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Abstract

2D URANS simulations are conducted aiming to study the aerodynamic performance under smooth flow
of twin-box decks depending on the gap distance between girders. The Stonecutters Bridge is taken as
the reference geometry. In this parametric study, 14 gap to depth ratios in the range 0 ≤ G/D ≤ 9.70
are investigated, and for each geometry, 11 angles of attack in the range −10◦ ≤ α ≤ 10◦ are considered.
Specific goals of this research have been: identification of the fundamental flow features, study of mean and
fluctuating pressure coefficients distributions, identification of the vortex shedding mechanisms and general
aerodynamic characterisation based on force coefficients. The numerical results provided herein are validated
with wind tunnel data previously reported in the literature, finding a good agreement. A critical gap to
depth ratio at G/D = 2.35, in terms of aerodynamic response, was identified, which is consistent with the
value reported in the literature for a different bridge based on wind tunnel tests. The obtained set of data
provide a general picture of the expected aerodynamic performance of a twin-box deck depending on the
gap distance and could be of great value at the early design stage of long-span cable-supported bridges.

Keywords: 2D URANS, twin box, vortex shedding, gap to depth ratio, force coefficients, Strouhal number,
pressure coefficient distribution.

1 Introduction

The use of multi-box decks is a feasible alternative for increasing the span length of cable-supported bridges
once the limits in the aeroelastic performance of single box decks have been reached. These ultra-long cable-
supported bridges are particularly flexible and therefore they are prone to wind action excitation. While
multi-box decks have proven to be remarkably efficient in terms of flutter response, they are susceptible to
vortex-induced vibration (VIV). Some examples of bridges that have adopted a twin-box deck arrangement are
the Yi Sun-sin suspension bridge, in South Korea, the Xihoumen suspension bridge, in China, and the Stone-
cutters cable-stayed bridge, also located in China.

The aforementioned examples of bridges, that have been designed and built in recent years, have been ex-
tensively studied considering their performance under a wide range of aerodynamic and aeroelastic problems. It
has been found that the distance between girders plays a significant role in the aerodynamic and aeroelastic re-
sponses of twin-box deck bridges. Some relevant references in the frame of the current research are summarized
next. The Stonecutters bridge was the first landmark bridge built using this twin-box arrangement. The VIV
problem, as well as the Reynolds number dependency of the wind induced response, was extensively studied
by means of wind tunnel tests (Larose et al., 2003; Larsen et al., 2005; Larsen et al., 2008; Hui et al., 2008).
Furthermore the effect of the gap width in the aerodynamic and aeroelastic responses was addressed in several
publications (Qin et al., 2007; Kwok et al., 2012). Another structure that has been also studied in depth is
the Xihoumen suspension bridge. Li, Laima and co-workers studied the vortex shedding response and VIV by
means of wind tunnel experiments and CFD simulations (Laima et al., 2013); while Reynolds number effects
were addressed in another work reported by Li et al. (2014). The impact caused by different gap distances
between girders has been investigated in Chen et al. (2014) and in Laima et al. (2015), finding very different
flow features depending on the gap width. A simplified section model of the Xihoumen Bridge was used to
study the impact of the gap distance in aeroelastic stability (Yang et al., 2015). Furthermore, Reynolds number
sensitivity of the aerodynamic response of the Yi Sun-sin Bridge was reported in Lee et al. (2014). The relatively
ample bibliography on the subject has allowed identifying three regions in terms of aerodynamic performance
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and flow topology, depending on the gap distance between boxes at 0◦ angle of attack. For small gaps, the
short distance between boxes prevents the formation and detachment of vortices from the leeward side of the
upwind deck, and a weak vortex shedding takes place behind the downwind box. For moderate gaps, a strong
von Karman vortex street appears in the wake of the the upwind box, and these vortices impinge upon the
downwind box inducing the flow separation at the windward corners of the downwind box. Finally, for large
gaps, vortices are freely shed from each box, without mutual interaction.

The references that in recent years have addressed the aerodynamic phenomena in twin box decks by means
of wind tunnel tests, and the very brief description of the influence of the gap distance in the flow response
that has been introduced in the above paragraph, show the complexity of the involved phenomena, and the
difficulties for tackling this problem by means of a numerical approach. In fact, numerical simulations aiming
to simulate the aerodynamic response of multi-box decks are scarce, and in some cases the agreement with
experimental data could be qualified as poor. An early application was conducted by Nieto and co-workers
(Nieto et al., 2008) for the Messina Bridge using the k − ω SST turbulence model, and another for the Stone-
cutters bridge (Nieto et al., 2010) using both the realizable k − ε and the k − ω SST turbulence models. More
recent CFD applications can be found in Laima et al. (2013) where 3D Large Eddy Simulations (LES) are
used in the frame of the so-called hybrid method aiming to analyse the flow characteristics around a twin-
box deck undergoing VIV. Another application consists in the simulation of the aerodynamic response of the
multi-box Megane Bridge using Unsteady Reynolds Averaged Navier Stokes (URANS) and LES approaches
(Dragomirescu et al., 2016). In Patruno (2015) the force coefficients and the flutter derivatives of different deck
cross-sections are obtained by means of CFD simulations using the k − ω SST turbulence model. Among the
considered geometries, the twin-box arrangement of the Gibraltar Bridge proposal is studied. Focusing on the
force coefficients, the author has found a fair agreement with experimental data for the drag and lift coefficients,
obtaining a poorer agreement for the moment coefficient. A relevant publication in the frame of the research
that is going to be reported next is the numerical study on the aerodynamic response of the Xihoumen Bridge
deck considering different gaps at 0◦ angle of attack (de Miranda et al., 2015). In the latest reference, URANS
and LES simulations were conducted aiming to reproduce the experimental results in Chen et al. (2014), where
different gap ratios were considered. The URANS simulation were conducted using the k − ω SST turbulence
model. The authors concluded that URANS simulations might be suitable for very small gaps, especially when
steady state is reached; nevertheless, URANS did not provide accurate results for intermediate gaps, nor for
large gap distances. In the same manner, the transition in the flow topology between small and large gap
ratios could not be accurately predicted in the aforementioned work using CFD tools. Finally, LES simulations
showed a higher accuracy, since they were able to effectively simulate time-averaged quantities, while pressure
fluctuations were qualitatively reproduced. In summary, the results in de Miranda et al. (2015) point towards
the lack of reliability of 2D URANS simulations to properly simulate the aerodynamic response of twin-box
decks for large gaps. However the relatively small number of elements in the computational grids adopted in
that work (55000 cells) opens the door to consider if higher density meshes, in combination with verification
studies could improve the ability of 2D URANS models to predict the aerodynamic behaviour of twin-box decks.

The fundamental goal of this work is to explore the ability of 2D URANS CFD simulations to obtain reliable
information about the aerodynamic behaviour of twin-box decks in terms of the gap distance between girders
(G/D is the so-called gap ratio in the following; G is the gap distance and D is the depth of the deck cross-
section; see figure 1) at different angles of attack. The outputs of interest are the ones that allow characterising
the flow around the bridge deck: mean and standard deviation distributions of the pressure coefficient around
the boxes, force coefficients and Strouhal number. Furthermore, the flow visualization possibilities, which are
characteristic of the numerical approaches to fluid mechanics problems, would shed some light on the flow
features for the different gap distances , particularly for the intermediate range, explaining the Region 1 and
Region 2 behaviours described later in the manuscript. Using a computational approach, it is also possible to
obtain information that is very difficult to get from wind tunnel tests such as the phase lag between the lift
forces acting on each box. In this piece of research, only the bare-deck configuration is studied. Non-structural
elements such as traffic barriers and of course aerodynamic appendages such as guide vanes, baffles or wind
shields, may change significantly the aerodynamic response of the deck cross section (Ricciardelli et al., 2001;
Larsen et al., 2008; Ozkan et al., 2011).

From the engineering design perspective, the problem to address is to conduct a parametric design study,
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in terms of gap distance, which would be of utmost importance at the early design stage in long-span bridge
industrial applications. Consequently, a number of gap ratios must be considered and different angles of attack
should be studied for each gap. In this work, 14 different gaps are considered, and for each one, 11 different
angles of attack are studied, which results in 154 different numerical simulations that must be completed. This
means that a relatively high number of CFD simulations must be carried out, hence adopting a relatively inex-
pensive and robust numerical approach is necessary, in order to deal with a computational burden compatible
with the requirements of the initial design stage in industrial applications. Completing an equivalent wind
tunnel campaign would have demanded extensive resources in terms of funding and time.

Considering the requirements mentioned in the above paragraph, in the numerical simulations that will be
reported next, a 2D approach has been adopted since it is intended to avoid the high computational demands
associated with 3D meshes combined with scale-resolving turbulence models that require a large number of
cells. Besides, a two-equation turbulence model based on the Boussinesq approximation has been chosen. This
turbulence model is Menter’s k−ω SST model (F. Menter et al., 2001), that can be considered nowadays as the
standard choice in industrial applications, since it has proven to be accurate in a wide range of problems, and it
presents lower computational demands than more sophisticated turbulence models like the ones that specifically
model transition or the ones based on the computation of the Reynolds stresses.

Any modelling strategy, numerical or experimental, is affected by some limitations, since it is an engineering
approach aiming to replicate the fundamentals of a certain physical phenomenon. Hence, the modelling strategy
that has been briefly described in the above paragraphs has certain limitations that must be commented upon,
with the aim of properly assessing the results that are going to be reported in the next sections of this article.
(i) The 2D approach adopted for simulating this problem lacks the ability of considering the 3D phenomena
that take place. In fact, the three-dimensionality in the flow has two sources: the 3D geometry of the deck due
to the presence of the transverse beams linking the box girders, and the intrinsic 3D behaviour in turbulent
flow. The impact of transverse beams in the general aerodynamic response of twin box decks is limited. For
instance, the transverse beams have been disregarded in experimental studies such as in Laima et al. (2015)
and in the numerical simulations reported in de Miranda et al. (2015). The experimental work by Chen and
co-workers (Chen et al., 2014) has shown that transverse beams are responsible for lower fluctuating pressures
on the downwind box and the surface facing the gap in the upwind box. The adopted 2D approach is equivalent
to impose perfect correlation along the spanwise direction in an equivalent 3D simulation. (ii) The k − ω SST
turbulence adopted herein, in combination with the 2D URANS approach, typically produces single mode large
scale unsteady structures without resolving any of the details of turbulence (F. R. Menter, 2009). This gives
raise to strong vortices that persist for long time immersed into the global flow. Consequently, in some of
the simulations that will be reported, strong large scale vortices impinge upon the downwind box and produce
strong pressure fluctuations on the windward surfaces, resulting in fluctuating pressure coefficients higher than
the experimental values. In this respect, in de Miranda et al. (2015) it is apparent for the gap widths showing
vortex shedding how URANS simulations provide high values for the fluctuating pressures, well above the ones
obtained from wind tunnel tests or LES simulations. (iii) Furthermore, according to several authors (Wilcox,
2006; Collie et al., 2008), for transitional boundary layer flows, standard two-equation turbulence models would
anticipate transition at a Reynolds number at least one order of magnitude too small. Besides, according to
(Langtry et al., 2009), the k − ω SST turbulence model does not include the capability to properly simulate
separation-induced transition when transition develops within the separated shear layer. This would justify the
slightly lower size of the separation bubble at the region near the leading edge of the upwind boxes, as well
as the lower suctions on the upper sides of both boxes at high positive angles of attack, obtained from the 2D
URANS simulations (see α = +10◦ for the Gap K arrangement) as it will be described in the pertinent sections.

In spite of the above mentioned limitations, the ability of the proposed 2D URANS approach to produce
valuable information in the frame of parametric design studies at the early stages of industrial projects of long
span bridges deserves a detailed assessment. The success in its application would provide engineers with the
entire picture concerning the expected aerodynamic behaviour of a twin-box deck bridge as a function of the gap
distance at a moderate expense. The above statement relies on the ability of the reported CFD simulations to
match the available wind tunnel results. Hence, extensive validation against wind tunnel results is conducted in
this work as a tool to show the level of confidence that the designer might give to the numerical results. In fact,
the acceptance of CFD-based research by the scientific community relies on the validation of the computational
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results with the experimental data.

2 Formulation

The flow around deck cross-sections is modelled by the Navier-Stokes equations, for which time averaging in
conservative form yields the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations (Wilcox, 2006):
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Where Ui is the mean velocity vector, xi is the position vector, ρ is the fluid density, t is the time, P is the
mean pressure, μ is the fluid viscosity, Sij is the mean strain-rate tensor and u′

i is the fluctuating velocity.

The term −u′
iu

′
j is the so-called specific Reynolds stress tensor (τij), calculated by means of the Boussinesq

assumption as:

τij = 2υTSij − 2

3
kδij (3)

Where υT is the kinematic eddy viscosity and k is the kinetic energy per unit mass of the turbulent fluctu-
ation.

Depending on the equations added for the closure of the system, the different URANS models are obtained.
In this case, the model used is the k−ω SST, for incompressible flow, implemented in the open source software
OpenFOAM, whose formulation was proposed by F. Menter et al. (2001).

In this work the focus is put on the integral parameters, which are the force coefficients (drag (Cd), lift
(Cl) and moment (Cm)) and the Strouhal number (St). The force coefficients are calculated time-averaging
the results of the integral along the deck surfaces of the pressure distributions and the viscous forces. The
Strouhal number is obtained from the frequency content analysis of the Cl time history. The force coefficients
are calculated as indicated in the equation (4) where FD, FL and M are the time averaged drag and lift forces
and moment per unit length. Positive lift and moment are in the upward direction and the clock-wise rotation
respectively; finally, positive drag is taken in the along wind direction, which is coincident with the positive
x-axis in figure 1.
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1
2ρU

2C
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FL
1
2ρU

2C
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M
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2C2
; St =

fD

U
(4)
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Figure 1: Sign convention.

The mean pressure coefficient (Cp) and its standard deviation (C̃p) are calculated as shown by equations (5)
and (6).
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∞

(6)

In the latter equations, p is the time averaging of the pressure, ρ is the air density, U∞ is the free stream
speed and σp is the standard deviation of the pressure. The Cp distributions help to understand the resultant
mean force coefficients, the fundamental flow features and, for this type of deck cross-sections in conjunction
with additional inputs such as flow fields, provide some insights for identifying separation and reattachment
regions. Meanwhile the C̃p distribution gives an idea of flow separation and reattachment zones, as well as
effects of body-induced turbulence (Kwok et al., 2012).
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3 Modelling and computational approach

To perform the flow analysis, an overall computational fluid domain of size (40C+B)×30C was established,
where C is the width of one box and B is the overall width of the bridge deck, including the two box girders
and the gap (G) between them. D is the deck depth, as can be seen in figure 1. The size of the computational
fluid domain is similar to the one reported in Bruno et al. (2010) for a ratio 5:1 rectangular cylinder. This
computational fluid domain has been subdivided into 3 different zones, excluding the boundary layer regions,
as shown in figure 2, where the fundamental dimensions are also provided. The zone that is closest to the
boxes is the so called buffer zone (L), where special care was taken to obtain a high density mesh in the gap
between decks. In this region very important phenomena take place, such as: shear layer separation and vortex
detachment and impingement. In the same manner, a second region is defined, which is a strip downwind of
the buffer zone, which is named as wake zone (M ). In this region, special care must also be taken in the spatial
discretisation, although the cell sizes can be increased as the distance from the deck increases. The wake zone
is where the vortices eventually shed from the deck will evolve and progressively dissipate as they are drifted
away. Finally, further away from the deck, the zone (N ) is defined, where coarser cells can be placed. This
zone defines the overall size of the fluid domain, which must be large enough in order to avoid the influence of
the flow domain boundaries in the flow behaviour in the vicinity of the deck. Pictures of the mesh, including
details of the different zones, are presented in figure 3. As can be seen, a non-structured mesh with triangular
cells was adopted to discretise the flow domain, except for the boundary layer region, where a quadrangular,
structured mesh was used. The height of the boundary layer first element has been chosen in order to get a
non-dimensional first layer height target value of y+ = 2 (y+ = (uτy1)/ν; y1 is the height of the first element of
the boundary layer and uτ is the friction velocity).
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Figure 2: Computational fluid domain (not to scale).
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(a) Overall domain. (b) Wake buffer & wake. (c) Wake buffer.

(d) Gap detail 01. (e) Gap detail 02. (f) Boundary layer.

Figure 3: Mesh details.

At the inlet (see figure 2), the turbulent intensity of the incoming flow was set to 1%, and the turbulent
length scale to 0.1C, which are of the same order of magnitude as in Nieto et al. (2015). Dirichlet conditions
have been imposed at the inlet for the velocity field U, the turbulent specific dissipation ω and the turbulent
kinetic energy k. On the other hand, Neuman conditions were considered for the pressure p. In the case of the
outlet boundary, Neuman conditions were imposed for the velocity, the specific dissipation rate and turbulent
kinetic energy fields, meanwhile a Dirichlet condition was set for the pressure field. In the case of the upper
and lower boundaries a slip wall boundary condition was selected. Finally, the walls of the boxes are modelled
by means of a no-slip boundary condition, therefore, null velocity has been imposed on this boundary.

In some cases, numerical schemes showing first or first-second order behaviour have been favoured aiming
to improve the robustness of the simulations that must tackle very different flow conditions depending on the
specific gap and angle of attack of each simulation. The open-source finite volume software OpenFoam was
used to numerically evaluate the fluid flow around the bridge section. The diffusive terms are computed using
a second-order differential scheme, while the convective terms use the linear upwind differential scheme. The
advancement in time is accomplished by a first order implicit scheme and the pressure-velocity coupling is re-
solved by the PIMPLE algorithm.
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4 Verification and preliminary validation

In CFD simulations, the finite volume mesh discretisation of the computational domain plays a key role
in the accuracy of the results (Mannini et al., 2010). Therefore, a mesh density sensitivity study was carried
out. This process tries to identify a mesh in which successive spatial refinements do not produce significant
changes in the numerical results. Three meshes, with different densities, have been considered and their prop-
erties can be found in table 1. The differences between meshes in the verification study mainly relay on the
successive refinement of the different zones, keeping the same discretisation for the boundary layer, except for
the fine mesh, where the length of the elements along the wall in the first layer attached to the twin boxes is
half the length adopted in the other meshes. All the simulations in this verification study were carried out at
Re = U∞D/ν = 4.48· 104, corresponding to a wind speed of 15 m/s, for a zero degree angle of attack (α = 0°).
The high number of elements of these meshes is related to the complexity of the geometry studied, in shape and
in number of boxes. Furthermore, the downwind box is fully immersed in the wake of the upwind box, which
requires a high density mesh in the gap and the vicinity of the downwind box in order to accurately simulate
the involved phenomena.

Mesh y1/C x1/y1 r lbl ybl/C Total cells Quadrilateral cells Triangular cells

coarse 1.6432 · 10−4 4 1.167 10 3.5035 · 10−3 413118 66820 346298
medium 1.6432 · 10−4 4 1.167 10 3.5035 · 10−3 664032 66820 597212

fine 1.6432 · 10−4 2 1.167 10 2.3808 · 10−3 1359262 133260 1226002

Table 1: Mesh properties.(The parameter y1 is the total height of the first element of the boundary layer (bl),
x1 is the length of first element in the bl, r is the growth ratio of the elements in the bl, lbl is the number of
layers forming the bl mesh and ybl is the total height of the bl mesh.)

The values of the y+ obtained for the left and right boxes are similar to the ones reported in Sarkic et al.
(2012) and Nieto et al. (2015), and compatible with the low Reynolds wall modelling approach adopted for this
study. In all the cases the percentage of elements with y+ > 4 is lower than 1.2% and the average value is lower
than 2. The highest values are mainly located in the vicinity of the deck corners. A summary of these y+ values
can be found in tables 2 and 3.

y+ left deck
Mesh y+max y+mean %y+ > 2 %y+ > 4 %y+ > 6 %y+ > 8

coarse 7.4359 1.9703 47.71 0.73 0.11 0.00
medium 7.5810 1.9875 43.46 0.85 0.13 0.01

fine 8.1701 1.9822 48.18 0.75 0.12 0.02

Table 2: y+ values for the upwind deck.

y+ right deck
Mesh y+max y+mean %y+ > 2 %y+ > 4 %y+ > 6 %y+ > 8

coarse 7.9241 1.4557 20.30 1.13 0.11 0.01
medium 7.9865 1.4757 20.34 1.12 0.08 0.01

fine 7.8927 1.4920 20.66 1.06 0.09 0.01

Table 3: y+ values for the downwind deck.
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The grid sensitivity study is performed based on the values obtained for the integral parameters, that is, the
force coefficients and the Strouhal number (St). The results of the mesh density sensitivity study are presented
in table 4 and in figure 4. It can be appreciated how the results obtained adopting the three different grids
are very similar and , particularly the medium and fine meshes provide nearly identical values for the integral
parameters. In figure 5, the mean and standard deviation distributions of the pressure coefficient are reported
for the reference case (Gap K). It can be found that the differences in the mean and fluctuating pressure distri-
bution are negligible once the coarse mesh is discarded. Hence, the medium mesh characteristics are retained
for the remaining simulations given its ability to provide space discretisation independent results with lower
computational cost. It must be noted that the cells count is one order of magnitude larger than in the 2D
URANS simulations reported in de Miranda et al. (2015).

Mesh Cd Cl Cm C̃d C̃l C̃m St

coarse 0.143 -0.264 0.021 0.05 0.43 0.12 0.26
medium 0.146 -0.232 0.028 0.06 0.52 0.11 0.28
fine 0.144 -0.238 0.023 0.06 0.52 0.11 0.28

Table 4: Results of the grid-refinement study.
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Figure 4: Results of the grid-refinement study.
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All the simulations carried out for the different meshes have been computed imposing a maximum Courant
number (Co) of 10. This number was selected aiming to avoid high computational costs due to the high num-
ber of elements in the mesh while satisfying the numerical stability requirements in the simulations. As the
time discretisation can also affect the accuracy of the CFD simulations, a sensitivity study imposing different
maximum values of Co (10, 5 and 1) was carried out, adopting the medium mesh spatial discretisation. In
this study the results obtained for the different Co numbers considered do not show significant variations, see
table 5. Due to the goals of these simulations (analyses of mean force coefficients and St for a wide range of
deck gaps) and the high computational burden associated with a 10 times smaller maximum Co (Comax = 1),
the medium mesh characteristics and a maximum Co of 10 are retained for the simulation of the other gap to
depth ratios considered hereafter.

Co Cd Cl Cm C̃d C̃l C̃m St

10 0.146 -0.232 0.028 0.06 0.52 0.11 0.28
5 0.142 -0.240 -0.001 0.06 0.45 0.12 0.27
1 0.142 -0.241 -0.044 0.05 0.41 0.12 0.26

Table 5: Time discretisation sensitivity study.

In order to assess the accuracy of the CFD-based results obtained for the reference case, they are compared
with the wind tunnel data reported in Kwok et al. (2012) for the equivalent Gap04 arrangement. Since a 2D
URANS approach has been adopted in the numerical simulations, 3D geometric details such as the transverse
connection beams considered in the tested sectional model cannot be included in the CFD model. Furthermore,
the 2D nature of the simulations prevents the proper modelling of the flow three-dimensionality, as well as the
correlation loss in the spanwise direction. In the following the focus will be set on the the mean force coeffi-
cients (table 6) and the mean and standard deviation of the pressure coefficients distributions (figure 5).In the
CFD simulations, the components of the resultant time-averaged forces and pitching moment per unit of span
length are non-dimensionalised using the reference dynamic pressure and a reference length. In the wind tunnel
tests reported in Kwok et al. (2012), the mean values of the lift, drag and pitching moment per unit length
of the bridge deck are calculated by spatial integration of the mean surface pressure distribution. In order to
minimise the random error of the wind tunnel results, force and moment coefficients were averaged over seven
pressure-tapped strips located at different positions along the sectional model span.

Method Re I [%] Cd Cl Cm C̃d C̃l C̃m St

Present study k-ω SST 4.48 · 104 1.0 0.146 -0.232 0.028 0.058 0.521 0.108 0.278
Kwok et al. (2012) Exp. 4.48 · 104 - 0.140 -0.234 0.267 - - - 0.278

Table 6: Comparison between experimental and numerical values. (All data calculated respect C except for St
calculated respect D. I stands for turbulent intensity.)

In both the upwind and downwind boxes, the CFD mean pressure coefficient distribution is very similar to
the experimental data from qualitative perspective (see figure 5). In fact, the flow separation and reattachment
that takes place along the upper sides of the upwind box is correctly identified, as well as the flow separation
at the windward corner of the downwind box. However, looking closer at the values obtained in the upwind
box, the CFD simulation provides lower values for the suctions on the upper surface. Furthermore, suctions
are overestimated on the windward half of the upper surface of the downwind box, while the suction on the
curved side of the downwind box is underestimated. These discrepancies have a limited impact on the mean
drag and lift coefficients, which are nearly identical when CFD and experimental values are compared. On
the other hand, the aforementioned discrepancies are responsible for the difference obtained in the moment
coefficient. The small discrepancies that can be identified in the resultant lift force acting on each individual
box are magnified when the moment coefficient is computed introducing the distance from the centre of pressure
in each box to the reference axis O (figure 1).

The CFD simulation provides a resultant lift force acting on the upwind box lower than the wind tunnel
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Cp

C̃p

Kwok et al. (2012) Re=4.48·104
Coarse mesh Re=4.48·104, Co = 10

Medium mesh Re=4.48·104, Co = 10
Fine mesh Re=4.48·104, Co = 10

Figure 5: Mean pressure coefficient distribution and its standard deviation distribution for Gap K. (Negative
values points outward the section and the height of the section is equal to a value of unity.)

tests. When this lift forces are multiplied by the pertinent lever arm a deficit in the moment coefficient is
obtained. In a similar manner, the numerical simulation provides a slightly higher resultant lift force on the
downwind box. Consequently the downwind box contribution to the moment coefficient is also lower than in
the wind tunnel tests. This explains the lower value obtained in the numerical simulation for the moment
coefficient in table 6. Similar discrepancies are reported in the moment coefficient for large gap ratios in the
following sections. Similarly a poor agreement in the CFD-based moment coefficients has also been reported in
Patruno (2015) for the Gibraltar Bridge case. On the contrary, for small gap to depth ratios, the differences in
the moment coefficients are smaller as the shorter lever arm values do not play a multiplicative role when the
moment coefficient is computed.

When the distribution of the standard deviation of the pressure coefficient is analysed, it is apparent the
higher values provided by the CFD model at the leeward side of the upwind box, and particularly at the
windward half of the downwind box. This is due to the generation of strong vortices, typical of two-equation
turbulence models, that in this case are shed from the upwind box and impinge upon the downwind box. In
de Miranda et al. (2015) similar patterns are obtained for the distributions of the C̃p computed from the 2D
URANS simulations.

In terms of Strouhal number the agreement between the CFD value and the wind tunnel result is remark-
able. This signals the ability of the proposed 2D URANS approach to simulate the fundamental flow features
for static twin box decks.

5 Results

The set of simulations presented herein aims to analyse the flow around the bare deck cross-section of the
Stonecutters cable-stayed Bridge, depending on the gap to depth ratio, adopting a 2D approach and the k − ω
SST turbulence model. The Stonecutters Bridge is configured as a twin box deck, where two independent box
girders with a gap between them, are connected by transversal beams. The width of the individual boxes is
C = 19.5 m and its height is D = 3.609 m, meanwhile the gap distance between the boxes is G = 14.3 m, In
these CFD simulations, the geometric scale selected to reproduce the section geometry was set to 1/80 and the
incoming wind velocity was set to 15 m/s, aiming to obtain the same Reynolds number as in the experimental
tests carried out by Kwok et al. (2012). The arrangement of the actual deck of the Stonecutter Bridge is adopted
as the reference case in this work, which corresponds with the Gap04 case in Kwok et al. (2012). This reference
case is the one used for verification and preliminary validation, and will be identified as Gap K in the successive
parts of this work (see table 7).
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5.1 Main flow features, and mean and fluctuating pressure coefficient distributions

The numerical simulations presented in this paper correspond to fourteen different gap widths at eleven
different angles of attack (0◦,±1◦,±3◦,±5◦,±7◦,±10◦). In table 7, the different gaps studied with the adopted
naming convention and their correspondence with the geometry arrangements studied in Kwok et al. (2012),
can be found. The reference case considered for verification and validation, that was previously reported, corre-
sponds to the Gap K arrangement in table 7. The meshes that have been built for the cases considered herein
are based on the characteristics of the medium mesh of the reference case, previously described.

Gap A B C D E F G H I J K L M N

G/D 0.00 0.28 0.55 0.83 1.11 1.25 1.66 2.08 2.35 2.63 3.96 5.85 7.48 9.70
Kwok et al. (2012) 01 02 - - - - - 03 - - 04 05 - -

Table 7: Name convention of the investigated gap ratios and its correspondence with the gap identification
codes in Kwok et al. (2012).

In the following, snapshots of the instantaneous vorticity fields, and the distributions of the mean pressure
coefficient (Cp) and its standard deviation (C̃p), are presented and discussed for four different gap widths,
representative of the different flow patterns appreciated, at an angle of attack of 0◦. Besides, for the Gap K
configuration, the results of the CFD simulations for the challenging cases of ±10◦ angles of attack are reported
and compared with the available wind tunnel data. The Reynolds number used in all the numerical simulations
is the same as the one used in the experimental studies in Kwok et al. (2012), whose results are presented for
comparison and validation, being equal to Re = 4.48 · 104.

The main goal of this section is the identification of the fundamental flow features and their changes as the
slot between boxes increases. Instantaneous vorticity fields allow to identify vortices and shear layers, along
with their evolution in time. Mean and fluctuating pressure coefficients are useful to identify flow separation
and reattachment, as well as vortex impingement on the downwind box. The comparison of the aforementioned
mean and fluctuating pressure coefficient distributions with the equivalent wind tunnel results helps to judge
the feasibility of the numerical simulations and also facilitates the understanding of the causes responsible for
the eventual discrepancies between CFD and experimental data.

5.1.1 Gap A, α = 0◦

Gap A (G/D = 0) corresponds with Gap01 in Kwok et al. (2012). The CFD simulations for this case provide
a steady response similar to the results in Kwok et al. (2012). In figure 6 the vorticity field is presented, where
the steady shear layers are apparent. Figure 7 shows the distributions of the mean and fluctuating pressure
coefficients. The agreement between the computed and experimental Cp is fairly good, being the main flow
features described in Kwok et al. (2012) correctly predicted by the CFD simulations. Small fluctuations in the
experimental pressure coefficient on the inclined panel facing the gap at the downwind box can not be identified
due to the steady response obtained from the 2D CFD simulation.

Figure 6: Vorticity magnitude field for Gap A at 0◦ angle of attack.
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Figure 7: Cp and C̃p distributions for Gap A and Gap01 at 0◦ angle of attack. (Negative values points outward
the section and the height of the section is equal to a value of unity.)

5.1.2 Gap B, α = 0◦

Gap B (G/D = 0.28) is the same deck arrangement as Gap02 in Kwok et al. (2012). This case corresponds
to the two boxes presenting the smallest gap between them. In figure 8, 10 snapshots of the instantaneous
vorticity fields along one period of the lift coefficient time history are presented. It is possible to identify the
formation of a strong vortex, which detaches from the lower leeward corner of the upwind box and impinges
upon the inclined windward panel of the downwind box, moving afterwards along the lower side of the down-
wind box. In the same manner, it can be appreciated the unsteady flow passing through the gap due to the
pressure difference between the top and bottom surfaces of the deck. This pressure difference is generated by
the accelerated flow moving over the more streamlined bottom surface, according with Bernoulli’s Principle as
it is described in Kwok et al. (2012). Furthermore, it is evident the weak vortex shedding pattern behind the
downwind box, which is consistent with the so-called pattern A behaviour described in Laima et al. (2015) for
twin-box decks with low gap to depth ratios.

The comparison between CFD and experimental mean and fluctuating pressure coefficient distributions
along the boxes presented in figure 9, shows a good general agreement, particularly for the Cp. The numerical
simulation consistently replicates the main flow features such as the flow separation at the top surface near
the leading edge region and the subsequent reattachment, as well as the negative pressures along the bottom
surfaces, which have been extensively described in Kwok et al. (2012). The main discrepancies can be found at
the surfaces of the boxes facing the gap, where higher values for the standard deviation of the pressure coefficient
are obtained in the numerical simulations. This circumstance is due to the perfect spanwise correlation implicit
in 2D CFD modelling and the strong vortices typical of two-equation turbulence models, which give place to
strong oscillations in pressure when the vortices detach or impinge on a downwind surface.
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(k) Positions of the vorticity field snapshots in a cycle of the Cl time-history.

Figure 8: Vorticity magnitude field snapshots at different positions in a cycle of the Cl time-history for the Gap
B.
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Figure 9: Cp and C̃p distributions for Gap B and Gap02 at 0◦ angle of attack. (Negative values points outward
the section and the height of the section is equal to a value of unity.)
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5.1.3 Gap H, α = 0◦

The next gap to be studied is the Gap H (G/D = 2.08) corresponding with the Gap03 in Kwok et al.
(2012).This gap to depth ratio is representative of the aerodynamic behaviour at the transition between short
and large gap ratios. In fact, the value G/D = 2.08 is very close to the value of 2.138 that separates Pattern
A and Pattern B vortex-shedding behaviours reported in Laima et al. (2015). Consequently, in the snapshots
reported in figure 10 the relatively weak vortex shedding in the wake of the downwind box (pattern A) co-exists
with the clear von Karman street in the gap caused by the vortices alternatively shed from the upwind box
(pattern B). As the gap width increases, vortices in the gap have a larger distance to develop and the impinging
vortices roll over the upper surface of the downwind box. Consequently the mean suction over the top surface
is increased, particularly at the windward corner due to the strength of these vortices that further induces flow
separation at the top corner facing the gap. The values of C̃p over the whole length of the top surface also
increase due to the vortices moving along this side of the box. Turning the focus to the comparison between
the numerical and experimental distributions of Cp, they show a good agreement. It is argued that the overes-

timation of the C̃p around the windward faces of the downwind box is related to the intrinsic characteristics of
the k − ω SST turbulence model, as previously explained.
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(k) Positions of the vorticity field snapshots in a cycle of the Cl time-history.

Figure 10: Vorticity magnitude field snapshots at different positions in a cycle of the Cl time-history for the
Gap H.
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Figure 11: Cp and C̃p distributions for Gap H and Gap03 at 0◦ angle of attack. (Negative values points outward
the section and the height of the section is equal to a value of unity.)
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5.1.4 Gap K, α = 0◦

For this gap to depth ratio (G/D = 3.96), which is the one adopted in the verification and preliminary vali-
dation studies, the snapshots of instantaneous vorticity are reported in figure 12 for α = 0◦. It is apparent how
the larger gap allows the complete development of the vortices alternatively shed from the upwind box. This
vortices impinge on the downwind box and persist for some time, moving along the top and bottom surfaces of
the downwind box. From these pictures no vortex shedding can be identified at the wake of the downwind box,
which is fully consistent with the pattern B vortex shedding behaviour described in Laima et al. (2015).

In figure 13 the Cp and C̃p distributions for Gap K at 0◦ angle of attack are presented. The Cp numerical
results are in good agreement with the experimental ones and the differences in the mean Cp distributions were
already commented upon in section 4. Here, it is noted that the overestimation in the suction on the first half of
the upper face of the downwind box may be explained by the large scale, high strength vortices produced by the
turbulence model which impinge upon the upper leading edge of the downwind deck. Finally, the overestimation
in the C̃p distributions is also due to the highly energetic vortices shed from the upwind box.
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(k) Positions of the vorticity field snapshots in a cycle of the Cl time-history.

Figure 12: Vorticity magnitude field snapshots at different positions in a cycle of the Cl time-history for the
Gap K.
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Figure 13: Cp and C̃p distributions for Gap K and Gap04 at 0◦ angle of attack. (Negative values points outward
the section and the height of the section is equal to a value of unity.)

5.1.5 Gap K, α = −10◦

In Kwok et al. (2012) the experimental Cp and C̃p distributions at angles of attack α = −10◦ and α = +10◦

have been reported. It is of great interest in this piece of research to compare the CFD results with the wind
tunnel ones at high angles of attack. These high angles of attack pose a particularly demanding scenario for CFD
simulations since massive flow separation and complex interaction of the upwind box wake with the downwind
box are expected.

In figure 14 it can be appreciated the massive flow separation that exists at the upwind box, which gives
place to huge vortices that are alternatively shed. In fact, the vortices shed from the upper leeward corner of
the upwind box are responsible for the high standard deviation in the pressure along the inclined panel in the
downwind box that are obtained from the CFD simulations (figure 15). In figure 14, it can be appreciated how
vortices are also alternatively shed from downwind box. In the same manner, pressure fluctuations are smaller
over the top surface of the downwind box since the CFD model predicts a partial impingement on the downwind
box of the vortices shed from the leeward corner of the upwind box. In the numerical model, the trajectory
of that vortex seems to be notably influenced by the other enormous vortex, which is shed from the windward
corner of the upwind box, that apparently pushed the former towards the downwind box. Furthermore, the
aforementioned vortices seem to interact with the ones detached from the upwind corner of the downwind box
since both seem to drift away almost simultaneously, without coalescing.

In figure 15 it can be seen the remarkably good agreement obtained between the experimental and numerical
mean pressure coefficient distribution. The upper sides of both boxes must withstand positive mean pressure
since at α = −10◦ these plates are facing the flow. Only at the leeward corners moderate negative mean pres-
sures are apparent due to the vortex formation. In the wind tunnel tests, the C̃p is not so high over the inclined
panel of the downwind box. This might be indicative of a lower size and energy in the vortical structures, but
also a different trajectory in the vortices shed from the upper leeward corner of the upwind box.
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(k) Positions of the vorticity field snapshots in a cycle of the Cl time-history.

Figure 14: Vorticity magnitude field snapshots at different positions in a cycle of the Cl time-history for the
Gap K at −10◦ angle of attack.
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Figure 15: Cp and C̃p distributions for Gap K and Gap04 at −10◦ angle of attack. (Negative values points
outward the section and the height of the section is equal to a value of unity.)
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5.1.6 Gap K, α = 10◦

In figure 16, the snapshots of instantaneous vorticity fields along one period of the lift coefficient time history
for the 10◦ angle of attack case are provided. As in the latest case, massive flow separation takes place; however,
the large shear layers that appear in the upwind box do not roll over giving place to vortices. Furthermore, the
shear layer created when the flow separates at the corner of the bottom surface of the upwind box extends up
to the downwind box and passes through the gap, interacting with the shear layer created as the flow separates
at the windward top corner of the downwind box. In the numerical simulation, vortices are alternatively shed
from the downwind box, though the centre of these vortices is far away from the top surface of the downwind box.

When the mean pressure coefficient distribution obtained by means of the 2D URANS simulation is com-
pared with the wind tunnel data (figure 17), it is apparent the inability of the numerical simulation to accurately
simulate the strong suctions that take place over the top surfaces of these boxes. The absence of the peak in the
pressure suction in the vicinity of the windward corner of the downwind box may be related with the feeding of
energy into the shear layer caused by the shear layer detached from the bottom surface of the upwind box that
makes the vortex generation to happen farther away from the box top surface. Furthermore, as it has already
been mentioned in the introduction, two-equation turbulence models face difficulties for accurately simulate
transition in boundary layer flows and separation-induced transition in shear layers. This may explain the long
shear layers created at the separation points and the steadiness of the shear layer created at the windward corner
of the upwind box, which should have showed some unsteadiness and probably vortex formation according to
the pattern in the experimental values of the fluctuating pressure coefficient over the top surface of the upwind
box.

This is a particularly challenging case for CFD simulations. The discrepancies are constrained to the values
of the suctions on the top surfaces of the deck, while the values of the mean pressure coefficients over the bot-
tom surfaces and the fluctuating pressure coefficients, with the exception mentioned above, show a remarkable
agreement with wind tunnel data. Hence, it can be concluded that the 2D URANS simulations reported herein
are able to accurately simulate time-averaged quantities for twin-box decks considering different gap distances
in a wide range of angles of attack (−10◦, 5◦). Only for high positive angles of attack (7◦, 10◦), the accuracy in
the numerical values diminishes, while the results keep on being qualitatively correct. The extent and impact of
these differences between numerical and experimental values is made clear when the complete set of force coef-
ficients is reported in section 5.2. It will be demonstrated that the assessment of the aerodynamic performance
of the considered deck geometries can be successfully conducted adopting the proposed computational approach.
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(k) Positions of the vorticity field snapshots in a cycle of the Cl time-history.

Figure 16: Vorticity magnitude field snapshots at different positions in a cycle of the Cl time-history for the
Gap K at +10◦ angle of attack..
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Figure 17: Cp and C̃p distributions for Gap K and Gap04 at 10◦ angle of attack. (Negative values points
outward the section and the height of the section is equal to a value of unity.)
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5.2 Force coefficients

In figures 18 to 20 the force coefficients in the ranges of angles of attack (−10◦,+10◦) for the fourteen
different gap widths considered in this study are presented. Along with the CFD-based results, the wind tunnel
values reported in Kwok et al. (2012) for five of the considered geometries are also included for validation. The
reference dimension considered for the force coefficients (equation (4)) is the width of one box (C). These results
show a complete panorama in terms of the expected aerodynamic performance of the deck cross-section as the
gap distance between boxes is modified.

For the drag coefficient, the investigated arrangements show a roughly parabolic trend, which is typical of
streamlined box decks. Also, for G/D ratios higher than 1.5 (Gap G and successive) the Cd curve is shifted
upwards providing higher values for the drag coefficient. This is due to the increment in the positive mean pres-
sure acting on the panels facing the gap in the downwind box as the gap distance increases. The accuracy of
the CFD simulations can be judged as fairly good when experimental and numerical values are compared. The
CFD-based simulations reproduce faithfully the trend in the drag coefficients and discrepancies in the values
for individual arrangements and angles of attack are worthy of mention only in a limited number of realisations
such as Gap B at α = −1◦, Gap H at α = 5◦ or Gap K at α = 7◦. In these cases, the 2D URANS simulations
are providing a steady solution, which might explain the differences with the wind tunnel results.

The lift coefficient shows a linear trend in the central part of the studied range of angles of attack, which is
the expected trend for streamlined bridge decks. The slope of the lift coefficient is positive, which is indicative
of an aeroelastic performance not prone to suffer from flutter instability (Larose et al., 1997; Diana et al., 2007).
The range of values obtained for the Cl do not change significatively for the studied gaps. When the numerical
results are compared with the available wind tunnel data, the agreement is remarkably good, particularly in
terms of the lift coefficient slope. Some differences can be appreciated only in the higher part of the angles
of attack range (5◦, 7◦ and 10◦) on Gaps H, K and L, as massive flow separation takes place and the CFD
simulations are not able to accurately reproduce the strong suctions along the top surfaces of the deck, as it
was previously explained for the Gap K α = 10◦ case.

The moment coefficient shows also a clear linear trend in the central range of angles of attack considered for
the studied deck arrangements. The moment coefficients behave in a similar manner as the lift coefficient, that
is, the slope is roughly constant as well as the range of the values of the moment coefficient for the studied deck
geometries. The agreement between numerical and wind tunnel data is remarkably good for small gap widths
(Gap A and Gap B). Nevertheless, the accuracy deteriorates to some extent as the gap widens due to the effect
caused by the increase in the distance from the reference axis to the centre of pressures of each box, as has
been previously explained in section 4. In any case, these discrepancies do not compromise the ability of the
CFD simulations to provide meaningful insights into the moment coefficient values for the considered twin-box
arrangements.

22



Gap A & Gap01

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap B & Gap02

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Cd

Gap C

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap D

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap E

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap F

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap G

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap H & Gap03

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap I

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap J

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap K & Gap04

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap L & Gap05

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap M

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gap N

−10 −5 0 5 10

α [°]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Present study Kwok et al. (2012)

Figure 18: Mean drag coefficient (Cd) for different gap widths and angles of attack.
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Figure 19: Mean lift coefficient (Cl) for different gap widths and angles of attack.
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Figure 20: Mean moment coefficient (Cm) for different gap widths and angles of attack.
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5.3 Vortex shedding mechanism

The snapshots of the instantaneous vorticity fields that for different gap to depth ratios provided allowed to
identify the existence of vortex shedding and its types: Patterns A or B, according to Laima et al. (2015), or
first, second or third sources, according to Kwok et al. (2012). In Pattern A, vortices are shed from the leeward
edges of the downwind box, on the other hand, Pattern B is characterised by the existence of vortex shedding
detaching from the leeward edges of the upwind box. These vortices drift along the gap impinging on the down-
wind box. Kwok et al. (2012) described the first source of vortex shedding as the vortices shed from the upwind
deck and the second source as the vortices shed from the downwind box. The third source is characterised by the
turbulence buffeting excitation of the downwind box due to the impingement of individual vortices coming from
the upwind box. Pattern A in Laima et al. (2015) is equivalent to source 2 in Kwok et al. (2012), while Pattern
B may be considered as equivalent to the combination of source 1 and source 3 as discussed in Kwok et al. (2012).

The data provided by the numerical simulations may further help to identify the type of vortex shedding
that is taking place for a certain gap ratio. In the following, for Gap K, pressure spectra at certain locations
are studied and the results compared with the ones reported in Kwok et al. (2012).

Vortex shedding may induce the oscillatory motion of a bridge deck. Experimental VIV tests reported in
Laima et al. (2015) have identified different types of vortex-induced vibrations depending on the gap ratio: ver-
tical VIV, both vertical and torsional VIV and only torsional VIV. Aiming to provide a preliminary assessment
of the VIV susceptibility and type for the studied deck geometries, the phase lags between instantaneous force
coefficients acting on each individual box and the standard deviation of the total lift and moment coefficients
are also investigated.

5.3.1 Pressure spectra

In order to analyse the susceptibility of the different cross-sections studied to encounter Vortex Induced
Vibration (VIV), the spectra of the pressure time-histories at points located at four potential sources of vortex
shedding are studied. These locations are the trailing edges of the upwind box and the windward faces of the
downwind box (Kwok et al., 2012). In figure 21, the pressure spectra for the different locations on the Gap K
geometry, considered as representative of large gap cases, are shown. The spectra peaks that can be seen in
figure 21 are coincident with the St obtained from the analysis of the lift time-history and they are in very good
agreement with the experimental results reported in Kwok et al. (2012). The differences in the amplitudes be-
tween CFD and wind tunnel data that can be appreciated in figure 21 for non-dimensional frequencies different
from the Strouhal number and its multiple are due to the inability of URANS models to resolve the turbulence
scales, producing single mode large scale structures.

In the rest of configurations studied, the same behaviour is appreciated, that is, the pressure spectra peaks
are associated with the same value of the St.

Therefore these CFD simulations have been able to accurately replicate the vortex shedding mechanism
associated with the ”first source” and ”third source” types discussed in Kwok et al. (2012).
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Figure 21: a) Measurement points locations and b) pressure spectra at different locations for the Gap K at 0◦

angle of attack.
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5.3.2 Force coefficients, phase lags and standard deviations

The phase lags between the force coefficients time-histories acting on the two individual boxes are presented
in figure 22 for the different gap widths at 0◦ angle of attack. The time histories for each gap width computed
for each box, have the same predominant frequency as the one reported in the calculation of the Strouhal num-
ber for the overall cross-section as it was demonstrated studying the pressure spectra. The phase lag between
the lift time-histories was calculated via the Fourier transforms of the lift coefficients time-histories acting on
each box. Then the phase lag is identified for the dominant frequency in the time-histories.The investigation
of the phase lags can provide an idea about the susceptibility of each arrangement to suffer vortex induced
vibration and the type of VIV mechanism. If the phase lag between the lift forces acting on each individual
box is almost null, or close to 360◦, these instantaneous lift forces are acting in the same direction on both
boxes at each instant, which can enhance the amplitude in the lift coefficient. On the other hand, when the
phase lags between the lift forces on each box are close to 180◦, they are acting on both boxes in opposite
directions every time, which enhances the moment amplitude, increasing rotational vibrations. In figure 23
the phenomenon previously explained is shown, where the gaps with a phase lag from the Cl time-histories
closer to 0◦ or 360◦, such as Gap G (G/D = 1.66) and K (G/D = 3.96), have a greater C̃l value due to

the summation of the contribution of both boxes and a smaller overall C̃m. Meanwhile the cases with phase
lags closer to 180◦ from the Cl time-histories, such as Gap L (G/D = 5.85), present a higher overall C̃m and

smaller overall C̃l. In some cases, such as Gap H, I and J (2.08 ≤ G/D ≤ 2.63), relatively high values for both

the C̃l and the C̃m are obtained, which may be potentially indicative of simultaneous vertical and torsional VIV.
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Figure 22: Phase lags between the boxes force coefficients for different gap widths at 0◦ angle of attack.
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5.4 Critical gap ratio identification

Experimental studies have allowed the identification of the so-called critical gap ratio for twin-box decks,
for which the flow motion in the gap suddenly changes (Laima et al., 2015). In the aforementioned reference,
the value provided as critical gap ratio for a twin-box deck with the geometry of the Xihoumen Bridge was
2.138. In previous sections, the snapshots of instantaneous vorticity fields have allowed to identify different
flow features for small and large gap ratios, identifying the vortex shedding patters A and B, described in the
aforementioned reference. In this section, the force coefficients at 0◦ angle of attack and the Strouhal number
are analysed aiming to identify the critical gap ratio for the Stonecutters Bridge deck geometry and further
contribute to the assessment of the generality of the critical gap ratio concept.

5.4.1 Force coefficients vs. gap ratio

The force coefficients values obtained from the numerical simulations conducted for the different gaps at
zero degrees of angle of attack are presented in figure 24. Referring to the Cd, its value is kept nearly constant,
in the range 0.28 ≤ G/D ≤ 1.38. Once the gap width is big enough to allow the vortices shed from the up-
wind box to develop and impinge upon the downwind one, the drag coefficient increases more quickly up to
G/D = 2.08 and more slowly afterwards. On the other hand, the Cl presents, in general, an increment in value
up to G/D = 2.35, subdivided in two ramps with an intermediate plateau. In the first ramp, G/D ≤ 0.55, the
increment in value is due to the increment of the suction on the upper surfaces of both boxes in the vicinity of the
gap. Between the two ramps, it exists a plateau where the value of Cl slightly decreases (0.55 < G/D < 1.66),
as the suction over the inclined panel of the downwind box increases and the suctions over the upper panel
of the same box, diminish. Finally, the second ramp of Cl growth (1.66 ≤ G/D ≤ 2.35), is basically due to
the presence of positive pressures on the inclined panel of the downwind box as the vortices shed from the
upwind box have more room to develop and impinge on the downwind box. From G/D > 2.35 the value of
Cl decreases steadily as the suction values on the upper surface of the downwind deck decrease, because, the
greater the gap the weaker the vortices impinge upon the downwind box, as the vortices have been able to
fully develop and then slowly dissipate as the gap distance to travel increases.The moment coefficient shows a
step growth for G/D ≤ 0.55, as it happened with the lift coefficient. Then, a plateau can be identified in the
range 0.55 < G/D < 1.66, followed by a step decrement up to G/D = 2.35, obtaining almost null values for the
moment coefficient for G/D > 2.35, once the gap distance is enough for the full development of the vortices shed
from the upwind box. According to the comments above, the critical gap ratio can be identified for G/D = 2.35.
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Figure 24: Force coefficients for the different gap widths at α = 0◦.
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5.4.2 Strouhal number vs. gap ratio

The values of the Strouhal number for each gap to depth ratio at an angle of attach of 0◦ are presented in
figure 25. In general, the greater the gap width, the greater the Strouhal number value. Also two regions with
different growth trends in the values can be identified. The first of them presents a linear trend with steeper
slope until reaching Gap I (G/D = 2.35). This first region corresponds to gap widths in which the vortices shed
from the upwind box are not fully developed, as it was previously commented upon, and there is a weak vortex
in the wake of the downwind box. On the other hand, the second region presents a smoother increment in the
value of St, which tends towards an asymptotic value for the greater gap widths. This second region would
be related with the gap widths in which the vortices are fully developed. These two regions are also identified
in the work of Laima et al. (2015), although for a different twin-box deck section geometry, which shows the
generality of the St dependency as a function of the gap width.

It must be remarked that the numerical values of the Strouhal number are in very good agreement with the
experimental ones. It must be noted that the St values in the numerical simulations are calculated adopting as
reference dimension the value for the deck depth D = 3.609 m (Larose et al., 2003) instead of D = 3.5 m used
by Kwok et al. (2012). Therefore the experimental values in Kwok et al. (2012) have been recalculated using
D = 3.609 m in order to compare the experimental and numerical results.

A fitting curve was approximated for the numerical results in each identified region. The equations of the
two fitting curves are presented next, which correspond to a linear fitting in Region 1 and an exponential one
in Region 2, in agreement with Laima et al. (2015).

Region 1: St = 0.071 + 0.0744
G

D
(7)

Region 2: St = 0.318− 0.2505

(
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Figure 25: Strouhal number for the different gap widths at α = 0◦.

The critical gap ratio for the Stonecutters Bridge deck geometry identified based on CFD simulations is
G/D = 2.35, which is consistent with the value obtained from the study of the force coefficients, and in close
agreement with the value of G/D = 2.135 proposed by Laima et al. (2015) for the Xihoumen Bridge deck
geometry.
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6 Conclusions

Relatively inexpensive 2D URANS simulations have been adopted to study the aerodynamic response
in smooth flow of a twin-box bridge deck. Fourteen different gap to depth ratios have been investigated
(0 ≤ G/D ≤ 9.7), considering eleven angles of attack in the range (−10◦, 10◦).

Verification studies have allowed the identification of the spatial and time discretisations that provide grid
resolution and time step independent results, with lower computational costs. The cells count is about one
order of magnitude higher than in equivalent studies (de Miranda et al., 2015) however, the agreement between
numerical and experimental results is remarkably improved.

The snapshots of the instantaneous vorticity fields have allowed identifying the fundamental flow features
for different values of the gap to depth ratios. These data, in combination with the mean and fluctuating pres-
sure coefficients, the pressure spectra and phase lags between the force coefficients of each box have permitted
the understanding of the different vortex shedding mechanisms, which agree with the proposals based on wind
tunnel tests reported by Kwok et al. (2012) and Laima et al. (2015). The agreement in the mean pressure coef-
ficients distributions between the numerical simulations and the wind tunnel tests is very good for the studied
range of gap to depth ratios. Only in the higher range of angles of attack (7◦, 10◦) non-negligible differences
are apparent over the top surfaces of the boxes, and a plausible explanation is provided based on the known
limitations of two-equation turbulence models. In the same manner, the numerical simulations reported herein
typically overestimate the standard deviation of the pressure coefficients in the regions where vortices detach
or impinge, which is characteristic of the adopted k − ω SST turbulence model.

The global aerodynamic behaviour of the studied twin box deck as a function of the gap ratio and the angle
of attack is assessed by means of the force coefficients. The general agreement with the wind tunnel results is
very good. Apart from the differences already mentioned for high positive angles of attack, some discrepancies
can be appreciated in the moment coefficients for large gap ratios due to the multiplicative effect caused by the
lever arm over the differences in the mean pressure distributions. The critical gap ratio for the studied twin
box deck has been identified and the result is consistent with previous experimental studies conducted for the
Xihoumen Bridge (Laima et al., 2015). The values obtained for the Strouhal number for different gaps are in
very good agreement with experimental data and the trend in the Strouhal number as a function of the gap to
depth ratio is coincident with the experimental data reported in the literature.

This work has shown the potential of 2D URANS simulations to provide reliable information about the
complex aerodynamic behaviour of long-span bridge decks at a moderate computational and budgetary cost.
This is judged of utmost importance at the early design stage in industrial projects of cable-supported bridges.
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