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ABSTRACT The hybrid design of precoding schemes for millimeter-wave communications allows exploit-
ing the gains by using large antenna array with an affordable hardware cost and power consumption. In this
work, we present a novel design strategy based on limiting the rank of the fully digital solutions before
their decomposition into the analog and digital baseband components. This rank constraint on the digital
formulation leads to a joint precoding and scheduling scheme where the number of allocated streams is
limited according to the hardware constraints. In this way, the proposed approach can significantly reduce
the performance losses caused by the direct decomposition of the unconstrained digital precoders. The
resulting rank-constrained problems for the considered scenario are not convex and difficult to sort out.
However, we propose several algorithms to compute the rank-constrained digital solutions with the help of
the uplink-downlink duality for the achievable sum-rate. The obtained results show that this strategy achieves
considerably higher sum-rates regardless of the channel conditions or available hardware resources.

INDEX TERMS Hybrid transceiver, Massive MIMO, mmWave communications, rank-constrained
optimization.

I. INTRODUCTION
The fifth generation of cellular communications (5G) has
been developed to satisfy challenging requirements in terms
of traffic data, ultra-low latency and high transmission rates.
For this reason, one of the key technologies proposed for the
development of the 5G standard is the use of millimeter-wave
(mmWave) [1]–[4]. However, these communications present
a large attenuation and path losses because of using small
wavelength signals [5], [6]. These effects can be mitigated
by combining mmWave transmissions with the use of large
antenna arrays at both transmission and reception [7]. Unfor-
tunately, conventional massive Multiple-Input and Multiple-
Output (MIMO) schemes lead to an unaffordable hardware
cost and power consumption, since one dedicated radio fre-
quency (RF) chain operating at mmWave frequencies is nec-
essary at each antenna [5], [8], [9].

An alternative approach consists of considering a
hybrid architecture where the RF processing is performed
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considering a limited number of RF chains, while the
diversity gains provided by the massive MIMO schemes are
exploited with digital baseband processing [10]–[12]. There
exist different alternatives for implementing the RF stage,
such as the use of switches, phase shifters or lens [8], [13],
as well as different connection structures [14]–[16].

In this work, we focus on massive MIMO hybrid mmWave
systems where all the RF chains are connected to all the
antennas. In this setup, two major approaches have been
considered in the literature:

1) The hybrid precoders/combiners are specifically
designed according to some performancemetric. In this
case, the RF vectors are usually chosen from a finite
codebook, typically maximizing the Signal-to-Noise
Ratio (SNR). Next, the baseband matrices are opti-
mized to maximize the considered metric [17]–[21].
This strategy relies on the baseband precoders to cancel
the interference and performs poorly in certain scenar-
ios since the degrees of freedom available for removing
the interference are limited [22].
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2) An unconstrained digital solution is first computed, and
then a factorization algorithm is proposed to design
a hybrid precoder that approximates these solution
while fulfilling the hardware constraints. In the lit-
erature, we can find a huge variety of approaches
aiming at reducing the gap between the performance
obtained with the digital solution and the one achieved
using the corresponding hybrid scheme [15], [23]–[28].
Although these works address the factorization prob-
lem from different point of view, all of them aim at the
minimization of the Frobenius norm for the difference
between the unconstrained digital precoder and the
hybrid approach.

In general, hybrid precoding provides suboptimal per-
formance with respect to fully digital solutions due to the
additional constraints imposed by the hardware restrictions.
However, it was show in [29] that if the number of RF chains
is twice the total number of allocated data streams, a hybrid
precoding achieves the same performance as the fully digital
solution. This condition can be fulfilled as long as the number
of users is small. Nevertheless, the number of required RF
chains is usually unaffordable for communication scenarios
with a large number of users. This is because digital precoder
designs serve as many users as possible to maximize the
achievable sum-rate.

An alternative would be to incorporate an appropriate
scheduling strategy to limit the number of users according
to the hardware resources. However, traditional schedul-
ing approaches focus on maximizing the system perfor-
mance by selecting the best configuration of users at each
time, but it does not impose limitations on the number
of served users or allocated streams [30]–[32]. Moreover,
these approaches generally assume single-antenna users and
a purely digital design. Thus, they cannot be applied directly
to MIMO hybrid architectures. An exception is the work
in [33], where the number of RF chains is taken into account
in the design of the hybrid precoder and the corresponding
implicit scheduling. However, this approach presents some
issues. First, it again assumes single-antenna receivers which
leads to allocating one stream at most to each active user, thus
limiting the achievable performance. The proposed algorithm
starts from the unconstrained precoding solution and then
reduces the number of served users by removing some of
them sequentially until the hardware constraints are satisfied.
This approach is suboptimal since the precoding design and
the posterior scheduling are performed at separate stages.
Finally, the digital baseband precoder is designed according
to the Zero-Forcing criterion. As aforementioned, this solu-
tion is unfeasible for some scenarios [22].

In this work, we focus on the design of a joint hybrid
precoding and scheduling scheme for the downlink of mas-
sive MIMO mmWave systems. In the proposed approach,
we first formulate an optimization problem for obtaining a
digital precoding matrix with the desired rank. Next, some
factorization algorithm can be applied to decompose the rank-
constrained digital precoder into its corresponding RF and

baseband components. This approach allows mitigating the
considerable performance losses of the traditional solutions,
which directly factorizes the unconstrained digital precoder.
This improvement is motivated by the limitation on the rank
of the digital solution that restricts the the number of allocated
streams, thus working as a scheduling operation. Hence, our
approach leads to a joint scheduling and precoding design
adequate for a hybrid decomposition. This fact eventually
results in larger achievable sum-rates.

Most common approaches to solve general optimization
problems including the non-convex rank constraint are not
specially suitable for our scenario, e.g., alternating direction
method of multipliers (ADMM) [34], [35] or approximations
based on the nuclear norm [36], [37] present convergence
issues, whereas iterative rank minimization (IRM) [38] fol-
lows a general formulation which does not exploit the prop-
erties of the formulated problem. Accordingly, we propose
two algorithms to compute the joint scheduling and digital
precoding solution.

Hence, the main contributions of this work can be
summarized as:

• A novel approach for the design of hybrid precoders in
the downlink of massive MIMO mmWave schemes is
proposed. The incorporation of rank constraints in the
precoder design also enables an effective scheduling for
this scenario, thus considering the number of available
RF chains. The resulting joint precoding and scheduling
scheme is able to reduce the losses of the traditional
approach based on directly factorizing unconstrained
digital solutions.

• Two particular algorithms are proposed for efficiently
computing the rank-constrained digital solutions. These
algorithms aim at exploiting the structure of the resulting
optimization problem for the considered scenario.

A. NOTATION
Bold lower-case and upper-case letters are used for vec-
tors and matrices, respectively, while regular letters denote
scalars. For a given matrix A, AT and AH represent its trans-
pose and conjugate transpose, respectively, whereas [A]i,j is
the element in the i-th row and j-th column of matrix A. The
operator diag(·) constructs a diagonal matrix with the argu-
ments in its main diagonal and ‖A‖F represents the Frobenius
norm of a matrix. The operator tr(·) computes the trace of
the argument and E[x] is the expectation of the random
variable x.

II. SYSTEM MODEL
Let us consider the downlink of a cellular system where a
base station (BS) equipped with NT transmit antennas aims
at communicating to U non-cooperative mobile users (MU).
Each MU has the same number of receive antennas, NR,
to acquire the symbols from the communication channel.
As introduced, the hardware and consumption requirements
for this setup significantly increases as the number of transmit
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and receive antennas grows. For this reason, the number of
RF chains at the BS is limited to LBS. Nevertheless, our
approach is valid for realistic scenarios where the number
of potential users is significantly larger than the number of
available RF chains. Let Ns,u be the number of data streams
that are independently and simultaneously sent to user u ∈
{1, 2, . . . ,U}. Hence, the total number of transmitted streams
is Ns =

∑U
u=1 Ns,u. Let su ∈ CNs,u be the data vector for the

u-th user, with su ∼ NC(0, INs,u ) and E[susHj ] = 0 for u 6= j.
These data streams are first preprocessed at the BS using
an appropriate linear precoding scheme and then transmitted
over the common channel. Therefore, the signal received at
each MU can be expressed as

xu = Hu

U∑
i=1

P isi + nu, (1)

where Hu ∈ CNR×NT represents the MIMO channel
matrix response for the u-th user, P i ∈ CNT×Ns,u , i ∈
{1, 2, . . . ,U}, represents the users precoding matrices and
nu ∼ NC(0, σ 2

n INR ) is the additive white Gaussian noise
(AWGN) for the u-th user.We assume a sum-power constraint
at transmission, i.e.,

∑U
i=1 tr(P iP

H
i ) ≤ Ptx, and define the

system SNR as η = Ptx/σ 2
n .

The limitations imposed by the hardware at the BS can be
circumvented by considering a hybrid design of the transmit
precoders Pu, u ∈ {1, 2, . . . ,U}, where this precoding opera-
tion is split into two different phases: a baseband one different
for each user and a RF one common to all users. Hence,
the precoder matrices can be computed as Pu = PRFPuBB,
where PuBB ∈ CLBS×Ns,u is the baseband precoder for the
u-th user and PRF ∈ CNT×LBS the common RF precoder.
Since the RF precoders are implemented using analog phase
shifters, their entries are restricted to have constant modulus,
i.e., |[PRF]i,j|2 = 1, ∀ i, j. According to this hybrid design,
(1) is rewritten as

xu = Hu

U∑
i=1

PRFP iBBsi + nu. (2)

We next assume that the downlink transmission uses super-
position coding with successive interference cancellation.
Therefore, assuming Gaussian signaling and optimal decod-
ing, the system model in the downlink yields the following
achievable sum-rate for the u-th user [15], [18], [19]

RDLu = log2 det
(
INs,u + P

H
uH

H
u Z
−1
u HuPu

)
, (3)

with Zu =
∑U

i>uHuP iPH
i H

H
u + σ 2

n INR . Henceforth, for
fixed ordering, the rate expression in (3) only depends on the
transmit covariance matrices Qu = PuPH

u .
Considering the described scenario, the objective of this

work is to provide an efficient hybrid design of the transmit
covariance matrices Qu, u = {1, 2, . . . ,U}, in order to max-
imize the achievable sum-rate for the described communica-
tion system. In particular, we present a novel approach based
on restricting the rank of the digital solution to mitigate the

impact of decomposing the precoders into their correspond-
ing baseband and analog components.

A. CHANNEL MODEL
We consider the geometric channel model [23], [39]. The
MIMO channel response for the u-th user is given by

Hu =

√
NTNR

Np

Np∑
l=1

αu,laR(φu,l)aHT (θu,l), (4)

where Np is the number of channel paths, αu,l ∼ NC(0, 1) is
the channel gain for the l-th path, and aR(φu,l) and aT(θu,l)
are the steering vectors for the MU and the BS, respectively.
For simplicity, we consider uniform linear arrays (ULAs)
at both ends of the communication link but the proposed
method directly applies to other array configurations. Thus,
the transmit steering vector assuming inter-antenna distance
equal to half of the wavelength andAngle of Departure (AoD)
θu,l is

aT(θu,l) = [1, e−jπ sin θu,l , . . . , e−jπ sin θu,l (NT−1)]T . (5)

At reception, the expression for aR(φu,l) with Angle of
Arrival (AoA) φu,l is similar to that in (5) and omitted for
brevity.

B. DOWNLINK-UPLINK DUALITY
The calculations of the optimal capacity region for the general
MIMO Broadcast Channel (BC) and an arbitrary number of
users is not a trivial problem because it is based on the use
of dirty paper techniques and, consequently, it implies non-
convex formulations. Nevertheless, [32] shows that the BC
dirty paper region is exactly equal to the capacity region of
the dualMIMOMultiple Access Channel (MAC) considering
the same sum-power constraint in both scenarios. This duality
between the downlink and the uplink is also satisfied when
considering the achievable sum-rate metric. Hence, we can
maximize the achievable sum-rate in the dual MAC in an
affordable way, and then exploit this duality to determine the
optimal transmit covariance matrices for the BC.

Let us now introduce the system model for the dual
uplink considering channel reciprocity, i.e., HH

u is the chan-
nel response for the u-th user in the uplink. The individual
achievable rates are given by [32]

RULu = log2 det
(
INT +9−1u HH

u TuT
H
uHu

)
, (6)

with 9u =
∑U

i<uH
H
i T iT

H
i H i + σ

2
n INT the interference plus

noise matrix. The matrices T i correspond to the precoding
schemes employed for the users in the dual uplink model.
Therefore, the achievable sum-rate in the uplink reads as

U∑
u=1

RULu =
U∑
u=1

log2 det
(
INT +9−1u HH

u TuT
H
uHu

)
.

Note that this function is concave on the transmit covariance
matrices Su = TuTH

u . Furthermore, it is bounded by
U∑
u=1

RULu ≤ log2 det

(
INT +

U∑
u=1

HH
u SuHu

)
. (7)
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In addition, according to the BC-MACduality [32], wewill
determine the optimal transmit covariance matrices Su in the
dual uplink using the concave expression in (7), and obtain
from Su the corresponding transmit covariance matrices, Qu,
in the downlink.

In particular, the BC-MAC duality establishes that RULu =
RDLu ,∀u, with

∑U
u=1 tr(Qu) ≤

∑U
u=1 tr(Su), as long as the

transmit covariance matrices satisfy the relationship Qu =
1uSu1H

u , where 1u represents the matrices for the uplink-
downlink conversion. By defining the matrices

Au = INR +

u−1∑
i=1

HuQiH
H
u ,

Bu = INT +

U∑
i=u+1

HH
i SiH i, (8)

the matrices for the uplink-downlink conversion read as

1u = B−1/2u FuGH
u A

1/2
u , (9)

with the singular value decomposition (SVD) Fu6uGH
u =

B−1/2u HH
u A
−1/2
u , Fu ∈ CNT×NR , 6u ∈ CNR×NR and

Gu ∈ CNR×NR .

III. PROBLEM FORMULATION
As commented, since the objective is to maximize the achiev-
able sum-rate in the downlink considering a sum power con-
straint, the problem formulation can be expressed as

max
Pd

U∑
u=1

RDLu s.t. ‖Pd‖
2
F ≤ Ptx, (10)

where the individual rates for the downlink are given by (3).
Note that the overall precoding matrix Pd is introduced for
simplicity and stacks the precoders corresponding to all users,
i.e., Pd = [P1,P2, . . . ,PU ] ∈ CNT×Ns .
The above equation corresponds to the traditional formula-

tion for the digital design of the precoder matrices, i.e., with-
out considering hybrid precoding. In our particular scenario,
the above problem is transformed into

max
PRF,PBB

U∑
u=1

RDLu

s.t. ‖PRFPBB‖
2
F ≤ Ptx,

|[PRF]i,j| = 1, ∀i, j, (11)

with the overall baseband precoding matrix PBB =

[P1
BB, . . . ,P

U
BB] ∈ CNRF×Ns . This formulation requires to

consider constant-modulus constraints in the entries of PRF
due to the use of phase shifters in the implementation of
the common analog RF precoder. Unfortunately, these con-
straints make the resulting problem very difficult to deal with.
Prior art considered two main approaches to overcome

these restrictive constraints: 1) the problem is first solved
without the analog restrictions and, next, the RF and baseband
precoders are designed to approximate such solution; and

2) the problem (11) is directly solved for a given met-
ric or setup, and the hybrid solution is rigid. However, these
strategies are highly dependent on the structure of the digital
precoding matrix Pd, leading to poor results in general in
comparison with the optimal solutions obtained from (10).
This performance loss is closely related to the fact that the
unconstrained digital solutions have a much larger rank than
the number of RF chains. Consequently, the decomposition
of Pd into its corresponding RF and baseband precoders
produces inaccurate approximations since the structure of Pd
is disregarded.
In this work, we propose an approach based on restricting

the rank of digital solution Pd to mitigate the impact of
the subsequent matrix factorization, required to deal with
the constraints in (11). Thus, the digital precoders are ini-
tially computed with an appropriate rank –depending on the
number of available RF chains– and the constrained-rank
solutions are then decomposed to obtain the RF and baseband
precoders in the hybrid design. Themathematical formulation
for the design of Pd is given by

max
Pd

U∑
u=1

RDLu

s.t. ‖Pd‖
2
F ≤ Ptx, rank(Pd) ≤ γLBS, (12)

where γ ≥ 1 is a parameter to balance between the uncon-
strained digital solution and the extreme case where Pd has
the same rank as the number of RF chains. This parame-
ter hence establishes a trade-off between the performance
of the digital solution and the accuracy of the subsequent
factorization operation. Another consequence of using (12) is
that the number of streams Ns and, accordingly, the number
of users U that can be served simultaneously is limited by
U ≤ Ns ≤ γLBS. Thus, the proposed problem formula-
tion jointly performs a scheduling strategy and a precoding
design. This behavior is similar to that in [40], [41], where
some users or streams are allocated with zero power to
enhance the performance metric but, in this case, we explic-
itly define the maximum number of allocated streams accord-
ing to the hardware constraints.
As observed, problem (11) can now be addressed as a two

stage problem and avoid the involved restrictions on the RF
precoders. First, we impose a maximum rank restriction on
the digital precoding matrix which in turn determines the
number of streams served. Thereby, the solutions obtained
from (12) will be rank-constrained which ensures that the
hybrid decomposition will provide more accurate results.
Although the rank constraint is again non-convex, several
approaches in the literature have been proposed to address
this kind of optimization problems.

IV. PROPOSED ALGORITHMS
In this section, we propose three different algorithms to
determine the rank-constrained solutions for the optimization
problem (12).
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A. LOW-RANK MATRIX APPROXIMATION (LRMA)
This simple and intuitive idea is based on the Eckart-Young
theorem. It consists in finding the matrix of rank LBS that
minimizes the Frobenius norm of the difference with respect
to the unconstrained solution. Recall that the Frobenius norm
was proposed as an approximation to maximize the achiev-
able rate [23]. Thus, the constrained-rank solution is obtained
from the following optimization problem

min
Pd
‖P∗ − Pd‖

2
F rank(Pd) ≤ LBS, (13)

where P∗ represents the digital solution disregarding the rank
constraint. Note that P∗ can be obtained by following the
approach in [32].

The low-rank approximation for the optimal digital pre-
coding matrix P∗ can be computed from the SVD of P∗ =
U6VH, where the values of the diagonal matrix 6 are
ordered in decreasing order σ1 ≥ σ2 ≥ σNT ≥ 0. In such a
case, the low-rank approximation is given by Pd = U6dVH,
where 6d is a diagonal matrix with elements [6d]i,i = σi for
i ≤ LBS and [6d]i,i = 0 for i > LBS. Note that this precoding
matrix will be the optimal solution for the above optimization
problem (see [42]). The precoding matrix Pd is afterwards
normalized to satisfy the sum-power constraint with equality.

B. PROXIMAL GRADIENT ALGORITHM (PGA)
This method is based on approximating the rank constraint
by the nuclear norm, which is its convex surrogate function.
However, the cost function in (12) is also not convex, but we
can apply the DL-UL duality explained in Section II-B to
replace the cost function in (12) by the expression of the sum-
rate for the dual uplink given by (7). In this case, the convex
reformulation based on the nuclear norm can be written using
the Lagrangian objective function

min
Pd,λ≥0,µ≥0

µ‖Pd‖∗ + λ
(
‖Pd‖

2
F − Ptx

)
− log2 det

(
INT +

U∑
u=1

HH
u 1uPuPH

u 1H
uHu

)
(14)

with Pd stacking the individual downlink precoders and 1u
being the matrices for the downlink to uplink conversion,
which are considered given and fixed. This approximation
does not establish an upper or a lower bound since a feasible
solution for (14) may not satisfy the rank constraint.

To solve (14), we employ the proximal gradient
method, which is commonly used to address non-smooth
optimization problems, such as in matrix completion opti-
mizations [43] or compressed sensing [44]. Let us split the
objective function in (14) as the sum of the nuclear norm and
the function g(Pd, λ), i.e., µ‖Pd‖∗ + g(Pd, λ), where

g(Pd, λ) = λ
(
‖Pd‖

2
F − Ptx

)
− log2 det

(
INT +

U∑
u=1

HH
u 1uPuPH

u 1H
uHu

)
(15)

Note that g(·) is differentiable on Pd. Thus, we can compute
the gradient as

∇g(Pd) =
[
dg(Pd, λ)

dP∗1
, . . . ,

dg(Pd, λ)
dP∗U

]
, (16)

with dg(Pd,λ)
dP∗u

provided in App. A. Contrary to g(·), the nuclear
norm is not a smooth function. Fortunately, its subdifferential
has been previously characterized as [45]

∂‖X‖∗ = UXVH
X ,

where X = UX6XVH
X . According to the Karush-Kuhn-

Tucker (KKT) conditions, Popt
d is an optimum solution to (14)

if and only if

µ∂‖Popt
d ‖∗ +∇g(P

opt
d ) = 0. (17)

In the following, we develop a fixed point algorithm similar
to that in [45]. Considering a step size s > 0, the former
expression can be rewritten as

sµ∂‖Popt
d ‖∗ − P

opt
d + P̄d, (18)

with the update P̄d = Popt
d − s∇g(Popt

d ). Interestingly, this
update is the optimal solution to the following problem

min
Pd

sµ‖Pd‖∗ + ‖Pd − P̄d‖
2
F. (19)

Observe that the Frobenius norm appears again as the metric
to determine the ‘‘closeness’’ to the unconstrained updates.

Finally, we define the matrix shrinkage operator (MSO) as

0sµ(X) = UX (6X −M)VH
X , (20)

where X = UX6XVH
X is a matrix of rank r , M =

s diag
(
µ, . . . , µ, σds , . . . ,

σr
s

)
, and the eigenvalues satisfy

σr ≤ . . . ≤ σd ≤ sµ. Hence, 0sµ(P̄d) provides the optimal
solution to (19) (see [45]). That is, the rank of the precoder
matrix Pd can be reduced from r to d by using the MSO in
(20), although the resulting rank d is not known beforehand
and depends on the parameterµ. This trade-off parameter has
to be chosen empirically.

The proposed algorithm based on the proximal gradient is
summarized in Table 1, and the proof of the convergence is
relegated to App. B.

The main advantages of the proximal gradient approach
are the following. It is flexible since we can substitute the
achievable rate with another criterion. In addition, it presents
a reasonable computational complexity. However, this algo-
rithm presents a drawback. It is highly dependent on the
starting point, as the proof of convergence leverages the use
of approximately fixed DL-UL conversion matrices 1u and
optimum precoding directions. Then, similar to other steepest
methods with locally optimum convergence, the initial step
size sini must be carefully chosen to avoid divergences for
certain initializations.
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Algorithm 1 Proximal Gradient Algorithm (PGA)
1: Initialize: `← 0, Pd(0)
2: repeat
3: f (`) = µ‖Pd(`)‖∗ + g(Pd(`), λ)
4: 1u(`)← Compute using (9) ∀u
5: Gu(`)← Determine as in (24)
6: ∇g(Pd(`)) Compute with (16), s← sini, f (`+ 1) = 0
7: while f (`) > f (`+ 1) do
8: Pcand = Pd(`)+ s∇g(Pd(`))
9: Pcand = 0sµ(Pcand)
10: Pcand =

√
Ptx

‖Pcand‖F
Pcand

11: f (`+ 1) = µ‖Pcand‖∗ + g(Pcand, λ)
12: s = s

2
13: end while
14: Pd(`+ 1) = Pcand
15: `← `+ 1
16: until ` = L

C. ITERATIVE TRACE ALGORITHM (ITA)
This method is based on replacing the rank constraint with
a convex approximation and defining an iterative algorithm
which solves the resulting convex optimization problems at
each iteration. In this case, the alternative problem formula-
tion is given by

max
{Su}Uu=1

log2 det(INT +

U∑
u=1

HH
u SuHu)

s.t.
U∑
u=1

tr(Su) ≤ Ptx,
U∑
u=1

tu(Su, Ū,1u) ≤
Ptx
α
, (21)

where we introduce tu(Su, Ū,1u) = tr(Ū
H
1uSu1H

u Ū) and
the downlink covariance matrix decomposition

Q =
U∑
u=1

1uSu1H
u = [UŪ]6[UŪ]H, (22)

with the basis U ∈ CNT×LBS , and Ū ∈ CNT×NT−LBS .
As observed, the proposed convex relaxation limits the

amount of transmit power leaked to the subspace of dimen-
sion NT − LBS spanned by the basis Ū . The parameter α
is again considered to establish a trade-off between rank-
limitation and high-performance solutions. Indeed, on the one
hand, the trace constraint is equivalent to a rank limitation
when α → ∞ while, on the other, we obtain the uncon-
strained uplink digital problem formulation when α = 1.
Using the convex relaxation in (21) we propose an algo-

rithmic solution to design covariance matrices satisfying the
rank constraint. Algorithm 2 summarizes the steps of the
proposed algorithm based on the trace constraint. At each
iteration `, the algorithm updates the matrices {1u(`)}Uu=1 by
using the uplink-downlink duality, and computes the matrices
Ū(`) by applying the eigen-decomposition in (22) to the
uplink covariance matrices obtained in the previous iteration,
i.e., {Su(`)}Uu=1. Next, (21) is solved with a semi-definite
program solver to update the uplink covariance matrices, i.e,

Algorithm 2 Iterative Trace Algorithm (ITA)

1: Initialize: `← 0, α(0)← α0, {Su(0)}Uu=1
2: repeat
3: 1u(`)← Compute using (9) ∀u
4: Q(`) =

∑U
u=1 1u(`)Su(`)1u(`)H

5: Ū(`)← Calculate with (22)
6: {Su(`+ 1)}Uu=1← Solve convex problem in (21)
7: α(`+ 1) = β(`)α(`)
8: `← `+ 1
9: until ` = L

{Su(` + 1)}Uu=1. Finally, the parameter α(`) is appropriately
updated.

Besides its intuitive nature, this algorithm also presents
good convergence properties under mild conditions. In par-
ticular, it is required to assume that the matrices to perform
the DL-UL conversion slowly vary in successive iterations,
i.e., 1u(` + 1) ≈ 1u(`). Due to the iterative computation
of the matrices 1u, this condition is difficult to show theo-
retically. However, we have experimentally verified that this
assumption holds in the considered scenarios. The proof is
provided in App. C.

D. ANALYSIS OF THE COMPUTATIONAL COMPLEXITY
In this section, we briefly analyze the computational com-
plexity of the three previously proposed algorithms. Table 1
shows the operation with the highest computational cost for
each algorithm and its corresponding complexity order. Thus,
the overall computational complexity of the algorithms will
be dominated by the operations in the table.

TABLE 1. Computational Complexity of the Different Algorithms.

Unlike the LRMA-based approach, ITA and PGA are
iterative methods and, therefore, the computational cost is
influenced by the number of iterations required to reach
convergence. In practice, we have checked that this number
of iterations is relatively small (about 10 iterations) which
means to incorporate a linear factor whose impact vanishes
as the number of transmit antennas grows.

As observed, the ITA approach has a complexity order
significantly higher than that of the other two algorithms.
This is because general-purpose solvers for semidefinite pro-
gramming (SDP) problems are based on interior point meth-
ods whose computational time complexity has an order of
O(mn2+n3) for a SDP problemwithm linear matrix inequal-
ities and n variables [46], [47]. PGA and LRMA present a
lower complexity order since it is mostly determined by a
matrix inversion and an SVD operation, respectively.
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V. SIMULATION RESULTS
In this section, we present the results obtained in different
computer simulations carried out to evaluate the performance
of the proposed approach and the different optimization
algorithms.

We consider a downlink setup with a BS equipped with
NT = 32 antennas and U = 10 users with NR = 2 receive
antennas each. Unless otherwise stated, we also assume that
the number of available RF chains at the BS is LBS = 4.
The precoded signals are transmitted to the users assuming a
mmWave communication channel and ULAs at the BS and
MUs as explained in Section II-A. Recall that an important
parameter determining the channel behavior is the number of
paths Np. Finally, the performance of the different schemes is
determined by averaging the achievable sum-rates obtained
over 200 channel realizations in each experiment.

FIGURE 1. Performance comparison between several algorithms for a
downlink with NT = 32 antennas, NR = 2 antennas, U = 10 users, LBS = 4
RF chains and Np = 4 channel paths. The curves corresponding to the
hybrid schemes are obtained from a factorization of the digital solutions
with the MO approach.

Figure 1 shows the sum-rates obtained for several strategies
to design the BS precoder in the described downlink setup
and considering Np = 4 paths. In particular, the performance
of the following design strategies is compared: 1) ITA algo-
rithm; 2) Iterative rank minimization (IRM) algorithm [38];
3) PGA algorithm; and 4) LRMA. Thus, the three approaches
proposed in this article to obtain the digital constrained-
rank precoders are also compared to a well-known algo-
rithm employed to solve optimization problems with rank
constraints. As observed, the ITA-based strategy provides
the best results in terms of achievable sum-rate for all the
range of considered SNRs. This strategy is able to provide
a constant gain with respect to the IRM algorithm with a sim-
ilar computational cost. The PGA-based approach exhibits
similar performance to the former strategies for low and
medium SNRs, but it shows certain degradation for high
SNR values, although its computational complexity is quite
lower. Finally, LRMA presents the worst performance, but

its computational cost is negligible. Therefore, the choice of
one or other strategy will depend on the application trade-off
between complexity and performance.

The aforementioned strategies provide the digital rank-
constrained precoders for each channel realization. However,
the advantage of limiting the rank of the digital precoders
is to mitigate the impact of the decomposition required to
obtain the hybrid solutions. The loss caused by the factoriza-
tion of the different rank-constrained solutions is also shown
in Figure 1. The achievable sum-rates obtained from the direct
factorization of the optimal digital solution, i.e., without
rank limitation, are also included to show the advantages of
incorporating the rank constraint in the design of the digital
precoders. Recall that these traditional approaches optimize
the precoding matrices by performing a user scheduling
which maximizes the sum-rate, but they are not able to
limit the effective number of allocated streams. We consider
two widely employed factorization algorithms in the con-
text of hybrid precoding: least square relaxation (LSR) [24]
and alternating minimization based on manifold optimization
(MO) [15]. On the one hand, it is possible to appreciate that
MO-based factorization provides better performance than
LSR. On the other hand, both strategies exhibit a certain
degree of saturation as SNR increases, which is still present
for rank-constrained solutions. However, the most relevant
conclusion is that the limitation on the rank of the digital
precoders significantly mitigates the loss due to the factor-
ization operation and leads to much larger sum-rates in a
hybrid architecture. Other factorization algorithms have also
been assessed, but they do not improve the performance of
MO-based factorization.

FIGURE 2. Comparison between the proposed algorithms for a downlink
with NT = {8, 16, 32, 64} antennas, NR = 2 antennas, U = 10 users,
LBS = 4 RF chains, and considering Np = 4 propagation paths and a SNR
value of 5dB. The curves corresponding to the hybrid schemes are
obtained with the MO-based approach.

Figure 2 shows the impact of considering a different num-
ber of antennas for a fixed SNR value of 5dB in the same
scenario as in the previous experiment. We can observe that
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TABLE 2. Performance Losses Due to the Factorization of the Digital Precoders Obtained With Different Strategies and Different Numbers of Channel
Paths.

TABLE 3. Factorization Losses for Different Number of RF Chains.

FIGURE 3. Comparison between the proposed algorithms for a downlink
with NT = 32 antennas, NR = 2 antennas, U = 10 users, LBS = 4 RF chains
and considering Np = 1 and Np = 8 paths. The curves corresponding to
the hybrid schemes are obtained with the MO-based approach.

the conclusions extracted from the results obtained in the
previous experiment also apply when we modify the number
of antennas. Thus, the low-rank digital precoding designs pro-
vide a superior performance when they are employed to com-
pute their hybrid components. Indeed, the performance gains
provided by the proposed approach increase with the number
of antennas as this reduces the amount of user interference
and, as a consequence, the number of allocated streams for
an unconstrained digital design. Moreover, the advantage of
utilizing the methods ITA and PGA, with respect to LRMA,
also presents a similar behavior.

In the next experiment, we focus on analyzing the impact
of the number of channel paths on the factorization losses
with the proposed low-rank digital precoder designs. Figure 3
and Table 2 present the obtained results for the predetermined
setup considering two options for the number of channel
paths, Np = 1 and Np = 8. According to these results,
it is worth highlighting two main conclusions. First, the loss
due to the factorization is larger as the number of channel
paths increases, regardless of the considered approach. This
result was expected since a larger number of paths implies
a higher channel diversity and, consequently, a further chal-
lenge to exploit this diversity with a hybrid architecture.
Second, the approaches based on limiting the rank of the
digital precoders before applying the factorization operation
significantly mitigates the corresponding performance loss.
Obviously, this improvement is achieved at the expense of
penalizing the performance of the considered low-rank digital
solution compared to the unconstrained one. However, this
strategy is preferable for the design of the hybrid precoders
at the BS as it provides better performance in terms of achiev-
able sum-rate (see Figure 3).

Another interesting remark is the fact that although
LRMA or PGA approaches present a higher resilience to fac-
torization losses, its overall performance (rank-constrained
solutions + factorization) is inferior to the other two con-
straining strategies. This is mostly motivated because the per-
formance gap between the rank-constrained algorithms also
increases as the number of channel paths is larger. Finally,
the achievable sum-rates decrease with the number of channel
paths. This behavior can be explained from the considered
channel model in (4), where the channel gains are normalized
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FIGURE 4. Comparison between the different algorithms for a downlink
with NT = 32 antennas, NR = 2 antennas, U = 10 users, Np = 4 channel
paths and considering different number of RF chains. In particular,
the triangle markers correspond to the performance curves obtained for
LBS = 8 chains, the square markers for LBS = 6 chains and the circle
markers for LBS = 2 chains. In addition, the same color is employed to
identify the same method through the different scenarios. Finally,
the curves for the hybrid schemes are obtained with the MO-based
factorization.

by the number of paths, Np. Therefore, when the number of
channel paths is larger than the number of streams allocated
to each user, increasing the number of paths actually implies
transmitting the same streams over paths with lower power.
Recall that the number of allocated streams is limited by the
constraint on the number of RF chains.

Finally, we evaluate the impact of the number of considered
RF chains on the performance of the proposed algorithms.
Figure 4 shows the achievable sum-rate obtained for the
different hybrid precoding schemes after the factorization
operation with the MO algorithm. We considered the setup
described at the beginning of this sectionwithNp = 4 channel
paths and three different configurations for the number of
available RF chains: LBS = 2, LBS = 6 and LBS = 8.
For the same scenario, Table 3 shows the factorization losses
for the different schemes and for two particular SNR val-
ues. As observed, these results are consistent with those
obtained in previous experiments. Thus, the largest sum-rate
is always provided by the ITA-based hybrid scheme, whereas
the LRMA-based one achieves the worst performance even
though the factorization loss is lower than in the other alter-
natives.

As expected, the sum-rate of the all considered schemes
increases with the number of RF chains since the hardware
constraints are less restrictive and a larger number of streams
can be allocated. In addition, the gains provided by the rank-
constrained approacheswith respect to the direct factorization
of the unconstrained solution are also more remarkable for
larger values of LBS. However, it is interesting to note that the
factorization losses tend to decrease for ITA and IRM strate-
gies as the number of RF chains is larger (from LBS > 2),
whereas this loss always increases with the number of RF

chains for the PGA and LRMA approaches. These results
suggest that the structure of the high-rank solutions provided
by these two latter strategies is less suitable for their posterior
factorization step.

VI. CONCLUSION
In this work, the design of practical low-computational hybrid
precoding schemes has been addressed for massive MIMO
mmWave communication systems. Instead of factorizing the
optimal unconstrained digital solutions, we have proposed to
limit the rank of such digital solutions prior to be factorized.
The incorporation of this additional constraint allows accom-
modating the structure of the obtained solutions to the factor-
ization operation and significantlymitigate the corresponding
factorization loss. Hence, the proposed design represents a
novel approach to jointly perform precoding and scheduling,
thus limiting the number of allocated streams in a massive
MIMO hybrid scenario.

In addition, two particular algorithms have been proposed
to tackle the resulting rank-constrained problems. On the
one hand, ITA provides the best performance in terms of
achievable sum-rate, whereas PGA shows a certain loss with
respect to ITA, but its computational cost is significantly
lower. The obtained results clearly show the suitability of
the proposed design for hybrid architectures since it provides
much better results than the previous strategies.

Future research lines includemore complex scenarios, e.g.,
the wideband case. Moreover, it is desirable to perform a
theoretical analysis to lower the computational costs, avoid
convergence dependencies on UL-DL conversion matrices,
and refine the factorization method according to our digital
design.

APPENDIX A
PGA GRADIENT
In this section we determine the gradient of g(Pd, λ) in (15).
For convenience, we focus on the i-th precoder and rewrite
g(Pd, λ) as follows

g(Pd, λ) = λ

(
U∑
u=1

‖Pu‖2F − Ptx

)
− log2 det

(
INT + G

H
i P iP

H
i Gi

)
− log2 det

INT +

∑
u 6=i

HH
u 1uPuPH

u 1H
uHu

 ,
(23)

with λ ≥ 0 the dual variable corresponding to the power
constraint and

Gi = 1H
i H i

INT +

∑
u 6=i

HH
u 1uPuPH

u 1H
uHu

−1/2. (24)
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Considering the covariance matrices for the remaining users
as fixed, the derivative with respect to the i-th precoder is

dg(Pd, λ)
dP∗i

= −GiGH
i

(
INT + G

H
i P iP

H
i Gi

)−1
+ λP i. (25)

On the other hand, the derivative with respect to the
Lagrangian multiplier is

dg(Pd, λ)
dλ

=

U∑
u=1

‖Pu‖2F − Ptx. (26)

Note that this term on λ vanishes as we ensure at each step of
the algorithm that the power constraint holds with equality.

APPENDIX B
PROOF OF CONVERGENCE FOR PGA
In this section, we proof the convergence of the proximal
gradient algorithm (PGA) in Section IV-B. We first focus
on the distance between the unconstrained update at the `-th
iteration, P̄d(` + 1), and the update of an optimum of (17),
Popt
d , which is reduced for appropriate step size s(n), i.e.,

‖Pd(`)− s(`)∇g(Pd(`))− P
opt
d ‖

2
F

= ‖Pd(`)− P
opt
d ‖

2
F + s

2(`)‖∇g(Pd(`))−∇g(P
opt
d )‖2F

− 2s(`)<
{
tr
(
(Pd(`)− P

opt
d )H(∇g(Pd(`))−∇g(P

opt
d ))

)}
(a)
≤ ‖Pd(`)− P

opt
d ‖

2
F + s

2(`)‖∇g(Pd(`))−∇g(P
opt
d )‖2F

− 2s(`)
1
L
‖∇g(Pd(`))−∇g(P

opt
d )‖2F

(b)
≤ ‖Pd(`)− P

opt
d ‖

2
F, (27)

where inequality (a) is obtained as follows. Note that ∇g(X)
is differentiable for any X ∈ F , with F being the set of
feasible solutions to (14). This implies that ∇g(X) is also
Lipschitz continuous with parameter L > 0, i.e.,

‖∇g(X)−∇g(X∗)‖2F ≤ L‖X − X
∗
‖
2
F ∀X, X∗ ∈ F . (28)

Lipschitz continuity is equivalent to the co-coercivity of a
gradient [48], that is,

<
{
tr
(
(X − X∗)H(∇g(X)−∇g(X∗))

)}
≥

1
L
‖∇g(X)−∇g(X∗)‖2F ∀X, X∗ ∈ F . (29)

Finally, inequality (b) is obtained if the step size is chosen
such that the summation of the second and third terms of the
inequality (a) is negative. In other words, s(`) must satisfy
0 < s(`) < 2

L .

Recall that Pd(`+1) = 0s(`)µ(P̄d(`+1)) and note that the
MSO is non-expansive. That is,

‖0(X1)− 0(X2)‖2F ≤ ‖X1 − X2‖
2
F (30)

for any X1, X2, as shown in [45, Lemma 1]. Combining the
two ideas, we obtain

‖Pd(`+ 1)− Popt
d ‖

2
F

= ‖0s(`)µ(P̄d(`+ 1))− 0s(`)µ(P
opt
d − s(`)∇g(P

opt
d ))‖2F

≤ ‖P̄d(`+ 1)− Popt
d + s(`)∇g(P

opt
d )‖2F

≤ ‖Pd(`)− P
opt
d ‖

2
F. (31)

Since this result holds for every iteration `, we will obtain
a monotonically non-increasing sequence, which eventually
leads to a locally optimal solution of (14).

APPENDIX C
PROOF OF CONVERGENCE FOR ITA
In this section we proof the convergence of the iterative trace
algorithm (ITA) in Section IV-C. Given the matrices 1u(`),
{Su(`)}Uu=1 and Ū(`) at the `-th iteration, the constraint in (21)
ensures that {Su(`+ 1)}Uu=1 fulfills

U∑
u=1

tu(Su(`+ 1), Ū(`),1u(`)) ≤
Ptx
α(`)

. (32)

Thus, at iteration ` + 1 we obtain a relaxed version of the
constraint, i.e.,
U∑
u=1

tu(Su(`+ 1), Ū(`+ 1),1u(`+ 1))

≤

U∑
u=1

tu(Su(`+ 1), Ū(`),1u(`)) ≤
Ptx
α(`)

, (33)

where the inequality comes from the fact that Ū(` + 1) is
the proper truncated basis for 1u(`+ 1)Su(`+ 1)1H

u (`+ 1),
and also for 1u(`)Su(`+ 1)1H

u (`) under the aforementioned
assumption 1u(` + 1) ≈ 1u(`). This implies that the solu-
tion for the iteration ` is a feasible solution at the iteration
` + 1 and, in addition, the former equality results in less
restrictive constraints. Consequently, the objective function
increases or remains the same at each iteration. Taking into
account that the achievable sum-rate in the downlink for given
Ptx is upper bounded, this condition ensures convergence for
a fixed α(`).
It is, however, desirable to increase the value of α(`) at

each iteration to obtain a feasible solution. Noting that the
inequality in (33) is strict before convergence and defining the
update of the step size as α(`+ 1) = β(`)α(`), the parameter
β(`) at each iteration can be determined as

β(`) =
Ptx

Ptx − α(`)δ(`)
, (34)

with δ(`) =
∑U

u=1 tu(Su(` + 1), Ū(` + 1),1u(` + 1)) −
tu(Su(` + 1), Ū(`),1u(`)). Thus, (33) also holds for α(` +
1) ≥ α(`).
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