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Abstract: Starting from an original portfolio of life insurance policies, in this article we propose
a methodology to select model points portfolios that reproduce the original one, preserving its
market risk under a certain measure. In order to achieve this goal, we first define an appropriate risk
functional that measures the market risk associated to the interest rates evolution. Although other
alternative interest rate models could be considered, we have chosen the LIBOR (London Interbank
Offered Rate) market model. Once we have selected the proper risk functional, the problem of
finding the model points of the replicating portfolio is formulated as a problem of minimizing the
distance between the original and the target model points portfolios, under the measure given by the
proposed risk functional. In this way, a high-dimensional global optimization problem arises and a
suitable hybrid global optimization algorithm is proposed for the efficient solution of this problem.
Some examples illustrate the performance of a parallel multi-CPU implementation for the evaluation
of the risk functional, as well as the efficiency of the hybrid Basin Hopping optimization algorithm to
obtain the model points portfolio.

Keywords: model points portfolio; risk management; risk functional; hybrid optimization algorithms;
LIBOR market model; Monte Carlo simulation

1. Introduction

This work deals with the risk management in life insurance companies, which is a key
aspect in the insurance industry and in Solventia II regulation. Asset Liability Management
(ALM) is the process of managing the assets and liabilities portfolios as well as cash flows to
reduce the firm’s risk of loss. It plays a key role in the profitability of insurance companies,
see [1,2] and the references therein. From the numerical point of view it mainly consists of
computing the joint projections of the future cashflows of assets and liabilities portfolios,
which can be done by using Monte Carlo algorithms.

These kind of portfolios comprise a huge number of policies with several characteris-
tics: maturity, possibility of early cancelation, age of the policy holders, gender, etc. Com-
puting this stochastic projection of the balance sheet related to these portfolios, involves
using large number of scenarios with the corresponding interest rate models, mortality
model, etc. This projection can be computed using the whole number of policies, what is
referred as stand alone projection, where each policy is projected in each scenario. In prac-
tice, the computation of the projections of the liabilities in original portfolios (containing
hundreds of thousands of policies) often becomes a highly demanding computational time
objective, making the problem barely tractable even if High Performance Computing (HPC)
hardware is employed.

For that reason, insurance companies perform these projections by grouping similar
policies in some representative contracts, known as model points. The choice of this grouping
of policies must preserve the representation of the risk distribution of the original portfolio.
We refer to the document [3] for further details.
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Although model points have been used by life insurance companies for a long time,
the more theoretical mathematical foundations are not so developed to our knowledge.
Particularly, a rigorous framework to measure the risk associated to the replacement of the
original portfolio by the model points portfolio is an important task that has not been much
addressed in the literature. For example, in the interesting work of [1,2] about ALM for
an insurance company, model points portfolios are just defined without being built from
original policies portfolios. More recently, in [4], a conservative model points portfolio is
performed by controlling the Tail-Var risk measure.

Note that the new model points portfolio provides a highly reduced representation
of the original portfolio that should preserve the same risk properties. For this purpose,
an appropriate function to measure the associated risk in this replacement has to be chosen.

In the present work, the model points portfolio selection problem is framed in the do-
main of portfolio representation, where the risk functional gauges the averaged differences
between the values of original and model points portfolio, the last one taken in a specific
set of portfolios [5]. This is one of the main innovative parts of the present work. The risk
measure is defined attending to the variation of some of the stochastic underlying risk
components for a certain time horizon. The models for the interest rate evolution and the
population mortality become two of the key factors in the risk management of life insurance
portfolios [6]. In the present paper, we just consider the uncertain future fluctuations of
interest rates. Although other alternative models could be considered, such as the popular
short rate models, we have chosen a classical version of the LIBOR (London Interbank
Offered Rate) market model for forward LIBOR rates. Additional risk factors could be
incorporated in future works, as for example mortality risk, as well as the dependence
among them when more than one underlying risk factor is considered.

However, even after choosing the more appropriate risk measure functional, finding
the structure of the model points portfolio regarding this risk measure can turn out to be a
extremely hard computational task. As we show in this article, this problem can be written
a global optimization one, consisting in the minimization of the distance between the real
and the model points portfolios, once the appropriate risk measure has been chosen.

The main goal of this article is to develop an original technique for the automatic
generation of the model points portfolio. This objective mainly involves two main tasks.
First, we have to choose/fix and build a correct risk measure attending to market models.
In our case we will build this measure by using the LIBOR market model for forward
interest rates (see [7], for details). Secondly, once we have formulated the problem in
terms of a distance minimization based on this measure, we need to numerically compute
this objective function in a highly efficient way, as next we have to build a numerical
optimization method for the minimization of this objective function. As we will see,
the resulting optimization problem is a global optimization one, so that efficient global
optimization algorithms are required. More precisely, the algorithms need to be fast and
robust, so that they won’t get stuck in local minima.

Moreover, we note that for large real life policies portfolios, the here proposed method-
ology involves a huge computational cost. In this case, specific HPC techniques should be
used. In [8] a full HPC implementation is carried out by combining different parallelization
techniques for multi-core and many-core architectures.

The plan of the paper is as follows. In Section 2, we briefly summarize the main
issues related to the LIBOR market model that is one of the main point in the definition of
the risk functional. In Section 3, we formulate the problem of the model points portfolio
selection. In Section 4, we define the risk measure here proposed. In Section 5, we describe
the discretization of the cost function. Section 6 contains some numerical tests to validate
the convergence of the optimization algorithm to the analytical solutions and finally we
show an application to a real portfolio without analytical solution.
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2. Model Setup LIBOR Market Model

As we mentioned in the introduction, we just consider the interest rate as the only
risk factor. In this section, following [7] we introduce the dynamics of the discounted
bond price, as it follows from the classical LIBOR Market Model governing the forward
rates evolution in time. It is important to emphasize that any of the existing stochastic
models for the evolution of interest rates could be considered in our proposed methodology
and its corresponding Monte Carlo simulation can be included in the developed software
toolbox as a building block of the global algorithm, that can take advantage of the proposed
parallelization as well. Thus, classical short rate models as Vasicek, CIR or Hull–White,
as well as models incorporating possible negative rates as shifted-SABR, free boundary
SABR or displaced diffusion can be considered. The volatility smile could be incorporated
through the more complex SABR-LIBOR models, for example. The choice of LIBOR Market
Model provides an additional computational complexity and cost in the simulation of
the risk factor which enters in the evaluation of the risk functional. Although we are
aware of the evolution of this model and the difficulties to cope with the practical presence
of a multicurve setting (see [9–11], for example), we have chosen its classical version as
described in [7].

Thus, in this section we first summarize the main concepts of the classical LIBOR
Market Model [7] to be used in the sequel. Next, we introduce the discounted bonds price,
for which we prove the dynamics satisfied by the process in the final lemma of the section.

Libor rates. For a given fixed integer N > 0 we define the set T = {T0, T1, ..., TN} that
represents the fixed tenor structure, with T0 = 1 and T0 < T1 < ... < TN , being Tn the
maturity. We denote τn = Tn− Tn−1, for n = 1, ..., N, the corresponding accruals. Moreover,
we set the one year time interval I = (0, 1).

Here and in the sequel, we denote by Bn(t) the discounted price of a zero-coupon
bond at time t ∈ I under the risk neutral measure. This bond matures at the tenor date Tn,
for n = 0, ..., N. Moreover, let Fn(t) be the value at time t ∈ I of the (simply-compounded)
LIBOR forward rate that operates during the accrual period (Tn−1, Tn], for n = 1, ..., N. We
recall that Fn(t) is defined in such a way that the following condition is met:

Bn(t)(1 + Fn(t)τn) = Bn−1(t).

Hence, by recursively applying the previous condition, we have

Bn(t) = B0(t)
n

∏
k=1

1
1 + Fk(t)τk

, for any t ∈ I .

Since t < Tn, then the price Bn(t) is given by the previous expression, for any t ∈ I
and n = 0, ..., N.

Stochastic setting. Hereafter we consider B0(t) the price of the bond with expiring tenor
date T0 = 1, for t ∈ I , as the process acting as reference numeraire. Furthermore, let Q be
the forward measure corresponding to T0, that is, the martingale measure associated to the
numeraire B0.

Moreover, we shall fix a N-dimensional Wiener process W(t) = (W1(t), ..., WN(t)),
for t ∈ I , defined on the suitable complete probability space (Ω, F ,Q), and we introduce
the associated correlation matrix $ = ($nk)nk, so that

dWn(t)dWk(t) = $nkdt.

More precisely, we consider constant correlation coefficients between the LIBOR
forward rates, given by the parameterization:

$nk = exp(−β | Tn − Tk |).
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Moreover, for any h = (h1, ..., hN) ∈ R, we define the following norm:

‖h‖W =

{ N

∑
n,k=1

$nkhnhk

}1/2

.

Any stochastic process shall be defined on the probability space (Ω, F ,Q). Further,
since Q is understood as the reference market measure, we shall refer to any process defined
on such a probability space as a risk-free process.

LIBOR Market Model. For each n = 1, ..., N, let σn be a given deterministic function defined
on the interval I that represents the volatility of Fn. Given any fixed n = 1, ..., N, the LIBOR
Market Model assumes that the risk-free dynamics associated to the process Fn(t), for t ∈ I ,
satisfies

dFn(t) = µn(t)dt + σn(t)Fn(t)dWn(t), (1)

jointly with a given initial value of the forward rate, Fn(0), where the drift component µn(t)
at any time t ∈ I is completely determined by following identity:

µn(t) = σn(t)Fn(t)
n

∑
k=1

$nkτkσk(t)Fk(t)
1 + Fk(t)τk

.

We choose the usual parameterization for the volatilities σn(t):

σn(t) = [a + b(Tn − t)] exp [(Tn − t)] + d

For any fixed t ∈ I , we set µ(t) = (µ1(t), ..., µN(t)) and define Σ(t) as the matrix:

Σnk(t) = σn(t)Fn(t)δnk, for any n, k = 1, ..., N, (2)

being δnk the Kronecker delta. Besides, we use Σn(t) to denote the n-th row of Σ(t),
for n = 1, ..., N. Then, when setting F(t) = (F1(t), ..., FN(t)), we take (1) as a N-dimensional
dynamics using the following compact notation:

dF(t) = µ(t)dt + Σ(t)dW(t), (3)

jointly with the initial condition F(0) = (F1(0), ..., FN(0)).
Moreover, the discounted price process linked to the bond expiring at tenor date Tn, is

denoted by

B̃n(t) =
Bn(t)
B0(t)

, for any t ∈ I ,

for any n = 1, ..., N.
The dynamics under the risk neutral measure of the discounted price for any bond

that expires at the tenor date T , is given in the following result.

Lemma 1. For any n = 1, ..., N, the dynamics of the discounted bond price process B̃n(t) satisfies
the following stochastic differential equation:

dB̃n(t) = −εn(t)B̃n(t)dW(t), (4)

with εn(t) given by

εn(t) =
n

∑
k=1

τk
1 + Fk(t)τk

Σk(t). (5)
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Proof. Fix n = 1, ..., N and notice that according to the identity (1) the discounted price
p̃n(t) at time t ∈ I , that is given by (4), satisfies the condition

ln B̃n(t) = −
n

∑
k=1

ln(1 + Fk(t)τk).

For any diffusion process X(t), for t ∈ I , driven by the Wiener process W, let DCX(t)
denote its vector diffusion coefficient. In particular, the representation (3) implies that

DCFn(t) = Σn(t), (6)

for any t ∈ I . Thus, we obtain

DC ln B̃n(t) = −
n

∑
k=1

DC ln(1 + τkFk(t))

= −
n

∑
k=1

τk
1 + τkFk(t)

DCFk(t)

= −
n

∑
k=1

τk
1 + τkFk(t)

Σk(t). (7)

Finally, taking into account that

DCB̃n(t) = Bn(t)DC ln B̃n(t), for any t ∈ I ,

the proof is completed.

3. Insurance Policies Portfolio

Life insurance contracts usually can pay the insurer either a stream of cash flows dur-
ing the lifetime of the policyholder or a unique lump sum benefit that is paid upon her/his
death under certain conditions. When agreed in the clauses of the contract, other situations
as the appearance of a terminal illness might also lead to early payments. The policy
is alive while the policyholder pays a specific premium, that may be either in the form
of periodic payments or consist of an initial lump sum. We assume to deal with a life
insurance policy that is not affected by credit risk, which means that the insurance company
always guarantees the entire benefit that is settled in the contract.

In this section, we describe the model points selection problem for the case of a
portfolio of term insurance policies. A term insurance policy pays a lump sum benefit fixed
in the contract, in the case that the policy owner death happens before an specific term
fixed in the contract. In order to simplify the presentation, the benefit associated to each
policy is assumed to be represented by a unit amount of a given currency, and that the
policies are not affected by credit risk. Furthermore we do not consider the premiums, nor
any further expenses that are responsibility of the client.

Thus, in this section, after briefly describing the setup for the insurance portfolio
we consider, we mainly introduce two new definitions that allow to rigorously pose the
problem in the mathematical framework.

Term insurance portfolios. We assume that each term insurance policy inside a portfolio
is identified by the policy owner age at time t = 0 and the term date of the contract. In this
respect, let us fix I, J ∈ N and let X = {x1, ..., xI} and Y = {y1, ..., yJ} be two finite sets
of real values such that xi ≥ 0 and yj ≥ 1, for any i = 1, ..., I and j = 1, ..., J. Here and in
the sequel, any couple (xi, yj) uniquely defines the family of policies related to the class of
individuals that are aged xi ∈ X at time t = 0 and to the term of the contract yj ∈ Y . Thus,
the original insurance portfolio is a set of I × J policies.

Next, for any i = 1, ..., I, we denote by µ(s, xi + s) the mortality force at time s ≥ 0
associated to the individuals with age xi ∈ X . Moreover, we suppose that the function
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µ(s, xi + s) is deterministic and observable, taking values for any xi ∈ X and s ≥ 0.
Furthermore, the following convenient condition is assumed:

µ(s, xi + s) = 0, for any i = 1, ..., I and any s ∈ I . (8)

Remark 1. Note that hypothesis (8) guarantees that any portfolio of term insurance policies remains
unchanged within the time interval I due to the policy owners death. Besides, hypothesis (8) is
acceptable since the performance of the overall portfolio is barely affected by the events taking place
during the first year.

According to this setup, we define the survival index as

S(xi, Tn) = exp
{
−

∫ Tn

1
µ(s, xi + s)ds

}
, xi ∈ X and n = 1, ..., N, (9)

which provides the proportion of persons aged xi that survive up to age xi + Tn.
We consider the Gompertz-type law modelling the force of mortality [12]:

µ(s, xi + s) = a(s) exp {(xi + s)b(s)}, for any s ≥ 1 and i = 1, ..., I,

where a and b are given observable functions defined for s ≥ 1. Assuming that a(s) = 0 for
s ∈ I we guarantee that the previous convenient assumption (8) holds. In what follows,
we use ST to denote the derivative of S with respect to its second variable:

ST(xi, Tn) = −S(xi, Tn)µ(Tn, xi + Tn).

Now, we introduce the definition and notations for term insurance policies.

Definition 1. For any xi ∈ X and yj ∈ Y , the discounted risk-free value at time t ∈ I of a term
insurance policy owned by an individual with age xi ∈ X and with term yj ∈ Y is given by

zij(t) = −
N

∑
n=1

ST(xi, Tn)B̃n(t)1{Tn≤yj}. (10)

Any linear combination of the processes (10) gives the risk-free discounted value of a
term insurance portfolio. This is stated by the following definition.

Definition 2. We call (term insurance) policy portfolio any matrix v = (vij)ij, for i = 1, ..., I and
j = 1, ..., J. Moreover, for any policy portfolio v, its risk-free discounted value v(t) at time t ∈ I is
defined as

v(t) = ∑
ij

zij(t)vij. (11)

Given any policy portfolio v, we understand any of its components vij as the amount
of policies owned by the class of individuals labeled by the age xi ∈ X and the term
yj ∈ Y . In what follows, for any couple of policy portfolios v1 and v2 we shall write
(v1 − v2)(t) = v1(t)− v2(t), for any t ∈ I .

4. Model Points Risk Estimation

In this section, we present one of the main innovative issues of the present article,
which mainly consists in the application of the theory presented in [5] to the previously
introduced LIBOR rates setting and the portfolio of term insurance policies. More precisely,
we take into account LIBOR forward rates dynamics as the stochastic underlying stochastic
factor. For this purpose, we shall always assume a policy portfolio v relative to X and Y
to be a priori given. Moreover, we consider a fixed set of term insurance policy portfolios
W that contains policies with L given ages and M given maturities, so that L is smaller
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than I and M is smaller than J. Then, each w = (wlm) ∈ W is referred as one model points
portfolio inW . In this setting we introduce the following definition.

Definition 3. Let R(·|v) : W → R be the model points risk functional induced by v over W ,
which is defined as the follows

R(w|v) =
∫
I
E|(v− w)(t)−E(v− w)(t)|2dt, for any w ∈ W ,

We understand the model points risk functional R(w|v) as a measure of the error
when representing (the original policies portfolio) v by (the model points portfolio) w ∈ W .
This error is computed as the average of the difference between both portfolios along time,
in terms of the variation of the stochastic underlying factors to be considered, which is the
interest rate risk in our case.

Definition 4. Let R(·|v) be the model points risk functional induced by v overW . A model points
portfolio w∗ ∈ W is defined to be optimal with respect to v if the following inequality holds true

R(w∗|v) ≤ R(w|v), for any w ∈ W . (12)

Notice that, in the special case when v ∈ W one has that R(v|v) = 0. In this respect,
we regard any model points portfolio w∗ ∈ W satisfying the inequality (12) as an optimal
representation of the policy portfolio v.

The following result provides an alternative representation of the model points risk
functional induced by v overW .

Proposition 1. The model points risk functional R(·|v) is given by:

R(w|v) =

E
{ ∫
I

∥∥∥∥∑n

{
∑ij vijST(xi, Tn)1{Tn≤yj} −∑lm wlmST(xl , Tn)1{Tn≤ym}

}
εn(t)B̃n(t)

∥∥∥∥2

W
(1− t)dt

}
,

for any w = (wlm) ∈ W .

(13)

Proof. Let E = RN and let B̃(t) = (B̃1(t), ..., B̃N(t)) for any t ∈ I . Moreover, let U =
(X ×Y)R be the class of real matrices r = {r(xi, yj) : xi ∈ X , and yj ∈ Y}.

Consider the functional Z ∈ L(E, U) which is given for any q ∈ E by

Z(q)(xi, yj) = −∑
n

qnST(xi, Tn)1{Tn≤yj}, for xi ∈ X and yj ∈ Y ,

and note that the process z(t) = {z(t) : t ∈ I} defined by (10) is obtained for the choice

z(t) = Z(B̃(t)), for any t ∈ I .

Note that Z(q) is linear, for any q ∈ E. Then, the Frechét derivative denoted by
∇Z(q) ∈ L(E, U) satisfies the following identity:

(∇Z(q)q′)(xi, yj) = −∑
n

q′nST(xi, Tn)1{Tn≤yj}, for xi ∈ X and yj ∈ Y .

for any q′ ∈ E. On the other hand, for any t ∈ I , when letting ε(t) be the matrix with the
n-th row given by B̃n(t)εn(t), where εn(t) is defined in (5), we have that for any xi ∈ X
and yj ∈ Y , the following identity holds

(∇Z(·)ε(t))(xi, yj) = −∑
n

B̃n(t)εn(t)ST(xi, Tn)1{Tn≤yj}. (14)
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Consider now the function ζ : I × E→ U, which is defined by

ζ(t, q) = Z(q), for any t ∈ I and q ∈ E. (15)

As condition (8) is imposed, the survival index (9) is independent on t ∈ I , so that the
representation (15) is allowed.

Then, since (4) may be rewritten as the following E-valued dynamics,

dB̃(t) = −ε(t)dW(t), (16)

then Proposition 5 in [5] can be applied to obtain

R(w|v) =

E
{ ∫
I

∥∥∥∥∑
ij

vij(∇Z(B̃(t))ε(t))(xi, yj)−∑
lm

wlm(∇Z(B̃(t))ε(t))(xl , ym)

∥∥∥∥2

H
(1− t)dt

}
,

for any w = (wlm) ∈ W . (17)

which, jointly with the identity (14), gives the representation (13).

Therefore, the construction of a model points policies portfolio w∗ for an original
portfolio v is given by:

w∗(v) = argminw∈W R(w|v). (18)

As a consequence, obtaining the model points portfolio is a very hard problem, as it
is given by the solution of a global optimization problem in high dimension. Note that
the number of policies in the model points portfolio, I × J, defines the dimension of the
problem. Therefore, efficient numerical methods are required to minimize the model points
risk functional R(· | v) given by (13). Note that this risk functional is referred as the cost
function in the literature related to optimization methods.

5. Numerical Methods

In this section, we describe the two main involved tasks in the numerical methods,
which represent innovative and original contributions of the present article. On the one
hand we introduce the appropriate discretization of the model points risk functional (13)
and its parallel implementation. On the other hand, we choose the global optimization
numerical methods for solving problem (18), which require a very efficient evaluation of
the model points risk functional. For this purpose, a parallel multi-CPU implementation for
the evaluation of the risk functional has been developed from scratch. This implementation
runs inside the hybrid Basin Hopping optimization algorithm to select the model points
portfolio. To our knowledge, this is the first time these HPC computational tools are applied
to this kind of problems to speed up the computational time.

The expectation that appears in the risk functional (13), is obtained by means of Monte
Carlo techniques. Note that each simulation involves the computation of forward LIBOR
rates evolution that follow the previously described LIBOR Market model. Following the
ideas in [7], taking logarithms and using Ito lemma in (1), the forward rate dynamics is
given by the equation:

d ln Fn(t) = σn(t)
n

∑
k=1

$nkτkσk(t)Fk(t)
1 + Fk(t)τk

dt− σn(t)2

2
dt + σn(t)dWn(t), (19)

with a deterministic diffusion coefficient.
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Now, for the time discretization of (19), we apply the Euler-Maruyama numerical
method, thus obtaining

ln F̂n(t + ∆t) = ln F̂n(t) + σn(t)
n

∑
k=1

ρnkτkσk(t)F̂k(t)
1 + τk F̂k(t)

∆t

− σn(t)2

2
∆t + σn(t)(Ŵn(t + ∆t)− Ŵn(t)),

(20)

for n = 1, . . . , N, where F̂n(t) is the approximation to Fn(t) and Ŵn(t + ∆t) − Ŵn(t) ≡√
∆tN (0, 1) corresponds to the discretizaton of dWn(t). We consider a uniform mesh with

nodes tq = q∆t, for q = 0, . . . , Nt, with ∆t the constant time step.
The discretization of expression (13) for the functional, R̂(w|v), is given by:

R̂(w|v) = 1
Np

Np

∑
p=1

(
1

Nt

Nt

∑
q=1
||Rpq(w|v)||2(1− tq)

)

=
1

Np

Np

∑
p=1

(
1

Nt

Nt

∑
q=1

Rpq(w|v) · C · Rt
pq(w|v)(1− tq)

)
,

with C representing the correlation matrix, Nt being the number of time steps and Np
denoting the number of Monte Carlo simulations. Moreover, the expression of Rpq is as
follows:

Rpq(w|v) =
N

∑
n=1

(R∗pq(v)− R∗∗pq(w))νpq(Tn),

with the vector νpq(Tn) given by

νpq(Tn) = ε
p
n(tq)B̃p

n(tq) = −B̃p
n(tq)

n

∑
k=1

τk
1 + τkFn(tq)

Σk(tq),

with

B̃p
n(tq) =

τnσn(tq)Fp
n (tq)

1 + τnFp
n (tq)

.

In the previous expression the index p corresponds to a particular simulation of the
forward LIBOR rates, index q is associated to time tq and n is linked to the maturity Tn.
Furthermore, let us consider the notation

R∗pq(v) = ∑
i,j

vijST(xi, Tn)(Tn − yj),

R∗∗pq(w) = ∑
l,m

wlmST(xl , Tn)(Tn − ym),

vij being the nominal of policies corresponding to age xi and to maturity yj in the initial
portfolio, while wlm represents the same quantity in the portfolio of model points.

Therefore, the computational cost associated to the cost function (given by the risk
functional (13)) evaluation turns to be actually high: note that we use a Monte Carlo
numerical scheme with each path involving the simulation of forward LIBOR rates and
additionally we have a computationally intensive loop in the policies corresponding to the
original portfolio.

Thus the cost function needs to be calculated in a very efficient way, because any
global optimization algorithm essentially requires the repeated evaluation of the cost
function. For this purpose, we have carried out the parallel implementation of the risk
functional (13), by using OpenMP in a multi CPU architecture. A parallel random number
generation algorithm has been used for the parallelization of the Monte Carlo algorithm.
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More precisely, in our case we have used the well known Tina’s Random Number Generator
library (TRNG). The C++ code for the LIBOR interest rates generator, together with the
Monte Carlo algorithm for the risk functional, has been written from scratch.

For solving the global optimization problem, we use stochastic algorithms. One
example of these kind of algorithms is Simulated Annealing (SA): this algorithm consists
in exploring the search space by generating a sequence of neighbor points, where the
cost function is evaluated. The points are accepted or discarded according to a physical
based acceptance criterion, like Lattice-Boltzmann’s law, see [13] and references therein for
details. Global metaheuristic pure stochastic algorithms, like SA, have slow convergence
and thus a higher computational cost. One alternative is the use of deterministic local
optimization algorithms, but although they are faster, they could be trapped into a local
minimum. In this work, we consider also hybrid algorithms, to benefit from the speed
of local deterministic algorithms, while retaining the global convergence of stochastic
ones. More precisely, we use the Basin Hopping (BH) algorithm, see [14,15], jointly with
the references they include. Basically, inside the BH algorithm, a Simulated Annealing
is applied for randomly sampling the search space, while local gradient optimizers are
launched from the SA randomly generated points. In this way the convergence of SA
is accelerated. We use L-BFGS-B as the local optimizer in BH. The whole optimization
routines have been implemented from scratch in C++, following the previous works [13,15].

6. Numerical Experiments

In this section, first we present two tests with known solution to validate the proposed
model points selection technique, and finally we show an application to a real world
scenario. For each experiment we show the comparison, in number of function evaluations,
between SA and BH.

For all the experiments we use the same settings for the LIBOR interest rate model and
the Monte Carlo numerical method. Concerning the LIBOR model: we take β = 0.01 for the
correlation coefficients between the forward rates; and we take 100 tenors with maturities
between 1 and 100, and initial rates F1(0) = 0.01, F2(0) = 0.02, F3(0) = 0.03, F4(0) = 0.04
and Fn(0) = 0.05, for n ≥ 5. We consider the values a = 0.07, b = 0.2, c = 0.6 and
d = 0.075 for the parameterization of the volatilities. For the mortality force, we consider
constant parameters, µ(x) = a exp(bx), where we will take a = 0.0003 and b = 0.06. From
the numerical point of view, all the tests in this section have been performed by using 1000
paths for the Monte Carlo simulation for the evaluation of the cost function.

Regarding to the hardware specifications, all tests have been carried out in a server
with 16 CPU cores (two eight-core Intel Xeon E5-2620 v4).

6.1. One Model Point Portfolio

The goal of this example is to represent an original portfolio with a model points
portfolio with one single model point.

More precisely, the original portfolio contains 10 policies, see Table 1. The model
points portfolio consists in just one single model point with age 42 and maturity 28 years.
The objective is to determine the total nominal in this model point that minimizes the
corresponding risk functional (13).

Table 1. Original portfolio for Example 1.

Age Maturity Nominal

20.0 50.0 50,000
25.0 45.0 100,000.0
30.0 40.0 150,000.0
35.0 35.0 200,000.0
40.0 30.0 250,000.0
45.0 25.0 300,000.0
50.0 20.0 350,000.0
55.0 15.0 400,000.0
60.0 10.0 450,000.0
65.0 5.0 500,000.0
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Therefore, in this case the cost function (risk functional) is given by a one dimensional
function. If we evaluate the cost function for different number of contracts, we obtain
the expected parabolic convex function, so that the global minimum can be graphically
checked (see Figure 1).
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6.2. Repeated Policies

In this test we use a problem with known solution to assess the proposed methodology.
More precisely, we check and compare the convergence of SA and BH algorithms to
the exact solution. Furthermore, we show the speedup of the parallel version of the
cost function.

To build the original portfolio, we repeat each policy in the portfolio of Table 1 1000
times, so that we obtain a portfolio containing 10, 000 policies. Although they are repeated,
each policy is treated as a different individual one. The goal is to represent the original
portfolio with the 10 model points portfolio in Table 1. Therefore, in this problem we aim
to find the nominals in the model points portfolio that better mimic the original portfolio,
regarding the risk functional. In this case the analytical expression for the solution can
be trivially found by multiplying the number of contracts in Table 1 by 1000 and the
corresponding value of cost function is equal to zero.

As we can see in Figure 2 for the BH method with L-BFGS, the method reaches
the very small value 1.75× 10−8 of the cost function. In Table 2 we show the obtained
values of the nominals for the model points portfolio rounded to the eighth decimal digit.
The resulting difference between 1.75× 10−8 and zero in the cost function is due to this
rounding procedure. The computational time was 87.35 h (about 3.63 days) using L-BFGS,
when using 16 cores (and 32 threads).

Table 2. Obtained solution in Example 2 with BH.

Age Maturity Nominal

20.0 50.0 50,000,000
25.0 45.0 100,000,000
30.0 40.0 150,000,000
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6.2. Repeated Policies

In this test we use a problem with known solution to assess the proposed methodology.
More precisely, we check and compare the convergence of SA and BH algorithms to
the exact solution. Furthermore, we show the speedup of the parallel version of the
cost function.

To build the original portfolio, we repeat each policy in the portfolio of Table 1 1000
times, so that we obtain a portfolio containing 10,000 policies. Although they are repeated,
each policy is treated as a different individual one. The goal is to represent the original
portfolio with the 10 model points portfolio in Table 1. Therefore, in this problem we aim
to find the nominals in the model points portfolio that better mimic the original portfolio,
regarding the risk functional. In this case the analytical expression for the solution can
be trivially found by multiplying the number of contracts in Table 1 by 1000 and the
corresponding value of cost function is equal to zero.

As we can see in Figure 2 for the BH method with L-BFGS, the method reaches
the very small value 1.75× 10−8 of the cost function. In Table 2 we show the obtained
values of the nominals for the model points portfolio rounded to the eighth decimal digit.
The resulting difference between 1.75× 10−8 and zero in the cost function is due to this
rounding procedure. The computational time was 87.35 h (about 3.63 days) using L-BFGS,
when using 16 cores (and 32 threads).

Table 2. Obtained solution in Example 2 with BH.

Age Maturity Nominal

20.0 50.0 50,000,000
25.0 45.0 100,000,000
30.0 40.0 150,000,000
35.0 35.0 200,000,000
40.0 30.0 250,000,000
45.0 25.0 300,000,000
50.0 20.0 350,000,000
55.0 15.0 400,000,000
60.0 10.0 450,000,000
65.0 5.0 500,000,000
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Figure 2. Convergence of the BH algorithm for Example 2.

Next, in Figure 3 we show the convergence of the SA algorithm for solving the
optimization problem. In this case, the computational time was 839.35 h (about 35 days).
The obtained solution is the same as with BH algorithm.

In this test, we have validated that the proposed methodology can group the repeated
policies in the corresponding bucket, which is an expected property of the risk functional.
In view of computational times we note that BH results to be more efficient than SA. We
also have shown that the problem has high computational cost.

We can also use this test to show the performance of the multi-CPU implementation
of the model points risk functional calculation. For this purpose, we consider from 100 to
10, 000 policies in the original portfolio, by repeating the policies of the portfolio in Table
1. Moreover, we consider 1000 paths for the Monte Carlo simulation. Figure 4 and Table
3 illustrate the achieved speed up with the parallel implementation of the risk functional
with different numbers of policies in the original portfolio and different number of cores
being used. As it is illustrated by both, it occurs that the speed-up gets closer to the number
of used cores when the number of policies increases. Clearly, the larger the portfolios the
more advantageous and efficient the parallelization turns out to be.
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Next, in Figure 3 we show the convergence of the SA algorithm for solving the
optimization problem. In this case, the computational time was 839.35 h (about 35 days).
The obtained solution is the same as with BH algorithm.

In this test, we have validated that the proposed methodology can group the repeated
policies in the corresponding bucket, which is an expected property of the risk functional.
In view of computational times we note that BH results to be more efficient than SA. We
also have shown that the problem has high computational cost.

We can also use this test to show the performance of the multi-CPU implementation
of the model points risk functional calculation. For this purpose, we consider from 100 to
10, 000 policies in the original portfolio, by repeating the policies of the portfolio in Table 1.
Moreover, we consider 1000 paths for the Monte Carlo simulation. Figure 4 and Table 3
illustrate the achieved speed up with the parallel implementation of the risk functional
with different numbers of policies in the original portfolio and different number of cores
being used. As it is illustrated by both, it occurs that the speed-up gets closer to the number
of used cores when the number of policies increases. Clearly, the larger the portfolios the
more advantageous and efficient the parallelization turns out to be.
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Table 3. Parallel implementation of the risk functional evaluation. Time and speedups.

N. Policies N. Cores Time (s) Speedup

10, 000

1 943.25 -
2 517.50 1.82
4 249.21 3.79
8 130.70 7.21
16 688.5 13.70

5000

1 518.81 -
2 270.87 1.91
4 137.97 3.76
8 70.22 7.38
16 417.32 13.43

1000

1 102.65 -
2 53.28 1.92
4 27.73 3.70
8 14.99 6.85
16 8.36 12.28

500

1 54.56 -
2 28.63 1.90
4 15.06 3.62
8 8.63 6.32
16 5.15 10.58

100

1 17.351 -
2 9.21 1.88
4 4.94 3.51
8 2.67 6.48
16 1.88 9.21
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Figure 4. Speedups of parallel implementation vs. number of cores for different numbers of policies
in the original portfolio.

6.3. Realistic Portfolio

In this test, we consider a realistic synthetic portfolio that contains 10,000 different
policies. In Figure 5 we show the ages, nominals and maturities of the first 20 policies of this
portfolio, as showing all policies would require a very large table. Moreover, in Figure 6
we show the cashflows of the original portfolio due to the payments to the policyholders.
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Figure 5. Main data of the first 20 policies out of 10,000 in the portfolio of Example 3.
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Figure 6. Cash flows associated to the original portfolio in Example 3.

The target model points portfolio consists of 45 policies, that comprises a table with 9
ages and 5 maturities. Thus, the ages range from 30 to 70 years with a constant step of 5
years, while maturities range from 5 to 25 years with a constant step of 5 years.

Note that this test is much more difficult than the one in Example 2. The required
total computing time by the BH hybrid optimization algorithm, with L-BFGS-B as local
minimizer, was 136.43 h when using 16 processors for the parallel evaluation of the risk
functional. Figure 7 illustrates convergence of the algorithm. After solving the optimization
problem, the model points risk functional achieved the value 0.175927. Moreover, the com-
puted nominals in the model points portfolio are first shown in Table 4 and Figure 8. Also,
in Figure 9 we detail the same results in different graphics for each maturity.
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Figure 7. Convergence of the BH algorithm for Example 3.

In the proposed hybrid algorithm, the global property becomes of great importance
for this test, as several iterations of the global optimization algorithm were needed to reach
the minimum, thus avoiding to get stuck to any of the possibly existing local minima as it
could be the case if a pure local optimization method were applied. Also the convergence
speed and accuracy of the L-BFGS-B local optimizer results to be a key point, as the SA
pure global algorithm was not able to converge for this realistic example.
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Figure 8. Computed model points portfolio for Example 3.
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Figure 9. Detailed model points portfolio for each maturity obtained in Example 3.

Table 4. Obtained model points portfolio with BH in Example 3. The nominal of each model point is
divided by 104.

Maturities

5 10 15 20 25

A
ge

s

30 0.0490344 10,363.8 8678.28 10,654 10,560.2

35 0.363568 0.386776 9859.99 8118.85 42.143

40 12,843.9 8892.82 984.418 523.38 208.743

45 6318.73 5653.26 5108.62 3867.53 84.3039

50 6970.11 6976.25 6874.87 1062.52 280.726

55 132.469 10.4804 543.098 219.955 889.387

60 4057.54 38.8013 2917.22 151.168 51.1771

65 3991.46 234.856 1120.47 0.996919 0.32282

70 7923.19 63.4409 797.372 859.543 0.203422

7. Conclusions

ALM is a key process to evaluate the profitability of insurance companies and to
manage the assets and liabilities portfolios as well as cash flows with the aim to minimize
the risk of loss of the company. In this ALM process, the computation of joint projections
of future cashflows associated to both portfolios is mandatory.
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On the liabilities side, portfolios contain a very large number of policies with different
characteristics and the computation of the corresponding stochastic projection requires the
use of large number of scenarios that involve the underlying stochastic factors (interest
rates, mortality index, etc). Therefore, the projection of each policy in each scenario (stand
alone projection) leads to highly demanding or prohibitive computational times, even when
using HPC tools. In order to overcome this drawback, insurance companies group similar
policies in some representative ones, known as model points. However, the model points
portfolio must preserve the risk distribution with respect to the underlying factors of the
original portfolio. Although model points have been used in practice, a rigorous framework
to measure the risk associated to the replacement of the original portfolio by the model
points portfolio has not been enough addressed in the literature. From the industrial side,
this study has been jointly proposed in collaboration with the financial consulting company
Analistas Financieros Internacionales (AFI) interested in the topic inside the EU H2020
MSCA-ITN-EID Wakeupcall project.

In view of previous summary of the state of the art which constitutes the first working
hypothesis, we have mainly proposed a theoretically based methodology to address the
selection of a model points portfolio for a given initial portfolio of life insurance policies.
The methodology requires to overcome both mathematical and computational challenges.

A second hypothesis is that the model points portfolio selection requires definition of
an appropriate market risk functional to evaluate how the it represents the distribution of
risks associated to the initial one. Also the rigorous mathematical setting has to be posed.
Assuming that the interest rates are the main underlying risk factor, an appropriate market
risk functional has been proposed and the a rigorous mathematical framework coming
from portfolio representation has been used. Although the LIBOR market model for the
evolution of forward rates has been chosen, we point out that any other interest rate model
can be plugged into our methodology, so that the choice of LIBOR market model is by no
means restrictive.

Once the appropriate risk functional has been defined, obtaining the model points
portfolio involves the solution of a high dimensional global optimization problem, so that
the numerical optimization methods require a very large number of risk functional evalua-
tions. The risk function has been discretized by using Monte Carlo technique. In order to
speed up the high computational cost associated to each evaluation, it has been parallelized
in a multi CPUs setting using OpenMP. Concerning the choice of the optimization meth-
ods, the hybrid Basin Hopping optimization algorithm, which combines the advantages
of mixing stochastic global optimization algorithms with gradient local optimizers, has
been proposed and compared with an alternative purely global optimization technique.
The accuracy and performance of the algorithm have been analyzed with several numerical
examples, both in cases with known solution and also in a real example without analytical
solutions. The results show that the hybrid global optimization algorithm is the more
suitable for selecting the model portfolio.

We have also shown that the developed methodology involves a huge computational
cost for realistic large life policies portfolios, because the large number of policies and the
highly demanding Monte Carlo method at each evaluation of the risk functional. This
disadvantage could be overcome by using specific HPC techniques and architectures based
on GPUs, see for example [8,16].

Although the main achievements are related to the proposed rigorous mathematical
framework and methodology, as well as to the efficient computational implementation
using HPC tools and parallelization of Monte Carlo technique for the risk functional
evaluation, we also consider the possible interest of the results in the insurance sector.
We note that the problem has been jointly proposed and assessed by professionals of
the financial company AFI inside a the European Industrial Doctorate (EID) Wakeupcall
project in the MSCA-ITN-EID call of H2020 Program. The obtained results provide a solid
mathematical basis to the proposed methodology for building model points portfolios
in life insurance policies and the efficient implementation allows to speed up the highly
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demanding computational cost, both objectives being of great advantage when addressing
ALM in an insurance company.

Finally, we note that the optimal model points selection for life insurance portfolios
has been addressed by considering that stochastic evolution of interest rates is the main
source of risk. This means that no stochastic fluctuation affecting the time evolution of
the mortality rate has been taken into account, as a deterministic survival trend over time
for any cohorts is considered. However, evidences of the stochastic behavior in the trend
of the life expectancy can be found in [17] and the references therein. In this respect, one
may also refer either to mortality or longevity risk to contribute to losses and risks due
to unexpected changes in the long-terms life trend displayed by the policy owners. As a
direct consequence, a more sophisticated approach for the model points selection should
be obtained by considering the stochastic time evolution of both the interest rate term
structure and the mortality rate. In this context, the dependence between mortality risk and
interest rate risk cover a central issue. A first attempt to model this dependence is carried
out in [6] and future research could be done to incorporate this additional source of risk.
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