discontinuities and impacts. In this work, we have focused on the simulation

of mechanical assemblies that undergo singular configurations. First, some sources of nu-

merical difficulties in the proximity of singular configurations were identified and discussed.

Afterwards, several augmented Lagrangian and Hamiltonian formulations were compared

in terms of their robustness during the forward-dynamics simulation of two benchmark

problems. Newton-Raphson iterative schemes were developed for these formulations with

the Newmark formula as numerical integrator. These outperformed fixed point iteration ap-

proaches in terms of robustness and efficiency. The effect of the formulation parameters on

simulation performance was also assessed.

Keywords: Multibody system dynamics, augmented Lagrangian methods, Hamiltonian meth-

ods, singular configurations
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1 Introduction

Forward-dynamics simulation of multibody systems is a relatively new area in the field of Me-

chanics. The progress in computer architectures and software tools during the last decades has

boosted both research and industry applications of this technique. At the same time, the ex-

pectations regarding the capabilities and performance of multibody codes have also increased.

Among the many applications of multibody dynamics, real-time environments such as Human-

and Hardware-in-the-Loop (HiL) setups are especially demanding in terms of both efficiency

and robustness. As a consequence, a considerable effort has been made within the multibody

community to develop fast and reliable simulation algorithms to satisfy these requirements.

Generally speaking, multibody systems consist of a set of rigid or flexible links interconnected

by joints. The consideration of the kinematic constraints introduced by the latter usually leads to

the need for expressing the dynamics equations as a system of Differential Algebraic Equations

(DAEs). Many approaches can be used to deal with these equations, among which Lagrange’s

multiplier method is a widely used one [16].

If a mechanical system is described with a set of n generalized coordinates q, subjected to m

holonomic kinematic constraints Φ, the equations of motion can be expressed as

Mq̈ + c = f + fc (1a)

Φ (q, t) = 0 (1b)

where M is the n×n mass matrix, c contains the Coriolis and centrifugal forces, and f and fc are

the applied and constraint forces, respectively. Following a Lagrangian approach, the generalized

constraint reactions can be expressed as fc = −ΦT
qλ, where Φq = ∂Φ/∂q is the m× n Jacobian

matrix of the constraints and λ is a set of m Lagrange multipliers.

One of the first augmented Lagrangian algorithms for multibody dynamics was introduced

by Bayo et al. [4]. The proposed method combined a penalty representation of the constraint

forces with an iterative update of the Lagrange multipliers. An extension of the method to han-

dle nonholonomic constraints was also included in [4]. Several related formalisms based on

the augmented Lagrangian approach have been subsequently developed. An implementation

of the algorithm in [4] aiming at real-time efficiency was published in [3]. In [6] and [11]

mass-orthogonal projections were used together with the augmented-Lagrangian formulation to
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ensure the satisfaction of the kinematic constraints. These two papers included index-3 versions

of the algorithms as well, in which the dynamic equations were combined with the numerical

integrator formulas. The resulting system of DAEs was solved iteratively following a Newton-

Raphson scheme, thus improving the robustness of the method. The original algorithms in [6]

and [11] were designed for holonomic constraints alone; an index-3 augmented Lagrangian

algorithm able to deal with nonholonomic constraints was later described in [12]. The above

mentioned formalisms and similar ones, e.g. [25], have been successfully used in the study

and simulation of a wide variety of mechanical systems. Application examples include heavy

machinery simulators [13], biomechanics [29], and co-simulation settings for vehicle dynamics

[18].

It is also possible to obtain the dynamics equations using Hamilton’s canonical equations

as starting point. Following this approach, the unconstrained equations of motion become a

system of 2n first order Ordinary Differential Equations (ODEs), instead of the system of n sec-

ond order ODEs in Eq. (1a). Augmented Lagrangian algorithms based on Hamilton’s canonical

equations can also be found in the field of multibody dynamics, e.g. [5], [2]. It was stated in

[2] that the methods based on canonical equations are more robust than their classical aug-

mented Lagrangian counterparts and ensure a better satisfaction of the kinematic constraints.

This was supported by the performance comparison of two formulations, one representative of

each approach, in the dynamic simulation of mechanical systems with singular configurations.

Although both algorithms were able to deal with the test problems, the Hamiltonian one did

not show pathological behaviour in any of the simulations carried out by the authors. However,

these formulations have received comparatively less attention in the literature since they were

first presented to the multibody community. Naudet et al. [27] developed a recursive algorithm

based on canonical momenta, although they did not follow an augmented Lagrangian approach.

The authors affirm in [27] that a possible reason why Hamiltonian equations are rather infre-

quent in multibody applications is that they are computationally intensive to construct and they

cannot compete with acceleration-based algorithms, especially recursive ones. More recently,

Malczyk et al. [26] combined the Divide and Conquer Algorithm (DCA) [14] with Hamilton’s

canonical equations to obtain a parallel algorithm. Their preliminary results suggested that their

Hamiltonian approach can outperform the Lagrangian one in terms of accuracy in the enforce-

ment of kinematic constraints and conservation of the mechanical energy of the system.

In the research reported in this paper, the behaviour of augmented Lagrangian and Hamilto-
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nian methods for multibody dynamics was studied in the proximity of singular configurations.

It was shown that even though these formalisms are able to deal with redundant kinematic con-

straints and rank deficient Jacobian matrices, they still suffer from numerical difficulties when

they are employed to simulate mechanisms that go through singularities. The cause of these

numerical problems was determined to be the introduction of impact loads in the constraint re-

actions, which in turn was motivated by the enlargement of the subspace of admissible motion

at the singular points. The factors that determine the ability of a given algorithm to overcome

these difficulties were investigated as well. Existing augmented Lagrangian and Hamiltonian

methods for multibody dynamics were combined with Newmark integration formulas to de-

velop time-stepping algorithms with Newton-Raphson iterative schemes. The comparison of the

new algorithms and other existing formulations was done using test examples from the IFToMM

benchmark problem library [21]. Results showed that the selection of the numerical integration

routine and the formulation parameters has a critical effect on the stability and efficiency of the

simulation. Newton-Raphson implementations showed a more robust behaviour than their fixed

point counterparts and were able to withstand the impact forces introduced by the singularities

while avoiding large variations in the mechanical energy of the system.

2 Augmented Lagrangian formulations

Several formulations were selected for this study among the many available in the literature.

The ones described in [4], [2], and [6] were chosen because they share a similar dynamics

equations structure. Newton-Raphson implementations of the original algorithms were also de-

veloped and implemented. In the following, natural coordinates [22] are assumed to be used in

the modelling. This has two important consequences. First, term c vanishes from the dynamics

equations. Second, with a proper selection of coordinates the mass matrix M becomes constant,

and so all its derivatives are zero.

2.1 Penalty formulation

Even though it is not an augmented Lagrangian one, it is convenient to briefly describe here the

penalty formulation introduced in [4], as it is the starting point for the development of a large
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set of augmented Lagrangian algorithms. This formulation replaces the kinematic constraints

Φ = 0 with penalty mass-spring-damper systems. This is achieved introducing fictitious poten-

tial and kinetic energy terms in the integral action A of the mechanical system, as well as a

set of dissipative forces. Then, the constraint reactions can be replaced by forces and torques

proportional to the constraint violations at the acceleration, velocity, and configuration levels

λ = α
(
Φ̈ + 2ξωΦ̇ + ω2Φ

)
(2)

where α is the penalty factor, and ξ and ω have a physical meaning similar to that of Baumgarte’s

stabilization parameters [1]. Together with the velocity- and acceleration-level expressions of

the kinematic constraints

Φ̇ = Φqq̇ + Φt = 0 (3)

Φ̈ = Φqq̈ + Φ̇qq̇ + Φ̇t = 0 (4)

where Φt = ∂Φ/∂t, Eq. (2) allows for the transformation of the system of DAEs (1) into a system

of n second order ODEs

(
M + ΦT

qαΦq

)
q̈ = f −ΦT

qα
(
Φ̇qq̇ + Φ̇t + 2ξωΦ̇ + ω2Φ

)
(5)

Terms α, ξ, and ω are n × n matrices in the general case but for simplicity they are treated as

scalars in this document.

2.2 Augmented Lagrangian formulation

The penalty formulation in Eq. (5) has the disadvantage of being very sensitive to the value of

the penalty factor α in terms of convergence. Additionally, a certain violation of constraints is re-

quired to develop the necessary reaction forces fc, so a complete fulfilment of the constraints can

never be achieved. The augmented Lagrangian formulations proposed in [4] and [6] intended

to overcome these limitations. The Lagrange multiplier method was applied to the solution of
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Eq. (5) to obtain the following iterative algorithm

(
M + ΦT

qαΦq

)
q̈ + ΦT

qλ
∗ = f −ΦT

qα
(
Φ̇qq̇ + Φ̇t + 2ξωΦ̇ + ω2Φ

)
(6a)

λ∗
i+1 = λ∗

i + α
(
Φ̈ + 2ξωΦ̇ + ω2Φ

)
(6b)

where λ∗ are the m modified Lagrange multipliers and subscript i stands for the iteration num-

ber. If the multipliers are updated only once in each integration time-step, then this formulation

is equivalent to the penalty one in Eq. (5). Position-, velocity-, and acceleration-level mass-

orthogonal projections were also introduced in [6] to ensure an accurate satisfaction of the

kinematic constraints.

2.3 Formulation based on Hamilton’s canonical equations

Formulations based on Hamilton’s canonical equations constitute an alternative approach to the

classical, acceleration-based augmented Lagrangian algorithms. They introduce the conjugate or

canonical momenta p = ∂L/∂q̇, where L is the system Lagrangian, as system variables besides

the generalized coordinates q [16] . With the definition of the Hamiltonian H = pTq̇ − L the

canonical equations for a constrained system can be written as [2]

q̇ =
∂H

∂p
; −ṗ =

∂H

∂q
− fnc + ΦT

qλ (7)

where fnc are the non-conservative forces applied to the system. Following a procedure similar to

the one described in [4], an augmented Lagrangian algorithm can be developed from Hamilton’s

equations. The system Lagrangian is defined to include the velocity-level kinematic constraints,

as well as fictitious potential and kinetic energy terms, and a set of dissipative forces is added

to the formulation [2]. The generalized velocities q̇ can then be obtained from the resulting

expression

(
M + ΦT

qαΦq

)
q̇ = p−ΦT

qα

(
Φt + 2ξωΦ + ω2

∫ t

t0

Φdt

)
−ΦT

qσ (8)
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where t0 is the starting time of the motion and σ are the formulation multipliers, which verify

σ̇ = λ. The time derivatives of the canonical momenta can be explicitly obtained from equation

ṗ = f + Φ̇T
qα

(
Φ̇ + 2ξωΦ + ω2

∫ t

t0

Φdt

)
+ Φ̇T

qσ (9)

and the multipliers σ are iteratively updated according to the expression

σi+1 = σi + α

(
Φ̇ + 2ξωΦ + ω2

∫ t

t0

Φdt

)
(10)

The algorithm in Eqs. (8)–(10) is also equivalent to a penalty method if the number of

updates of the multipliers in each evaluation of q̇ is set to one.

The fact that the constraint reactions λ are the derivatives with respect to time of the multi-

pliers σ has two important consequences. First, it is possible to select any arbitrary values of σ

for the initial conditions of the simulation, at t = 0. Once σ is set, the initial momenta can be

evaluated making use of Eq. (8). Second, the formulation multipliers σ represent the integral

over the time domain of the constraint reactions λ. This means that it is possible that some

elements of σ grow indefinitely as the simulation progresses, e.g., when the corresponding el-

ements of λ do not change sign. Such an issue can eventually cause the simulation to fail and

must be avoided resetting the multipliers. When resetting takes place, the canonical momenta p

and their derivatives ṗ must be re-evaluated to match the new values of σ.

3 Implementation of the methods following a Newton-Raphson scheme

The methods described in Section 2 can be used together with the numerical integrator formulas

according to a fixed point integration scheme. Given the state of a mechanism at time-step k, qk

and q̇k, Eqs. (5) or (6) can be used to evaluate the accelerations q̈k. These can be subsequently

integrated to obtain the positions and velocities in the next time-step. For instance, with the

well-known forward Euler explicit integration scheme, these would be evaluated as

qk+1 = qk + hq̇k; q̇k+1 = q̇k + hq̈k; (11)
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where h is the integration step-size. A similar procedure can be adopted with the formulation

based on Hamilton’s equations, with q and p as variables. With Lagrangian methods, a semi-

implicit integration formula can be used as well

qk+1 = qk + hq̇k+1; q̇k+1 = q̇k + hq̈k; (12)

However, adopting a Newton-Raphson solution scheme instead of the fixed point one can be

advantageous in terms of efficiency and stability [10]. This requires the introduction of the

numerical integrator formulas in the equations of motion.

3.1 Augmented Lagrangian methods

The augmented Lagrangian algorithm in Eqs. (6) can be combined with the Newmark numer-

ical integration formulas [28] to obtain a Newton-Raphson iterative scheme. The integration

formulas are

q̇k+1 =
γ

βh
qk+1 − ̂̇qk ; where ̂̇qk =

γ

βh
qk +

(
γ

β
− 1

)
q̇k + h

(
γ

2β
− 1

)
q̈k

q̈k+1 =
1

βh2
qk+1 − ̂̈qk ; where ̂̈qk =

1

βh2
qk +

1

βh
q̇k +

(
1

2β
− 1

)
q̈k (13)

where β and γ are scalar parameters, and subscript k denotes the time-step. The well-known

trapezoidal rule method is a particular case of the Newmark formulas in which β = 0.25 and

γ = 0.5.

Introducing the equations of the integrator (13) in the dynamics equations (6) and estab-

lishing the equilibrium at time-step k + 1, a system of nonlinear equations is obtained

g (q, q̇) =
(
M + ΦT

qαΦq

)( 1

βh2
qk+1 − ̂̈qk

)
− f

+ ΦT
qα

[
Φ̇q

(
γ

βh
qk+1 − ̂̇qk

)
+ Φ̇t + 2ωξ

(
Φq

(
γ

βh
qk+1 − ̂̇qk

)
+ Φt

)
+ ω2Φ

]
+ ΦT

qλ
∗
k+1 = 0

(14)
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Such a system can be solved by means of a Newton-Raphson iteration scheme in the form[
dg (q, q̇)

dq

]
i

∆qi+1 = − [g (q, q̇)]i

qi+1 = qi + ∆qi+1

(15)

where i stands for the iteration step. The tangent matrix of the system is obtained upon differen-

tiation of Eq. (14) with respect to the generalized coordinates q. In this differentiation process,

terms (Φq)q and
(
Φ̇q

)
q

are neglected, as their contribution is usually small in comparison with

the other terms. Moreover, the formulation multipliers λ∗ are considered to be independent

from the problem variables. With these assumptions, after scaling, the expression of the tangent

matrix is[
dg (q, q̇)

dq

]
∼= M + βh2K + γhC + ΦT

qαΦq

(
1 + 2ωξγh+ ω2βh2

)
+ ΦT

qαΦ̇q γh+ ΦT
qα

(
βh2

(
Φ̇t

)
q

+ 2ωξβh2 (Φt)q

) (16)

where C = −∂f/∂q̇ and K = −∂f/∂q. The residual takes the form

g (q, q̇) = βh2
(

Mq̈− f + ΦT
qα
(
Φ̈ + 2ωξΦ̇ + ω2Φ

)
+ ΦT

qλ
∗ ) (17)

where all terms are evaluated at time-step k + 1.

The leading matrix in Eq. (16), in general, is not symmetric. This may slow down the solu-

tion of Eq. (15), as it impedes the use of several efficient algorithms, such as those that involve

Cholesky factorizations. In [6], mass-orthogonal projections were used to enforce the satisfac-

tion of kinematic constraints at the configuration, velocity, and acceleration levels. It is then

possible to assume that the constraints are exactly fulfilled at some of these levels, which en-

ables one to remove the corresponding terms Φ, Φ̇, or Φ̈ from the dynamics equations (6a). An

index-1 Newton-Raphson implementation with position and velocity projections was described

in [10]. To obtain this algorithm it was assumed that the projections enforced Φ = 0 and Φ̇ = 0

and only the term Φ̈ had to be considered in the equations of motion. In the same paper, an

index-3 approach with velocity and acceleration projections was also developed. Considering

that Φ̇ = 0 and Φ̈ = 0 allows one to write Eq. (14) as

g (q, q̇) = Mqk+1 + βh2ΦT
q k+1

(
λ∗
k+1 + αΦk+1

)
− βh2fk+1 − βh2M̂̈qk = 0 (18)
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The leading matrix in Eq. (15) can be approximated as [11]

[
dg (q, q̇)

dq

]
∼= M + γhC + βh2

(
ΦT

qαΦq + K
)

(19)

and the Lagrange multipliers can be updated during the iterative process in Eq. (15) as

λ∗
i+1 = λ∗

i + αΦi (20)

The index-3 augmented Lagrangian formulation (ALi3) described by Eqs. (18)–(20) with

velocity and acceleration projections features excellent robustness and efficiency properties and

it has been successfully used in real-time simulation of medium-size and large multibody systems

[13], [18].

3.2 Formulation based on Hamilton’s canonical equations

The algorithm in Eqs. (8)–(10) can also take a Newton-Raphson iterative scheme in which the

positions q and the canonical momenta p are treated as the primary variables of the numerical

integration. The expression of the trapezoidal rule can be particularized in this case to consider

only first order derivatives as

q̇k+1 =
2

h
qk+1 − ̂̇qk ; where ̂̇qk =

2

h
qk + q̇k (21a)

ṗk+1 =
2

h
pk+1 − ̂̇pk ; where ̂̇pk =

2

h
pk + ṗk (21b)

Introducing the equations of the integrator (21) in the algorithm equations (8) and (9) and

establishing the equilibrium at time-step k + 1, a system of nonlinear equations is obtained

gh (y) =

 g1 (y)

g2 (y)

 = 0 ; where y =

 q

p

 (22)

The expressions of functions g1 and g2 are

g1 = 0 =
(
M + ΦT

qαΦq

)
qk+1

− h

2

[ (
M + ΦT

qαΦq

) ̂̇qk + pk+1 −ΦT
qα

(
Φt + 2ξωΦ + ω2

∫ t

t0

Φdt

)
−ΦT

qσ

] (23)
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and

g2 = 0 = pk+1

− h

2

[ ̂̇pk + f + Φ̇T
qα

(
Φq

(
2

h
qk+1 − ̂̇qk

)
+ Φt + 2ξωΦ + ω2

∫ t

t0

Φdt

)
+ Φ̇T

qσ

] (24)

The corresponding Newton-Raphson iteration scheme takes the form[
dgh (y)

dy

]
i

∆yi+1 = − [gh (y)]i

yi+1 = yi + ∆yi+1

(25)

As in the case of acceleration-based algorithms in Section 3.1, the iterative update of the formu-

lation multipliers σ in Eq. (10) can be carried out during the Newton-Raphson iteration, which

increases the algorithm efficiency. The system tangent matrix is obtained upon differentiation of

Eq. (22) with respect to the generalized coordinates q and the canonical momenta p as

[
dgh (y)

dy

]
=


dg1 (y)

dq

dg1 (y)

dp

dg2 (y)

dq

dg2 (y)

dp

 (26)

With the same assumptions that were used to derive the tangent matrix in Eq. (16), the expres-

sion of the four terms in the tangent matrix is

dg1 (y)

dq
∼= M + ΦT

qα

(
(1 + hξω) Φq +

h

2
(Φt)q +

hω2

2

(∫ t

t0

Φdt

)
q

)
(27a)

dg1 (y)

dp
∼= −

h

2
In×n (27b)

dg2 (y)

dq
∼= −

df

dq
− Φ̇T

qα

(
(1 + hξω) Φq +

h

2
(Φt)q +

hω2

2

(∫ t

t0

Φdt

)
q

)
(27c)

dg2 (y)

dp
∼= In×n (27d)

where In×n is the n × n identity matrix. The derivative of the forces vector with respect to the

positions in Eq. (27c) can be developed as

df

dq
= −K− 2

h
C (28)
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and the integral term in Eqs. (27a) and (27c) can be evaluated as follows

(∫ t

t0

Φdt

)
q

=

∫ t

t0

Φqdt ∼=
k+1∑
j=0

hΦqj (29)

Finally, the residual terms g1 and g2 after scaling can be expressed more compactly in the form

g1 =
h

2

[
Mq̇− p + ΦT

qσ + ΦT
qα

(
Φ̇ + 2ξωΦ + ω2

∫ t

t0

Φdt

) ]
(30a)

g2 =
h

2

[
ṗ− f − Φ̇T

qσ − Φ̇T
qα

(
Φ̇ + 2ξωΦ + ω2

∫ t

t0

Φdt

) ]
(30b)

The solution of the linear system in Eq. (25) required by the Newton-Raphson iteration

scheme can be carried out in an efficient way making use of the Schur complement. Instead of

assembling the 2n×2n leading matrix in Eq. (25) and solving the resulting system of equations,

the increment ∆qi+1 can be obtained as(
dg1

dq
− dg1

dp

(
dg2

dp

)−1 dg2

dq

)
∆qi+1 = −g1 +

dg1

dp

(
dg2

dp

)−1

g2 (31)

Once ∆qi+1 is known, the momenta increment ∆pi+1 can be found as

∆pi+1 =

(
dg2

dp

)−1(
−g2 −

dg2

dq
∆qi+1

)
(32)

As shown by Eqs. (27b) and (27d), terms dg1/dp and dg2/dp are scaled n×n identity matrices,

so Eqs. (31) and (32) become the simpler expressions

(
dg1

dq
+
h

2

dg2

dq

)
∆qi+1 = −g1 −

h

2
g2 (33)

and

∆pi+1 = −g2 −
dg2

dq
∆qi+1 (34)

Thus, the solution to the 2n× 2n system of equations in Eq. (25) can be obtained by solving the

n × n system in Eq. (33) and subsequently updating the momenta increment ∆pi+1 with Eq.

(34).
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4 Rank deficient Jacobian matrices and singular configurations

The application of the Lagrangian approach to the dynamics equations (1), together with the

differentiation of the kinematic constraints (1b) with respect to time, results in a system of linear

equations that can be written as follows

 M ΦT
q

Φq 0


 q̈

λ

 =

 f

−Φ̇qq̇− Φ̇t

 (35)

If the Jacobian matrix Φq is rank deficient, the leading matrix of system (35) becomes singular.

This means that an infinite set of values of the Lagrange multipliers λ are valid solutions of

the system and some additional assumptions must be made to choose one solution among all

the possible ones [23]. Rank deficient Jacobian matrices can be the consequence of introduc-

ing redundant kinematic constraints. In this case, the Jacobian matrix is usually rank deficient

during the whole motion of the system. Another possible cause is the existence of singular con-

figurations in the workspace. When the system reaches one of these singularities, the number of

degrees of freedom (DoF) suddenly increases and the Jacobian matrix undergoes a loss of rank.

All the algorithms presented in Section 2 are able to deal with rank deficient Jacobian ma-

trices. The leading matrices in Eqs. (5), (6), and (8) are all symmetric and positive-definite,

provided that an appropriate penalty factor α has been selected. Regarding the implementa-

tions in Newton-Raphson form in Section 3, this is only true in the case of the ALi3 formulation,

Eq. (19). The leading matrices in Eqs. (16) and (26) are not symmetric in the general case.

However, a rank deficient Jacobian matrix does not cause the algorithms to fail either. The use

of the penalty technique in the algorithms discussed in this paper is equivalent to assuming a

certain stiffness distribution within the system and this reduces the number of valid solutions

for λ to only one [17]. However, it has been confirmed by experience that they may still suffer

from numerical difficulties in the proximity of singular configurations.

4.1 Benchmark examples

Several multibody systems that feature redundant constraints and singular configurations can be

found in the IFToMM library of benchmark problems [21]. Among these, we have selected three

for the assessment of the dynamic formulations in Section 2. The first one is a six-link rectangu-
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lar Bricard mechanism (Fig. 1). This is a redundantly constrained, one-DoF mechanical system

frequently used as benchmark problem, e.g., [19]. The set of kinematic constraints which are

linearly dependent cannot be a priori identified, as it changes during motion. Therefore, redun-

dant equations cannot be simply eliminated from the constraint set Φ, and the Jacobian matrix

Φq is permanently rank deficient. However, the system does not reach any singular configuration

during its entire range of motion.

x

y

z
P0

P1

P2
P3

P4

P5

Figure 1: A six-link rectangular Bricard mechanism, a redundantly constrained multibody system without singular
configurations.

Two planar linkages were chosen as examples of systems that undergo singular configu-

rations: a slider-crank mechanism and a double four-bar linkage (Figs. 2 and 3). These were

already used in [2] to discuss the performance of augmented Lagrangian formulations in the

simulation of systems with singular configurations. Both are made up of rods of length l = 1

m with a uniformly distributed mass mb = 1 kg and a square cross section of width r = 0.1 m,

connected by revolute joints. Gravity (g = 9.81 m/s2) acts in the negative direction of the y-axis

in the three examples.

P2

P3

x

y

P1

Figure 2: A slider-crank mechanism.

The forward-dynamics simulation of the motion of the Bricard mechanism can be used to

show that the augmented Lagrangian formulations described in Sections 2 and 3 are able to

successfully deal with rank deficient Jacobian matrices derived from the presence of redundant

constraints. Conversely, numerical difficulties were observed in some cases during the simulation

14
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x

y

P0

P1

P2

P3

P4

P5

Figure 3: A double four-bar linkage.

of the slider-crank and the four-bar linkages when they were near a singular configuration.

4.2 Behaviour of the formulations in the neighbourhood of a singular configura-

tion

The slider-crank mechanism in Fig. 2 is in a singular configuration when its two rods are aligned

on the global y-axis. The linkage has one DoF during the rest of its motion, but at this configu-

ration a new degree of freedom instantaneously appears. The singular configuration is in fact a

bifurcation point, after which the system can continue its slider-crank motion or start to behave

as a simple pendulum with point P3 stopped at the global origin of coordinates. Both motions

are actually possible when the linkage is exactly in the singular configuration and momentarily

becomes a two-DoF system. The singular configuration for the four-bar linkage (Fig. 3) happens

when all the links are aligned on the global x-axis; again, we have a bifurcation point at which

three alternative motions are simultaneously feasible.

4.2.1 Change in the subspace of admissible motion in singular configurations

It can be useful to decompose the system velocities into its components contained in the sub-

spaces of admissible and constrained motion [7], [8], [24] to highlight the role of singular con-

figurations as bifurcation points. Given a mechanical system described with a set of n generalized

velocities q̇, the m kinematic constraints at the velocity level represent a velocity transformation

that can be used to define the subspace of constrained motion (SCM)

Φqq̇ = uc (36)
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where uc is a set of m velocity components with respect to a local basis of the SCM. The

dimension of the SCM is the rank of the Jacobian matrix Φq, so this subspace will be m-

dimensional if the kinematic constraints are linearly independent. The subspace of admissible

motion (SAM) complements the SCM. The system velocities can be decomposed into two com-

ponents as q̇ = q̇a + q̇c where q̇a is the set of generalized velocities admissible with the velocity-

level constraints in Eq. (3); q̇c is the velocity set which is not admissible with the constraints,

i.e. constraint violations.

The slider-crank example can be modelled with a set of three planar natural coordinates

qsc composed of the x- and y-coordinates of point P2, x2 and y2, and the x-coordinate of point

P3, x3. Two kinematic constraints, enforcing constant distances between the tips of the rods,

are necessary to ensure the correct motion of the assembly. The corresponding equations at the

velocity level are

Φ̇sc =

 2x2 2y2 0

2 (x2 − x3) 2y2 2 (x3 − x2)



ẋ2

ẏ2

ẋ3

 = Φsc
q q̇sc = 0 (37)

where Φsc
q is the Jacobian matrix that corresponds to the two constant-distance constraints. Let

us consider that at t = 0 link P1–P2 is at an angle φ = φ0 = π/4 with respect to the x-axis, and

that ẋ3 = −4 m/s. At time t = ts the system reaches a singular configuration, in which φ = π/2,

x2 = x3 = 0, and y2 = l m. For t < ts, the Jacobian matrix Φsc
q has rank two and any admissible

velocity set can be expressed as

q̇sc
a = η


1

−x2/y2

x3/ (x3 − x2)

 (38)

where η is a scalar. At t = ts, the system is in a singular configuration, and the Jacobian matrix

becomes

Φsc
q

∣∣
ts

=

 0 2l 0

0 2l 0

 (39)

which is a rank-1 matrix. The SCM for this instant is a one-dimensional subspace. Consequently,
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the SAM has dimension two. Among the several alternatives to parametrize this subspace a

possible one is

q̇sc
a |ts = η1


1

0

2

+ η2


1

0

0

 = η1q̇
sc
a1 + η2q̇

sc
a2 (40)

where η1 and η2 are scalar parameters. Vector q̇sc
a1 corresponds to the slider-crank motion of the

mechanism, while q̇sc
a2 represents a single pendulum motion with point P3 fixed at the origin.

The condition x2 = x3 makes both branches simultaneously possible, so the velocity vector q̇ of

the system can have components along both q̇sc
a1 and q̇sc

a2. However, when the system leaves the

singular configuration at t > ts it reverts to a one-dimensional SAM, which will be either the

slider-crank one compatible with q̇sc
a1 or the simple pendulum motion defined by q̇sc

a2, depending

on how the numerical integration process proceeded at t = ts.

This reasoning can be generalized to any one-DoF mechanical system. The introduction of an

extra DoF at a singularity momentarily expands the set of admissible velocities, which becomes

a linear combination of a velocity vector in continuity with the pre-existing system motion, q̇a1,

and a new one q̇a2 which is also compatible with the constraints. Both components are only

simultaneously admissible at the singular configuration; at this point q̇a = η1q̇a1 + η2q̇a2. No

matter which component defines the motion after the singularity, the other one will become

a violation of the velocity-level constraints (3). Augmented Lagrangian formulations based on

penalty approaches transform the constraint violations into constraint reactions, as shown in Eq.

(2). Accordingly, penalty-based formulations remove the velocity component along the no longer

admissible direction by introducing an impact when the system leaves the singular configuration.

The forward-dynamics simulation of the slider-crank motion starting from the singular con-

figuration supports the previous statements. As correctly pointed out in the literature, e.g., [2],

the simulation can be started from a singularity because the formulations in Section 2 are able

to find a solution for the dynamics equations even with a rank deficient Jacobian matrix. Here,

the penalty formulation in Eq. (5) was used with a penalty factor α = 107, parameters ω = 10

and ξ = 1, and the trapezoidal rule as integrator with a step-size h = 10−3 s. First, the initial

velocity was made proportional to q̇sc
a1 by choosing η1 = −2 m/s and η2 = 0. Afterwards, η2

was given different non-zero values and the simulation was repeated for each of them. Fig. 4

shows that introducing a component of q̇ along q̇sc
a2 gives rise to impact forces in the constraint
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Figure 4: y component of the reaction force at point P1 during motion of the slider-crank mechanism, starting from
a singular configuration, for different initial velocities.

reactions. Numerical experiments with the other formulations described in Section 2 showed

the same behaviour.
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Figure 5: x component of the reaction force at point P0 during motion of the four-bar linkage, showing impacts when
the system is near a singularity.

Moreover, the simulation of a 10 s motion of the four-bar linkage (Fig. 3) confirmed that

the reaction force in the x-direction at point P0 featured the same impact forces, as shown in

Fig. 5. To obtain these results, the ALi3 formulation with velocity and acceleration projections,

Eqs. (18)–(20), was used, with stringent convergence requirements to ensure that the constraint

violations at the configuration and velocity levels remained close to machine precision. Similar

force spikes can be observed in other publications in the literature, e.g., [9]. It should be stressed

that the velocity component along q̇a2 cannot be eliminated by the velocity projections at the

singular configuration, because it is not a violation of the constraints at that point. As expected,

these impacts are not present in the simulation of redundantly constrained mechanisms without

singular configurations, as in the case of the Bricard mechanism in Fig. 1.
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Figure 6: Mechanical energy of the slider-crank mechanism integrated with the explicit forward Euler method (h =
10−5 s) and the penalty formulation (α = 108, ω = 10, ξ = 1). A change of branch occurs at t = 2.17 s.

The impact forces above described introduce a series of undesirable effects in the simula-

tions if the numerical integrator and the formulation parameters are not properly selected. They

generate discontinuities in the mechanical energy of the system, as shown in Fig. 6. Sometimes

they can cause the mechanical system to undergo a change of branch when it leaves the singular

configuration. In this case, a discontinuity in the motion takes place and the system velocities

after the singularity are no longer in continuity with the pre-singularity motion compatible with

q̇a1, but with the secondary one defined by q̇a2. In extreme cases they may bring about the

failure of the simulation.

4.2.2 Effect of configuration-level constraint violations

The formulations in Sections 2 and 3 are rather robust and able to handle large impact forces

during the pass through singularity. Numerical simulations showed that η1 and η2 need be of

the same order of magnitude for a change of branch to take place in most cases. The exception

is the index-3 augmented Lagrangian formulation. For example, starting the simulation of the

slider-crank at the singular configuration with η1 = −1 m/s and η2 = −5 · 10−5 m/s results in

a pendulum motion after the singularity, with α = 109 and a step-size h = 10−3 s. Such values

of η2 are usually not reached in practice because the velocity projections keep this component

small during motion.

A violation of the configuration-level constraints, however, alters the expression of the Ja-

cobian matrix Φq and changes the definition of the constrained and admissible subspaces of

motion. A modification of the generalized coordinates not compatible with the constraints, ε,
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Figure 7: y component of the reaction force at point P1 during motion of the slider-crank mechanism, starting from
a singular configuration, for different initial configuration-level constraint violations ε.

makes the Jacobian matrix become Φ̃q = Φq (q + ε). In general, Φ̃qq̇ 6= 0, even though the

system velocities have theoretically correct values. This means that part of the admissible gen-

eralized velocities will be treated as velocity-level constraint violations, giving rise to the impact

forces described in Section 4.2.1. Fig. 7 shows these impact forces in the simulation of the

slider-crank mechanism with the penalty formulation and the same parameters of Section 4.2.1,

starting from the singularity. A configuration error was introduced in the initial position by mak-

ing x2 = −ε and x3 = ε. Simulation showed that the effect of configuration-level constraint

violations is much more critical than its velocity-level counterpart. For instance, an initial error

in the order of ε = 10−2 m is enough to trigger a branch change with η2 = 0.

5 Numerical results
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Figure 8: Constraint violations of the four-bar linkage during simulation with the augmented Lagrangian method and
the trapezoidal rule in fixed point scheme (α = 107, ξ = 1, h = 1 ms). Parameter ω was set to ω = 25 (left plot) and
ω = 250 (right plot).
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The existence of singular configurations is not the result of a deficient modelling or the wrong

choice of simulation strategy, but a property of some mechanisms. Even though a simulation

algorithm be able to deal with rank deficient Jacobian matrices, the enlargement of the SAM

in the singularity points described in Section 4.2.1 remains. In fact, all the methods mentioned

in Sections 2 and 3 have been found to experience numerical problems and fail near singular

configurations in the simulation of the slider-crank mechanism and the double four-bar linkage

for certain combinations of their parameters.

The natural motion of a mechanism would keep the continuity of the velocities during the

pass through the singularities. In other words, the ideal simulation of the system motion should

not introduce impact forces in the reactions at the singular configurations. Conversely, large val-

ues of these impact forces may result in discontinuities in the mechanical energy, which can lead

to changes of branch or the simulation failure if the algorithm is unable to recover from the im-

pact. Keeping the violation of kinematic constraints low, especially the configuration-level ones,

is a way to reduce the magnitude of the impact forces. This is in accordance with guidelines pro-

vided in the literature, e.g., [2], [5]. A simulation algorithm based on a penalty approach must

therefore meet two requirements: good constraint stabilization, especially at the configuration

level, and robustness to withstand impact forces. A correct adjustment of the penalty factor α

and the stabilization parameters ξ and ω is necessary to satisfy these requirements. In both the

penalty and the augmented Lagrangian formulations, the constraint reactions are proportional

to Φ̈, Φ̇, and Φ as shown in Eq. (2). Increasing ω assigns more weight to the configuration-level

constraint violations, which helps to overcome singular configurations.

Figure 8 exemplifies the effect of parameter ω on the constraint violations during the motion

of the four-bar linkage, simulated with the augmented Lagrangian method and the trapezoidal

rule. The left plot on this figure was obtained with ω = 25. Increasing this parameter up to ω =

250 results in a better satisfaction of the configuration-level constraints, but it can be detrimental

for the fulfilment of the velocity- and especially acceleration-level ones. The modification of ω

did not significantly alter the elapsed time in the computations. To achieve a similar effect with

the Hamiltonian formulations in Sections 2.3 and 3.2, term 2ξωΦ must be predominant in Eq.

(10), which can be achieved raising the value of ξ.
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5.1 Performance comparison

Forward-dynamics simulations of the motion of the four-bar linkage and the slider-crank mech-

anisms were carried out to compare the different formulations in terms of efficiency and robust-

ness. The numerical experiments were performed in an Intel Core i7-4790K at 4.00 GHz. The

methods were implemented in C++ making use of the library routines described in [20].

Table 1: Best performances obtained with each formulation in a 10 s simulation of the slider-crank mechanism
motion, for a maximum energy drift of 0.1 J. The forward Euler integration formula was used in all cases.

elapsed time
Formulation Eqs. Integrator h (ms) α ω ξ total (s) per time-step (µs)

Penalty (5) Explicit 0.02 108 25 1 1.53 3.1

Aug. Lagrangian (6) Explicit 0.01 107 10 1 3.83 3.8

Penalty (5) Semi-Implicit 2 108 250 1 0.02 4.0

Aug. Lagrangian (6) Semi-Implicit 2 108 250 1 0.03 6.0

Aug. Hamiltonian (8)–(10) - 2 109 0.1 1000 0.02 4.0

Table 1 compares the performance of the formulations mentioned in Section 2 in a 10 s

simulation of the slider-crank mechanism motion. Initially, rod P1 − P2 is at an angle ϕ = 45◦

with respect to the x-axis and the velocity of point P3 is ẋ3 = −4 m/s. The single-step explicit and

semi-implicit forward Euler formulas were used as integrators. For the penalty and the index-1

augmented Lagrangian formulation, ω and ξ were automatically set to ξ = 1/
√

2 and ω =
√

2/h

in a first approach [15]. These parameters were subsequently tuned to improve the simulation

efficiency. A variation range was defined for parameters α, ω, and ξ. A grid of sampling points

was built dividing these ranges in fixed intervals. A simulation of the test problem motion was

run for each sampling point, keeping the integration step-size as large as possible while satisfying

the requirement of keeping the mechanical energy drift below 0.1 J. Fine tuning was performed

for those combinations of parameters that performed best. This proved to be a time-consuming

process with the penalty formulation, as energy conservation was noticeably affected by changes

in the formulation parameters. On the other hand, the augmented Lagrangian method showed

a much more consistent behaviour for a wider range of the parameters. Parameters ω and ξ

of the Hamiltonian formulation were initially set to penalize the configuration-level constraint

violations at least 200 times more than the other terms in Eq. (10), and adjusted following a

method similar to the one used in the Lagrangian case.

Results showed that the numerical integrator plays a key role in the efficiency of the simula-

tions. The penalty and index-1 augmented Lagrangian methods required integration step-sizes
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as low as 10−5 s to meet the energy requirement with the explicit integration formula; the use of

the semi-implicit integrator enabled the use of 2 · 10−3 s step-sizes. The Hamiltonian algorithm

was also able to complete the integration with h = 2 · 10−3 s. It is worth noting that the Hamil-

tonian equations are first-order, so the explicit and semi-explicit integration schemes reduced to

the same formula in this case.

Table 2: Best performances obtained with each formulation in a 10 s simulation of the slider-crank mechanism
motion, for a maximum energy drift of 0.001 J. The selected integrators were the forward Euler (FE) and the semi-
implicit forward Euler (FE, SI) methods, the trapezoidal rule (TR), and the trapezoidal rule with Newton-Raphson
implementation (TR, NR).

elapsed time
Formulation Integrator Eqs. Tolerance h (ms) α ω ξ total (s) per time-step (µs)

Penalty FE, SI (5) − 0.02 108 250 1 1.57 3.1
Aug. Lagrangian FE, SI (6) − 0.02 107 250 1 1.95 3.9

Aug. Hamiltonian FE (8)–(10) − 0.02 109 0.1 1000 2.10 4.2
Penalty TR (5) 10−7 0.1 107 1000 1 0.33 3.3

Aug. Lagrangian TR (6) 10−7 1 107 200 1 0.06 6.0
Aug. Hamiltonian TR (8)–(10) 10−7 2 109 0.1 2000 0.13 26.0
Aug. Lagrangian TR, NR (15)–(17) 10−7 1 107 500 0.7 0.07 7.0

Aug. Hamiltonian TR, NR (25)–(34) 10−7 2 108 1 105 0.14 28.0
ALi3 TR, NR (18)–(20) 10−5 1 109 − − 0.07 7.0

Next, the simulations were repeated for a maximum admissible energy drift of 0.001 J, as

required by the problem definition in [21]. It was impossible to meet this requirement with

the acceleration-based Lagrangian algorithms using the explicit forward Euler integrator with

reasonable step-sizes. The semi-implicit forward Euler and the trapezoidal rule were used as

alternatives. This latter integrator introduced an iterative process in each time-step. It was ob-

served that this process may diverge in the proximity of a singularity. This required the detection

of divergence and the interruption of the iteration for the simulation to proceed successfully in

some cases. Results are summarized in Table 2. Similar results were obtained for a 10 s sim-

ulation of the motion of the double four-bar linkage and are shown in Table 3. In the initial

configuration of this mechanism, rods P0 − P1, P2 − P3, and P4 − P5 were parallel to the y-axis,

and the velocity of points P1, P3, and P5 was ẋ1 = ẋ3 = ẋ5 = 1 m/s. Both tables include the in-

tegrator tolerance when implicit integrators are used, i.e., the stopping criterion for the iteration

process. This tolerance was defined as the maximum admissible norm of the difference between

the generalized coordinates obtained in two consecutive iterations of the solver.

Numerical experiments confirmed that a robust and efficient performance in the simulation

of systems with singular configurations depends not only on the selected dynamic formulation

and the tuning of its parameters, but also on the numerical integration expressions. Forward
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Table 3: Best performances obtained with each formulation in the 10 s simulation of the double four-bar linkage
motion, for a maximum energy drift of 0.1 J. The selected integrators were the forward Euler (FE) and the semi-
implicit forward Euler (FE, SI) methods, the trapezoidal rule (TR), and the trapezoidal rule with Newton-Raphson
implementation (TR, NR).

elapsed time
Formulation Integrator Eqs. Tolerance h (ms) α ω ξ total (s) per time-step (µs)

Penalty FE (5) − 0.02 107 30 1 2.50 5
Aug. Lagrangian FE (6) − 0.005 107 10 1 12.21 6

Penalty FE, SI (5) − 1 108 400 1 0.06 6
Aug. Lagrangian FE, SI (6) − 1 108 400 1 0.08 8

Aug. Hamiltonian FE (8)–(10) − 1 109 0.1 1000 0.07 7
Penalty TR (5) 10−7 5 108 25 1 0.04 20

Aug. Lagrangian TR (6) 10−7 5 108 20 1 0.05 25
Aug. Hamiltonian TR (8)–(10) 10−7 5 109 0.1 1000 0.10 50
Aug. Lagrangian TR, NR (15)–(17) 10−7 5 107 100 1 0.05 25

Aug. Hamiltonian TR, NR (25)–(34) 10−7 5 108 1 104 0.08 40
ALi3 TR, NR (18)–(20) 10−7 10 109 − − 0.02 20

Euler formulas performed acceptably well when the admissible energy drift was relatively high,

∆E = 0.1 J; when penalty and Lagrangian formulations were used, choosing a semi-implicit

integration scheme over an explicit one considerably improved simulation efficiency. Implicit,

iterative integrators showed a clearly superior performance when the maximum admissible drift

was brought down to 0.001 J.

5.2 Fixed point and Newton-Raphson implementations

Tables 2 and 3 also show that the efficiency of the Newton-Raphson implementations is com-

parable to that of their fixed point counterparts in the studied examples. However, the former

showed a much more robust response to variations in the formulation parameters during the

same tests. This is a significant advantage, because tuning up their values to obtain optimum

performance can be a time-consuming and cumbersome task.

As an example, Fig. 9 shows the energy drift obtained during the simulation of the four-bar

linkage motion with the penalty formulation and the trapezoidal rule in fixed point scheme. The

penalty factor α was varied in a range from 106 to 108.5. Parameter ω was selected as variable

too because it determines the relative weight of the configuration-level constraint violations Φ

in the penalty system of Eq. (2). Parameter ξ was set to 1. White dots in the plot indicate that

the energy error was larger than 0.125 J, and so the simulation failed to meet the maximum

energy drift requirement. For an integration step-size h = 5 ms, only values from a small region
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Figure 9: Energy drift during the simulation of the double four-bar linkage, with the penalty formulation, for different
values of the penalty factor α and parameter ω. The trapezoidal rule in fixed point scheme was used as integrator,
with h = 5 ms.

in the α− ω plane resulted in a valid simulation.
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Figure 10: Energy drift during the simulation of the double four-bar linkage, with the augmented Lagrangian formu-
lation, for different values of the penalty factor α and parameter ω. The trapezoidal rule in fixed point scheme was
used as integrator, with h = 5 ms.

Replacing the penalty formulation with the augmented Lagrangian algorithm in Eq. (6) en-

larged the range of penalty factors α with which correct simulations were obtained, as shown in

Fig. 10. Still, ω had to be carefully adjusted.

The use of the augmented Lagrangian method in Newton-Raphson form made it possible to

meet the energy drift requirement for a wider range of the α and ω parameters, as shown in Fig.

11. With this approach, the simulation behaviour was practically independent from the penalty

factor within the studied range. Similar plots were obtained in the simulation of the slider-crank

example.
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Figure 11: Energy drift during the simulation of the double four-bar linkage, with the augmented Lagrangian formu-
lation, for different values of the penalty factor α and parameter ω. The trapezoidal rule in Newton-Raphson scheme
was used as integrator, with h = 5 ms.
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Figure 12: Energy drift during the simulation of the double four-bar linkage, with the augmented Hamiltonian
formulation, for different values of the penalty factor α and parameter ξ. The trapezoidal rule in fixed point scheme
was used as integrator, with h = 5 ms.

The formulation based on Hamilton’s equations described in Section 2.3 also benefits from

a Newton-Raphson iteration scheme such as the one described in Section 3.2. The adjusted

parameters in this case were the penalty factor α and ξ, which determines the relative weight

of Φ in Eq. (10). Parameter ω was set to 1. The energy drifts obtained in the simulation of

the four-bar linkage with the fixed point iteration scheme are shown in Fig. 12. Based on the

obtained results, it is difficult to predict whether other pairs of α and ξ will result in a successful

simulation. It was observed that the energy drop during the pass through singularities did not

remain consistent during some simulations. Significant differences took place as the result of

slight variations in the simulation conditions, such as the proximity of the system configuration

to the actual singular configuration in the sampled time-steps. Conversely, the Newton-Raphson
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Figure 13: Energy drift during the simulation of the double four-bar linkage, with the augmented Hamiltonian
formulation, for different values of the penalty factor α and parameter ξ. The trapezoidal rule in Newton-Raphson
scheme was used as integrator, with h = 5 ms.

implementation showed a more robust and predictable behaviour. In this case, the valid region

is clearly defined, as can be seen in Fig. 13, even though the energy drift is somewhat larger in

most cases. The time history of the energy drifts obtained with the two different approaches are

compared in Fig. 14 for the case in which α = 108, ω = 1, and h = 5 ms. The fixed point iterative

scheme resulted in noticeable energy drops during the pass through some singularities, even in

simulations that met the maximum energy drift requirement. Simulations with Newton-Raphson

scheme showed much more consistent results for values of ξ within the region of validity in the

α− ξ plane.
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Figure 14: Energy drift of the four-bar linkage during simulation with the augmented Hamiltonian method and the
trapezoidal rule (α = 108, ω = 1, h = 5 ms) for different values of ξ. Results are shown for fixed point (left plot)
and Newton-Raphson (right plot) iteration schemes.

Finally, the augmented Lagrangian formulation of index-3 with velocity and acceleration

projections (ALi3) featured a remarkably robust performance in the studied examples. The use

of mass-orthogonal projections ensured the satisfaction of constraints at the velocity and accel-

eration levels and removed the need to use Baumgarte stabilization. The penalty factor α thus
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became the only parameter that needed to be tuned up. Simulation results did not change no-

ticeably for a wide range of this parameter. In the case of the four-bar linkage with h = 5 ms, the

penalty factor could be varied between α = 106 and α = 1015 without degrading the simulation

results. Additionally, this was achieved without a negative impact on efficiency.

6 Conclusions

Penalty-based Lagrangian methods for multibody system dynamics can deal with rank deficient

Jacobian matrices but still suffer from numerical difficulties near singular configurations. In this

research, the source of these problems was determined to be the sudden enlargement of the

subspace of admissible motion at the singular points, which introduces impact forces in the con-

straint reactions. This, in turn, can result in sudden variations of the mechanical energy and

eventually cause the simulation to fail. The behaviour of the numerical simulations parallels the

one that a physical mechanical system would exhibit in similar conditions: impacts in the joint

reactions would be developed in the proximity of singularities due to inaccuracies in manufac-

turing, clearances, and the deformation of its links.

In this work, benchmark problems were used to compare several augmented Lagrangian

formulations in terms of their ability to carry out an efficient simulation while attempting to keep

the mechanical energy of the system constant. Implementations of these algorithms in a Newton-

Raphson iterative scheme were developed and tested as well. It was found that the selection of

the numerical integrator and the tuning of the formulation parameters play a key role in the

robustness and accuracy of the simulations. In particular, iterative integrators may diverge at

the singularity, and so provisions must be made to stop the iteration process if this happens. In

all cases, keeping the constraint violations at the configuration level under a certain threshold

was required to obtain a successful simulation. This can constitute a guiding principle in the

adjustment of the formulation parameters. Moreover, the formulations must be robust enough

to deal with large impact forces. The algorithms in Newton-Raphson form were less sensitive

to changes in the formulation parameters, and their efficiency was comparable to their fixed

point iteration counterparts in the simulation examples selected in this research. Among these,

the augmented Lagrangian formulation of index-3 with velocity and acceleration projections

showed the best behaviour in the studied cases.
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[17] González, F., Kövecses, J.: Use of penalty formulations in dynamic simulation and analysis

of redundantly constrained multibody systems. Multibody System Dynamics 29(1), 57–76

(2013). DOI 10.1007/s11044-012-9322-y

30



Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics
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