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constructivas.

I would like to show my gratitude to Jean Opsomer for his hospitality and guidan-

ce in research during my stay at Fort Collins. I would like also to thank Agnese

Panzera for her warm welcome during my stay in Florence and for her wonderful

supervision during that time. Thanks to Anneleen Verhasselt to provide me the

opportunity of visiting the Center for Statistics at Hasselt and conducting research.
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Abstract

Regression estimation can be approached using nonparametric procedures, producing

flexible estimators and avoiding misspecification problems. Alternatively, parametric

methods may be preferable to nonparametric approaches if the regression function

belongs to the assumed parametric family. However, a bad specification of this fami-

ly can lead to wrong conclusions. Regression function misspecification problems can

be somewhat tackled by applying a goodness-of-fit test. For data presenting some

kind of complexity, for example, circular data, the approaches used in regression

estimation or in goodness-of-fit tests have to be conveniently adapted. Moreover, it

might occur that the variables of interest can present a certain type of dependence.

For example, they can be spatially correlated, where observations which are close in

space tend to be more similar than observations that are far apart. The goal of this

thesis is twofold, first, some inference problems for regression models with Euclidean

response and covariates, and spatially correlated errors are analyzed. More specifi-

cally, a testing procedure for parametric regression models in the presence of spatial

correlation is proposed. The second aim is to design and study new approaches to

deal with regression function estimation and goodness-of-fit tests for models with a

circular response and an Rd-valued covariate. In this setting, nonparametric pro-

posals to estimate the circular regression function are provided and studied, under

the assumption of independence and also for spatially correlated errors. Moreover,

goodness-of-fit tests for assessing a parametric regression model are presented in

these two frameworks. Comprehensive simulation studies and application of the

different techniques to real datasets complete this dissertation.

Keywords: circular statistics, goodness-of-fit test, linear-circular regression,

nonparametric estimation, spatial dependence





Resumo

A estimación da regresión pode ser abordada empregando técnicas non paramétricas,

dando lugar a estimadores flexibles e evitando problemas de mala especificación.

Alternativamente, os métodos paramétricos poden ser preferibles se a función de

regresión pertence á familia paramétrica asumida. Porén, unha mala especificación

desta familia pode levar a conclusións equivocadas. Os problemas de especificación

incorrecta da función de regresión poden ser abordados aplicando un contraste de

bondade de axuste. Para datos que presentan algún tipo de complexidade, por

exemplo, datos circulares, os métodos empregados na estimación ou nos contrastes,

deben adaptarse convenientemente. Ademais, pode ocorrer que as variables de in-

terese poidan presentar un certo tipo de dependencia. Por exemplo, poden estar

espacialmente correladas, onde as observacións que están preto no espazo tenden a

ser máis similares que as observacións que están lonxe. O obxectivo desta tese é

dobre, primeiro, anaĺızanse problemas de inferencia para modelos de regresión con

resposta e covariables Eucĺıdeas, e erros espacialmente correlados. Máis concreta-

mente, contrástase se a función de regresión pertence a unha familia paramétrica,

en presenza de correlación espacial. O segundo obxectivo é deseñar e estudar novos

procedementos para abordar estimación e contrastes da función regresión para mod-

elos con resposta circular e covariable con valores en Rd. Neste contexto, preséntanse

e estúdanse propostas non paramétricas para estimar a función de regresión circu-

lar, baixo o suposto de independencia e tamén para erros espacialmente correlados.

Ademais, nestes dous contextos, preséntanse contrastes para avaliar un modelo de

regresión paramétrico. Esta memoria complétase con estudos de simulación exhaus-

tivos e aplicacións a conxuntos de datos reais.

Palabras clave: contraste de bondade de axuste, estat́ıstica circular, esti-

mación non paramétrica, regresión lineal-circular, dependencia espacial





Resumen

La estimación de la regresión puede ser abordada usando técnicas no paramétricas,

dando lugar a estimadores flexibles y evitando problemas de mala especificación.

Alternativamente, los métodos paramétricos pueden ser preferibles si la función de

regresión pertenece a la familia paramétrica asumida. Sin embargo, una mala es-

pecificación de esta familia puede llevar a conclusiones equivocadas. Los problemas

de especificación incorrecta de la función de regresión pueden ser abordados apli-

cando un contraste de bondad de ajuste. Para datos que presentan algún tipo de

complejidad, por ejemplo, datos circulares, los métodos utilizados en la estimación o

en los contrastes, deben adaptarse convenientemente. Además, puede ocurrir que las

variables de interés puedan presentar un cierto tipo de dependencia. Por ejemplo,

pueden estar espacialmente correladas, donde las observaciones que están cerca en el

espacio tienden a ser más similares que las observaciones que están lejos. El objetivo

de esta tesis es doble, primero, se analizan problemas de inferencia para modelos de

regresión con respuesta y covariables Eucĺıdeas, y errores espacialmente correlados.

Más concretamente, se contrasta si la función de regresión pertenece a una familia

paramétrica, en presencia de correlación espacial. El segundo objetivo es diseñar y

estudiar nuevos procedimientos para abordar estimación y contrastes de la función

regresión para modelos con respuesta circular y covariable con valores en Rd. En

este contexto, se presentan y estudian propuestas no paramétricas para estimar la

función de regresión, bajo el supuesto de independencia y también para errores espa-

cialmente correlados. Además, en estos dos contextos, se presentan contrastes para

evaluar un modelo de regresión paramétrico. Esta memoria se completa con estudios

de simulación exhaustivos y aplicaciones a conjuntos de datos reales.

Palabras clave: contraste de bondad de ajuste, estad́ıstica circular, estimación

no paramétrica, regresión lineal-circular, dependencia espacial
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Chapter 1

Introduction

The analysis of a variable of interest which depends on other variable(s) is a classic

problem that appears in many disciplines. To tackle this issue, an appropriate regre-

ssion model setting up the possible functional relationship between the variables is

usually formulated. A key element of such a model is the regression function, descri-

bing the general relationship between the variable of interest (response or dependent

variable) and the explanatory variable(s) (covariates, predictors or independent vari-

ables). Once the regression function (which is usually unknown) is estimated, and

the model is properly validated, values of the response variable for known values of

the covariate(s) could be predicted, for instance.

In the present dissertation, models with univariate response variable and seve-

ral covariates, presenting a certain type of spatial dependence structure, will be

considered. In this situation, both the regression function and the dependence struc-

ture must be appropriately specified. Modeling properly the regression function and

searching for suitable regression models is crucial to obtain reliable estimations and

predictions.

For regression models with Euclidean response and covariates, and spatially corre-

lated errors, using parametric approaches, regression estimation can be carried out

using least squares tools or maximum likelihood methods, as described in Diggle

et al. (2010). On the other hand, without assuming a parametric form for the re-

gression function, nonparametric regression estimation methods, for example kernel-

type approaches, can also be employed in this context. The asymptotic properties of

1
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different kernel estimators were derived in Liu (2001), in the setting of multiple re-

gression with spatially correlated errors and short-range dependence. Therefore, an

important question arising when estimating the regression function is if a parametric

or a nonparametric approach should be used. If the form of this function is known

(at least partially), then parametric methods may be used to model the dataset

properly. However, if a wrong functional form is supposed for this function, then

inaccurate estimations will be obtained, and comparing with other estimating meth-

ods, with larger bias (Fan and Yao, 2008). Despite parametric models are easy to

work with, nonparametric methods relax parametric assumptions, and consequently

enable one to explore the data more flexibly. Regression function misspecification

problems can be somewhat addressed by applying a goodness-of-fit test. Although

there is a substantial literature on assessing a parametric regression model, con-

fronting a parametric estimator of the regression function with a smooth alternative

estimated by nonparametric procedures (Alcalá et al., 1999; Azzalini et al., 1989; Eu-

bank and Spiegelman, 1990; González Manteiga and Vilar Fernández, 1995; Härdle

and Mammen, 1993), this is not the case for spatially correlated data.

When data present certain complexities, classical regression procedures designed

for Euclidean data could not be directly employed. This is the case, for instance,

when working with circular data. Circular data are represented as points on the

circumference of a unit circle. Observations from circular processes are quite frequent

in applied sciences such as, oceanography, meteorology, or biology, among others.

Due to the angular nature of such data, some difficulties can be found trying to apply

traditional statistical methods. For example, considering a multiple linear-circular

regression model in which a random angle may depend on several real-valued random

covariates, the circular regression function is given by the inverse tangent function

of the ratio between the conditional expectation of the sine and the conditional

expectation of the cosine of the response variable. Therefore, regression estimators or

goodness-of-fit tests must be specifically designed and analyzed. Although for a single

covariate, the problem of modeling and analyzing linear-circular regression models

was considered using parametric (Fisher and Lee, 1992, 1994) and nonparametric

methods (Di Marzio et al., 2012, 2013), this is not the case for several covariates, in

presence of independent (or even spatial dependent) data.
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The goal of this thesis is twofold. First, to analyze some inference problems for

regression models with Euclidean response and covariates, and spatially correlated

errors. The main contribution in this part is to propose a testing procedure for para-

metric regression models (with univariate response and d random covariates) in the

presence of spatial correlation. The proposed test statistic is based on a comparison

between a smoothed version of a parametric fit and a nonparametric estimator of the

regression function, using a weighted L2-distance. The methodology is also studied

in the particular case of spatial trends with fixed design. The second aim is to adapt

the approaches used to address these inference problems for more complex data,

such as circular data. Considering a regression model with circular response and d

real-valued covariates, nonparametric proposals to estimate the regression function

are provided. The problem of estimating the circular regression function in presence

of spatial correlation is also addressed. Moreover, goodness-of-fit tests for assessing

parametric circular regression functions are presented for independent and spatially

correlated data.

This chapter gives a brief background of some methods to address inference prob-

lems involving Euclidean and circular data. Section 1.1 is devoted to present both

parametric and nonparametric methods to perform regression estimation in different

frameworks. The need of proposing goodness-of-fit tests is motivated in Section 1.2.

A linear-circular regression model is introduced in Section 1.3. Finally, Section 1.4

contains the outline of this dissertation.

1.1 A review on regression estimation

Let {(Xi, Zi)}ni=1 be a random sample from the (d+1)-valued random vectors (X, Z),

where Z denotes a scalar response which depends on a d-dimensional fixed or random

covariate X, with support D ⊂ Rd (under fixed design, the covariate will be denoted

by x). For random designs, the probability density function of the design variable

X will be denoted by f . Assume the following regression model:

Zi = m(Xi) + εi, i = 1, . . . , n, (1.1)
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where m is the trend or regression function, and the εi are random variables, which

are supposed to be zero mean and second-order stationary, with covariogram or

covariance function

C(Xi −Xj) = Cov(εi, εj) = σ2ρn(Xi −Xj), i, j = 1, . . . , n, (1.2)

where σ2 is the variance of the errors and ρn is a continuous stationary correlation

function satisfying ρn(0) = 1, ρn(x) = ρn(−x), and |ρn(x)| ≤ 1, ∀x ∈ D. The

subscript n in ρn allows the correlation function to shrink as n → ∞ (this will be

discussed more precisely in Section 1.1.2). Notice that if C(Xi −Xj) is replaced by

C(‖Xi −Xj‖) in (1.2), where ‖·‖ represents the Euclidean norm, then the second-

order stationary process is also isotropic. That is, second-order stationarity means

that the dependence between two observations is a function of the difference vector

between the locations where the observations are taken, while isotropy goes further,

considering that the dependence is a function of the distance, ignoring the direction of

the difference vector between locations. Otherwise, the process will be anisotropic.

From now on, no matter if the process is isotropic or anisotropic, the covariance

matrix of the errors will be denoted by Σ, being Σ(i, j) = Cov(εi, εj), for i, j =

1, . . . , n, its (i, j)-entry.

With the aim of characterizing the regression function m(x) = E(Z | X = x),

x ∈ D, in (1.1), parametric regression models may be fit, allowing for a direct

interpretation of the corresponding parameter values. Assuming that m ∈ Mβ =

{mβ,β ∈ B}, where B ⊂ Rq is a compact set, and q denotes the dimension of

the parameter space B, then estimating β by β̂, a parametric regression estimator

of mβ, denoted by mβ̂, is obtained. Assuming only some regularity conditions,

nonparametric fits also provide a global view of the mean of the process. Their

flexibility allows to model complex relations beyond a parametric form. In this

section, a review on regression estimation for multivariate data is provided. Existing

developments for spatially correlated data are also presented.

In what follows, g(p)(x) will denote the p-order derivative of a sufficiently smooth

real function g at x. Moreover, if g is a sufficiently smooth real multivariate func-

tion, ∇g(x) and Hg(x) will denote the vector of first-order partial derivatives and

the Hessian matrix of g at x, respectively. For a vector u = (u1, . . . , ud)
T and an
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integrable function g, the multiple integral
∫∫
· · ·
∫
g(u)du1du2 . . . dud will be simply

denoted as
∫
g(u)du. We use 1d and 1d×d to denote a d×1 vector and a d×d matrix

with every entry equal to 1, respectively. In addition, Id denotes the d × d identity

matrix. Finally, for any matrix A, AT, |A|, tr(A), λmax(A) and λmin(A) denote

its transpose, determinant, trace, maximum eigenvalue and minimum eigenvalue,

respectively.

1.1.1 Regression estimation for multivariate data

Assume regression model (1.1) holds, but with independent errors. As pointed out

in the previous section, to estimate the regression function, parametric and nonpara-

metric methods can be employed. Considering that the regression function belongs

to a specific parametric family, standard procedures based on least squares or maxi-

mum likelihood could be used to obtain a parametric estimator of m (see Rao, 1973).

Assuming that m ∈ Mβ, the least squares regression estimator of β is obtained by

solving the minimization problem:

min
β

n∑
i=1

[Zi −mβ(Xi)]
2 . (1.3)

The multiple linear regression model is a parametric model in which the regression

function is linear in the parameters. If X1, . . . , Xd are the predictor variables and

β = (β0, . . . , βd), then mβ(X) = β0 + β1X1 + · · · + βdXd. The main advantage of

this model is its simplicity, however, it is rather restrictive. Moreover, for inference

purposes, some regularity assumptions (apart from linearity), such as normality,

independence and homoscedasticity are usually assumed by the regression errors.

For linear regression models, the least squares problem given in (1.3) is expressed as:

min
β

n∑
i=1

(
Zi − β0 −

d∑
j=1

βjXij

)2

, (1.4)

where Xij denotes the ith observation of the jth predictor variable. Other estimation

procedures, such as maximum likelihood could be used to estimate parametrically

the regression function. This method consists in maximizing a likelihood function,
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sometimes involving some problems in the optimization. Under the assumption of

normality, both least squares and maximum likelihood approaches provide the same

estimate of β.

Despite parametric models lead to optimal results (in terms of efficiency) if

the parametric assumption holds, conclusions can be totally misleading if this as-

sumption fails. Nonparametric regression estimation is appealing since only some

regularity conditions must be assumed. In this research, we will focus on kernel

smoothing methods. Other nonparametric procedures include splines, wavelets or

orthogonal series methods, but they are out of the scope of this thesis. Given that

m(x) = E(Z | X = x), x ∈ D, estimators of m are generally defined as a locally

weighted average of the response variable or from local polynomial regression. Both

approaches are described below.

Locally weighted average estimators

A nonparametric estimator of m can be obtained computing a locally weighted av-

erage of the response variable:

m̂H(x) =
1

n

n∑
i=1

WH,i(x)Zi, (1.5)

where WH,i denotes a weight function, depending on a smoothing parameter which

controls the neighborhood of each observation, and must be selected. An example of

such an estimator is the Nadaraya–Watson estimator (see Nadaraya, 1964; Watson,

1964). The Nadaraya–Watson estimator can be seen as a particular case of the

wider class of nonparametric estimators, the so-called local polynomial estimators

(of degree p), which are constructed by solving a weighted least squares problem

involving polynomials (of degree p). The Nadaraya–Watson estimator is obtained

when the degree of the polynomial is equal to zero (local constant). For this reason,

denoting by m̂H(x; p) the local polynomial estimator of degree p, m̂H(x; 0) will denote

the Nadaraya–Watson estimator. For the Nadaraya–Watson estimator, the weights

in expression (1.5) are WH,i(x) = KH(Xi − x)/[1/n
∑n

j=1KH(Xj − x)], where for

u ∈ D, KH(u) = |H|−1K(H−1u) is the rescaled version of a multivariate kernel

function K and H is a d × d symmetric positive definite matrix. Therefore, the
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Kernel Function

Uniform K(u) = 1
2
I{|u|≤1}

Epanechnikov K(u) = 3
4
(1− u2)I{|u|≤1}

Biweight K(u) = 15
16

(1− u2)2I{|u|≤1}
Triweight K(u) = 35

32
(1− u2)3I{|u|≤1}

Gaussian K(u) = 1√
2π

exp(−u2/2)

Table 1.1: Common second-order univariate kernel functions.

Nadaraya–Watson or local constant estimator is defined by:

m̂H(x; 0) =

∑n
i=1KH(Xi − x)Zi∑n
i=1KH(Xi − x)

. (1.6)

A common technique for generating multivariate kernels is the use of the product

of univariate kernels. Denoting by I{·} the indicator function, usual second-order

univariate kernels (their first moment is zero and the second one is finite) are given

in Table 1.1 and plotted in Figure 1.1. Two examples of d-dimensional kernels, with

non-zero value if ‖u‖ < 1, are the uniform kernel

K(u) = 1/Vd,

and the Epanechnikov kernel

K(u) =
d(d+ 2)

2Sd
(1− ‖u‖2)I{‖u‖<1},

where Vd and Sd are the volume and the area of the surface of the unit sphere in Rd,

respectively. In the Nadaraya–Watson estimator given in (1.6), the smoothing or

bandwidth matrix H controls the shape and the size of the local neighborhood used

to estimate m and its selection plays an important role in the estimation process. The

effect of the bandwidth when d = 1 is analyzed in a simulated dataset. A sample

of size n = 100 is generated from a regression model with explanatory variable

drawn from a N(0, σ), with standard deviation σ = 2, regression function m(x) =

x2 + sin(x), and random errors following a N(0, 2). Denoting by h the smoothing

parameter when d = 1, Figure 1.2 shows the regression function (black line) and the



8 Chapter 1. Introduction

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

K
(u

)

Uniform
Epanechnikov
Biweight
Triweight
Gaussian

Figure 1.1: Some univariate kernel functions: uniform (black line), Epanechnikov
(orange line), biweight (blue line), triweight (red line) and Gaussian (purple line).

Nadaraya–Watson estimator with Gaussian kernel and h = 0.1 (green line), h = 0.4

(red line) and h = 1 (blue line). If the bandwidth parameter is small, the number

of observations effectively accounted for the regression function estimation will be

small, and an undersmoothed curve will be obtained (green line). Conversely, if the

smoothing parameter is large, too many observations will be considered to estimate

the regression function at every point, leading to oversmoothing (blue line).

The asymptotic conditional bias and variance of the Nadaraya–Watson estimator

m̂H(x; 0) were derived by Härdle and Müller (2012). The following assumptions on

the design and on the nonparametric estimator of the regression functions are needed:

(A1) The design density f is continuously differentiable at x ∈ D, and satisfies

f(x) > 0.

(A2) All second-order derivatives of the regression functions m are continuous at x.

(H1) The bandwidth matrix H is symmetric and positive definite, with H→ 0 and

n|H| → ∞, as n→∞.

(K1) The kernel K is bounded with compact support (for simplicity with a non-zero

value only if ‖u‖ ≤ 1) and satisfies
∫
K(u)du = 1, u ∈ D. Moreover, all odd-

order moments of K vanish. It is also assumed that R(K) =
∫
K2(u)du <∞.
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Figure 1.2: Nadaraya–Watson estimator with Gaussian kernel and h = 0.1 (green
line), h = 0.4 (red line) and h = 1 (blue line). Sample of size n = 100 generated
from a regression model with X ∼ N(0, σ), with standard deviation σ = 2, m(x) =
x2 + sin(x) (black line), and ε ∼ N(0, 2).

In assumption (H1), H→ 0 means that every entry of H goes to 0. Notice that,

since H is symmetric and positive definite, H→ 0 is equivalent to λmax(H)→ 0. |H|
is a quantity of order O

[
λdmax(H)

]
since |H| is equal to the product of all eigenvalues

of H. Denoting by
∫

uuTK(u)du = µ2(K)Id, where µ2(K) 6= 0 (the values of µ2 for

different spherically symmetric kernels and for different dimensions d are provided by

Duong, 2015), and assuming (A1), (A2), (H1) and (K1), the asymptotic conditional

bias of estimator m̂H(x; 0), at a point x in the interior of the support of f , is:

E[m̂H(x; 0)−m(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hm(x)]

+
µ2(K)

f(x)
∇Tm(x)H2∇f(x)

+oP[tr(H2)], (1.7)

and the asymptotic conditional variance is:

Var[m̂H(x; 0) | X1, . . . ,Xn] =
R(K)

n|H|f(x)
σ2 + oP

(
1

n|H|

)
. (1.8)

The Nadaraya–Watson estimator has a large bias at the region where the gradi-
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ent of the regression function or the ratio ∇f(x)/f(x) is large (see, Fan and Gij-

bels, 1996). Moreover, its asymptotic properties are complicated to derive because

its random denominator. Initially, this motivates the introduction of other local

weighted average estimators such as the Gasser–Müller (Gasser and Müller, 1979)

or the Priestley–Chao (Priestley and Chao, 1972) estimator. The Gasser–Müller es-

timator reduces the bias of the Nadaraya–Watson estimator, but at the expense of

increasing its variance. Moreover, this estimator is difficult to extend to a higher

dimensional setting, because its expression involve sorting design points, which is

not a computationally trivial problem in higher dimensional spaces.

Local polynomial estimators

The motivation for the local polynomial fit comes from attempting to find an esti-

mator of the regression function m, minimizing the residual sum of squares without

assuming any particular form of m. The idea of local polynomial regression was

introduced by Stone (1977) and Cleveland (1979). It was studied by Fan (1992),

Fan and Gijbels (1992), Fan and Gijbels (1995) and Fan et al. (1997), among others.

Fan et al. (1993) showed that local polynomial regression estimators have advan-

tages over local weighted average estimators in terms of design adaptation and high

asymptotic efficiency.

As it was pointed out before, the Nadaraya–Watson estimator can be obtained

from local polynomial regression, when the degree of the polynomial to fit is zero.

The local linear estimator (polynomial degree one) at a given point x is the solution

for α1 to the least squares minimization problem

min
α1,β1

n∑
i=1

[
Zi − α1 − βT

1 (Xi − x)
]2
KH(Xi − x).

The local linear estimator can be explicitly written as:

m̂H(x; 1) = eT
1 (XT

xWxX x)−1XT
xWxZ, (1.9)

where e1 is a (d+ 1) vector with 1 in the first entry and all other entries 0, X x is a

matrix having [1, (Xi−x)T] as its ith row, Wx = diag{KH(X1−x), . . . , KH(Xn−x)}
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and Z = (Z1, . . . , Zn)T. This estimator can be expressed as a locally weighted average

type estimator, considering the weights WH,i(x) = eT
1

(
n−1XT

xWxX x

)−1
[1, (Xi −

x)T]KH(Xi − x) in equation (1.5).

Under assumptions (A1), (A2), (H1) and (K1), asymptotic properties of the

local linear estimator were derived by Ruppert and Wand (1994). The asymptotic

conditional bias of estimator m̂H(x; 1), at a point x in the interior of the support of

f , is:

E[m̂H(x; 1)−m(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hm(x)] + oP[tr(H2)], (1.10)

and the asymptotic conditional variance is:

Var[m̂H(x; 1) | X1, . . . ,Xn] =
R(K)

n|H|f(x)
σ2 + oP

(
1

n|H|

)
. (1.11)

A comparison of the asymptotic bias and variance of Nadaraya–Watson (1.6) and

local linear estimators (1.9) shows that the Nadaraya–Watson estimator presents a

larger bias, in particular, in the region where the gradient of the regression function

m or of the design density f is large. This estimator also has a larger bias order

when estimating the regression function at boundary points, while the local linear

estimator is efficient correcting that bias (see Fan and Gijbels, 1996). The local linear

estimator has the same bias order in the interior as well as in the boundary of the

support of f . The asymptotic conditional variance of both estimators is the same.

Comparisons between Nadaraya–Watson and local linear estimators were discussed

in detail by Chu et al. (1991), Fan and Gijbels (1992) and Hastie and Loader (1993).

Considering that the degree of the polynomial p is larger than one, asymptotic

properties of the local polynomial estimator were also studied by Ruppert and Wand

(1994). The authors derived the close expression of the local quadratic estimator, as

well as its asymptotic bias and variance. The conditional bias of local polynomials

of degree p will be of order OP{[tr(H2)](p+1)/2}. Moreover, if p is even and f has

a continuous derivative in a neighborhood of x, being x an interior point of the

support of the design density f , then the bias will be of order OP{[tr(H2)p/2+1]}. For

simplicity and given that for any dimension d the generalization to higher polynomial

degree involves complicated expressions, the authors derived asymptotic properties
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of the local polynomial estimator for a general degree p and d = 1.

For the unidimensional case, assuming that the derivative of order (p+ 1) of the

regression function m exists, and using a Taylor expansion, the regression function

m can be locally approximated by a polynomial of degree p,

m(z) ≈
p∑
j=0

m(j)(x)

j!
(z − x)j =

p∑
j=0

βj(z − x)j,

being z a point in a neighborhood of x. The terms of the previous approximation

can be estimated by solving the minimization problem:

min
{βj}pj=0

n∑
i=1

[
Zi −

p∑
j=0

βj(Xi − x)j

]2

Kh(Xi − x), (1.12)

where Kh(u) = 1/hK(u/h), being K a univariate kernel function, and h the band-

width or smoothing parameter. Denoting by β̂j, for j = 0, . . . , p, the solutions

of (1.12), the pth order local polynomial regression estimator of m at x ∈ R is

m̂h(x; p) = β̂0, and it can be explicitly written as:

m̂h(x; p) = eT
1 (XT

x,pWxX x,p)
−1XT

x,pWxZ, (1.13)

where, in this case, e1 denotes a (p + 1) × 1 vector having 1 in the first entry and

zero elsewhere, X x,p is a n× p matrix with the (i, k)-entry equal to (Xi−x)k−1, and

Wx is a diagonal matrix of order n with the c(i, i)-entry equal to Kh(Xi − x).

Notice that from (1.12), estimates of the derivatives of the regression function m

could be also obtained. The least squares problem given in (1.4) when d = 1 can be

seen as a global version of the locally weighted least squares problem given in (1.12).

Simple linear regression corresponds to local polynomial regression if the degree of

the polynomial is equal to one, the weight function is constant and h =∞.

The asymptotic properties of the local polynomial estimator, for a general p, given

in (1.13), were derived by Ruppert and Wand (1994). Let K(p) be the equivalent

kernel function defined in Lejeune and Sarda (1992), which is a kernel of order (p+2)

when p is even and of order (p+ 1) otherwise. Let µj(K(p)) and R(K(p)) denote the

moment of order j and the “roughness” of K(p), respectively. Moreover, assume that
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the design density f is continuously differentiable at x ∈ D ⊂ R, with f(x) > 0, the

bandwidth h satisfies h→ 0 and nh→∞, as n→∞, the kernel K is a symmetric

density function, twice continuously differentiable and with compact support, and

that m admits continuous derivatives up to order (p+ 2) in a neighborhood of x. If

x is an interior point of the support of the design density f , then, for even p,

E[m̂h(x; p)−m(x) | X1, . . . , Xn] =
hp+2µp+2(K(p))f

(1)(x)

(p+ 1)!f(x)
m(p+1)(x)

+
hp+2µp+2(K(p))

(p+ 2)!
m(p+2)(x)

+oP
(
hp+2

)
, (1.14)

while for odd p,

E[m̂h(x; p)−m(x) | X1, . . . , Xn] =
hp+1µp+1(K(p))

(p+ 1)!
m(p+1)(x) + oP

(
hp+1

)
, (1.15)

and in both cases,

Var[m̂h(x; p) | X1, . . . , Xn] =
R
(
K(p)

)
nhf(x)

σ2 + oP
(

1

nh

)
. (1.16)

An important issue in local polynomial regression is the order of the polynomial

to be fit. Higher-order polynomials allow a precise fitting, leading to a possible bias

reduction, but with an increase in the variance, due to introducing more parameters.

The asymptotic variance of m̂h(x; p) only increases whenever p goes from an odd

order to the following even order. For example, there is no difference when going

from p = 0 to p = 1, but when going from p = 1 to p = 2, the asymptotic variance

increases, because R(K(0)) is equal to R(K(1)), but R(K(2)) is larger than R(K(1)).

Odd orders are preferred, since the gain in bias does not lead to an increase in

variance. In the case of the regression function, Fan and Gijbels (1996) recommended

to use polynomial orders p = 1 or p = 3 for estimating this curve.

The use of local polynomial methods to estimate the regression function involves

a bandwidth selection. For d covariates, a d× d bandwidth matrix must be properly

chosen to avoid producing an undersmoothed estimator (with high variability) or an
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oversmoothed estimator (probably, with larger bias). See Figure 1.2 to observe the

effect of the bandwidth when using the Nadaraya–Watson estimator and d = 1. This

issue will be discussed below.

Bandwidth matrix selection

In any kernel curve estimation problem, the choice of the smoothing parameter is

crucial and, hence, this should be done with extreme care. For kernel-type regression

estimators, several bandwidth selection methods have been proposed in the litera-

ture. An optimal local bandwidth (which changes for each x ∈ D ⊂ Rd) for the

Nadaraya–Watson estimator, m̂H(x; 0), can be obtained by minimizing the (condi-

tional) mean squared error (MSE), given by:

MSE[m̂H(x; 0)] = {E[m̂H(x; 0)−m(x) | X1, . . . ,Xn]}2 +Var[m̂H(x; 0) | X1, . . . ,Xn].

The optimal local bandwidth can be approximated by its asymptotic version,

obtained by minimizing the asymptotically mean squared error (AMSE), which is

defined using the leading terms of the (conditional) asymptotic bias and variance of

m̂H(x; 0) given in (1.7) and (1.8), by:

AMSE[m̂H(x; 0)] =

{
1

2
µ2(K)tr[H2Hm(x)] +

µ2(K)

f(x)
∇Tm(x)H2∇f(x)

}2

+
R(K)σ2

n|H|f(x)

=
1

4
µ2

2(K)tr2

{
H2
[∇f(x)∇Tm(x)

f(x)
+

∇m(x)∇Tf(x)

f(x)

+Hm(x)
]}

+
R(K)σ2

n|H|f(x)
. (1.17)

The minimizer of equation (1.17), with respect to H, provides an asymptotically

optimal local bandwidth matrix for m̂H(x; 0), which is given by:

Hopt(x; 0) =

[
R(K)σ2

ndµ2
2(K)f(x)

|G̃(x)|1/2
]1/d+4

·
[
G̃(x)

]−1/2

, (1.18)
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where

G̃(x) =

{
G(x) if G(x) is positive definite,

−G(x) if G(x) is negative definite,

with

G(x) =
∇f(x)∇Tm(x)

f(x)
+

∇m(x)∇Tf(x)

f(x)
+ Hm(x).

This optimization result can be proved using Proposition A.3 in Appendix A.

Note that in the expression of Hopt(x; 0), the matrix [G̃(x)]−1/2 determines the shape

and the orientation in the d-dimensional space of the covariate region which is used

to locally compute the estimator. Such data regions for computing the estimator

are ellipsoids in Rd, being the magnitude of the axes controlled by G̃(x). In the

particular case of H = hId, the estimator m̂H(x; 0), with x being an interior point

of the support, achieves an optimal convergence rate of n−4/(d+4). As a consequence

of (1.10) and (1.11), and similarly to the Nadaraya–Watson case, an asymptotically

optimal local bandwidth can be also obtained for m̂H(x; 1), and it is given by:

Hopt(x; 1) =

[
R(K)σ2

ndµ2
2(K)f(x)

|H̃m(x)|1/2
]1/d+4

·
[
H̃m(x)

]−1/2

, (1.19)

where

H̃m(x) =

{
Hm(x) if Hm(x) is positive definite,

−Hm(x) if Hm(x) is negative definite.

In the univariate case, a local bandwidth for the local polynomial estimator

m̂h(x; p) was discussed in Fan et al. (1996). The case where p is even involves a

more complicated approximation in the bias term, so we only consider the case

where p is odd. From (1.15) and (1.16), it can be obtained that the minimization of

the AMSE leads to

hopt(x; p) = Cp(K)

{
σ2

[m(p+1)(x)]2f(x)

}1/(2p+3)

n−1/(2p+3), (1.20)

where

Cp(K) =

{
(p+ 1)!2

∫
K2

(p)(t)dt

2(p+ 1)[
∫
tp+1K(p)(t)dt]2

}1/(2p+3)

.

The use of the local optimal bandwidths given in (1.18), (1.19) and (1.20), is lim-
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ited in practice, since they depend on unknown functions, such as the design density

f , the variance σ2, the Hessian matrix of an unknown regression function m in the

case of (1.18) and (1.19), and the (p + 1)-derivative of m, in the case of (1.20). In

addition, when the goal is to reconstruct the whole regression function and the focus

is not only set on a specific point, it is more usual in practice to consider a global

bandwidth for estimation rather than pursuing an estimator based on local band-

widths. For the univariate case, an optimal global bandwidth, which was derived by

Fan and Gijbels (1992), could be obtained by minimizing the (conditional) weighted

mean integrated squared error (MISE):

MISE[m̂h(x; p)] =

∫
({E[m̂h(x; p)−m(x) | X1, . . . , Xn]}2

+Var[m̂h(x; p) | X1, . . . , Xn])w(x)dx,

being w a weight function. Using (1.15) and (1.16), it can be obtained that the

minimization of the (conditional) asymptotic MISE (AMISE) leads to the global

bandwidth

hpopt = Cp(K)

{
σ2
∫
w(x)/f(x)dx∫

[m(p+1)(x)]2w(x)dx

}1/(2p+3)

n−1/(2p+3). (1.21)

The resulting bandwidth also depends on unknown quantities, which must be

estimated in practice. Using the rule-of-thumb method, the approach would consist

in fitting a polynomial of order (p + 3) globally to m, leading to the parametric fit

m̌. Denoting by σ̌2 the standardized residual sum of squares from this parametric

fit and by m̌(p+1) the (p+ 1)-derivative function of m̌, and taking w(x) = f(x)w0(x),

for some specific function w0, from (1.21), the rule-of-thumb bandwidth selector is:

hprot = Cp(K)

{
σ̌2
∫
w0(x)dx∑n

i=1[m̌(p+1)(Xi)]2w0(Xi)

}1/(2p+3)

n−1/(2p+3).

This bandwidth provides an initial guess for the amount of smoothing. However,

more carefully procedures to estimate the unknown quantities in (1.21) are usually

employed, leading to plug-in bandwidth selectors. The ideas of plug-in bandwidth

selection to develop strategies for choosing the smoothing parameter were employed
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by Ruppert et al. (1995). The authors proposed three plug-in type selectors to obtain

the smoothing parameter, minimizing an asymptotic approximation to the MISE of

the local polynomial estimator of the regression functions and its derivatives.

For d > 1, an asymptotic global optimal bandwidth matrix H could be also

obtained by minimizing a global error measurement. However, unfortunately, this

optimization problem is not trivial, not being possible to obtain a closed form solu-

tion. Alternatively, a cross-validation (CV) method can be used to select a bandwidth

matrix (Bowman, 1984; Cleveland, 1979). In this case, for a general dimension d, the

smoothing parameter is chosen selecting the bandwidth matrix H which minimizes

the function:

CV(H) =
n∑
i=1

[Zi − m̂H,−i(Xi; p)]
2, (1.22)

where m̂H,−i(Xi; p) stands for the Nadaraya–Watson or the local linear estimators

(depending on whether p = 0 or p = 1, respectively), computed using all observations

except (Xi, Zi) and evaluated at Xi.

An alternative expression of (1.22) can be derived. Firstly, it holds that

m̂H;p = ST
p Z, p = 0, 1,

being m̂H;p = [m̂H(X1; p), . . . , m̂H(Xn; p)] and Sp a n × n matrix whose ith row is

the vector SXi;p, for p = 0, 1, with

SXi;0 =

[
KH(X1 −Xi)∑n
j=1 KH(Xj −Xi)

, . . . ,
KH(Xn −Xi)∑n
j=1 KH(Xj −Xi)

]
, (1.23)

and

SXi;1 = eT
1 (XT

Xi
WXi

XXi
)−1XT

Xi
WXi

, (1.24)

where XXi
and WXi

were defined in equation (1.9), for x = Xi. The smoothing
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matrix Sp, for p = 0, 1, satisfies Sp1n = 1n and, therefore,

m̂H,−i(Xi; p) =
m̂H(Xi; p)− sii,pZi

1− sii,p
,

where sii,p is the i-entry of the smoothing vector SXi;p.

Consequently, the expression given in (1.22) can be written as follows:

CV(H) =
n∑
i=1

[
Zi − m̂H(Xi; p)

1− sii,p

]2

.

The previous expression has the potential to be computationally less expensive to

be implemented than (1.22), since the model does not have to be fit n times. Notice

that (1.22) can be very time consuming if n is large, and if each individual model is

slow to fit. Other criteria, such as the generalized cross-validation (GCV) (Craven

and Wahba, 1979) are often used. GCV is defined as CV, but replacing the diagonal

terms sii,p by the average diagonal term tr(Sp). For GCV, the smoothing parameter

is chosen by selecting the matrix bandwidth H minimizing the function

GCV(H) =
n∑
i=1

[
Zi − m̂H(Xi; p)

1− 1
n
tr(Sp)

]2

.

The GCV method can be regarded as an approximation to CV. One of the mo-

tivations of using GCV instead of CV is to save on calculations, because GCV does

not require to know each of the elements sii,p of the smoother matrix Sp. For GCV,

the individual elements sii,p are replaced by their average value, which is obtained

by calculating the trace of the smoother matrix.

1.1.2 Regression estimation for spatially correlated data

In this section, multivariate regression estimation for spatially correlated data is

presented. Considering regression model (1.1) holds, a brief review of parametric and

nonparametric regression estimation for spatially correlated data is given. In order

to define a parametric estimator, when dealing with these type of data, in contrast to

independent data, stationarity conditions about the error process in model (1.1) are
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assumed. For the nonparametric approach, kernel-type estimators defined in Section

1.1.1 will be studied in this framework.

Parametric regression estimation for spatially correlated data

When the data are spatially correlated, in order to perform statistical inference using

a parametric approach, it is usual to introduce conditions about the error in model

(1.1), assuming stationarity of some kind. In particular, for a proper regression

estimation, the dependence structure (although not being of primary interest) must

be accounted for, usually through iterative least squares procedures or maximum

likelihood approaches, under stationary assumptions (see, for instance, Cressie, 1993;

Diggle et al., 2010).

If second-order or intrinsic stationarity is assumed, then the dependence structure

will be specified by the covariogram given in (1.2) or by the variogram 2γn, respec-

tively (Cressie, 1993). Second-order stationarity means that dependence between two

observations is only a function of the difference vector between the locations where

the observations are taken, while intrinsic stationarity implies that the variance of the

difference of two observations is the same for any pair of locations whose difference

is the same, since 2γn(Xi −Xj) = Var(εi − εj | Xi,Xj), for i, j = 1, . . . , n. Notice

that second-order stationarity implies intrinsic stationarity, therefore, if second-order

stationarity holds, the dependence structure could be also characterized through the

variogram function, which satisfies

γn(Xi −Xj) = σ2[1− ρn(Xi −Xj)], i, j = 1, . . . , n. (1.25)

In this essay, an abuse of notation will be made, both semivariogram and var-

iogram refer to the function γn. Moreover, for simplicity, the subscript n will be

sometimes omitted. It holds that γ(0) = 0, but if γ(u) → c0 6= 0, as u → 0,

then c0 is called the nugget effect (Matheron, 1962). If γ is bounded and there is

lim‖u‖→∞ γ(u), this limit is called the sill. When the semivariogram has nugget ef-

fect, the difference c1 = σ2 − c0 is called partial sill. If σ2 is the sill, the range (if it

exists) is a real value r such that if ‖u‖ ≥ r, then γ(u) = σ2. When second-order sta-

tionarity holds, then the asymptotic range can be defined as a real value r′ such that

if ‖u‖ ≥ r′, then γ(u) ≥ c0 +0.95(σ2−c0) (see Chiles and Delfiner, 2009). Figure 1.3
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Figure 1.3: A generic variogram (left) and its corresponding covariogram (right)
showing the nugget effect, the sill and the range.

shows a generic variogram (left) and its corresponding covariogram (right) identify-

ing the role of the parameters. It should be noted that the expressions given in (1.2)

and (1.25) for the covariogram and variogram functions, respectively, are correct if

the nugget effect, is equal to zero. If c0 6= 0, then C(Xi −Xj) = c1ρn(Xi −Xj), if

i 6= j, and Var(ε) = σ2, and γn(Xi −Xj) = c0 + c1[1− ρn(Xi −Xj)], if i 6= j.

Considering that the regression function belongs to a parametric family, m ∈
Mβ = {mβ,β ∈ B}, and that the data are spatially correlated, in order to estimate

mβ accounting for the dependence structure of the error (which is also unknown,

but supposing to belong to a certain parametric family), an iterative least squares

procedure can be used (see Neuman and Jacobson, 1984). This method is a general-

ization of ordinary least squares, which takes the correlation of the data into account.

Denote by mβ = [mβ(X1), . . . ,mβ(Xn)]T, where mβ collects the trend values at the

observation locations under a certain parametric trend model with parameter vector

β. The specific steps of the algorithm are:

1. Obtain an initial estimator of β by least squares regression:

β̃ = arg min
β

(Z−mβ)T(Z−mβ). (1.26)
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2. Using the residuals obtained with the estimation in (1.26), ε̃i = Zi −mβ̃(Xi),

i = 1, . . . , n, estimate the covariance matrix of the errors, Σ̃.

3. Update the regression parameter estimates, introducing the estimated covari-

ance matrix Σ̃ in the least squares minimization problem:

β̂ = arg min
β

(Z−mβ)TΣ̃−1(Z−mβ). (1.27)

Finally, take mβ̂ as the parametric estimator for the regression function.

Notice that the least squares estimator β̂ given in (1.27) is a
√
n-consistent es-

timator of β, and consequently, mβ̂ is a
√
n-consistent estimator of the parametric

regression function mβ.

Covariance matrix estimation in Step 2 can be carried out using different ap-

proaches. Firstly, using a parametric methodology and assuming that the variogram

belongs to a valid parametric family {2γφ, φ ∈ Φ ⊂ Rϑ} (usually ϑ = 3, with the

vector φ made up of the nugget effect, the partial sill and the practical range), a pa-

rameter estimate φ̂ of φ can be obtained. Following a classical approach, φ could be

approximated by fitting a parametric model to a pilot empirical variogram estimator

(computed using the residuals ε̃i), using a weighted least squares method (Cressie,

1985). With this parametric approximation, the variance-covariance matrix of the

errors can be denoted by Σφ, being Σφ(i, j) = Cφ(Xi −Xj), for i, j = 1 . . . , n, its

(i, j)-entry. Then, replacing φ by φ̂ in these elements, a parametric estimation of

Σφ could be obtained. Denoting by Σφ̂ this estimation, then Σ̃ = Σφ̂ in Step 2 in

the iterative least squares algorithm.

On the other hand, instead of using a parametric approach, flexible nonparametric

variogram estimators can be employed to approximate the dependence structure. For

instance, an estimate of the variogram of the residuals could be obtained as follows.

First, compute a nonparametric pilot variogram estimator (Hall and Patil, 1994). A

first attempt could be to use the empirical semivariogram estimator, but it may be

unsatisfactory in practice (Fernández-Casal et al., 2003a). Alternatively, nonpara-

metric kernel semivariogram estimators could be used instead, producing significantly

better results than those obtained with the empirical estimator (Fernández-Casal

et al., 2003b). In practice, the use of flexible models provides good approximations
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to the pilot estimator avoiding misspecification problems. However, nonparametric

estimators do not necessarily satisfy the conditionally negative definiteness property

of a valid semivariogram. For that reason, a valid model should be fit to the nonpara-

metric pilot estimates. For example, a flexible Shapiro–Botha variogram approach

(Shapiro and Botha, 1991), fit by weighted least squares, could be employed at this

step. The combination of Shapiro–Botha variogram with a nonparametric kernel

semivariogram pilot estimation provides an efficient variogram estimator which can

be used to estimate the corresponding covariance matrix.

Nonparametric regression estimation for spatially correlated data

When the data are correlated, the estimation of the regression function m can be

also performed employing nonparametric methods. An exhaustive review on non-

parametric regression estimation for correlated data, both for short-range and long-

range dependence, has been provided by Opsomer et al. (2001). In the univariate

case, for dependent data, asymptotic conditional bias and variance of local poly-

nomial estimators were derived under some assumptions. For example, Masry and

Fan (1997) studied this regression estimator for α-mixing and ρ-mixing time series

processes. The authors obtained that the asymptotic bias and variance under depen-

dence coincides with the result for independent observations. Francisco-Fernández

and Vilar-Fernández (2001) discussed the local polynomial estimator for correlated

data. A fixed regression model, assuming that the random errors present short-range

dependence, was considered. This assumption is satisfied by time series that are of

the form trend plus random component. The correlation is included in the asymp-

totic variance of the estimator. Vilar-Fernández and Francisco-Fernández (2002)

proposed a nonparametric estimator of the regression function assuming that the er-

ror process follows a first-order autoregressive correlation structure. The estimator

was constructed by transforming the regression model to get independent errors and

then applying the local polynomial regression estimator to the new model.

For spatially correlated errors, kernel-type estimators defined in Section 1.1.1

can be employed to estimate the regression function m considering the regression

model (1.1). Asymptotic properties of these estimators will depend on the behavior

of the correlation function ρn as n increases. The asymptotic conditional bias and
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variance of the Nadaraya–Watson estimator m̂H(x; 0), defined in (1.6), were derived

by Liu (2001) under short-range dependence. In order to obtain those results, a

stronger condition for the bandwidth matrix, than which was supposed in (H1) for

independent data, must be assumed. Moreover, some extra hypothesis on the design

and on the nonparametric estimators of the regression functions are needed:

(A3) For the correlation function ρn, there exist constants ρM and ρc such that

n
∫
|ρn(x)|dx < ρM and limn→∞ n

∫
ρn(x)dx = ρc. For any sequence εn > 0

satisfying n1/dεn →∞,

n

∫
‖x‖≥εn

|ρn(x)|dx→ 0 as n→∞.

(H2) The bandwidth matrix H is symmetric and positive definite, with H→ 0 and

n|H|λ2
min(H) → ∞, when n → ∞. The ratio λmax(H)/λmin(H) is bounded

above.

(K2) K is Lipschitz continuous. That is, there exists L > 0, such that

|K(X1)−K(X2)| ≤ L‖X1 −X2‖, ∀X1,X2 ∈ D.

Assumption (A3) implies that the correlation function depends on n, and the

integral
∫
|ρn(x)|dx should vanish as n → ∞. The vanishing speed should not

be slower than O(n−1). This assumption also implies that the integral of |ρn(x)| is

essentially dominated by the values of ρn(x) near the origin 0. Hence, the correlation

is short-range and decreases as n → ∞. Arguing somewhat loosely, this can be

considered as a case of increasing-domain spatial asymptotics (see Cressie, 1993),

since this setup can immediately be transformed to one in which the correlation

function ρn is fixed with respect to the sample size, but the support D for x expands

(Francisco-Fernandez and Opsomer, 2005). The current setup with fixed domain

D and shrinking ρn is more natural to consider when the primary purpose of the

estimation is a fixed regression function m defined over a spatial domain, not the

correlation function itself.

Two examples of commonly used correlation functions that satisfy the conditions
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of assumption (A3) are the exponential model

ρn(x) = exp(−an‖x‖), (1.28)

and the rational quadratic model

ρn(x) =
1

1 + a(n‖x‖)2
, (1.29)

with a > 0 in both cases (see Cressie, 1993). In general, if ρn(x) = ρ(n1/dx) and

ρ(x) is a fixed valid correlation function, which is continuous everywhere except at

a finite number of points and absolutely integrable in Rd, then it can be proved that

ρn(x) satisfies assumption (A3).

The condition n|H|λ2
min(H) → ∞, when n → ∞, in (H2) requires that every

eigenvalue of H should converge to zero at a rate O[n−1/(d+2)] (Liu, 2001).

Under assumptions (A1)–(A3), (H2), (K1) and (K2), the asymptotic conditional

bias of estimator m̂H(x; 0), at a point x in the interior of the support of f , is:

E[m̂H(x; 0)−m(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hm(x)]

+
µ2(K)

f(x)
∇Tm(x)H2∇f(x)

+oP[tr(H2)],

and the asymptotic conditional variance is:

Var[m̂H(x; 0) | X1, . . . ,Xn] =
R(K)

n|H|f(x)
[σ2 + f(x)ρc] + oP

(
1

n|H|

)
. (1.30)

On the other hand, the asymptotic properties of the local linear estimator m̂H(x; 1),

defined in (1.9), were also derived by Liu (2001) for short range dependence. Under

assumptions (A1)–(A3), (H2), (K1) and (K2), the asymptotic conditional bias of the

estimator m̂H(x; 1), at a point x in the interior of the support of f , is:

E[m̂H(x; 1)−m(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hm(x)] + oP[tr(H2)],
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and the asymptotic conditional variance is:

Var[m̂H(x; 1) | X1, . . . ,Xn] =
R(K)

n|H|f(x)
[σ2 + f(x)ρc] + oP

(
1

n|H|

)
. (1.31)

As for independent data (see Section 1.1.1), it can be observed that the Nadaraya–

Watson and local linear estimators of m for correlated data have the same asymptotic

variance, but their asymptotic biases are different. As expected, the asymptotic

bias for independent and for spatially correlated data are identical. Notice that for

independent data, it follows that ρc = 0, and consequently the asymptotic variances

of both Nadaraya–Watson and local linear estimators given in (1.30) and in (1.31),

reduce to the asymptotic variance expressions for independent data given in (1.8)

and (1.11), respectively.

Bandwidth selection

Following the same reasoning as for independent data to obtain (1.18) and (1.19),

local optimal bandwidths could be also derived when the data are correlated. The

optimal bandwidth matrix for the Nadaraya–Watson estimator (1.6) is:

Hs
opt(x; 0) =

{
R(K)[σ2 + f(x)ρc]

ndµ2
2(K)f(x)

|G̃(x)|1/2
}1/d+4

·
[
G̃(x)

]−1/2

.

The optimal smoothing matrix to approximate the local linear estimator (1.9) is

Hs
opt(x; 1) =

{
R(K)[σ2 + f(x)ρc]

ndµ2
2(K)f(x)

|H̃m(x)|1/2
}1/d+4

·
[
H̃m(x)

]−1/2

.

However, as it was stated for independent data, these optimal bandwidths depend

also on unknown functions, such as the design density f , the Hessian matrix of the

unknown regression function m and the error correlation. These quantities should be

previously estimated for their use in practice. In order to obtain a global bandwidth,

the optimization problem to solve is not trivial, not being possible to provide a

closed form solution. Some simple cases were analyzed by Liu (2001). For univariate

data, Francisco-Fernández and Vilar-Fernández (2001) proposed a plug-in global

bandwidth selector, starting with a pilot bandwidth computed by using the time
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series cross-validation criterion proposed by Hart (1994). For references on other

methods for bandwidth selection in this context see Opsomer et al. (2001).

Alternatively, several bandwidth selection methods have been proposed in kernel

regression estimation with dependent data. Most of the proposed procedures use a

cross-validation algorithm. However, it should be noted that for correlated data, sim-

ple cross-validation criteria will not provide satisfactory bandwidths (Altman, 1990).

For instance, if the errors are positively correlated, the leave-one-out cross-validation

provides smaller bandwidths than the optimal one, leading to undersmoothing. In

order to cope with possible dependence, several modifications of the cross-validation

criterion has been proposed. For example, in the univariate case, Härdle and Vieu

(1992) proposed the leave-(2l + 1)-out version of cross-validation. The stronger is

the dependence, larger l must be selected. Other smoothing parameter selection

methods rely on estimating the correlation function and incorporating this estimate

into the selection criterion (see Altman, 1990; Chiu, 1989; Hart, 1991). For spatially

correlated data, Liu (2001) proposed a modified version of the cross-validation crite-

rion (MCV). The smoothing parameter is chosen by selecting the matrix bandwidth

H minimizing the function

MCV(H) =
1

n

n∑
i=1

[
Zi − m̂H(Xi; p)

1− SXi;pρi

]2

, (1.32)

where the vectors SXi;p, for p = 0, 1, were given in (1.23) and in (1.24), respectively,

and ρi = [ρn(X1−Xi), . . . , ρn(Xn−Xi)]
T. For the modified version of GCV (MGCV),

the matrix bandwidth is chosen by minimizing the function

MGCV(H) =
1

n

n∑
i=1

[
Zi − m̂H(Xi; p)

1− 1
n
tr(SpR)

]2

, (1.33)

where R is the n× n correlation matrix which ith row is ρi.

Notice that the minimization of (1.32) and (1.33) requires knowledge of the corre-

lation matrix of the errors, but not the variance. A MGCV bandwidth was proposed

by Francisco-Fernandez and Opsomer (2005), considering a parametric specification

of the correlation function. In particular, the authors used the isotropic exponential

model given in (1.28), but other models could be employed instead.
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1.2 Comparing parametric and nonparametric re-

gression fits

Parametric and nonparametric regression estimation has been presented in Section

1.1 in different frameworks, for unidimensional and multidimensional covariate, con-

sidering independent and spatially correlated data.

As it was pointed out before, if the unknown regression function belongs to a

known parametric family, then parametric procedures should be employed for re-

gression estimation. However, parametric techniques may not provide satisfactory

results if the model is not correctly specified. In order to assess the adequacy of

a certain parametric form for the regression function, goodness-of-fit tests can be

applied. The specific testing problem is formulated as:

H0 : m ∈Mβ = {mβ,β ∈ B}, vs. Ha : m /∈Mβ, (1.34)

where B ⊂ Rq is a compact set, and q denotes the dimension of the parameter space

B. For example, in the bidimensional case (d = 2), considering that Mβ is the

family of linear models, then q = 3.

Test statistics are usually proposed by comparing a nonparametric pilot regression

estimator and a corresponding parametric estimator of the regression function under

the null hypothesis. For this purpose, tests based on empirical regression processes

(Stute, 1997), on maximum likelihood ideas (see Fan et al., 2001), or on kernel-

type methods for regression, have been designed and studied. For independent data,

Härdle and Mammen (1993) proposed a test statistic to check if a regression function

belongs to a class of parametric models by measuring the L2-distance between a

parametric and a nonparametric regression function estimates:

Tn = nhd/2
∫
D

[m̂h(x)− m̂h,β̂(x)]2w(x)dx, (1.35)

where m̂h(x) denotes a nonparametric estimator, m̂h,β̂ is a smoothed version of the

parametric estimator mβ̂ and w is a weight function that helps in mitigating possible

boundary effects. Specifically, the Nadaraya–Watson estimator was considered as a

nonparametric approach in Härdle and Mammen (1993). A discretized version of
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the test statistic given in (1.35) can be found in González-Manteiga and Cao (1993).

Similar tests to the one proposed by Härdle and Mammen (1993) have been

studied considering other kernel-type regression estimators, with different estima-

tors under the null hypothesis or using other discrepancy measures. For instance,

Alcalá et al. (1999) proposed a testing procedure to check the parametric null hy-

pothesis using local polynomial regression estimators. A supremum-norm-based test,

comparing a kernel regression smoother with a parametric least squares estimator,

was derived by Kozek (1991). In the context of time series, following the same strat-

egy, goodness-of-fit tests for linear regression models with correlated errors have been

proposed by González Manteiga and Vilar Fernández (1995) and Biedermann and

Dette (2000). An exhaustive review on goodness-of-fit tests for regression models

has been provided by González-Manteiga and Crujeiras (2013).

Although the problem of assessing a parametric regression model has been broadly

studied for different frameworks, this is not the case for spatially correlated data. In

this context, to decide if a parametric (like the one described in Section 1.1.2) or a

nonparametric procedure must be chosen to estimate the unknown regression func-

tion, a goodness-of-fit test is studied in Chapter 2. Following similar ideas as those

of Härdle and Mammen (1993), the proposed test statistic is based on a comparison

between a kernel-type regression estimator and a
√
n-consistent estimator under the

null hypothesis, using a weighted L2-distance.

1.3 A linear-circular regression model

In the previous sections, some inference problems for regression models consider-

ing an independent or dependent Rd-valued random covariate have been presented.

However, in some occasions data may present certain complexities, involving some

problems for the application of the previous estimation and testing procedures. Thus,

it could happen that the response and/or the explanatory variables were of functional

nature, or directional variables (in particular circular ones), or data with outliers,

or interval-grouped data, or censored data, among other possible situations. In ad-

dition, within the context of this dissertation, it may happen that these complex

observations exhibit spatial dependence. Among the possible regression models with
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complex data, we will focus on multiple linear-circular regression models. More

specifically, regression models with a circular response and an Rd-valued predictor

are considered:

Θ = [mc(X) + ε](mod 2π), (1.36)

where Θ is a circular random variable taking values on T = [0, 2π), X is an Euclidean

random variable supported on D ⊆ Rd, mc is the circular regression function, ε is the

circular random error, which is supposed to be zero mean direction, and mod stands

for the modulo operation. The circular regression function mc in model (1.36) is the

conditional mean direction of Θ given X which, at a point x, can be defined as the

minimizer of the risk E{1− cos[Θ−mc(X)] | X = x}.
A brief introduction to circular data is carried out to present notation and some

special features of this kind of data. Circular descriptive statistics and some distri-

butions on the circle are introduced.

Circular descriptive statistics

Circular data arise in many scientific fields where observations are recorded as direc-

tions or angles relative to a system with a fixed orientation. Once that a direction

and a sense of rotation have been chosen, circular data can be expressed as angles

(in degrees or in radians) or unit vectors on the circle. A complete introduction on

circular data can be found in Mardia (1972) and Fisher (1995), or more recently, Mar-

dia and Jupp (2000), Jammalamadaka and SenGupta (2001), or Ley and Verdebout

(2017). Examples of circular data include wind directions (Fisher, 1995; Johnson

and Wehrly, 1978), angles in the structure of a protein (Hamelryck et al., 2012),

waves directions (Jona-Lasinio et al., 2012; Wang and Gelfand, 2014; Wang et al.,

2015), animal orientations (Batschelet, 1981; Scapini et al., 2002; Schmidt-Koenig,

1963), arrival times (Cox and Lewis, 1996, pp. 254-255), and cyclical or seasonal

patterns (Ameijeiras-Alonso et al., 2019), among others.

The circular nature of such data encompasses some challenges for applying tra-

ditional statistical methods used for Euclidean data. An example that directly il-

lustrates this problem is the definition of sample mean. A first attempt could be to

consider the classical Euclidean mean, however it is not appropriate. For example,
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fixing a sense of rotation, the sample mean of π/3 and 5π/3 would be equal to π,

which provides an opposite direction of the mean, corresponding to 0. Given the cir-

cular sample {Θ1, . . . ,Θn} from a circular random variable Θ defined on T = [0, 2π),

the circular sample mean is given by:

Θ̄ = atan2

[
1

n

n∑
i=1

sin(Θi),
1

n

n∑
i=1

cos(Θi)

]
, (1.37)

where the function atan2(y, x) returns the angle between the x-axis and the vector

from the origin to (x, y). The definition of a quadrant-specific inverse of the tangent

is needed by the fact that tan(θ) = tan(θ+π), so that there are two inverses for any

given angle θ ∈ T. Since atan2 is defined to take values in (−π/2, π/2), the above

definition of the sample mean provides an unique inverse on [0, 2π).

The sample mean resultant length, which is defined as:

R̄ =
1

n

√√√√[ n∑
i=1

sin(Θi)

]2

+

[
n∑
i=1

cos(Θi)

]2

,

is a useful measure of how concentrated the data are towards the mean direction,

and takes values in (0, 1). If all observations have the same direction, the variability

is zero, and the resultant vector mean length is equal to one, which is the theoretical

maximum. The sample circular variance can be defined as V = 1−R̄, and similarly to

the variance of Euclidean data, the smaller the value of the sample circular variance,

the more concentrated the data distribution. Notice that, unlike for Euclidean data,

the circular variance can only takes values in [0, 1] (Fisher, 1995).

In order to explore the relationship between circular variables, a correlation co-

efficient for circular data must be properly defined. Considering a pair of circular

variables Θ,Ψ ∈ [0, 2π), and trying to retain many of the properties about the cor-

relation coefficient for Euclidean data, Jammalamadaka and Sarma (1988) defined

the circular correlation coefficient as follows:

r(Θ,Ψ) =
E[sin(Θ− µ1) sin(Ψ− µ2)]√

Var[sin(Θ− µ1)]Var[sin(Ψ− µ2)]
, (1.38)
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where µ1 and µ2 denote the mean directions of the circular variables Θ and Ψ,

respectively. Notice that E[sin(Θ−µ1)] = E[sin(Ψ−µ2)] = 0, and therefore, sin(Θ−
µ1) and sin(Ψ − µ2) can be taken to characterize the deviations of Θ and Ψ with

respect their mean directions µ1 and µ2. The circular correlation coefficient r given

in (1.38) satisfies the following properties:

• r(Θ,Ψ) = r(Ψ,Θ), ∀Θ,Ψ ∈ [0, 2π)

• |r(Θ,Ψ)| ≤ 1, ∀Θ ∈ [0, 2π)

• r(Θ,Ψ) = 0 if Θ and Ψ are independent, ∀Θ,Ψ ∈ [0, 2π)

• r(Θ,Ψ) = 1 if and only if Θ = Ψ + k1(mod 2π), and r(Θ,Ψ) = −1 if and only

if Θ + Ψ = k2(mod 2π), ∀Θ,Ψ ∈ [0, 2π), k1, k2 ∈ R

As for Euclidean data, the sample circular correlation coefficient can be also

defined. Let {(Θi,Ψi)}ni=1 be a random sample of (Θ,Ψ), where Θ and Ψ are circular

random variables. The sample correlation coefficient is given by:

rn(Θ,Ψ) =

∑n
i=1 sin(Θi − Θ̄) sin(Ψi − Ψ̄)√∑n
i=1 sin2(Θi − Θ̄) sin2(Ψi − Ψ̄)

, (1.39)

where Θ̄ and Ψ̄ are the sample mean directions of Θ and Ψ in (1.37), respectively. The

sample correlation coefficient rn is an estimator of the circular correlation coefficient

r (Jammalamadaka and Sarma, 1988). For further details on descriptive circular

statistics we refer to Section 1.3. of Jammalamadaka and SenGupta (2001).

Some distributions on the circle

Circular data can be differently distributed on the circle. For instance, data can be

uniform (all directions are equally likely), unimodal (when there is a single cluster of

data points) or multimodal (when there exist two or more clusters in the data). A

common unimodal distribution is the von Mises distribution, which can be seen as

the Gaussian analogue for circular data, because it is the only circular distribution

whose maximum likelihood estimator of the location parameter is the circular sample

mean (Bingham and Mardia, 1975), as it occurs for the Gaussian distribution in
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the Euclidean setting. The von Mises distribution and other well-known circular

distributions will be introduced below.

From now on, to facilitate the explanation for circular variables, an abuse of nota-

tion will be made, denoting by f and µ the circular density function and the circular

mean direction. Taking into account the periodicity, the circular density function f

must satisfy the following assumptions (see Jammalamadaka and SenGupta, 2001,

Chapter 2):

• f(θ) ≥ 0, ∀θ ∈ [0, 2π)

•
∫ 2π

0
f(θ)dθ = 1

• f(θ) = f(θ + 2kπ), ∀θ ∈ [0, 2π), ∀k ∈ Z

Most of the classical distributions are characterized by the mean and concen-

tration parameters. Large values of the concentration parameter indicate that the

distribution is more concentrated around the mean parameter.

The von Mises distribution, vM(µ, κ), is a symmetric unimodal distribution with

density function given by:

f(θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ), (1.40)

where µ ∈ [0, 2π) is the mean direction, κ ≥ 0 is the concentration parameter and

I0 is the modified Bessel function of the first kind and order zero, defined as I0 =

(1/2π)
∫ 2π

0
exp[κ cos(θ)]dθ. Figure 1.4 (left) shows the von Mises density function

with µ = π and κ = 0.1 (solid line), κ = 2 (dashed line) and κ = 10 (dotted line).

Notice that, if κ is equal to zero, a particular case of the von Mises family is the

circular uniform distribution.

Another way to obtain circular distributions is by wrapping a linear distribu-

tion around the circumference of unit radius. That is to say, if X is a real-valued

random variable, the corresponding circular random variable can be obtained as

Θ = X(mod 2π). If g is the density of X, then the density of Θ is obtained as:

f(θ) =
∞∑

k=−∞

g(θ + 2πk), θ ∈ [0, 2π).
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Figure 1.4: Examples of circular probability density functions. From left to right,
representation of the models with different parameters: von Mises, with µ = π and
κ = 0.1 (solid line), κ = 2 (dashed line) and κ = 10 (dotted line); wrapped normal,
with µ = π and ρ = 0.2 (solid line), ρ = 0.5 (dashed line) and ρ = 0.9 (dotted line);
and projected normal, with µ = (0, 0), σ1 = σ2 = 1 and ρ = 0 (solid line), ρ = −0.4
(dashed line) and ρ = 0.8 (dotted line).

Some useful distributions on the circle can be obtained using this method (Mar-

dia, 1972). For example, the wrapped Cauchy distribution, WC(µ, ρ), is a symmetric

unimodal distribution which can be obtained by wrapping the Cauchy distribution,

with location parameter µ and scale parameter − log(ρ), around the circle, where log

stands for the natural logarithm. The probability density function has the following

expression:

f(θ;µ, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
.

The wrapped normal distribution, WN(µ, ρ), is constructed by wrapping the

normal distribution, centered in µ with variance −2 log(ρ), onto the circle. Its prob-

ability density function is:

f(θ;µ, ρ) =
1

2π

[
1 + 2

∞∑
k=1

ρk
2

cos k(θ − µ)

]
.

Figure 1.4 (center) shows the wrapped normal density function with µ = π and

ρ = 0.2 (solid line), ρ = 0.5 (dashed line) and ρ = 0.9 (dotted line). For both

wrapped Cauchy and normal distributions, if ρ is equal to zero, this leads to the

circular uniform distribution.
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Circular distributions can be also generated by projecting a bivariate distribution

on a unit circle (Mardia and Jupp, 2000). For instance, the projected normal dis-

tribution is obtained by a radial projection of the distribution of a bivariate normal

random variable X ∼ N2(µ,Ξ), with µ = (µ1, µ2)T and

Ξ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, (1.41)

on the circle (Mardia, 1972). Taking U = (U1, U2) = X
‖X‖ , a circular random variable

can be obtained defining Θ such that U1 = cos Θ and U2 = sin Θ. Its probability

density function is:

f(θ) =
φ2(µ1, µ2; 0,Ξ)

C(θ)
+
aD(θ)Φ1[D(θ)]φ1[aC−1/2(θ)E(θ)]

C(θ)
,

where a = (σ1σ2

√
1− ρ2)−1, C(θ) = a2

[
σ2

2 cos2 θ − ρσ1σ2 sin(2θ) + σ2
1 sin2 θ

]
, D(θ) =

a2C−1/2(θ)[µ1σ2(σ2 cos θ − ρσ1 sin θ) + µ2σ1(σ1 sin θ − ρσ2 cos θ)], E(θ) = µ1 sin θ −
µ2 cos θ and, φ1 and Φ1 are the density and the distribution of a normal variable.

This distribution was discussed by Mardia and Jupp (2000) and a good review was

provided by Wang and Gelfand (2014). Notice that although the density function

has a complicated expression, some specific features can be controlled for certain

parameter values. For instance, if Ξ = I2, the corresponding density function is

symmetric and unimodal. Moreover, if Ξ = I2 and µ1 = µ2 = 0, the distribution

is uniform on the circle. Finally, if µ1 = µ2 = 0 and σ1 = σ2 = σ, the density is

reduced to

f(θ) =

√
1− ρ2

2π[1− ρ sin(2θ)]
.

Figure 1.4 (right) shows the projected normal density function with µ = (0, 0),

σ1 = σ2 = 1 and ρ = 0 (solid line), ρ = −0.4 (dashed line) and ρ = 0.8 (dotted line).

Taking into account that circular data require a different treatment to that given

to Euclidean data, it is necessary to properly adapt the existing inference procedures

or to design new ones accounting for the particular nature of the data. In Chapter

3, 4 and 5 of this dissertation, inference problems for multiple linear-circular regres-

sion models (circular response and Euclidean covariates) will be discussed. More
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specifically, in Chapters 3 and 4, nonparametric estimators of the circular regression

function mc in model (1.36), for independent and spatially correlated data, respec-

tively, are proposed and studied. Chapter 5 is devoted to present some proposals on

goodness-of-fit tests for parametric circular regression models for both independent

and spatially correlated data.

1.4 Manuscript organization

In this section a brief summary of each chapter of the thesis will be provided. The

aims are presented, as well as the chapter distribution. The contributions of this

thesis are also highlighted in each chapter.

In Chapter 2, the problem of assessing a parametric regression model in the pres-

ence of spatial correlation is addressed. For that purpose, a goodness-of-fit test based

on a L2-distance comparing a parametric and a nonparametric regression estimator is

proposed. Asymptotic properties of the test statistic, both under the null hypothesis

and under local alternatives, are derived. Additionally, three bootstrap procedures

are designed to calibrate the test in practice. Finite sample performance of the test

is analyzed through an extensive simulation study, comparing the proposed boot-

strap procedures and accounting for different features that usually appear in spatial

analysis. An illustration with a real dataset is also provided. The contributions of

this chapter have been collected in Meilán-Vila et al. (2020e) and Meilán-Vila et al.

(2020b). In Meilán-Vila et al. (2020e), a random design and the multivariate local

linear regression estimator for the nonparametric alternative, were considered. On

the other hand, in Meilán-Vila et al. (2020b), under fixed design and taking the

Nadaraya–Watson estimator as a nonparametric fit, a detailed computational anal-

ysis of the behavior of this test when proposing different bootstrap algorithms was

provided.

Chapter 3 is devoted to the introduction and analysis of nonparametric estima-

tors of a regression function in a model with a circular response and an Rd-valued

random predictor. Expressions for their asymptotic biases and variances are derived,

and some guidelines to select asymptotically local optimal bandwidth matrices are

also given. The finite sample behavior of the proposed estimators is assessed through
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simulations and their performance is also illustrated with a real dataset. The contri-

butions of this chapter can be found in Meilán-Vila et al. (2020d). When the response

variable is circular, the regression function is given by the inverse tangent function of

the ratio between the conditional expectation of the sine and the conditional expec-

tation of the cosine of the response variable. The proposal considers two (separate)

regression models for the sine and cosine components, which are indeed regression

models with real-valued response. Then, nonparametric estimators for the circular

regression function are obtained by computing the inverse tangent function of the

ratio of multivariate local polynomial estimators for the sine and cosine models.

In Chapter 4, a regression model with a circular response and an Rd-valued ran-

dom predictor, assuming that the errors exhibit spatial correlation, is considered.

Using a nonparametric approach, local polynomial type estimators for the circular

regression function are proposed and studied. Their asymptotic bias and variance

are derived. Finite sample performance of the estimators is analyzed through a

simulation study, using wrapped and projected approaches to generate the spatially-

dependent circular errors. A real data illustration is also presented. The contribu-

tions in this topic have been collected in Meilán-Vila et al. (2020a).

Chapter 5 is devoted to formulate goodness-of-fit tests for circular regression

models. Test statistics are proposed to check if the circular regression function

belongs to a known parametric family, comparing a (non-smoothed or smoothed)

parametric fit with a nonparametric estimator of the circular regression function,

using a circular distance. Appropriate bootstrap algorithms are designed to calibrate

the tests in practice, both for independent and for spatially correlated data. The

finite sample behavior of the procedures is checked through a simulation study. The

tests are also applied to real datasets. The contributions of this chapter can be found

in Meilán-Vila et al. (2020c).

The manuscript contains some comments and discussion in Chapter 6. Finally,

an appendix collecting some useful theoretical results is also included.



Chapter 2

Testing parametric regression

models with spatially correlated

errors

2.1 Introduction

The problem of testing a parametric regression model, confronting a parametric esti-

mator of the regression function with a smooth alternative estimated by a nonpara-

metric method, has been approached by several authors in the statistical literature

(see, for example Azzalini et al., 1989; Eubank and Spiegelman, 1990). For instance,

Weihrather (1993) and Eubank et al. (2005) described tests based on an overall dis-

tance between parametric and nonparametric regression fits, giving some strategies

on bandwidth selection. Härdle and Mammen (1993) proposed a testing procedure

to check if a regression function belongs to a class of parametric models by measur-

ing a L2-distance between parametric and nonparametric estimates. Specifically, the

Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964) was considered for the

nonparametric approach. The same type of study was performed by Alcalá et al.

(1999), but using a local polynomial regression estimator (Fan and Gijbels, 1996).

Following similar ideas, a local test for a univariate parametric model checking was

proposed by Opsomer and Francisco-Fernández (2010), while Li (2005) assessed the

lack of fit of a nonlinear regression model, comparing a local linear smoother and

37
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parametric fits.

The previous testing procedures, all of them formulated with independent errors,

have been also adapted for scenarios where data exhibit correlation in time. For

example, Park et al. (2015) considered a model specification test based on a ker-

nel for a nonparametric regression model with an equally-spaced fixed design and

correlated errors. Also in the context of time series, goodness-of-fit tests for linear re-

gression models with correlated errors have been studied by González Manteiga and

Vilar Fernández (1995), also considering an equispaced fixed design. Biedermann

and Dette (2000) extended the previous results under fixed alternatives, considering

a regression model with explanatory variables xi, i = 1, . . . , n, being fixed and given

by i/n =
∫ xi

0
f(t)dt, where f is a positive density on the interval [0, 1]. For further

discussion and examples of nonparametric specification tests for regression models,

see the comprehensive review by González-Manteiga and Crujeiras (2013).

Although for time dependent errors, the problem of assessing a parametric re-

gression model has been widely studied, this is not the case for spatially correlated

data (or even with spatio-temporal correlation). Observations from spatially varying

processes are quite frequent in applied sciences such as ecology, environmental and

soil sciences. In order to gain some insight in the process evolution across space,

a regression model where the regression function captures the first-order structure,

whereas the error term collects the second-order structure, can be formulated in the

previous contexts. Usually, parametric models are considered for the regression func-

tion, e.g. polynomial models on latitude and longitude (see Cressie, 1993; Diggle and

Ribeiro, 2007), and estimation is accomplished by least squares methods, providing

reliable inferences if the model is correctly specified. As an example, a classical

dataset which is analyzed under this scope is the Wolfcamp aquifer data presented

by Harper and Furr (1986), collecting 85 measurements of levels of piezometric-head

(see Figure 2.1). In this example, several parametric trend models are considered

after performing different analyses, concluding that a linear trend seems to be a

reasonable model (see Figure 2.2). However, to determine if this linear model (or in

general, any parametric fit) is an appropriate representation of a dataset, it would

be advisable to carry out a statistical test in order to assess the goodness-of-fit of

the selected model. In this context, the statistical literature initially focused on the
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Figure 2.1: Locations with the levels of piezometric-head for the Wolfcamp Aquifer.

assessment of independence (Diblasi and Bowman, 2001) and on testing a paramet-

ric correlation model (Maglione and Diblasi, 2004), considering the variogram as the

function describing the spatial dependence pattern. Also taking the variogram as the

target function, Bowman and Crujeiras (2013) proposed some testing methods for

simplifying hypothesis (namely, stationarity and isotropy). Although these propos-

als investigate the dependence structure of the data (a nuisance when the primary

goal is the regression or trend function), the ideas which inspired these methods are

common to the goodness-of-fit tests for regression models.

A new proposal for testing a parametric regression model (with univariate re-

sponses and possibly d-dimensional covariates), for spatially correlated data, is pre-

sented in this chapter. Following similar ideas as those of Härdle and Mammen

(1993), the test statistic is based on a comparison between a smoothed version of

a parametric fit and a nonparametric estimator of the regression function, using a

weighted L2-distance. The null hypothesis that the regression function follows a

parametric model is rejected if the distance exceeds a certain threshold. To per-

form the parametric estimation, an iterative procedure based on generalized least

squares is used (see Diggle and Ribeiro, 2007), although other fitting techniques

such as maximum likelihood methods could be employed. For the nonparametric

alternative, the multivariate Nadaraya–Watson or local linear regression estimator is
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Figure 2.2: 3-dimensional representation of the levels of piezometric-head for the
Wolfcamp Aquifer.

used (Francisco-Fernandez and Opsomer, 2005; Hallin et al., 2004; Härdle and Müller,

2012; Liu, 2001), generalizing in some way the results of Härdle and Mammen (1993)

and Alcalá et al. (1999) for the univariate case with independent errors.

The proposed test statistic shows a slow rate of convergence to its asymptotic

distribution, motivating the use of resampling methods to approximate its distri-

bution under the parametric null hypothesis. It should be noted that, in order to

mimic the process behavior under the null hypothesis, not only the parametric form

of the regression function has to be considered, but also the (unspecified) spatial

dependence of the data, which has to be recovered from a single realization of the

spatial process, under stationarity conditions. In the presence of spatial correlation,

resampling methods may not be accurate enough for mimicking the spatial depen-

dence structure under the null hypothesis from a single realization of the process.

This is the reason why a thorough analysis of the impact of the spatial dependence

configuration in the distribution approximation is required and provided.

Traditional resampling procedures for test calibration designed for independent

data should not be used for spatial processes, as they do not account for the cor-
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relation structure. One of the aims of this chapter is to present and analyze three

different proposals for test calibration which take the dependence of the data into

account: a parametric residual bootstrap (PB), a nonparametric residual bootstrap

(NPB) and a bias-corrected nonparametric bootstrap (CNPB). Parametric bootstrap

procedures, following the ideas introduced by Solow (1985), are a usual strategy in

spatial statistics, since they directly involve the dependence structure (see, for ex-

ample, Olea and Pardo-Iguzquiza, 2011). The PB approach consists in using in

the bootstrap algorithm the residuals obtained from the parametric fit and, from

these residuals, estimating parametrically the spatial dependence structure. If the

regression function indeed belongs to the parametric family considered in the null

hypothesis, then the residuals obtained with this approach will be similar to the the-

oretical errors, and it is expected that the PB method will have a good performance.

A possible drawback of this procedure is the misspecification of the parametric model

selected for the dependence estimation, however this issue could be avoided by using

a nonparametric estimator instead. Moreover, this resampling approach relies on the

wrong assumption that the variability of the residuals is the same as the one of the

theoretical errors. In the NPB method, to increase the power of the test, residuals

are obtained from the nonparametric fit (see González-Manteiga and Cao, 1993).

Furthermore, the dependence structure is estimated without considering parametric

assumptions. It is clear that the NPB resamplig method can avoid the misspecifi-

cation problem both for the regression function and the dependence. However, no

matter the method used to remove the first-order structure, either parametric or

nonparametric, the direct use of residuals gives rise to biased variogram estimates,

especially at large lags (see Cressie, 1993, Section 3.4.3). To solve this problem,

the CNPB approach is a modification of the NPB method, but including a bias-

corrected algorithm for the dependence estimation (see Castillo-Páez et al., 2019;

Fernández-Casal and Francisco-Fernández, 2014).

This chapter is organized as follows. Section 2.2 introduces the testing problem,

as well as the proposed L2-test statistic. Required assumptions and the asymptotic

distribution of the test statistic are also presented. A detailed description of the

calibration algorithms considered is given in Section 2.3. In addition, an exhaustive

simulation study for assessing the performance of the test with PB, NPB and CNPB,
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is presented in Section 2.4. Section 2.5 shows how to apply the testing procedure to

the Wolfcamp aquifer dataset. Finally, Section 2.6 includes the proofs of the main

results.

2.2 A goodness-of-fit test for parametric regre-

ssion models with spatially correlated errors

In model (1.1), the regression function m can be characterized using parametric

or nonparametric models. As pointed out in Chapter 1, parametric models are

usually easy to compute and provide for a direct interpretation of the parameter

values. On the other hand, nonparametric models also provide a global view of the

mean of the process. Their flexibility allows to model complex relations beyond a

parametric form. Therefore, a question of interest in spatial modeling is focused

on characterizing the first order structure of the process, checking if the regression

function belongs to a parametric family by solving the testing problem given in

(1.34), where mβ denotes a d-variate parametric function with parameter vector β.

Note that mβ is not restricted to be polynomial, although that is a common choice

in practice.

To tackle this problem, a natural approach consists in comparing a parametric

estimator of the regression function with a nonparametric one. The question arises

if the differences between both fits can be explained by small stochastic fluctuations

or if such differences suggest that the parametric assumption is not correct and it

is more reasonable to use nonparametric methods to approximate the regression

function. Using these ideas, one way to proceed is to measure the distance between

both fits and to employ this distance as the test statistic for checking the parametric

model. The estimation methods (parametric and nonparametric) considered in this

proposal has been described in Section 1.1.2. Notice that the parametric estimator

used in the test must satisfy a
√
n-consistency property. Moreover, as pointed out in

Section 1.1.2, a note of caution should be made about regression estimation in this

context: for spatially correlated data, when just a single realization of the process is
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available, additional stationarity assumptions on the process are required in order to

enable statistical inference. In addition, from a single realization, it may be difficult

to disentangle the regression and error components, especially if the dependence is

strong.

The approach followed to solve the testing problem (1.34), as in Härdle and

Mammen (1993) or Alcalá et al. (1999), considers a test statistic given by a weighted

L2-distance between the nonparametric and parametric fits:

Tn,p = n|H|1/2
∫
D

[m̂H(x; p)− m̂H,β̂(x; p)]2w(x)dx, (2.1)

for p = 0, 1, where w is a weight function that helps in mitigating possible boundary

effects. The use of a weight function is quite frequent in this type of tests, both

for density and regression (González-Manteiga and Crujeiras, 2013). The estimators

m̂H(x; p), for p = 0, 1, are the Nadaraya–Watson or local linear fits of m given in

(1.6) or in (1.9), respectively. Moreover, m̂H,β̂(x; 0) and m̂H,β̂(x; 1) are smoothed

versions of the parametric estimator mβ̂ constructed using (1.27). The smoothers

are defined as:

m̂H,β̂(x; 0) =

∑n
i=1KH(Xi − x)mβ̂(Xi)∑n

i=1KH(Xi − x)
,

and

m̂H,β̂(x; 1) = eT
1 (XT

xWxX x)−1XT
xWxmβ̂, (2.2)

with mβ̂ = [mβ̂(X1), . . . ,mβ̂(Xn)]T.

In the particular situation that the parametric family Mβ in (1.34) is the class

of polynomials of degree less or equal than k, it could be more reasonable to use, as

the nonparametric fit, the multivariate local polynomial estimator of degree l, with

l ≥ k, and considering the L2-distance between this estimator and mβ̂. In that case,

it would not be necessary to employ a smoothed version of mβ̂, because both are

consistent unbiased estimators of the regression function, under the null hypothesis.

However, for a general parametric family Mβ, this is not true. For instance, using

the local linear estimator, given that E[m̂H(x; 1)] = eT
1 (XT

xWxX x)−1XT
xWxm(x),

it is convenient to smooth the parametric estimator so that the parametric term in

(2.1) has the same expected value as the nonparametric term, under H0. This fact
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also justifies the use of the same bandwidth matrix H in the nonparametric estimator

and in the smoothed version of the parametric fit (see Härdle and Mammen, 1993,

page 1928).

If the null hypothesis is true, then the parametric and nonparametric estimators

in (2.1) will tend to be similar and the value of Tn,p will be small. Conversely,

if the null hypothesis is does not hold, major differences between both fits will be

expected, and therefore, the value of Tn,p will be large. So, H0 will be rejected if

the distance between both fits exceeds a critical value. For example, consider the

Wolfcamp aquifer dataset described in Section 2.1. Figure 2.8 (in Section 2.5) shows

the smoothed version of the parametric (left) and the nonparametric (right) regres-

sion estimators for the level of piezometric-head in the area of study. In this case,

a linear model is considered for the parametric fit, while the local linear estimator

(1.9) is employed to perform the nonparametric fit. A multiplicative triweight kernel

and the optimal bandwidth obtained by minimizing the mean average squared error

(MASE) of the local linear estimator (see Francisco-Fernandez and Opsomer, 2005,

page 288) are considered to compute m̂H(x; 1) and m̂H,β̂(x; 1). In this case, from a

visual comparison, one may argue that given that both estimates are very similar, the

value of the test statistic Tn,1 is small, and consequently, there may be no evidences

against the assumption of a linear trend. However, apart from getting some insight

to what might occur when using exploratory methods, in order to formally test the

model using Tn,p given in (2.1), it is essential to approximate the distribution of the

test statistic under the null hypothesis.

The types of model deviations that are captured by this test are of the form

m(x) = mβ0(x) + cng(x), where cn is a sequence, such that cn → 0 and g is a

deterministic function collecting the deviation direction from the null model. In this

section, the asymptotic distribution of the test statistic (2.1) is derived under the

null hypothesis, and also under local alternatives converging to the null hypothesis

at a certain rate controlled by cn. Specifically, it is assumed that the function g is

bounded (uniformly in x and n) and cn = n−1/2|H|−1/4. In particular, this contains

the null hypothesis corresponding to g(x) = 0.

It is clear from expression (2.1) that Tn,p depends on the bandwidth matrix H.

A non-trivial problem in goodness-of-fit testing is the bandwidth choice, since the
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optimal bandwidth for estimation may not be the optimal one for testing (being not

even clear what optimal means). For instance, Fan et al. (2001), Eubank et al. (2005)

and Hart (2013) gave some strategies on bandwidth selection in testing problems.

This issue was also discussed further in detail by Sperlich (2013). As usual in the

context of smooth-based goodness-of-fit tests for regression models, the performance

of the test statistic Tn,p is analyzed for a range of bandwidths in the numerical studies,

allowing to check how sensitive the results are to variations in H. Note that although

technically it is possible to consider different bandwidth matrices in m̂H(x; p) and

m̂H,β̂(x; p), the use of just one bandwidth matrix simplifies the application of the

test in practice.

Note that the test statistic (2.1) generalizes to the framework of spatial correlated

data (with a d-dimensional covariate) the statistic proposed for independent data by

Härdle and Mammen (1993), using the Nadaraya–Watson estimator, and that of

Alcalá et al. (1999) using the local polynomial estimator and considering a single

covariate.

Next, the asymptotic distribution of Tn,p is derived. Apart from some of the con-

ditions stated in Chapter 1 for nonparametric kernel estimators (that will be specified

below), the following assumptions on the stochastic nature of the observations are

needed:

(A4) The covariate X lies in a compact set with probability one. The marginal

density f is bounded away from zero.

(A5) The weight function w is continuously differentiable.

(A6) For any i, j, k, l,

Cov(εiεj, εkεl) = Cov(εi, εk)Cov(εj, εl) + Cov(εi, εl)Cov(εj, εk).

(A7) It is assumed that errors are a geometrically strong mixing sequence with mean

zero and E|ε(x)|r <∞ for all r > 4.

Assumption (A6) is satisfied, for example, when the errors follow a Gaussian

distribution. As for (A7), if Mb
a is the σ-field generated by {ξ(t) : a ≤ t ≤ b}, then
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{ξ(t) : t ∈ R} is geometrically strong mixing if the mixing coefficients verify:

α(τ) = sup{|P(A ∩B)− P(A)P(B)| : A ∈M0
−∞ and B ∈M∞

τ } = O(ζτ ), (2.3)

for some 0 < ζ < 1, when τ → ∞. This assumption is needed to apply the cen-

tral limit theorem for reduced U -statistics under dependence given by Kim et al.

(2013). Note that if a random variable is a real Gaussian process, the strong mixing

coefficient and the correlation function are equivalent (Rozanov, 1967, page 181).

Therefore, hypotheses (A3), (A6) and (A7) could be satisfied by Gaussian error pro-

cesses with exponential or rational quadratic (among others) correlation functions,

given in (1.28) and in (1.29), respectively, having a decay rate larger than or equal

to that indicated in (2.3).

As pointed out before, for the parametric estimator, just the assumption of being

a
√
n-consistent estimator is required. This is guaranteed if the parametric estimator

mβ̂ described in Section 1.1.2 is employed in the statistic (2.1). Anyway, a different

parametric estimator of the regression function could be used in the test statistic

(2.1) as long as this property was fulfilled.

The following theorem shows the asymptotic distribution of the test statistic

proposed in (2.1).

Theorem 2.1 Under assumptions (A1)–(A7), (H2), (K1) and (K2), and if 0 < V <

∞, it can be proved that for p = 0, 1,

V −1/2(Tn,p − b0H − b1H)→L N(0, 1) as n→∞,

where →L denotes convergence in distribution, with

b0H = |H|−1/2σ2K [2](0)

[ ∫
w(x)

f(x)
dx + ρc

∫
w(x)dx

]
,

b1H =

∫
[KH ∗ g(x)]2w(x)dx,
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and

V = 2σ4K [4](0)

[ ∫
w2(x)

f 2(x)
dx + 2ρc

∫
w2(x)

f(x)
dx + 4ρ2

c

∫
w2(x)dx

]
,

where K [j] denotes the j-times convolution product of K with itself.

Proof See Section 2.6.

This result generalizes to spatial correlated data the asymptotic distribution ob-

tained for independent data (corresponding to ρc = 0) by Härdle and Mammen

(1993), using the Nadaraya–Watson estimator, and that of Alcalá et al. (1999),

considering the local polynomial regression estimator and a single covariate. From

Theorem 2.1 it can be obtained that the asymptotic distribution of the test is the

same if Nadaraya–Watson or local linear is employed in the nonparametric fit.

Geostatistical spatial trend models

The asymptotic distribution of the test statistic (2.1) can be also obtained under a

geostatistical spatial trend model.

In this scenario, model (1.1) can be viewed as an additive decomposition of the

spatial process: the regression or trend function m corresponds to the first-order mo-

ment of the process and captures the large-scale variability, whereas the error term

collects the second-order structure, reflecting the small-scale variation. The covari-

ates in this setting are given by the spatial locations (latitude and longitude), which

are usually fixed in a geostatistical setting. In this case, considering assumptions in

Theorem 2.1, except the ones relative to f (given that we are under a fixed design

scheme), and following similar steps to those employed in the proof of Theorem 2.1,

but using Riemann approximations of sums by integrals, the asymptotic distribution

of Tn,p is given in the following result:

Theorem 2.2 Under assumptions (A2), (A5)–(A7), (H2), (K1) and (K2), and if

0 < V <∞, it can be proved that for p = 0, 1,

V −1/2(Tn,p − b0H − b1H)→L N(0, 1) as n→∞,
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with

b0H = |H|−1/2σ2K [2](0)

[ ∫
w(x)dx + ρc

∫
w(x)dx

]
,

b1H =

∫
[KH ∗ g(x)]2w(x)dx,

and

V = 2σ4K [4](0)

[ ∫
w2(x)dx + 2ρc

∫
w2(x)dx + 4ρ2

c

∫
w2(x)dx

]
.

Proof See Section 2.6.

For the sake of simplicity, in model (1.1), it is considered that the nugget is equal

to zero, and Theorems 2.1 and 2.2 focus on this case. Models with nugget different

from zero are analyzed through simulations.

2.3 Test statistic calibration

The asymptotic distribution of the test obtained in Theorems 2.1 and 2.2, as in

other nonparametric testing procedures (see, for example, Härdle and Mammen,

1993), may not be sufficiently precise to approximate the test statistic distribution

under the null hypothesis in practice, for small or moderate sample sizes. Given

the slow rate of convergence, to obtain an accurate approximation of the asymptotic

distribution of the test, it would be necessary to have a very large sample size, which

is not always the case for spatial data. Moreover, the limit distribution of the test

statistic depends on unknown quantities that must be estimated. This is a common

problem in smoothing-based tests, as already noted by González-Manteiga and Cru-

jeiras (2013). This issue is usually overcome using resampling methods, specifically,

employing bootstrap algorithms that try to mimic the data structure under the null

hypothesis. Nevertheless, and for the sake of illustration, a brief simulation exper-

iment is presented to study the performance of the asymptotic distribution of the

test under the null hypothesis in practice.
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We consider the simple case of assuming f and σ2 known, and the density esti-

mator of V −1/2(Tn,1− b0H) and the standard normal density function are compared.

The parametric regression family:

M1,β = {β0 + β1X1 + β2X2, β0, β1, β2 ∈ R} (2.4)

is assumed for the null hypothesis. In this case, the chosen regression function has

the expression:

m(X) = X1 +X2, X = (X1, X2). (2.5)

In this experiment, 500 samples of size n = 400, 2500 and 10000 are generated

from a regression model with explanatory variables drawn from a bivariate uniform

distribution in the unit square D = [0, 1]× [0, 1] and regression function (2.5). The

random errors εi are normally distributed with zero mean and with isotropic expo-

nential covariance function:

Cov(εi, εj) = σ2[exp(−λn‖Xi −Xj‖)], (2.6)

with values of σ2 = 1 and λ = 0.0005 (for the sake of simplicity, no nugget effect is

considered in this experiment). Note that with this selection of λ, the values for the

practical range are 5, 0.8 and 0.2, for n = 400, 2500 and 10000, respectively. The

parametric fit was computed using the iterative least squares procedure described

in Section 1.1.2, considering a linear model. The nonparametric fit was obtained

using the multivariate local linear estimator with a multivariate Gaussian kernel and

a scalar bandwidth matrix. With this kernel, the quantities K [2](0) and K [4](0)

in the asymptotic bias and variance of Tn,1 can be easily calculated. Additionally,

considering (2.6), it is straightforward to prove that ρc = 1/λ. For simplicity, we

also take w(x) = f(x), ∀x ∈ D ⊂ Rd. For each sample and in every scenario, the

statistic V −1/2(Tn,1 − b0H) is computed.

Figure 2.3 shows density estimates of V −1/2(Tn,1 − b0H) (blue lines), computed

with a Gaussian kernel and the rule-of-thumb bandwidth selector (Silverman, 1986),

and the standard normal densities (red lines). The plot in the left panel corresponds

to n = 2500 and the one in the right panel to n = 10000. When n = 400, the
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Figure 2.3: Density estimates of V −1/2(Tn,1 − b0H) (blue lines) and normal standard
densities (red lines), considering n = 2500 (left panel) and n = 10000 (right panel).

asymptotic distribution of V −1/2(Tn,1 − b0H) is very far from the standard normal

distribution and it is not shown here. Only when the sample size is very large, the

sampling distribution of the test statistic seems to approximate reasonably well the

Gaussian limit distribution. It is expected that this approximation will be better for

larger sample sizes. That means that to obtain reliable results with the asymptotic

distribution of the test, it would be necessary to consider a huge sample size (ignoring

f and σ2, which should be estimated). In this situation, the application of the test

will take an enormous computing time.

In what follows, a detailed description of the different bootstrap proposals de-

signed to perform the calibration of the test (namely PB, NPB and CNPB) will

be presented. The main difference between the proposals is how the resampling

residuals (required for mimicking the dependence structure) are computed. In PB,

the residuals are obtained from the parametric regression estimator. Alternately, in

NPB, the residuals are obtained from the nonparametric regression estimator (see

González-Manteiga and Cao, 1993). In this way, the error variability could be re-

produced consistently both under the null and the alternative hypotheses, increasing

the power of the test. Finally, the CNPB procedure is a modification of the NPB,

where the residuals are also obtained from the nonparametric regression estimator,

but, additionally, the variability is estimated with an iterative algorithm to correct
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the bias due to the use of the residuals (Fernández-Casal and Francisco-Fernández,

2014).

In order to describe the PB, NPB and CNPB resampling approaches, a generic

bootstrap algorithm is firstly introduced. In what follows, no matter the method

used, either parametric or nonparametric, m̂ and Σ̂ denote the regression and the

covariance matrix estimates, respectively.

Algorithm 1

1. Compute a parametric or a nonparametric regression estimator (described in

Section 1.1.2), namely m̂(Xi), i = 1, . . . , n, depending if a parametric (PB) or a

nonparametric (NPB or CNPB) bootstrap procedure is employed.

2. Obtain an estimated variance-covariance matrix Σ̂ of the residuals ε̂ =

(ε̂1, . . . , ε̂n)T, where ε̂i = Zi − m̂(Xi), i = 1, . . . , n.

3. Find the matrix L, such that Σ̂ = LLT, using Cholesky decomposition.

4. Compute the independent variables, e = (e1, . . . , en)T, given by e = L−1ε̂.

5. The previous independent variables are centered and an independent bootstrap

sample of size n, denoted by e∗ = (e∗1, . . . , e
∗
n)T, is obtained.

6. The bootstrap errors ε∗ = (ε∗1, . . . , ε
∗
n)T are computed as ε∗ = Le∗, and the

bootstrap samples are {(Xi, Z
∗
i )}ni=1 with Z∗i = mβ̂(Xi) + ε∗i , being mβ̂(Xi) the

parametric regression estimator.

7. Using the bootstrap sample {(Xi, Z
∗
i )}ni=1, the bootstrap test statistic T ∗n,p is

computed as in (2.1).

8. Repeat Steps 5-7 a large number of times B.

The empirical distribution of the B bootstrap test statistics can be employed

to approximate the finite sample distribution of the test statistic Tn,p under the

null hypothesis. Thus, denoting by {T ∗n,1, · · · , T ∗n,B} the sample of the B bootstrap

test statistics, and defining its (1 − α) quantile t∗α, the null hypothesis in (1.34)

will be rejected if Tn,p > t∗α. Additionally, the p-value of the test statistic can be

approximated by:

p-value =
1

B

B∑
b=1

I{T ∗
n,b>Tn,p}. (2.7)

Some steps of the Algorithm 1 are discussed below for PB, NPB and NCPB
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methods. The main differences between the procedures are highlighted.

2.3.1 Parametric residual bootstrap (PB)

The PB extends to the case of spatial data the parametric residual bootstrap dis-

cussed in Vilar-Fernández and González-Manteiga (1996). In Step 1 of Algorithm

1, the regression function is estimated parametrically, employing the iterative least

squares estimator constructed using (1.27). In Step 2, from the parametric residu-

als, the covariance matrix is also computed using a parametric approach (see Section

1.1.2 for further details). Notice that if the regression function and the semivariogram

belong to the assumed parametric families, then this procedure should provide good

results. However, a drawback of this procedure is the misspecification problem that

may affect the regression and variance estimation. Moreover, as it was pointed out

in Section 2.1, the direct use of the residuals introduces a bias in the estimation of

the variability of the process in Step 2 of Algorithm 1.

2.3.2 Nonparametric residual bootstrap (NPB)

The NPB tries to avoid the misspecification problems mentioned in the previous

section by using more flexible regression and dependence estimation methods than

those employed in PB. In Step 1 of the bootstrap Algorithm 1, to increase the power

of the test, following González-Manteiga and Cao (1993), the Nadaraya–Watson or

the local linear estimators given in (1.6) or (1.9), respectively, are employed. In addi-

tion, in Step 2, a flexible procedure is considered to estimate the covariance matrix.

The Shapiro–Botha variogram approach (Shapiro and Botha, 1991), combined with a

nonparametric kernel semivariogram pilot estimation provides an efficient variogram

estimator, which is used to approximate the corresponding covariance matrix. For

more details see Section 1.1.2.

2.3.3 Corrected nonparametric residual bootstrap (CNPB)

As it was pointed out before, no matter the methodology used to remove the first-

order structure in Step 2, either parametric or nonparametric, the direct use of the

residuals in the variogram estimation introduces a bias in the approximation of the
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process variability. The CNPB procedure is a modification of the previous NPB

approach, considering a procedure to correct the resulting bias in the nonparametric

estimator of the variogram. In the geostatistical framework, more accurate results

have been obtained using this technique (Castillo-Páez et al., 2019). Specifically, the

following adjustments are performed in the previous generic bootstrap Algorithm

1. In Step 1, the regression function is estimated using the Nadaraya–Watson or

the local linear estimators given in (1.6) or in (1.9), respectively. In Step 2, from

the corresponding nonparametric residuals, the dependence structure is estimated

nonparametrically with an iterative algorithm to correct the bias (Fernández-Casal

and Francisco-Fernández, 2014). Moreover, two additional steps are included after

Step 2 and 3, which are denoted by 2∗ and 3∗:

2∗. Obtain a bias-corrected estimate of the variogram, using the residuals obtained

from the nonparametric fit (see Fernández-Casal and Francisco-Fernández,

2014, for an exhaustive description of the algorithm) and calculate the cor-

responding (estimated) covariance matrix Σ̃ of the errors.

3∗. Find the matrix L̃, such that Σ̃ = L̃L̃T, using Cholesky decomposition. Σ̃ =

L̃L̃T.

In this situation, for the CNPB method, Step 6 in the Algorithm 1 needs to be

modified as follows:

6. The bootstrap errors ε∗ = (ε∗1, . . . , ε
∗
n)T are ε∗ = L̃e∗, and the bootstrap samples

are Z∗i = mβ̂(Xi)+ε∗i , where mβ̂(Xi) was computed using the procedure described

in Section 1.1.2.

2.4 Simulation study

In this section, the practical performance of the proposed test statistic is analyzed

through a simulation study comparing the different bootstrap procedures described

in Section 2.3.

Three regression models are considered. In the first one, the parametric regression

family M1,β, given in (2.4), is assumed for the null hypothesis. In this case, the
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chosen regression functions have the expression:

m1(X) = X1 +X2 + c(X2 + 1)3, X = (X1, X2). (2.8)

In the second one, the parametric regression familyM2,β = {β0+β1(X1−0.5)3, β0, β1 ∈
R} is supposed for the null hypothesis. In this case, the chosen regression functions

have the expression:

m2(X) = 2.5 + 4(X1 − 0.5)3 + c sin(2πX2), X = (X1, X2). (2.9)

The third parametric regression family considered for the null hypothesis isM3,β =

{β0+β1 cos(πX1), β0, β1 ∈ R}, and the regression functions used have the expression:

m3(X) = 1 + 2 cos(πX1) + c sin(2πX2), X = (X1, X2). (2.10)

In all cases, the parameter c controls whether the null (c = 0) or the alternative

(c 6= 0) hypotheses hold. For different values of this parameter (c = 0, 0.5, 1), 500

samples of sizes n (n = 100, 225 and 400) are generated on a regular grid in the unit

square D = [0, 1]× [0, 1], following model (1.1), with regression functions (2.8), (2.9)

or (2.10), and random errors εi normally distributed with zero mean and isotropic

exponential covariogram:

Cov(εi, εj) = ce [exp(−‖Xi −Xj‖/ae)] , ‖Xi −Xj‖ 6= 0, (2.11)

where ce is the partial sill and ae is the practical range, while the variance of the errors

is σ2 = c0 + ce, being c0 the nugget effect. Different degrees of spatial dependence

were studied, considering values of ae = 0.3, 0.6 and 0.9, σ2 = 0.16, 0.32 and 0.32,

and nugget values of 0%, 25% and 50% of σ2.

The behavior of the test statistic given in (2.1) was analyzed in the different

scenarios. The parametric fit used to construct (2.1) was computed using the it-

erative least squares procedure described in Section 1.1.2. The nonparametric fit

was obtained using the multivariate Nadaraya–Watson or the local linear estima-

tors, given in (1.6) or (1.9), respectively, with a multiplicative triweight kernel. The

bandwidth selection problem was addressed by employing the same procedure as that
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used in Härdle and Mammen (1993), Alcalá et al. (1999), or Opsomer and Francisco-

Fernández (2010), among others, analyzing the performance of the test statistic Tn,p

in (2.1) for a range of bandwidths. Initially, to simplify the calculations, the band-

width matrix was restricted to a diagonal matrix with both equal elements (scalar

matrix), H = diag(h, h), and different values of h in the interval [0.25, 1.50] were

chosen. The weight function employed in (2.1) to avoid the possible boundary effect

(González-Manteiga and Cao, 1993) was w(x) = I{x∈[1/
√
n,1−1/

√
n]×[1/

√
n,1−1/

√
n]}.

The bootstrap procedures described in Section 2.3 were applied using B = 500

replications. In Step 1 of Algorithm 1, for the nonparametric residual bootstrap

procedures, NPB and CNPB, the multivariate Nadaraya–Watson or the local linear

estimator (depending on whether p = 0 or p = 1, respectively) was computed using

the optimal bandwidth that minimizes the MASE. Similar results were obtained

when the MGCV bandwidth given in (1.33) is employed (Francisco-Fernandez and

Opsomer, 2005). However, the use of the MASE bandwidth matrix reduces the

computing time and avoids the effect of the bandwidth selection for the regression

estimation on the results. Regarding the variogram, the (uncorrected) variogram

estimates and the bias-corrected version were computed on a regular grid up to

the 55% of the largest sample distance. In this case, the bandwidth matrices were

selected applying the cross-validation relative squared error criterion. Figure 2.4

displays the theoretical semivariogram and the averaged values of the nonparametric

semivariogram estimates considering M2,β and c = 0, with n = 400, σ2 = 0.16,

ae = 0.6 and c0 = 0.04, showing noticeable differences between both approaches.

The effect of the sample size as well as the impact of the spatial dependence

degree on the behaviour of the test, under the null and under some alternative

hypotheses, are analyzed below. In the different scenarios considered, a comparison

of the proposed bootstrap procedures (PB, NPB and CNPB) is presented.

2.4.1 Sample size effect

In this section, the performance of the bootstrap procedures is analyzed for differ-

ent sample sizes, under the null hypothesis and several alternatives. Proportions of

rejections of the null hypothesis, for a significance level α = 0.05, considering pa-

rameters c0 = 0.04, σ2 = 0.16, ae = 0.6 in model (2.11), and different sample sizes,
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Figure 2.4: Theoretical error semivariogram (solid line) and averaged values of the
semivariograms estimates obtained with the uncorrected residuals method (dotted
line) and the corrected method (discontinuous line), considering M2,β, n = 400,
σ2 = 0.16, ae = 0.6 and c0 = 0.04.

are computed. Tables 2.1, 2.2 and 2.3 show the results for the parametric families

M1,β, M2,β and M3,β, respectively. Under the null hypothesis (c = 0) and for the

three parametric families, it can be observed that the test has a reasonable behav-

ior when using PB and CNPB resampling methods. For both algorithms, the test

preserves the nominal significance level of 5%, given that approximately 95% of the

observed proportions of rejections under the null hypothesis to lie within the intervals

(0.007, 0.093), (0.022, 0.078) and (0.029, 0.071), when n = 100, 225 and 400, respec-

tively. It should be noted that the proportions of rejections are affected by the value

of h. For alternative assumptions (c = 0.5 and c = 1), in the case of M1,β, CNPB

presents a slightly better performance than PB. In this situation, CNPB shows a

decreasing power when the value of h increases. The opposite effect is observed

when using PB. In the case of M2,β and M3,β, under alternative hypotheses, the

performance of PB is unsatisfactory. A much better behavior is observed for CNPB.

Note that although it may seem that NPB presents a better behavior in terms of

power, this is due to the underestimation of the variability, which induced really

poor results under the null hypothesis. In general, no matter the parametric family

considered, results obtained by the CNPB improve those achieved by PB and NPB,
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for both null and alternative hypothesis, specially when the local linear estimator is

employed, being, as expected, the power of the test larger when the value of c gets

bigger.

2.4.2 Range of dependence effect

In this section, the performance of the bootstrap procedures is analyzed for different

spatial dependence degrees (ae = 0.3, ae = 0.6 and ae = 0.9). Values of n = 400,

σ2 = 0.16 and c0 = 0.04 are considered. Figure 2.5 shows exponential variogram

models with σ2 = 0.16 and c0 = 0.04, for ae = 0.3 (black line), ae = 0.6 (red line)

and ae = 0.9 (green line). Table 2.4 contains the proportions of rejections of the

null hypothesis for α = 0.05 employing M1,β. Notice that results for ae = 0.6 have

already been shown in Table 2.1, but for the sake of comparison they are also included

in Table 2.4. If c = 0 (null hypothesis), the rejection proportions are similar to the

theoretical level when using PB. Considering the local linear estimator and the NPB

method, the behavior of the test is not very bad when the dependence structure is

weak, but it gets worse as ae is larger. Again, it can be observed that CNPB provides

good results for the null and the alternative hypotheses. Results for the parametric

family M2,β are shown in Table 2.5. For larger values of the practical range ae, the

bandwidth values providing an effective calibration of the test should probably be

larger. Regarding the PB approach, this resampling method works properly under

the null hypothesis (for appropriate values of the bandwidth parameters h), but its

performance under the alternatives is very poor. On the other hand, although the

NPB method has a very high power, the proportions of rejections under the null

hypothesis are very large. Similar conclusions at those given forM2,β were obtained

when the parametric family M3,β was considered. Proportions of rejections of the

null hypothesis for M3,β are presented in Table 2.6.

2.4.3 Nugget effect

The performance of the proposed bootstrap procedures is now presented for different

values of the nugget, 0%, 25% and 50% of σ2. Figure 2.6 shows exponential variogram

models with σ2 = 0.16 and ae = 0.3, for c0 = 0 (black line), c0 = 0.04 (red line) and
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Figure 2.5: Exponential variogram models with σ2 = 0.16 and c0 = 0.04, for ae = 0.3
(black line), ae = 0.6 (red line) and ae = 0.9 (green line)

c0 = 0.08 (green line). Proportion of rejections of the null hypothesis are shown in

Table 2.7, for α = 0.05, considering the parametric familyM1,β, n = 400, σ2 = 0.16

and ae = 0.6. Under the null hypothesis, both PB and CNPB, unlike NPB, provide

reasonable results. Notice that in most cases, the local linear estimator provides bet-

ter results than those obtained with the Nadaraya–Watson estimator. For instance,

considering the Nadaraya–Watson estimator, the proportion of rejections of the null

hypothesis are slightly larger or smaller than the theoretical level considering PB or

CNPB, respectively. The power of the test is a bit larger when CNPB is employed.

Once again, notice that although NPB provides the best results in terms of power, its

performance under the null hypothesis is really poor. Proportions of rejection of the

null hypothesis for the parametric family M2,β are included in Table 2.8. The best

behavior is observed when CNPB is employed, showing a good performance for the

null and the different alternative hypotheses, specially considering the local linear

estimator. For larger values of the variogram at zero lag, smaller bandwidths must

be taken to calibrate the test properly. On the other hand, no reliable results are

obtained for NPB under the null and the alternative hypotheses. Finally, regarding

PB, the power of the test is very small for this scenario. Result for the parametric

family M3,β are summarized in Table 2.9. Similar conclusions to those provided for

M2,β were obtained. Notice that for the PB method and considering an alternative

hypothesis pretty far apart from the null, the power of the test is reasonable when
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Figure 2.6: Exponential variogram models with σ2 = 0.16 and ae = 0.3, for c0 = 0
(black line), c0 = 0.04 (red line) and c0 = 0.08 (green line)

the variogram at zero lag is equal to zero, but gets worse as c0 is larger.

2.4.4 An experiment with non-Gaussian processes

The performance of the proposed test is analyzed when considering non-Gaussian

errors in regression model (1.1). For this purpose, 500 samples are generated on a

regular grid in the unit squareD = [0, 1]×[0, 1], following model (1.1), with regression

function (2.9) and (non-Gaussian) random errors εi = (ε2i − 1)/
√

2, where εi are zero

mean normally distributed random variables with covariance function equal to the

square root of the one chosen for generating the Gaussian errors in the previous

simulations. Notice that if the same simulation parameters are considered, this way

of proceeding preserves the regression function and dependence structure (see Adler,

2010, Section 7.1). Table 2.10 summarizes the proportions of rejections for α = 0.05,

employing the parametric family M2,β and considering different values of the range

parameter ae, with n = 400, σ2 = 0.16 and c0 = 0.04. It can be observed that CNPB

is the only procedure which works properly under both the null and the alternative

hypothesis. As expected, for stronger dependence (that is, larger values of ae), larger

values of the bandwidth h must be selected to obtain an effective calibration of the

test. Regarding the sample size and nugget effect, similar conclusions to those given
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Figure 2.7: Proportions of rejections of the null hypothesis (c = 0), for α = 0.05,
considering the parametric familyM2,β, c0 = 0.04, σ2 = 0.16, ae = 0.6 and n = 400,
using PB (left) and CNPB (right), for several values of h1 and h2.

for Gaussian errors were obtained when non-Gaussian errors were considered. For

the sake of brevity, these results are not shown here. Note that no major differences

(in terms of performance of the test) have been found if Gaussian or non-Gaussian

errors are drawn in regression model (1.1).

2.4.5 More general bandwidth matrices

The impact on the performance of the test when more general bandwidth matrices

are employed is analyzed in this section. Specifically, diagonal bandwidths with pos-

sible different elements, H = diag(h1, h2), are considered. Only some representative

results employing the parametric family M2,β are shown here. Values of n = 400,

σ2 = 0.16, c0 = 0.04 and ae = 0.6 were fixed. Proportions of rejections (under

the null hypothesis, c = 0) for different combinations of h1 and h2, and considering

α = 0.05, are plotted in Figure 2.7. Left panel of Figure 2.7 shows the results

for PB and right panel for CNPB. Proportions of rejections for NPB are omitted

due to its deficient calibration. For this scenario, it can be observed that for PB

there are not relevant differences in terms of rejection proportions if H = diag(h, h)

or H = diag(h1, h2) (with h1 6= h2) are considered. Regarding CNPB, the use of a

more general bandwidth matrix does not provide better results with respect to using

scalar bandwidth matrices. On the other hand, although it is omitted here, similar

conclusions can be obtained for alternative hypotheses (c 6= 0).
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Estimator c n Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 100 PB 0.134 0.116 0.114 0.106 0.082 0.088

NPB 0.624 0.390 0.236 0.152 0.138 0.128

CNPB 0.040 0.042 0.038 0.036 0.036 0.036

225 PB 0.132 0.130 0.142 0.126 0.116 0.110

NPB 0.596 0.404 0.244 0.182 0.162 0.154

CNPB 0.012 0.014 0.016 0.016 0.020 0.020

400 PB 0.074 0.088 0.108 0.112 0.096 0.094

NPB 0.560 0.386 0.272 0.186 0.168 0.160

CNPB 0.014 0.016 0.018 0.020 0.020 0.020

0.5 100 PB 0.342 0.392 0.442 0.468 0.466 0.464

NPB 0.990 0.946 0.896 0.848 0.826 0.808

CNPB 0.460 0.448 0.402 0.390 0.370 0.360

225 PB 0.306 0.382 0.464 0.502 0.510 0.520

NPB 0.992 0.932 0.870 0.826 0.800 0.784

CNPB 0.390 0.354 0.350 0.342 0.336 0.330

400 PB 0.268 0.366 0.444 0.482 0.494 0.496

NPB 0.980 0.954 0.898 0.866 0.834 0.826

CNPB 0.370 0.326 0.336 0.336 0.328 0.334

1 100 PB 0.898 0.922 0.930 0.946 0.948 0.956

NPB 1.000 1.000 1.000 1.000 0.998 0.998

CNPB 0.970 0.958 0.950 0.946 0.938 0.936

225 PB 0.908 0.926 0.946 0.956 0.962 0.968

NPB 1.000 1.000 0.998 0.998 0.998 0.996

CNPB 0.970 0.968 0.950 0.942 0.934 0.934

400 PB 0.904 0.934 0.956 0.966 0.970 0.970

NPB 1.000 1.000 0.998 0.998 0.998 0.998

CNPB 0.952 0.954 0.954 0.954 0.952 0.952

Local Linear 0 100 PB 0.132 0.114 0.100 0.088 0.076 0.068

NPB 0.340 0.280 0.238 0.216 0.194 0.182

CNPB 0.044 0.044 0.046 0.048 0.044 0.042

225 PB 0.130 0.132 0.124 0.108 0.088 0.086

NPB 0.284 0.276 0.250 0.224 0.214 0.192

CNPB 0.034 0.032 0.038 0.038 0.038 0.038

400 PB 0.074 0.090 0.078 0.064 0.064 0.068

NPB 0.256 0.276 0.260 0.230 0.220 0.206

CNPB 0.032 0.036 0.032 0.034 0.038 0.040

0.5 100 PB 0.342 0.402 0.380 0.344 0.350 0.362

NPB 0.982 0.968 0.946 0.920 0.888 0.854

CNPB 0.638 0.642 0.582 0.524 0.496 0.498

225 PB 0.310 0.362 0.322 0.298 0.322 0.364

NPB 0.988 0.970 0.944 0.904 0.864 0.850

CNPB 0.622 0.630 0.512 0.468 0.434 0.434

400 PB 0.284 0.344 0.308 0.284 0.316 0.338

NPB 0.984 0.966 0.934 0.912 0.874 0.856

CNPB 0.596 0.582 0.502 0.446 0.430 0.444

1 100 PB 0.898 0.938 0.946 0.930 0.930 0.936

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.992 0.998 0.992 0.984 0.980 0.980

225 PB 0.914 0.942 0.938 0.930 0.934 0.942

NPB 1.000 1.000 1.000 1.000 0.998 0.998

CNPB 0.992 0.992 0.988 0.982 0.978 0.978

400 PB 0.926 0.956 0.946 0.936 0.942 0.946

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.982 0.986 0.974 0.968 0.970 0.976

Table 2.1: Proportions of rejections of the null hypothesis for the parametric family
M1,β with different sample sizes. Gaussian errors with c0 = 0.04, σ2 = 0.16, ae = 0.6.
Significance level: α = 0.05.
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Estimator c n Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 100 PB 0.056 0.042 0.054 0.066 0.070 0.068

NPB 0.340 0.216 0.170 0.142 0.102 0.088

CNPB 0.064 0.050 0.040 0.028 0.018 0.018

225 PB 0.070 0.068 0.060 0.070 0.082 0.082

NPB 0.268 0.192 0.176 0.144 0.116 0.108

CNPB 0.078 0.058 0.046 0.042 0.030 0.028

400 PB 0.038 0.036 0.046 0.046 0.052 0.056

NPB 0.270 0.182 0.152 0.134 0.114 0.098

CNPB 0.048 0.048 0.048 0.034 0.034 0.032

0.5 100 PB 0.018 0.012 0.020 0.046 0.066 0.074

NPB 1.000 0.996 0.978 0.960 0.898 0.818

CNPB 0.740 0.574 0.380 0.198 0.076 0.050

225 PB 0.004 0.004 0.016 0.036 0.058 0.070

NPB 1.000 0.994 0.976 0.938 0.846 0.734

CNPB 0.692 0.550 0.398 0.218 0.102 0.056

400 PB 0.000 0.002 0.006 0.022 0.026 0.036

NPB 1.000 1.000 0.984 0.940 0.852 0.716

CNPB 0.384 0.316 0.208 0.076 0.034 0.028

1 100 PB 0.056 0.010 0.018 0.038 0.074 0.110

NPB 1.000 1.000 1.000 1.000 0.994 0.982

CNPB 0.996 0.972 0.894 0.584 0.294 0.146

225 PB 0.002 0.002 0.010 0.030 0.078 0.098

NPB 1.000 1.000 1.000 1.000 0.994 0.962

CNPB 0.990 0.938 0.848 0.564 0.296 0.126

400 PB 0.000 0.000 0.000 0.024 0.064 0.098

NPB 1.000 1.000 1.000 1.000 1.000 0.968

CNPB 0.990 0.944 0.824 0.578 0.304 0.170

Local Linear 0 100 PB 0.056 0.048 0.056 0.056 0.052 0.050

NPB 0.838 0.720 0.656 0.614 0.578 0.562

CNPB 0.046 0.034 0.026 0.012 0.014 0.014

225 PB 0.070 0.072 0.056 0.052 0.052 0.052

NPB 0.866 0.756 0.676 0.640 0.610 0.604

CNPB 0.036 0.040 0.032 0.032 0.022 0.022

400 PB 0.038 0.046 0.048 0.042 0.042 0.040

NPB 0.874 0.772 0.684 0.626 0.600 0.582

CNPB 0.084 0.082 0.090 0.090 0.086 0.084

0.5 100 PB 0.018 0.006 0.006 0.004 0.004 0.004

NPB 1.000 0.998 0.988 0.986 0.980 0.976

CNPB 0.540 0.350 0.170 0.054 0.024 0.016

225 PB 0.004 0.004 0.004 0.004 0.004 0.004

NPB 1.000 1.000 0.994 0.992 0.990 0.988

CNPB 0.450 0.338 0.210 0.084 0.032 0.024

400 PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 0.996 0.996 0.992 0.992

CNPB 0.620 0.408 0.392 0.444 0.436 0.424

1 100 PB 0.056 0.004 0.004 0.004 0.004 0.004

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.988 0.954 0.800 0.400 0.152 0.048

225 PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 0.996 0.986 0.988 0.988 0.982

400 PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 0.990 0.968 0.984 0.984 0.972

Table 2.2: Proportions of rejections of the null hypothesis for the parametric family
M2,β with different sample sizes. Gaussian errors with c0 = 0.04, σ2 = 0.16 and
ae = 0.6. Significance level: α = 0.05.
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Estimator c n Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 100 PB 0.076 0.064 0.064 0.076 0.082 0.080

NPB 0.268 0.134 0.106 0.100 0.090 0.086

CNPB 0.024 0.016 0.018 0.022 0.020 0.020

225 PB 0.078 0.074 0.064 0.074 0.082 0.076

NPB 0.202 0.092 0.086 0.084 0.080 0.074

CNPB 0.012 0.012 0.020 0.020 0.018 0.020

400 PB 0.036 0.040 0.044 0.054 0.056 0.058

NPB 0.192 0.124 0.108 0.100 0.096 0.092

CNPB 0.018 0.012 0.018 0.026 0.026 0.026

0.5 100 PB 0.096 0.078 0.080 0.080 0.080 0.084

NPB 1.000 0.990 0.966 0.902 0.822 0.682

CNPB 0.478 0.304 0.144 0.052 0.040 0.034

225 PB 0.048 0.052 0.062 0.066 0.066 0.066

NPB 1.000 0.986 0.956 0.884 0.780 0.632

CNPB 0.478 0.342 0.202 0.076 0.034 0.030

400 PB 0.024 0.030 0.036 0.044 0.052 0.052

NPB 1.000 0.996 0.972 0.926 0.824 0.658

CNPB 0.438 0.334 0.194 0.080 0.034 0.026

1 100 PB 0.368 0.142 0.112 0.104 0.106 0.108

NPB 1.000 1.000 1.000 1.000 0.992 0.958

CNPB 0.988 0.932 0.718 0.312 0.076 0.040

225 PB 0.078 0.078 0.098 0.100 0.106 0.112

NPB 1.000 1.000 1.000 1.000 0.996 0.950

CNPB 0.994 0.938 0.788 0.412 0.168 0.072

400 PB 0.024 0.032 0.046 0.062 0.076 0.090

NPB 1.000 1.000 1.000 1.000 0.998 0.952

CNPB 0.994 0.970 0.796 0.422 0.150 0.070

Local Linear 0 100 PB 0.076 0.074 0.072 0.068 0.062 0.060

NPB 0.704 0.586 0.492 0.424 0.388 0.372

CNPB 0.046 0.044 0.040 0.044 0.042 0.040

225 PB 0.078 0.078 0.078 0.054 0.048 0.046

NPB 0.782 0.620 0.486 0.432 0.396 0.358

CNPB 0.024 0.034 0.040 0.036 0.034 0.034

400 PB 0.034 0.038 0.044 0.044 0.044 0.040

NPB 0.746 0.632 0.544 0.456 0.428 0.406

CNPB 0.030 0.032 0.028 0.026 0.026 0.024

0.5 100 PB 0.134 0.110 0.100 0.100 0.086 0.074

NPB 0.996 0.990 0.970 0.968 0.960 0.940

CNPB 0.288 0.156 0.146 0.158 0.150 0.142

225 PB 0.128 0.136 0.132 0.118 0.092 0.098

NPB 1.000 0.994 0.986 0.980 0.964 0.952

CNPB 0.384 0.244 0.250 0.298 0.296 0.284

400 PB 0.078 0.086 0.084 0.076 0.072 0.072

NPB 1.000 0.998 0.992 0.984 0.980 0.976

CNPB 0.354 0.232 0.238 0.306 0.302 0.290

1 100 PB 0.358 0.080 0.058 0.058 0.058 0.058

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.988 0.834 0.732 0.742 0.724 0.702

225 PB 0.066 0.020 0.018 0.024 0.028 0.026

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 0.960 0.940 0.980 0.960 0.960

400 PB 0.018 0.010 0.010 0.012 0.012 0.012

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.996 0.958 0.938 0.966 0.964 0.964

Table 2.3: Proportions of rejections of the null hypothesis for the parametric family
M3,β with different sample sizes. Gaussian errors with c0 = 0.04, σ2 = 0.16 and
ae = 0.6. Significance level: α = 0.05.
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Estimator c ae Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 0.3 PB 0.084 0.084 0.088 0.084 0.070 0.058

NPB 0.554 0.300 0.188 0.118 0.098 0.092

CNPB 0.020 0.020 0.020 0.022 0.022 0.022

0.6 PB 0.074 0.088 0.108 0.112 0.096 0.094

NPB 0.560 0.386 0.272 0.186 0.168 0.160

CNPB 0.014 0.016 0.018 0.020 0.020 0.020

0.9 PB 0.048 0.062 0.084 0.092 0.094 0.106

NPB 0.570 0.430 0.302 0.216 0.200 0.194

CNPB 0.010 0.014 0.022 0.022 0.022 0.022

0.5 0.3 PB 0.178 0.294 0.424 0.488 0.520 0.532

NPB 0.936 0.786 0.652 0.596 0.562 0.552

CNPB 0.370 0.300 0.324 0.342 0.332 0.330

0.6 PB 0.268 0.366 0.444 0.482 0.494 0.496

NPB 0.980 0.954 0.898 0.866 0.834 0.826

CNPB 0.370 0.326 0.336 0.336 0.328 0.334

0.9 PB 0.342 0.410 0.486 0.514 0.530 0.538

NPB 0.984 0.942 0.896 0.866 0.838 0.828

CNPB 0.392 0.368 0.372 0.374 0.380 0.372

1 0.3 PB 0.904 0.940 0.960 0.966 0.978 0.978

NPB 0.998 0.996 0.988 0.978 0.970 0.968

CNPB 0.988 0.986 0.980 0.984 0.984 0.986

0.6 PB 0.904 0.934 0.956 0.966 0.970 0.970

NPB 1.000 1.000 0.998 0.998 0.998 0.998

CNPB 0.952 0.954 0.954 0.954 0.952 0.952

0.9 PB 0.940 0.960 0.972 0.974 0.978 0.978

NPB 1.000 1.000 0.998 0.998 0.998 0.998

CNPB 0.952 0.958 0.954 0.952 0.954 0.956

Local Linear 0 0.3 PB 0.084 0.096 0.088 0.068 0.060 0.064

NPB 0.096 0.112 0.126 0.112 0.104 0.090

CNPB 0.018 0.018 0.026 0.022 0.024 0.024

0.6 PB 0.074 0.090 0.078 0.064 0.064 0.068

NPB 0.256 0.276 0.260 0.230 0.220 0.206

CNPB 0.032 0.036 0.032 0.034 0.038 0.040

0.9 PB 0.048 0.060 0.050 0.048 0.042 0.038

NPB 0.330 0.364 0.312 0.292 0.296 0.292

CNPB 0.026 0.026 0.028 0.036 0.046 0.054

0.5 0.3 PB 0.188 0.272 0.206 0.180 0.208 0.242

NPB 0.814 0.750 0.648 0.540 0.480 0.468

CNPB 0.650 0.646 0.548 0.458 0.440 0.448

0.6 PB 0.284 0.344 0.308 0.284 0.316 0.338

NPB 0.984 0.966 0.934 0.912 0.874 0.856

CNPB 0.596 0.582 0.502 0.446 0.430 0.444

0.9 PB 0.352 0.410 0.368 0.354 0.378 0.412

NPB 0.988 0.980 0.954 0.944 0.912 0.900

CNPB 0.644 0.640 0.558 0.498 0.492 0.508

1 0.3 PB 0.922 0.952 0.928 0.916 0.926 0.942

NPB 0.998 0.996 0.994 0.984 0.964 0.960

CNPB 0.996 0.996 0.996 0.992 0.988 0.990

0.6 PB 0.926 0.956 0.946 0.936 0.942 0.946

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.982 0.986 0.974 0.968 0.970 0.976

0.9 PB 0.954 0.974 0.966 0.964 0.966 0.972

NPB 1.000 1.000 1.000 1.000 0.998 0.998

CNPB 0.984 0.988 0.980 0.972 0.978 0.980

Table 2.4: Proportions of rejections of the null hypothesis for the parametric family
M1,β with different range values. Gaussian errors with n = 400, c0 = 0.04 and
σ2 = 0.16. Significance level: α = 0.05.
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Estimator c ae Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 0.3 PB 0.056 0.050 0.040 0.044 0.044 0.050

NPB 0.158 0.090 0.076 0.062 0.050 0.052

CNPB 0.030 0.024 0.018 0.012 0.010 0.010

0.6 PB 0.038 0.036 0.046 0.046 0.052 0.056

NPB 0.270 0.182 0.152 0.134 0.114 0.098

CNPB 0.048 0.048 0.048 0.034 0.034 0.032

0.9 PB 0.002 0.004 0.018 0.030 0.040 0.042

NPB 0.328 0.266 0.232 0.186 0.162 0.144

CNPB 0.070 0.070 0.068 0.060 0.048 0.048

0.5 0.3 PB 0.000 0.002 0.006 0.022 0.026 0.036

NPB 1.000 1.000 0.998 0.976 0.878 0.716

CNPB 0.346 0.270 0.170 0.042 0.018 0.016

0.6 PB 0.004 0.004 0.016 0.038 0.058 0.066

NPB 1.000 1.000 0.984 0.940 0.852 0.716

CNPB 0.384 0.316 0.208 0.076 0.034 0.028

0.9 PB 0.008 0.010 0.020 0.048 0.062 0.072

NPB 1.000 0.996 0.982 0.954 0.880 0.750

CNPB 0.526 0.432 0.284 0.146 0.074 0.052

1 0.3 PB 0.000 0.000 0.000 0.010 0.050 0.062

NPB 1.000 1.000 1.000 1.000 1.000 0.986

CNPB 1.000 0.990 0.906 0.648 0.380 0.194

0.6 PB 0.000 0.000 0.000 0.024 0.064 0.098

NPB 1.000 1.000 1.000 1.000 1.000 0.968

CNPB 0.990 0.944 0.824 0.578 0.304 0.170

0.9 PB 0.000 0.000 0.008 0.030 0.080 0.110

NPB 1.000 1.000 1.000 1.000 1.000 0.968

CNPB 1.000 0.996 0.988 0.992 0.988 0.984

Local Linear 0 0.3 PB 0.056 0.074 0.072 0.062 0.060 0.058

NPB 0.702 0.476 0.400 0.366 0.350 0.326

CNPB 0.024 0.020 0.012 0.006 0.006 0.006

0.6 PB 0.038 0.046 0.048 0.042 0.042 0.040

NPB 0.874 0.772 0.684 0.626 0.600 0.582

CNPB 0.084 0.082 0.090 0.090 0.086 0.084

0.9 PB 0.004 0.010 0.016 0.010 0.014 0.014

NPB 0.922 0.852 0.792 0.748 0.722 0.708

CNPB 0.052 0.060 0.060 0.050 0.040 0.038

0.5 0.3 PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.352 0.272 0.168 0.044 0.018 0.016

0.6 PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 0.996 0.996 0.992 0.992

CNPB 0.620 0.408 0.392 0.444 0.436 0.424

0.9 PB 0.004 0.002 0.002 0.002 0.002 0.002

NPB 1.000 1.000 0.998 0.994 0.990 0.990

CNPB 0.712 0.518 0.498 0.522 0.518 0.500

1 0.3 PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.994 0.928 0.762 0.456 0.188 0.074

0.6 PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 0.990 0.968 0.984 0.984 0.972

0.9 PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 0.994 0.986 0.992 0.988 0.982

Table 2.5: Proportions of rejections of the null hypothesis for the parametric family
M2,β with different range values. Gaussian errors with n = 400, c0 = 0.04 and
σ2 = 0.16. Significance level: α = 0.05.
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Estimator c ae Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 0.3 PB 0.070 0.068 0.048 0.042 0.038 0.044

NPB 0.130 0.056 0.046 0.044 0.046 0.046

CNPB 0.012 0.008 0.004 0.012 0.010 0.010

0.6 PB 0.036 0.040 0.044 0.054 0.056 0.058

NPB 0.192 0.124 0.108 0.100 0.096 0.092

CNPB 0.018 0.012 0.018 0.026 0.026 0.026

0.9 PB 0.022 0.024 0.034 0.054 0.060 0.058

NPB 0.208 0.146 0.130 0.122 0.124 0.122

CNPB 0.024 0.024 0.026 0.030 0.030 0.026

0.5 0.3 PB 0.004 0.006 0.016 0.020 0.024 0.024

NPB 1.000 1.000 0.996 0.976 0.856 0.656

CNPB 0.400 0.320 0.162 0.038 0.020 0.016

0.6 PB 0.024 0.030 0.036 0.044 0.052 0.052

NPB 1.000 0.996 0.972 0.926 0.824 0.658

CNPB 0.438 0.334 0.194 0.080 0.034 0.026

0.9 PB 0.032 0.052 0.088 0.098 0.102 0.102

NPB 1.000 0.994 0.970 0.920 0.848 0.686

CNPB 0.536 0.412 0.254 0.118 0.060 0.054

1 0.3 PB 0.010 0.014 0.018 0.034 0.048 0.054

NPB 1.000 1.000 1.000 1.000 1.000 0.984

CNPB 0.998 0.976 0.812 0.426 0.158 0.060

0.6 PB 0.024 0.032 0.046 0.062 0.076 0.090

NPB 1.000 1.000 1.000 1.000 0.998 0.952

CNPB 0.994 0.970 0.796 0.422 0.150 0.070

0.9 PB 0.034 0.050 0.064 0.080 0.102 0.112

NPB 1.000 1.000 1.000 1.000 0.996 0.968

CNPB 0.996 0.974 0.852 0.486 0.212 0.094

Local Linear 0 0.3 PB 0.070 0.084 0.078 0.066 0.060 0.056

NPB 0.598 0.386 0.306 0.256 0.218 0.206

CNPB 0.074 0.054 0.046 0.040 0.038 0.036

0.6 PB 0.034 0.038 0.044 0.044 0.044 0.040

NPB 0.746 0.632 0.544 0.456 0.428 0.406

CNPB 0.148 0.146 0.142 0.128 0.124 0.120

0.9 PB 0.022 0.026 0.028 0.026 0.032 0.034

NPB 0.816 0.730 0.636 0.552 0.522 0.506

CNPB 0.220 0.216 0.214 0.200 0.192 0.184

0.5 0.3 PB 0.004 0.002 0.002 0.002 0.002 0.004

NPB 1.000 0.998 0.996 0.996 0.996 0.994

CNPB 0.312 0.200 0.220 0.310 0.316 0.302

0.6 PB 0.022 0.008 0.008 0.018 0.018 0.018

NPB 1.000 0.998 0.992 0.984 0.980 0.976

CNPB 0.006 0.006 0.006 0.008 0.008 0.008

0.9 PB 0.028 0.022 0.022 0.026 0.026 0.026

NPB 1.000 0.998 0.988 0.982 0.972 0.970

CNPB 0.424 0.304 0.310 0.340 0.344 0.332

1 0.3 PB 0.006 0.002 0.004 0.004 0.006 0.006

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.996 0.950 0.946 0.964 0.964 0.960

0.6 PB 0.018 0.010 0.010 0.012 0.012 0.012

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.996 0.958 0.938 0.966 0.964 0.964

0.9 PB 0.028 0.016 0.018 0.022 0.022 0.024

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.998 0.966 0.960 0.970 0.966 0.964

Table 2.6: Proportions of rejections of the null hypothesis for the parametric family
M3,β with different range values. Gaussian errors with n = 400, c0 = 0.04 and
σ2 = 0.16. Significance level: α = 0.05.
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Estimator c c0 Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 0% PB 0.064 0.062 0.086 0.094 0.106 0.106

NPB 0.562 0.412 0.288 0.206 0.188 0.178

CNPB 0.014 0.014 0.014 0.020 0.018 0.018

25% PB 0.074 0.088 0.108 0.112 0.096 0.094

NPB 0.558 0.388 0.276 0.186 0.166 0.160

CNPB 0.014 0.016 0.018 0.020 0.020 0.020

50% PB 0.110 0.100 0.104 0.106 0.106 0.096

NPB 0.648 0.398 0.268 0.166 0.138 0.132

CNPB 0.038 0.032 0.028 0.028 0.030 0.030

0.5 0% PB 0.348 0.390 0.458 0.476 0.488 0.498

NPB 0.974 0.930 0.860 0.808 0.790 0.780

CNPB 0.308 0.282 0.302 0.304 0.306 0.304

25% PB 0.268 0.366 0.444 0.482 0.494 0.496

NPB 0.980 0.954 0.898 0.866 0.834 0.826

CNPB 0.370 0.326 0.336 0.336 0.328 0.334

50% PB 0.310 0.398 0.500 0.540 0.566 0.572

NPB 0.994 0.976 0.944 0.900 0.886 0.868

CNPB 0.472 0.444 0.418 0.432 0.430 0.430

1 0% PB 0.938 0.944 0.954 0.956 0.958 0.962

NPB 1.000 1.000 0.996 0.994 0.996 0.996

CNPB 0.918 0.912 0.912 0.906 0.906 0.904

25% PB 0.904 0.934 0.956 0.966 0.970 0.970

NPB 1.000 1.000 0.998 0.998 0.998 0.998

CNPB 0.952 0.954 0.954 0.954 0.952 0.952

50% PB 0.956 0.974 0.980 0.980 0.984 0.986

NPB 1.000 1.000 1.000 0.998 0.998 0.998

CNPB 0.990 0.984 0.988 0.986 0.984 0.984

Local Linear 0 0% PB 0.080 0.078 0.056 0.044 0.052 0.070

NPB 0.384 0.370 0.318 0.292 0.282 0.266

CNPB 0.032 0.030 0.034 0.040 0.046 0.052

25% PB 0.074 0.090 0.078 0.064 0.064 0.068

NPB 0.256 0.276 0.260 0.230 0.220 0.206

CNPB 0.032 0.036 0.032 0.034 0.038 0.040

50% PB 0.112 0.110 0.100 0.080 0.078 0.066

NPB 0.180 0.222 0.206 0.180 0.158 0.144

CNPB 0.030 0.028 0.030 0.030 0.032 0.028

0.5 0% PB 0.370 0.398 0.336 0.302 0.332 0.366

NPB 0.984 0.956 0.926 0.890 0.852 0.834

CNPB 0.542 0.510 0.426 0.376 0.382 0.406

25% PB 0.284 0.344 0.308 0.284 0.316 0.338

NPB 0.984 0.966 0.934 0.912 0.874 0.856

CNPB 0.596 0.582 0.502 0.446 0.430 0.444

50% PB 0.316 0.388 0.340 0.328 0.346 0.374

NPB 0.992 0.984 0.972 0.956 0.928 0.900

CNPB 0.712 0.716 0.638 0.566 0.546 0.554

1 0% PB 0.952 0.968 0.954 0.934 0.934 0.940

NPB 1.000 1.000 1.000 1.000 0.998 0.998

CNPB 0.966 0.964 0.958 0.950 0.950 0.954

25% PB 0.926 0.956 0.946 0.936 0.942 0.946

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.982 0.986 0.974 0.968 0.970 0.976

50% PB 0.964 0.976 0.970 0.970 0.970 0.972

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.996 0.996 0.994 0.992 0.990 0.990

Table 2.7: Proportions of rejections of the null hypothesis for the parametric family
M1,β with different nugget values. Gaussian errors with n = 400, ae = 0.6 and
σ2 = 0.16. Significance level: α = 0.05.
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Estimator c c0 Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 0% PB 0.014 0.008 0.020 0.034 0.046 0.046

NPB 0.338 0.230 0.182 0.154 0.132 0.110

CNPB 0.048 0.048 0.042 0.034 0.032 0.032

25% PB 0.038 0.036 0.046 0.046 0.052 0.056

NPB 0.270 0.182 0.152 0.134 0.114 0.098

CNPB 0.048 0.048 0.048 0.034 0.034 0.032

50% PB 0.050 0.048 0.042 0.048 0.052 0.056

NPB 0.254 0.172 0.144 0.116 0.092 0.082

CNPB 0.050 0.050 0.046 0.036 0.030 0.028

0.5 0% PB 0.006 0.014 0.034 0.052 0.062 0.068

NPB 1.000 0.990 0.972 0.912 0.834 0.686

CNPB 0.304 0.248 0.154 0.048 0.032 0.024

25% PB 0.004 0.004 0.016 0.038 0.058 0.066

NPB 1.000 1.000 0.984 0.940 0.852 0.716

CNPB 0.640 0.534 0.384 0.206 0.096 0.058

50% PB 0.000 0.002 0.010 0.026 0.048 0.056

NPB 1.000 1.000 0.998 0.976 0.890 0.776

CNPB 0.880 0.780 0.652 0.468 0.264 0.164

1 0% PB 0.104 0.074 0.092 0.132 0.182 0.204

NPB 1.000 1.000 1.000 1.000 0.992 0.922

CNPB 0.926 0.814 0.658 0.334 0.150 0.056

25% PB 0.000 0.000 0.000 0.024 0.064 0.098

NPB 1.000 1.000 1.000 1.000 1.000 0.968

CNPB 0.990 0.944 0.824 0.578 0.304 0.170

50% PB 0.000 0.000 0.004 0.014 0.052 0.076

NPB 1.000 1.000 1.000 1.000 1.000 0.996

CNPB 1.000 1.000 0.970 0.840 0.576 0.378

Local Linear 0 0% PB 0.020 0.034 0.034 0.030 0.026 0.030

NPB 0.906 0.802 0.714 0.650 0.616 0.604

CNPB 0.046 0.048 0.038 0.030 0.028 0.024

25% PB 0.038 0.046 0.048 0.042 0.042 0.040

NPB 0.874 0.772 0.684 0.626 0.600 0.582

CNPB 0.084 0.082 0.090 0.090 0.086 0.084

50% PB 0.050 0.050 0.054 0.048 0.042 0.040

NPB 0.868 0.748 0.670 0.600 0.572 0.558

CNPB 0.110 0.094 0.104 0.096 0.090 0.086

0.5 0% PB 0.004 0.004 0.004 0.004 0.004 0.004

NPB 1.000 1.000 0.992 0.990 0.986 0.982

CNPB 0.522 0.344 0.332 0.360 0.366 0.350

25% PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 0.996 0.996 0.992 0.992

CNPB 0.620 0.408 0.392 0.444 0.436 0.424

50% PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.746 0.540 0.518 0.562 0.562 0.546

1 0% PB 0.064 0.012 0.008 0.012 0.016 0.014

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 0.964 0.944 0.962 0.956 0.944

25% PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 0.990 0.968 0.984 0.984 0.972

50% PB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 0.992 0.984 0.990 0.986 0.986

Table 2.8: Proportions of rejections of the null hypothesis for the parametric family
M2,β with different nugget values. Gaussian errors with n = 400, ae = 0.6 and
σ2 = 0.16. Significance level: α = 0.05.
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Estimator c c0 Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 0% PB 0.032 0.020 0.040 0.054 0.062 0.064

NPB 0.250 0.152 0.130 0.120 0.120 0.118

CNPB 0.022 0.018 0.024 0.028 0.030 0.030

25% PB 0.036 0.040 0.044 0.054 0.056 0.058

NPB 0.188 0.124 0.106 0.100 0.096 0.092

CNPB 0.018 0.014 0.016 0.026 0.026 0.026

50% PB 0.054 0.052 0.056 0.052 0.050 0.052

NPB 0.160 0.094 0.074 0.068 0.072 0.072

CNPB 0.016 0.012 0.016 0.024 0.026 0.026

0.5 0% PB 0.052 0.054 0.058 0.062 0.064 0.064

NPB 1.000 0.996 0.964 0.914 0.824 0.678

CNPB 0.466 0.380 0.246 0.102 0.050 0.038

25% PB 0.024 0.030 0.036 0.044 0.052 0.052

NPB 1.000 0.996 0.972 0.926 0.824 0.656

CNPB 0.438 0.334 0.194 0.080 0.034 0.026

50% PB 0.010 0.026 0.038 0.040 0.044 0.052

NPB 1.000 0.998 0.992 0.956 0.856 0.660

CNPB 0.612 0.464 0.314 0.140 0.056 0.036

1 0% PB 0.434 0.336 0.270 0.236 0.220 0.216

NPB 1.000 1.000 1.000 1.000 0.992 0.942

CNPB 0.988 0.922 0.710 0.334 0.102 0.064

25% PB 0.024 0.032 0.046 0.062 0.076 0.090

NPB 1.000 1.000 1.000 1.000 0.998 0.952

CNPB 0.994 0.970 0.796 0.422 0.150 0.070

50% PB 0.024 0.040 0.052 0.070 0.082 0.090

NPB 1.000 1.000 1.000 1.000 1.000 0.994

CNPB 1.000 0.988 0.884 0.550 0.292 0.132

Local Linear 0 0% PB 0.030 0.030 0.026 0.034 0.034 0.034

NPB 0.802 0.668 0.560 0.486 0.456 0.432

CNPB 0.042 0.044 0.040 0.036 0.036 0.036

25% PB 0.034 0.038 0.044 0.044 0.044 0.040

NPB 0.748 0.630 0.544 0.456 0.426 0.406

CNPB 0.030 0.032 0.028 0.026 0.026 0.024

50% PB 0.054 0.056 0.062 0.050 0.044 0.042

NPB 0.734 0.602 0.492 0.416 0.382 0.368

CNPB 0.036 0.036 0.036 0.036 0.028 0.030

0.5 0% PB 0.040 0.026 0.026 0.032 0.032 0.034

NPB 1.000 0.998 0.990 0.976 0.968 0.964

CNPB 0.306 0.218 0.230 0.266 0.272 0.272

25% PB 0.022 0.008 0.008 0.018 0.018 0.018

NPB 1.000 0.998 0.992 0.984 0.980 0.976

CNPB 0.006 0.006 0.006 0.008 0.008 0.008

50% PB 0.010 0.006 0.006 0.006 0.006 0.006

NPB 1.000 0.998 0.994 0.994 0.992 0.988

CNPB 0.494 0.330 0.342 0.414 0.420 0.402

1 0% PB 0.368 0.140 0.144 0.182 0.186 0.176

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.982 0.924 0.910 0.940 0.936 0.932

25% PB 0.018 0.010 0.010 0.012 0.012 0.012

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.996 0.958 0.938 0.966 0.964 0.964

50% PB 0.020 0.006 0.006 0.010 0.010 0.010

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.996 0.978 0.966 0.984 0.984 0.980

Table 2.9: Proportions of rejections of the null hypothesis for the parametric family
M3,β with different nugget values. Gaussian errors with n = 400, ae = 0.6 and
σ2 = 0.16. Significance level: α = 0.05.
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Estimator c ae Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50

Nadaraya–Watson 0 0.3 SPB 0.142 0.062 0.070 0.112 0.142 0.158

NPB 0.120 0.072 0.066 0.050 0.042 0.042

CNPB 0.020 0.022 0.010 0.008 0.008 0.008

0.6 SPB 0.030 0.020 0.032 0.042 0.058 0.062

NPB 0.228 0.160 0.142 0.120 0.096 0.084

CNPB 0.048 0.044 0.036 0.032 0.030 0.030

0.9 SPB 0.028 0.016 0.034 0.052 0.072 0.074

NPB 0.302 0.238 0.198 0.172 0.146 0.134

CNPB 0.062 0.062 0.060 0.046 0.042 0.040

0.5 0.3 SPB 0.000 0.000 0.002 0.008 0.022 0.026

NPB 1.000 1.000 1.000 0.996 0.928 0.734

CNPB 0.360 0.254 0.116 0.016 0.004 0.004

0.6 SPB 0.000 0.000 0.004 0.022 0.036 0.046

NPB 1.000 1.000 1.000 0.982 0.898 0.716

CNPB 0.354 0.276 0.132 0.028 0.014 0.008

0.9 SPB 0.000 0.002 0.010 0.022 0.036 0.040

NPB 1.000 1.000 0.998 0.982 0.906 0.750

CNPB 0.510 0.400 0.228 0.068 0.022 0.012

1 0.3 SPB 0.000 0.000 0.000 0.004 0.032 0.052

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 0.996 0.888 0.494 0.170 0.050

0.6 SPB 0.008 0.008 0.014 0.034 0.072 0.100

NPB 1.000 1.000 1.000 1.000 1.000 0.988

CNPB 1.000 0.980 0.810 0.416 0.126 0.028

0.9 SPB 0.036 0.024 0.032 0.046 0.084 0.106

NPB 1.000 1.000 1.000 1.000 1.000 0.994

CNPB 1.000 0.990 0.878 0.502 0.164 0.044

Local Linear 0 0.3 SPB 0.142 0.062 0.070 0.112 0.142 0.158

NPB 0.120 0.072 0.066 0.050 0.042 0.042

CNPB 0.020 0.022 0.010 0.008 0.008 0.008

0.6 SPB 0.030 0.020 0.032 0.042 0.058 0.062

NPB 0.228 0.160 0.142 0.120 0.096 0.084

CNPB 0.048 0.044 0.036 0.032 0.030 0.030

0.9 SPB 0.032 0.018 0.018 0.014 0.018 0.020

NPB 0.302 0.238 0.198 0.172 0.146 0.134

CNPB 0.062 0.062 0.060 0.046 0.042 0.040

0.5 0.3 SPB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.696 0.412 0.400 0.492 0.500 0.480

0.6 SPB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 0.676 0.382 0.366 0.444 0.446 0.420

0.9 SPB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 0.998 0.998 0.998 0.998

CNPB 0.774 0.484 0.460 0.532 0.534 0.514

1 0.3 SPB 0.000 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 1.000 1.000 1.000 1.000 1.000

0.6 SPB 0.006 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 1.000 1.000 1.000 1.000 1.000

0.9 SPB 0.020 0.000 0.000 0.000 0.000 0.000

NPB 1.000 1.000 1.000 1.000 1.000 1.000

CNPB 1.000 1.000 1.000 1.000 1.000 1.000

Table 2.10: Proportions of rejections of the null hypothesis for the parametric family
M2,β with different range values. Non-Gaussian errors with n = 400, c0 = 0.04 and
σ2 = 0.16. Significance level: α = 0.05.
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2.5 Real data illustration

In order to illustrate the performance in practice of the test statistic Tn,p, given in

(2.1), the Wolfcamp aquifer dataset, briefly introduced in Section 2.1, is considered.

These data were reported and geostatistically analyzed in Harper and Furr (1986)

and Cressie (1993), and are available in the R package npsp (Fernández-Casal, 2019).

Based on the simulation study, where both Tn,0 and Tn,1 presented a similar perfor-

mance, just results using the local linear estimator (Tn,1) are provided in this section.

Moreover, taking into account that the results obtained by the CNPB were clearly

better than those achieved by PB and NPB in the simulations, only the CNPB

resampling approach will be used to calibrate the test.

The Deaf Smith County (Texas, bordering New Mexico) was selected as an al-

ternate site for a possible nuclear waste disposal repository in the 1980s. This site

was later dropped on grounds of contamination of the aquifer, the source of much of

the water supply for west Texas. In a study conducted by the U.S. Department of

Energy, piezometric-head levels were obtained irregularly at 85 locations, shown in

Figure 2.1 (included in Section 2.1), by drilling a narrow pipe through the aquifer

(see Harper and Furr, 1986). With higher values generally in the lower left (south-

west) and lower values in the upper right (northwest), the groundwater gradient

would cause water to flow in a northeasterly direction from the repository in Deaf

Smith County toward Amarillo in lower Potter County.

Figure 2.2 (shown in Section 2.1) displayed the 3-dimensional scatterplot of the

piezometric heads levels (feet above sea level) against over the coordinates (miles,

from a reference point). This plot evidenced a clear downwards trend from southwest

to northeast. Cressie (1993) used the median polish approach to model this trend,

whereas Harper and Furr (1986) considered a linear trend surface, that is, a linear

regression model on latitude and longitude.

In this section, in order to check if a linear model is plausible, the test Tn,1, using

the CNPB procedure with B = 500 replications, was applied considering the linear

parametric family M1,β, given in (2.4), as the null hypothesis. In this case, X1 and

X2 are the spatial coordinates of the points where the process is observed. It should

be noted that the (nonparametric) detrended data were also tested for isotropy and

stationarity, following the proposals by Bowman and Crujeiras (2013), obtaining
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Figure 2.8: Smooth version of the parametric fit (left) and nonparametric estimator
of the regression (right) using the MGCV bandwidth for the Wolfcamp Aquifer.

p-values of 0.838 for isotropy and 0.031 for stationarity.

To apply the test (2.1), the parametric fit was carried out using the iterative least

squares estimator described in Section 1.1.2, assuming a linear regression model.

After analyzing the initial residuals obtained by least squares regression, a spherical

correlation model (as it was suggested by Harper and Furr, 1986) was considered

to estimate the variance-covariance matrix of the errors, needed to obtain a feasible

estimate of β. As for the nonparametric fit in (2.1), the local linear estimator given

in (1.9) with a multiplicative triweight kernel was considered. The bandwidth was

taken as a diagonal matrix H = diag(h1, h2), being the values of h1 and h2 different.

The range of bandwidths was selected taking into account the MGCV bandwidth

(Francisco-Fernandez and Opsomer, 2005; Francisco-Fernández et al., 2012), given

in (1.33), H = diag(403.19, 226.20).

Figure 2.8 shows the smoothed version of the parametric (left panel) and the

nonparametric (right panel) regression estimators using the corrected generalized

cross-validation bandwidth for the level of piezometric-head in the area of study.

These regression surfaces are compared in the proposed test statistic. Figure 2.9

shows the p-values of the test using the so-called significance trace (Bowman and

Azzalini, 1997), that is, the proportions of empirical rejections for different band-

widths. Taking into account this plot, there are no evidences against a linear spatial

regression. Note that smaller bandwidths than those considered should not be taken

to avoid boundary problems.



2.6. Proofs of the main results 73

150 200 250 300 350 400

50
10

0
15

0
20

0
25

0

h

h

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

Figure 2.9: For the Wolfcamp aquifer dataset, p-values of the test for different values
of h1 and h2, considering the parametric family M1,β as the null hypothesis.

2.6 Proofs of the main results

In this section, proofs of Theorems 2.1 and 2.2 are provided. The proof of Theorem

2.1 is shown only for Tn,1, being similar for Tn,0. To derive the proof of Theorem 2.2,

it is sufficient to follow similar arguments to those used in the proof of Theorem 2.1,

but employing Riemann approximations of sums by integrals. For this reason, only

a sketch of the proof of Theorem 2.2 with some highlights is provided. For sake of

simplicity, the proof of this result is only presented for the case of Tn,0.

Proof of Theorem 2.1 Under assumptions (A1)–(A7), (H2), (K1) and (K2), the

asymptotic distribution of the test statistic given in (2.1), comparing the nonpara-

metric and the smooth parametric estimators, given in (1.9) and (2.2), respectively,

using an L2-distance, is derived. For simplicity, in this proof, Tn,1 will be denoted

by Tn.
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The test statistic given in (2.1) can be written as:

Tn = n|H|1/2
∫

[m̂H(x; 1)− m̂H,β̂(x; 1)]2w(x)dx

= n|H|1/2
∫ {

eT
1

(
n−1XT

xWxX x

)−1

· 1
n

n∑
i=1

[1, (Xi − x)T]KH(Xi − x)[Zi −mβ̂(Xi)]

}2

w(x)dx

= n|H|1/2
∫ [

eT
1

(
n−1XT

xWxX x

)−1

·
( 1

n

∑n
i=1 KH(Xi − x)[Zi −mβ̂(Xi)]

1
n

∑n
i=1 KH(Xi − x)(Xi − x)[Zi −mβ̂(Xi)]

)]2

w(x)dx.

Using (A.1), (A.2) and (A.3) of Lemma A.1, and taking into account that for

every η > 0, 1
n

∑n
i=1KH(Xi − x) = f(x) + OP(n

−2
4+d

+η) uniformly in x (see Härdle

and Mammen, 1993), it follows that

(n−1XT
xWxX x)−1

=

(
1
n

∑n
i=1KH(Xi − x) 1

n

∑n
i=1KH(Xi − x)(Xi − x)T

1
n

∑n
i=1KH(Xi − x)(Xi − x) 1

n

∑n
i=1KH(Xi − x)(Xi − x)(Xi − x)T

)−1

=

(
f(x) +OP(n

−2
4+d

+η) µ2(K)∇Tf(x)H2 +OP(n
−2
4+d

+ηH2)

µ2(K)H2∇f(x) +OP(n
−2
4+d

+ηH2) µ2(K)f(x)H2 +OP(n
−2
4+d

+ηH1d×dH)

)−1

=

(
1

f(x)
+OP(n

−2
4+d

+η) −∇Tf(x)
f2(x)

+OP(n
−2
4+d

+η1T
d )

−∇f(x)
f2(x)

+OP(n
−2
4+d

+η1d)
1

µ2(K)f(x)H2 +OP(n
−2
4+d

+ηH1d×dH)

)
.

The test statistic can be now written as:

Tn = n|H|1/2
∫ {

1

nf(x)

n∑
i=1

KH(Xi − x)[Zi −mβ̂(Xi)]

−∇f(x)
1

nf 2(x)

n∑
i=1

KH(Xi − x)(Xi − x)[Zi −mβ̂(Xi)]

}2

w(x)dx

+OP(n
−2
4+d

+η)

= Tn1 + Tn2 + 2Tn12 +OP(n
−2
4+d

+η), (2.12)
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with

Tn1 = n|H|1/2
∫ {

1

nf(x)

n∑
i=1

KH(Xi − x)[Zi −mβ̂(Xi)]

}2

w(x)dx,

Tn2 = n|H|1/2
∫ {

∇f(x)
1

nf 2(x)

n∑
i=1

KH(Xi − x)(Xi − x)[Zi −mβ̂(Xi)]

}2

w(x)dx,

and the Tn12 term is the integral of the cross product.

Regarding Tn1, taking into account that the regression functions considered are

of the form m = mβ0 + n−1/2|H|−1/4g (see Section 2.2), one gets

Tn1 = n|H|1/2
∫ {

1

nf(x)

n∑
i=1

KH(Xi − x)[Zi −mβ̂(Xi)]

}2

w(x)dx

= n|H|1/2
∫ {

1

nf(x)

n∑
i=1

KH(Xi − x)[m(Xi) + εi −mβ̂(Xi)]

}2

w(x)dx

= n|H|1/2
∫ {

1

nf(x)

n∑
i=1

KH(Xi − x)[mβ0(Xi)−mβ̂(Xi)]

+
1

nf(x)

n∑
i=1

KH(Xi − x)[n−1/2|H|−1/4g(Xi) + εi]

}2

w(x)dx

= n|H|1/2
∫

1

f 2(x)
[I1(x) + I2(x) + I3(x)]2w(x)dx,

where

I1(x) =
1

n

n∑
i=1

KH (Xi − x) [mβ0(Xi)−mβ̂(Xi)],

I2(x) =
1

n

n∑
i=1

KH (Xi − x)n−1/2|H|−1/4g(Xi),

I3(x) =
1

n

n∑
i=1

KH (Xi − x) εi.

With respect to the term I1(x), using assumptions (A1), (A2), (A4), (A5) and

(K1), and given that the difference mβ̂(x)−mβ0(x) = OP(n−1/2) uniformly in x (see
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Section 2.2), it is obtained that

n|H|1/2
∫

1

f 2(x)
I2

1 (x)w(x)dx

= n|H|1/2
∫

1

f 2(x)

{
1

n

n∑
i=1

KH (Xi − x) [mβ0(Xi)−mβ̂(Xi)]

}2

w(x)dx

= OP(|H|1/2). (2.13)

As for the term I2(x), taking into account (A.1) of Lemma A.1, it follows that

n|H|1/2
∫

1

f 2(x)
I2

2 (x)w(x)dx

= n|H|1/2
∫

1

f 2(x)

[
1

n

n∑
i=1

KH (Xi − x)n−1/2|H|−1/4g(Xi)

]2

w(x)dx

=

∫
1

f 2(x)

{∫
K (p) g(x + Hp)f(x + Hp)dp + oP(1)

}2

w(x)dx

=

∫
1

f 2(x)

{∫
K (p) g(x + Hp)[f(x) + o(1)]dp

}2

w(x)dx · [1 + oP(1)]

=

∫ [ ∫
KH (u− x) g(u)du

]2

w(x)dx · [1 + oP(1)]

=

∫
[KH ∗ g(x)]2w(x)dx · [1 + oP(1)]. (2.14)

The leading term of (2.14) is the term b1H in Theorem 2.1. Finally, the term

I3(x), associated with the error component of the model, can be split as:

n|H|1/2
∫

1

f 2(x)
I2

3 (x)w(x)dx

= n|H|1/2
∫

1

f 2(x)

[
1

n

n∑
i=1

KH (Xi − x) εi

]2

w(x)dx

= I31 + I32,
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where

I31(x) = n|H|1/2
∫

1

f 2(x)

1

n2

n∑
i=1

K2
H (Xi − x) ε2

iw(x)dx

I32(x) = n|H|1/2
∫

1

f 2(x)

1

n2

∑
i 6=j

KH (Xi − x)KH (Xj − x) εiεjw(x)dx.

Close expressions of I31 and I32 can be obtained computing the expectation

and the variance of these terms. For doing so, general results on the conditional

expectation and conditional variance can be used. Specifically, given two ran-

dom variables X and Y , it is known that E(X) = E[E(X|Y )] and Var(X) =

E[Var(X|Y )] + Var[E(X|Y )].

For I31, using the result for the conditional mean, it follows that E(I31) =

E[E(I31|X1, . . . ,Xn)]. Firstly,

E(|H|1/2I31|X1, . . . ,Xn)

= E
[
n|H|

∫
1

f 2(x)

1

n2

n∑
i=1

K2
H (Xi − x) ε2

iw(x)dx|X1, . . . ,Xn

]
= σ2n|H|

∫
1

f 2(x)

1

n2

n∑
i=1

K2
H (Xi − x)w(x)dx. (2.15)

Using the previous expression and (A.4) of Lemma A.1, one gets that,

E(|H|1/2I31) = E[E(|H|1/2I31|X1, . . . ,Xn)]

= E
[
σ2n|H|

∫
1

f 2(x)

1

n2

n∑
i=1

K2
H (Xi − x)w(x)dx

]
= σ2|H|

∫
1

f 2(x)
|H|−1K [2](0)[f(x) + o(1)]w(x)dx

= σ2K [2](0)

∫
w(x)

f(x)
dx · [1 + o(1)], (2.16)

since R(K) =
∫
K2(u)du = K [2](0).

On the other hand, Var(I31) = E[Var(I31|X1, . . . ,Xn)] +Var[E(I31|X1, . . . ,Xn)].
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Using assumption (A6), it is obtained that

Var(|H|1/2I31|X1, . . . ,Xn)

= Var

[
n|H|

∫
1

f 2(x)

1

n2

n∑
i=1

K2
H (Xi − x) ε2

iw(x)dx|X1, . . . ,Xn

]
=
|H|2

n2

n∑
i,j=1

∫∫
1

f 2(x)f 2(t)
K2

H (Xi − x)K2
H (Xj − t)w(x)w(t)dxdtCov(ε2

i , ε
2
j)

=
2|H|2

n2

n∑
i,j=1

∫∫
1

f 2(x)f 2(t)
K2

H (Xi − x)K2
H (Xj − t)w(x)w(t)dxdt[Cov(εi, εj)]

2

=
2σ4

n2
|H|2

n∑
i,j=1

∫∫
1

f 2(x)f 2(t)
K2

H (Xi − x)K2
H (Xj − t)w(x)w(t)dxdt

·ρ2
n(Xi −Xj).

Moreover,

E[Var(|H|1/2I31|X1, . . . ,Xn)]

= E
[

2σ4

n2
|H|2

n∑
i,j=1

∫∫
1

f 2(x)f 2(t)
K2

H (Xi − x)K2
H (Xj − t)w(x)w(t)dxdt

]
= 2σ4|H|2

∫∫
1

f 2(x)f 2(t)

∫∫
K2

H (u− x)K2
H (v − t) ρ2

n(u− v)f(u)f(v)dudv

·w(x)w(t)dxdt

= 2σ4

∫∫
1

f 2(x)f 2(t)

∫∫
K2(p)K2(q)ρ2

n[x− t + H(p− q)]f(x + Hp)

·f(t + Hq)dpdqw(x)w(t)dxdt · [1 + o(1)]

= 2σ4

∫∫
1

f 2(x)f 2(t)

∫∫
K2(p)K2(q)ρ2

n[x− t + H(p− q)]dpdq

·f(x)f(t)w(x)w(t)dxdt · [1 + o(1)]

= 2σ4

∫∫∫∫
K2(p)K2(q)

f(x)f(t)
w(x)w(t)ρ2

n[x− t + H(p− q)]dpdqdxdt · [1 + o(1)]

= 2σ4|H|
∫∫∫∫

K2(p)K2(q)

f(x)f(x + Hu)
w(x)w(x + Hu)ρ2

n[H(p− q− u)]dpdqdxdu

·[1 + o(1)]

= 2σ4|H|
∫∫∫∫

K2(p)K2(q)

f 2(x)
w2(x)ρ2

n[H(p− q− u)]dpdqdxdu · [1 + o(1)].
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Let

jn(q,u) = n|H|
∫
K2(p)ρ2

n[H(p− q− u)]dp.

Notice that,

|jn(q,u)| ≤ K2
M{n|H|

∫
‖p‖≤1

|ρ2
n[H(p− q− u)]|dp} ≤ K2

M [n

∫
|ρn(t)|dt],

where KM = max
x

[K(x)]. Using assumption (A3), it follows that

|jn(q,u)| ≤ K2
MρM ,

where ρM = max
x

[ρ(x)], and therefore,

E[Var(|H|1/2I31|X1, . . . ,Xn)] ≤ 2n−1σ4K2
MρM

∫∫∫
K2(q)

f 2(x)
w2(x)dqdxdu · [1 + o(1)].

Using assumptions (A4), (A5) and (K1), one gets that

E[Var(I31|X1, . . . ,Xn)] = oP(1). (2.17)

On the other hand, using (2.15), (A.4) of Lemma A.1 and (H2), it follows that

Var[E(|H|1/2I31|X1, . . . ,Xn)]

= Var

[
σ2n|H|

∫
1

f 2(x)

1

n2

n∑
i=1

K2
H (Xi − x)w(x)dx

]
=

n∑
i=1

Var

[
σ2n|H|

∫
1

f 2(x)

1

n2
K2

H (Xi − x)w(x)dx

]
≤ σ4|H|2

n∑
i=1

E
[ ∫∫

1

f 2(x)f 2(t)

1

n2
K2

H (Xi − x)K2
H (Xi − t)w(x)w(t)dxdt

]
= oP(1). (2.18)

Now, considering (2.17) and (2.18), it is obtained that

Var(|H|1/2I31) = oP(1). (2.19)



80 Chapter 2. Testing regression models with spatially correlated errors

Using (2.16) and (2.19), it follows that

I31 = |H|−1/2σ2K [2](0)

∫
w(x)

f(x)
dx · [1 + oP(1)]. (2.20)

Taking into account assumption (H2), the leading term of (2.20) corresponds to

the first term of b0H in Theorem 2.1. Now, consider the term

I32 = n|H|1/2
∫

1

f 2(x)

1

n2

∑
i 6=j

KH (Xi − x)KH (Xj − x) εiεjw(x)dx.

Let

κij = n|H|1/2
∫

1

f 2(x)

1

n2
KH (Xi − x)KH (Xj − x) εiεjw(x)dx,

thus,

I32 =
∑
i 6=j

κij,

and this can be seen as a U -statistic with degenerate kernel.

To obtain the asymptotic normality of I32, Theorem 2 of Kim et al. (2013) will

be applied. The central limit theorem for degenerate reduced U -statistics under α-

mixing was derived in that work. The assumptions of this result hold (specifically,

assumption (A7)) and the expectation and the variance of I32 should be computed.

Proceeding as for I31, it follows that E(I32) = E[E(I32|X1, . . . ,Xn)]. First,

E(I32|X1, . . . ,Xn)

= E
[
n|H|1/2 1

n2

∑
i 6=j

∫
1

f 2(x)
KH (Xi − x)KH (Xj − x)w(x)dx · εiεj|X1, . . . ,Xn

]
= n|H|1/2 1

n2

∫
1

f 2(x)

∑
i 6=j

E(εiεj)KH (Xi − x)KH (Xj − x)w(x)dx

= n|H|1/2
∫

1

f 2(x)

1

n2

∑
i 6=j

Cov(εi, εj)KH (Xi − x)KH (Xj − x)w(x)dx

= |H|1/2σ2

∫
1

f 2(x)

1

n

∑
i 6=j

ρn(Xi −Xj)KH (Xi − x)KH (Xj − x)w(x)dx. (2.21)
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Moreover,

E[E(I32|X1, . . . ,Xn)]

= E
[
n|H|1/2σ2

∫
1

f 2(x)

1

n2

∑
i 6=j

ρn(Xi −Xj)KH (Xi − x)KH (Xj − x)w(x)dx

]
= n|H|1/2σ2

∫
1

f 2(x)

{
n− 1

n

∫∫
KH (u− x)KH (v − t) ρn(u− v)f(u)f(v)dudv

}
·w(x)dx

= n|H|1/2σ2

∫
1

f 2(x)

{
n− 1

n

∫∫
K (p)K (q) ρn[H(p− q)]

·f(x + Hp)f(x + Hq)dpdq

}
w(x)dx

= n|H|1/2σ2

∫
1

f 2(x)

{
n− 1

n
f 2(x)

∫∫
K (p)K (q) ρn[H(p− q)]dpdq + o(1)

}
·w(x)dx

=
n− 1

n
|H|−1/2σ2

∫ {
n|H|

∫∫
K (p)K (q) ρn[H(p− q)]dpdq + o(1)

}
·w(x)dx.

Using Proposition A.2, it follows that

E (I32) = |H|−1/2σ2K [2](0)ρc

∫
w(x)dx · [1 + o(1)], (2.22)

corresponding to the second term of b0H in Theorem 2.1.

The variance of I32 can be computed considering that

Var(I32) = E[Var(I32|X1, . . . ,Xn)] + Var[E(I32|X1, . . . ,Xn)]. (2.23)

Let

Wij =

∫
1

f 2(x)
KH (Xi − x)KH (Xj − x)w(x)dx,
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thus,

Var(I32|X1, . . . ,Xn) = Var

(
n−1|H|1/2

∑
i 6=j

Wijεiεj|X1, . . . ,Xn

)

= 4n−2|H|
n−1∑
i=1

n∑
j=i+1

n−1∑
k=1

n∑
l=k+1

WijWklCov(εiεj, εkεl)

= T31 + T32 + T33, (2.24)

where

T31 = 4n−2|H|
n−1∑
i=1

n∑
j=i+1

W 2
ijCov(εiεj, εiεj),

T32 = 4n−2|H|
n−2∑
i=1

n−1∑
j=i+1

n∑
l=i+2

WijWilCov(εiεj, εiεl),

T33 = 4n−2|H|
∑

all different indices i, j, k, l

WijWklCov(εiεj, εkεl).

First, when i = k and j = l, the total number of terms is n(n − 1)/2. Second,

when one of the i and j is equal to one of the k and l (without loss of generality,

assume i = k and j 6= l), the total number of terms can be bounded by n3. Finally,

when i, j, k, and l are all different, the total number of terms can be bounded by n4.

The expected value of Var(I32|X1, . . . ,Xn) given in (2.24) is computed by calcu-

lating the mean of the terms T31, T32, and T33,

E[Var(I32|X1, . . . ,Xn)] = E(T31) + E(T32) + E(T33). (2.25)

As for T31, using assumption (A6), this term can be split as:

T31 = 4n−2|H|
n−1∑
i=1

n∑
j=i+1

W 2
ijCov(εiεj, εiεj)

= 4n−2|H|
n−1∑
i=1

n∑
j=i+1

W 2
ij[σ

4 + Cov2(εi, εj)]

= T311 + T312,
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where

T311 = 4σ4n−2|H|
∫∫

1

f 2(x)f 2(t)
w(x)w(t)

·
n−1∑
i=1

n∑
j=i+1

KH (Xi − x)KH (Xj − x)KH(Xi − t)KH(Xj − t)dxdt,

and

T312 = 4σ4n−2|H|
∫∫

1

f 2(x)f 2(t)
w(x)w(t)

n−1∑
i=1

n∑
j=i+1

KH (Xi − x)KH (Xj − x)

·KH(Xi − t)KH(Xj − t)ρ2
n(Xi −Xj)dxdt.

First,

E(T311) = E
[
4σ4n−2|H|

∫∫
1

f 2(x)f 2(t)
w(x)w(t)

·
n−1∑
i=1

n∑
j=i+1

KH (Xi − x)KH (Xj − x)KH(Xi − t)KH(Xj − t)dxdt

]

= 4σ4|H|n− 1

2n

∫∫
1

f 2(x)f 2(t)

[ ∫
KH (u− x)KH (u− t) f(u)du

]2

= 4σ4|H|n− 1

2n

∫∫
1

f 2(x)f 2(t)

·
[
|H|−1

∫
K (p)K[p−H−1(x− t)]f(t + Hp)dp

]2

w(x)w(t)dxdt

= 4σ4|H|n− 1

2n

∫∫
1

f 2(x)f 2(t)

[
|H|−1K [2][H−1(x− t)][f(t) + o(1)]

]2

·w(x)w(t)dxdt

= 2σ4|H|n− 1

n

∫∫
1

f 2(x)f 2(t)
|H|−2{K [2][H−1(x− t)]}2f 2(t)w(x)w(t)dxdt

·[1 + o(1)]

= 2σ4n− 1

n

∫∫
1

f 2(x)
[K [2](p)]2w(x)w(x + Hp)dxdp · [1 + o(1)]

= 2σ4K [4](0)

∫
w2(x)

f 2(x)
dx · [1 + o(1)]. (2.26)



84 Chapter 2. Testing regression models with spatially correlated errors

Similarly for T312, using assumptions (A4), (A5) and (K1), this term becomes

E(T312) = E
[
4σ4n−2|H|

∫∫
1

f 2(x)f 2(t)
w(x)w(t)

n−1∑
i=1

n∑
j=i+1

KH (Xi − x)KH (Xj − x)

·KH(Xi − t)KH(Xj − t)ρ2
n(Xi −Xj)dxdt

]
= 4σ4|H|n− 1

2n

∫∫
1

f 2(x)f 2(t)

∫∫
KH (u− x)KH (u− t)KH (v − x)

·KH (v − t) ρ2
n(u− v)f(u)f(v)dudvw(x)w(t)dxdt

= 4σ4|H|n− 1

2n

∫∫
1

f 2(x)f 2(t)
|H|−2

∫∫
K[−p + H−1(x− t)]

·K[−q + H−1(x− t)]K (p)K (q) f(t + Hp)f(t + Hq)ρ2
n[H(p− q)]dpdq

·w(x)w(t)dxdt

= 4σ4|H|n− 1

2n

∫∫
1

f 2(x)f 2(t)
|H|−2f 2(t)

∫∫
K[−p + H−1(x− t)]

·K[−q + H−1(x− t)]K(p)K(q)ρ2
n[H(p− q)]dpdq · [1 + o(1)]

·w(x)w(t)dxdt

= 2
n− 1

n
σ4

∫∫∫∫
1

f 2(x)
K (p + u)K (q + u)K (p)K (q)

·w(x)w(x + Hu)ρ2
n[H(p− q)]dpdqdxdu · [1 + o(1)]

≤ 2
n− 1

n2|H|
σ4K4

Mw
2
M

f 2
M

∫
‖q‖≤1

{n|H|
∫
‖p‖≤1

ρ2
n[H(p− q)]dp}dq · [1 + o(1)],

where fM and wM denote the upper bounds of f and w, respectively (assumption

(A4)). Since

n|H|
∫
‖p‖≤1

ρ2
n[H(p− q)]dp ≤ n

∫
|ρn(t)|dt ≤ C1,

it is obtained that

E(T312) ≤ 2
σ4K4

Mw
2
M

f 2
M

C1

n|H|
n− 1

n
× Volume of the ball {u : ‖u‖ ≤ 1}

= OP(n−1|H|−1). (2.27)
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Then, from (2.26) and (2.27), it follows that

E(T31) = 2σ4K [4](0)

∫
w2(x)

f 2(x)
dx · [1 + o(1)] +OP(n−1|H|−1). (2.28)

With respect to the term T32 (corresponding to the case with i = k and j 6= l in

(2.24)), using assumption (A6), it follows that

T32 = 4n−2|H|
n−2∑
i=1

n−1∑
j=i+1

n∑
j=i+2

WijWilCov(εiεj, εiεl)

= 4n−2|H|
n−2∑
i=1

n−1∑
j=i+1

n∑
j=i+2

WijWil[Var(εi)Cov(εj, εl) + Cov(εi, εl)Cov(εj, εi)]

= T321 + T322,

where

T321 = 4σ4n−2|H|
∫∫

1

f 2(x)f 2(t)
w(x)w(t)

n−2∑
i=1

n−1∑
j=i+1

n∑
l=i+2

KH (Xi − x)KH (Xj − x)

·KH(Xi − t)KH(Xl − t)ρn(Xj −Xl)dxdt,

T322 = 4σ4n−2|H|
∫∫

1

f 2(x)f 2(t)
w(x)w(t)

n−2∑
i=1

n−1∑
j=i+1

n∑
l=i+2

KH (Xi − x)KH (Xj − x)

·KH(Xi − t)KH(Xl − t)ρn(Xi −Xl)ρn(Xj −Xi)dxdt.

Firstly,

E(T321) = E
[
4σ4n−2|H|

∫∫
1

f 2(x)f 2(t)
w(x)w(t)

n−2∑
i=1

n−1∑
j=i+1

n∑
l=i+2

KH (Xi − x)

·KH (Xj − x)KH(Xi − t)KH(Xl − t)ρn(Xj −Xl)dxdt

]
= 4σ4 (n2 − 3n+ 2)

n
|H|

∫∫
1

f 2(x)f 2(t)

∫
KH (w − x)KH (w − t) f(w)dw

·
{∫∫

KH (u− x)KH (v − t) ρn(u− v)f(u)f(v)dudv

}
·w(x)w(t)dxdt.
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Using the assumption (A3) and Proposition A.2, it follows that

E(T321) = 4σ4 (n2 − 3n+ 2)

n

∫∫
1

f 2(x)f 2(t)

∫
K (r)K[r−H−1(x− t)]f(t + Hr)dr

·
{∫∫

K (p)K (q) ρn[x− t + H(p− q)]f(x + Hp)f(t + Hq)dpdq

}
·w(x)w(t)dxdt

= 4σ4 (n2 − 3n+ 2)

n

∫∫
1

f 2(x)f 2(t)
K [2][H−1(x− t)]f(t) · [1 + o(1)]

·
{∫∫

K (p)K (q) ρn[x− t + H(p− q)]dpdqf(x)f(t) · [1 + o(1)]

}
·w(x)w(t)dxdt

= 4σ4 (n2 − 3n+ 2)

n

∫∫
1

f 2(x)f 2(t)
K [2][H−1(x− t)]f(t)

·
∫∫

K (p)K (q) ρn[x− t + H(p− q)]dpdqf(x)f(t)w(x)w(t)dxdt

·[1 + o(1)]

= 4σ4 (n2 − 3n+ 2)

n

∫∫
1

f(x)
K [2][H−1(x− t)]

·
∫∫

K (p)K (q) ρn[x− t + H(p− q)]dpdqw(x)w(t)dxdt · [1 + o(1)]

= 4σ4 (n2 − 3n+ 2)

n
|H|

∫∫∫∫
1

f(x)
K [2] (r)K (p)K (q)w(x)w(x−Hr)

·ρn[H(p− q + r)]dpdqdxdr · [1 + o(1)]

= 4σ4 (n2 − 3n+ 2)

n2

∫∫∫
1

f(x)
K [2] (r)K (q)w2(x)

·{n|H|
∫
K (p) ρn[H(p− q + r)]dp}dqdxdr · [1 + o(1)]

= 4σ4ρc

∫∫∫
1

f(x)
K [2] (r)K (q)K(r− q)w2(x)dqdxdr · [1 + o(1)]

= 4σ4ρc

∫∫
1

f(x)
[K [2] (r)]2w2(x)drdx · [1 + o(1)]

= 4σ4K [4](0)ρc

∫
w2(x)

f(x)
dx · [1 + o(1)]. (2.29)

Similarly, taking into account that K is bounded and assumption (A3), the ex-
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pected value of T322 becomes

E(T322) = E
[
4σ4n−2|H|

∫∫
1

f 2(x)f 2(t)
w(x)w(t)

n−2∑
i=1

n−1∑
j=i+1

n∑
l=i+2

KH (Xi − x)

·KH (Xj − x)KH(Xi − t)KH(Xl − t)ρn(Xi −Xl)ρn(Xj −Xi)dxdt

]
= 4σ4 (n2 − 3n+ 2)

n
|H|

∫∫
1

f 2(x)f 2(t)

∫∫∫
KH (u− x)KH (v − x)KH (u− t)

·KH (y − t) ρn(u− y)ρn(u− v)f(u)f(v)f(y)dudvdyw(x)w(t)dxdt

= 4σ4 (n2 − 3n+ 2)

n

∫∫
1

f 2(x)f 2(t)

∫∫∫
K(p)K (q)

·K[p + H−1(x− t)]K (r) f(x + Hp)f(x + Hq)f(t + Hr)ρn[H(p− q)]

·ρn[x− t + H(p− r)]dpdqdrw(x)w(t)dxdt

= 4σ4 (n2 − 3n+ 2)

n

∫∫
1

f 2(x)f 2(t)
f 2(x)f(t)

∫∫∫
K(p)K (q)

· K[p + H−1(x− t)]K (r) ρn[H(p− q)]ρn[x− t + H(p− r)]dpdqdr

·[1 + o(1)]w(x)w(t)dxdt

= 4σ4 (n2 − 3n+ 2)

n

∫
· · ·
∫

1

f(t)
K (p)K[p + H−1(x− t)]K (q)K (r)

·w(x)w(t)ρn[x− t + H(p− r)]ρn[H(p− q)]dpdqdrdxdt · [1 + o(1)]

= 4σ4 (n2 − 3n+ 2)

n
|H|

∫
· · ·
∫

1

f(t)
K (p)K (p + u)K (q)K (r)

·w(t + Hu)w(t)ρn[H(p− r + u)]ρn[H(p− q)]dpdqdrdudt · [1 + o(1)]

= 4σ4 (n2 − 3n+ 2)

n3
|H|−1

∫∫∫
1

f(t)
K (p)K (p + u)w2(t)

·{n|H|
∫
K (r) ρn[H(p− r + u)]dr}

·{n|H|
∫
K (q) ρn[H(p− q)]dq}dpdudt · [1 + o(1)].

Since

lim
n→∞

n|H|
∫
K(r)ρn[H(p− r + u)]dr = K(p + u)ρc,

lim
n→∞

n|H|
∫
K(q)ρn[H(p− q)]dq = K(p)ρc,
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and taking into account that the functions K and w are bounded, and f is bounded

away from zero, it follows that

E(T322) = OP(n−1|H|−1). (2.30)

Then, from (2.29) and (2.30), one gets that

E(T32) = 4σ4K [4](0)ρc

∫
w2(x)

f(x)
dx · [1 + o(1)] +OP(n−1|H|−1). (2.31)

Regarding the term T33 (when all i, j, k, l are different in (2.24)), using assump-

tion (A6), it follows that

T33 = 4n−2|H|
∑

all different indices i, j, k, l

WijWklCov(εiεj, εkεl)

= 4n−2|H|
∑

all different indices i, j, k, l

WijWkl[Cov(εi, εk)Cov(εj, εl)

+Cov(εi, εl)Cov(εj, εk)]

= T331 + T332,

where

T331 = 4σ4n−2|H|
∑

all different indices i, j, k, l

∫∫
1

f 2(x)f 2(t)
KH (Xi − x)KH (Xj − x)

·KH(Xk − t)KH(Xl − t)w(x)w(t)dxdtρn(Xi −Xk)ρn(Xj −Xl),

and

T332 = 4σ4n−2|H|
∑

all different indices i, j, k, l

∫∫
1

f 2(x)f 2(t)
KH (Xi − x)KH (Xj − x)

·KH(Xk − t)KH(Xl − t)w(x)w(t)dxdtρn(Xi −Xl)ρn(Xj −Xk).
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Using the assumption (A3), it follows that

E(T331) = E
[
4σ4n−2|H|

∑
all different i, j, k, l

∫∫
1

f 2(x)f 2(t)
KH (Xi − x)KH (Xj − x)

·KH(Xk − t)KH(Xl − t)w(x)w(t)dxdtρn(Xi −Xk)ρn(Xj −Xl)

]
= 4σ4n2|H|

∫∫
1

f 2(x)f 2(t)

·
{∫∫

KH (u− x)KH (v − t) ρn(u− v)f(u)f(v)dudv

}2

·w(x)w(t)dxdt

= 4σ4n2|H|
∫∫

1

f 2(x)f 2(t)

·
{∫∫

K (p)K (q) ρn[x− t + H(p− q)]f(x + Hp)f(t + Hq)dpdq

}2

·w(x)w(t)dxdt

= 4σ4n2|H|
∫∫

1

f 2(x)f 2(t)

·
{
f(x)f(t)

∫∫
K (p)K (q) ρn[x− t + H(p− q)]dpdq · [1 + o(1)]

}2

·w(x)w(t)dxdt

= 4σ4n2|H|
∫
· · ·
∫
K (p)K (q)K (m)K (r)w(x)w(t)

· ρn[x− t + H(p− q)]ρn[x− t + H(m− r)]dpdqdmdrdxdt · [1 + o(1)]

= 4σ4

∫∫∫∫
K (q)K (r)w2(x){n|H|

∫
K (m) ρn[H(m− r + u)]dm}

· {n|H|
∫
K (p) ρn[H(p− q + u)]dp}dqdrdxdu · [1 + o(1)].

Since

lim
n→∞

n|H|
∫
K(p)ρn[H(p− q + u)]dp = K(q− u)ρc,

and

lim
n→∞

n|H|
∫
K(m)ρn[H(m− r + u)]dm = K(r− u)ρc,
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it follows that

E(T331) = 4σ4ρ2
c

∫∫∫∫
K (q)K (u− q)K (r)K (u− r)w2(x)dqdrdxdu · [1 + o(1)]

= 4σ4ρ2
c

∫∫
[K [2](u)]2w2(x)dxdu · [1 + o(1)]

= 4σ4ρ2
cK

[4](0)

∫
w2(x)dx · [1 + o(1)]. (2.32)

For symmetry, one gets that E(T332) = E(T331) and, therefore, using (2.32), it

follows that

E(T33) = 8σ4K [4](0)ρ2
c

∫
w2(x)dx · [1 + o(1)]. (2.33)

So, from (2.25), (2.28), (2.31) and (2.33), it is obtained that

E[Var(I32|X1, . . . ,Xn)] = 2σ4K [4](0)

∫
w2(x)

f 2(x)
dx · [1 + o(1)] +OP(n−1|H|−1)

+4σ4K [4](0)ρc

∫
w2(x)

f(x)
dx · [1 + o(1)] +OP(n−1|H|−1)

+8σ4K [4](0)ρ2
c

∫
w2(x)dx · [1 + o(1)]. (2.34)

With respect to the Var[E(I32|X1, . . . ,Xn)], which is the second term in equation

(2.23), denoting by:

φij =

∫
1

f 2(x)
KH (Xi − x)KH (Xj − x)ρn(Xi −Xj)w(x)dx,

and using the expression of the E(I32|X1, . . . ,Xn) given in (2.21), it follows that

E(I32|X1, . . . ,Xn) = |H|1/2σ2 1

n

∑
i 6=j

φij,
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and, consequently,

Var[E(I32|X1, . . . ,Xn)] = Var

(
|H|1/2σ2 1

n

∑
i 6=j

φij

)

= 4σ4n−2|H|
n−1∑
i=1

n∑
j=i+1

n−1∑
k=1

n∑
l=k+1

Cov(φij, φkl). (2.35)

Now, consider the value of Cov(φij, φkl) according to the following three exclusive

cases: when i = k and j = l, when i = k and j 6= l, and, finally, when i, j, k, l are all

distinct.

First, when i = k and j = l, the total number of such terms is n(n − 1)/2. In

this case, it follows that

Cov(φij, φij) ≤ E
[ ∫∫

1

f 2(x)f 2(t)
KH (Xi − x)KH (Xi − t)KH(Xj − x)

·KH (Xj − t) ρ2
n(Xi −Xj)w(x)w(t)dxdt

]
=

∫∫
1

f 2(x)f 2(t)

{∫∫
KH (u− x)KH (u− t)KH (v − x)

·KH (v − t) ρ2
n(u− v)f(u)f(v)dudv

}
w(x)w(t)dxdt

=

∫∫
1

f 2(x)f 2(t)

{
|H|−2

∫∫
K[−p + H−1(x− t)]

·K[−q + H−1(x− t)]K (p)K (q) f(t + Hp)f(t + Hq)

·ρ2
n[H(p− q)]dpdq

}
w(x)w(t)dxdt

=

∫∫
1

f 2(x)f 2(t)

{
|H|−2f 2(t)

∫∫
K[−p + H−1(x− t)]K (p)K (q)

·K[−q + H−1(x− t)]ρ2
n[H(p− q)]dpdq + o(1)

}
w(x)w(t)dxdt

= |H|−1

∫∫∫∫
1

f 2(x)
K (−p + u)K (−q + u)K (p)K (q)

w(x)w(x−Hu) · ρ2
n[H(p− q)]dpdqdxdu · [1 + o(1)]

≤ K4
Mw

2
M

f 2
Mn|H|2

∫
‖q‖≤1

{n|H|
∫
‖p‖≤1

ρ2
n[H(p− q)]dp}dq · [1 + o(1)].
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Since

n|H|
∫
‖p‖≤1

ρ2
n[H(p− q)]dp ≤ n

∫
|ρn(t)|dt ≤ C,

then

Cov(φij, φij) ≤
K4
Mw

2
M

f 2
M

C

n|H|2
× Volume of the ball {u : ‖u‖ ≤ 1} =

C2

n|H|2
. (2.36)

Second, when i = k and j 6= l in the expression (2.35), the total number of such

terms can be bounded by n3, and it follows that

Cov(φij, φil) = E(φijφil)− E(φij)E(φil) = E(φijφil)− [E(φij)]
2 ≤ E(φijφil)

≤ E
[ ∫∫

1

f 2(x)f 2(t)
KH (Xi − x)KH (Xi − t)KH(Xj − x)

·KH (Xl − t) ρn(Xi −Xj)ρn(Xi −Xl)w(x)w(t)dxdt

]
=

∫∫
1

f 2(x)f 2(t)

∫∫∫
KH (u− x)KH (v − x)KH (u− t)

·KH (y − t) ρn(u− y)ρn(u− v)f(u)f(v)f(y)dudvdyw(x)w(t)dxdt

=

∫∫
1

f 2(x)f 2(t)
|H|−1

∫∫∫
K(p)K (q)K[p + H−1(x− t)]

·K (r) f(x + Hp)f(x + Hq)f(t + Hr)

·ρn[H(p− q)]ρn[x− t + H(p− r)]dpdqdrw(x)w(t)dxdt

=

∫∫
1

f 2(x)f 2(t)
|H|−1f 2(x)f(t)

∫∫∫
K(p)K (q)

·K[p + H−1(x− t)]K (r) ρn[H(p− q)]ρn[x− t + H(p− r)]dpdqdr

· [1 + o(1)]w(x)w(t)dxdt

=

∫
· · ·
∫

1

f(t)
K (p)K(p + u)K (q)K (r)w(t + Hu)w(t)

·ρn[H(p− r + u)]ρn[H(p− q)]dpdqdrdudt · [1 + o(1)]

= n−2|H|−2

∫∫∫
1

f(t)
K (p)K (p + u)w2(t)

·{n|H|
∫
K (r) ρn[H(p− r + u)]dr}

·{n|H|
∫
K (q) ρn[H(p− q)]dq}dpdudt · [1 + o(1)].
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Since

lim
n→∞

n|H|
∫
K(r)ρn[H(p− r + u)]dr = K(p + u)ρc,

and

lim
n→∞

n|H|
∫
K(q)ρn[H(p− q)]dq = K(p)ρc,

and taking into account that the functions K, and w are bounded, and f is bounded

away from zero, it is obtained that

Cov(φij, φil) ≤
C3

n2|H|2
. (2.37)

Finally, when i, j, k, l are all distinct in (2.35), given that φij and φkl are inde-

pendent,

Cov(φij, φkl) = 0. (2.38)

Then, considering (2.35), (2.36), (2.37) and (2.38), it follows that

Var[E(I32|X1, . . . ,Xn)] = Var

(
|H|1/2σ2 1

n

∑
i 6=j

φij

)

≤ 4σ4n−2|H|
(
n2 − n

2

C2

n|H|2
+ n3 C3

n2|H|2

)
= OP(n−1|H|−1). (2.39)

Now, from (2.23), (2.34) and (2.39), the leading term of the variance of I32 is

given by:

V = 2σ4K [4](0)

[ ∫
w2(x)

f 2(x)
dx + 2ρc

∫
w2(x)

f(x)
dx + 4ρ2

c

∫
w2(x)dx

]
. (2.40)

Therefore, using the central limit theorem for degenerate reduced U -statistics

under α-mixing conditions, given by Kim et al. (2013), it is obtained that the term

I32 converges in distribution to a normal distribution with mean the leading term of

(2.22) and variance given by (2.40).

On the other hand, in virtue of the Cauchy–Schwarz inequality, the cross terms

in Tn1 resulting from the products of I1(x), I2(x) and I3(x) are all of smaller order.
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Therefore, combining the results in (2.13), (2.14) and (2.20), and the asymptotic

normality of I32 (with bias the leading term of (2.22) and variance (2.40)), one gets

V −1/2(Tn1 − b0H − b1H)→L N(0, 1) as n→∞, (2.41)

where

b0H = |H|−1/2σ2K [2](0)

[ ∫
w(x)

f(x)
dx + ρc

∫
w(x)dx

]
,

b1H =

∫
[KH ∗ g(x)]2w(x)dx,

V = 2σ4K [4](0)

[ ∫
w2(x)

f 2(x)
dx + 2ρc

∫
w2(x)

f(x)
dx + 4ρ2

c

∫
w2(x)dx

]
.

The term Tn2 in Tn is of smaller order than Tn1 (specifically, Tn2 = OP[tr(H2)Tn1]),

and by the Cauchy-Schwarz inequality, the cross term Tn12 is of smaller order as well.

Therefore, from (2.12), it follows that

Tn = Tn1 +OP[tr(H2)] +OP(n
−2
4+d

+η).

Taking into account (2.41), it follows that

V −1/2(Tn − b0H − b1H)→L N(0, 1) as n→∞,

with b0H, b1H and V given above.

Proof of Theorem 2.2 The proof of this result is provided using the Nadaraya–

Watson estimator, that is, when p = 0 in (2.1). For simplicity, in this proof, Tn,0 will

be denoted by Tn. The test statistic (2.1) can be decomposed as:

Tn = n|H|1/2
∫

[m̂H(x; 0)− m̂H,β̂(x; 0)]2w(x)dx

= n|H|1/2
∫ [∑n

i=1KH(xi − x)Zi∑n
i=1KH(xi − x)

−
∑n

i=1KH(xi − x)mβ̂(xi)∑n
i=1KH(xi − x)

]2

w(x)dx

= n|H|1/2
∫ {∑n

i=1 KH (xi − x) [m(xi) + εi −mβ̂(xi)]
}2

[
∑n

i=1KH(xi − x)]
2 w(x)dx.
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Now, taking into account that the trend considered are of the form m = mβ0 +

n−1/2|H|−1/4g (see Section 2.2 for further details), one gets

Tn = n|H|1/2
∫ {∑n

i=1KH (xi − x) [mβ0(xi) + n−1/2|H|−1/4g(xi) + εi −mβ̂(xi)]
}2

[
∑n

i=1 KH(xi − x)]
2

·w(x)dx

= n|H|1/2
∫

[I1(x) + I2(x) + I3(x)]2w(x)dx,

where

I1(x) =

∑n
i=1KH (xi − x) [mβ0(xi)−mβ̂(xi)]∑n

i=1 KH(xi − x)
,

I2(x) =

∑n
i=1KH (xi − x)n−1/2|H|−1/4g(xi)∑n

i=1KH(xi − x)
,

I3(x) =

∑n
i=1KH (xi − x) εi∑n
i=1KH(xi − x)

.

For the term I1(x), Riemann approximations of sums by integrals can be em-

ployed to compute the approximation of
∑n

i=1 KH (xi − x) [mβ0(xi)−mβ̂(xi)] by an

integral. For this, an analogous procedure to that used in the proof of Lemma A.4

can be used. Under assumptions (A2), (A5) and (K1), using this type of approxi-

mations, and given that the difference mβ̂(x)−mβ0(x) = OP(n−1/2) uniformly in x,

it is obtained that

n|H|1/2
∫
I2

1 (x)w(x)dx

= n|H|1/2
∫ {∑n

i=1KH (xi − x) [mβ0(xi)−mβ̂(xi)]∑n
i=1 KH(xi − x)

}2

w(x)dx

= OP(|H|1/2). (2.42)

Regarding the terms I2(x) and I3(x), following similar arguments to those used

in the proof of Theorem 2.1 for these terms, but employing Riemann approximations

of sums by integrals (such as the one given in Lemma A.4), it is obtained that
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n|H|1/2
∫
I2

2 (x)w(x)dx =

∫
[KH ∗ g(x)]2w(x)dx, (2.43)

n|H|1/2
∫
I2

3 (x)w(x)dx = I31 + I32,

with

I31 = σ2|H|−1/2K [2](0)

∫
w(x)dx · [1 + oP(1)], (2.44)

and I32 converging in distribution to a normally distributed random variable with

bias

E(|H|1/2I32) = σ2K [2](0)ρc

∫
w(x)dx · [1 + o(1)]. (2.45)

and variance

V = σ4K [4](0)

∫
w2(x)dx(1 + ρc + 2ρ2

c). (2.46)

In virtue of the Cauchy–Bunyakovsky–Schwarz inequality, the cross terms in Tn

resulting from the products of I1, I2 and I3 are all of small order. Therefore, combin-

ing the results given in the equations (2.42), (2.43) and (2.44), and the asymptotic

normality of I32 (with its bias (2.45) and its variance (2.46)), it follows that

V −1/2(Tn − b0H − b1H)→L N(0, 1) as n→∞,

where

b0H = |H|−1/2σ2K [2](0)

∫
w(x)dx(1 + ρc),

b1H =

∫
[KH ∗ g(x)]2w(x)dx,

V = σ4K [4](0)

∫
w2(x)dx(1 + ρc + 2ρ2

c).



Chapter 3

Nonparametric regression

estimation for a circular response

and an Rd-valued covariate

3.1 Introduction

New challenges on regression modeling appear when trying to describe relations be-

tween variables and some of them (response and/or covariates) do not belong to an

Euclidean space. This is the case for regression models, where some or all of the

involved variables are circular ones. As pointed out in Section 1.3, the special na-

ture of circular data (points on the unit circle; angles in T = [0, 2π)) relies on their

periodicity, which requires ad hoc statistical methods to analyze them. Circular

statistics is an evolving discipline, and several statistical techniques for linear data

now may claim their circular analogues. Comprehensive reviews on circular statistics

(or more general, directional data) are provided by Fisher (1995), Jammalamadaka

and SenGupta (2001) or Mardia and Jupp (2000). Some recent advances in direc-

tional statistics are collected in Ley and Verdebout (2017). Examples of circular data

arise in many scientific fields such as biology, studying animal orientation (see the

classical book by Batschelet, 1981), environmental applications (see SenGupta and

Ugwuowo, 2006), or oceanography (as in Wang et al., 2015, among others). When

the circular variable is supposed to vary with respect to other covariates and the

97
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goal is to model such a relation, regression estimators for circular responses must

be designed and analyzed. Parametric regression approaches were originally con-

sidered by Fisher and Lee (1992) and Presnell et al. (1998), assuming a parametric

(conditional) distribution model for the circular response variable. In this scenario,

Euclidean covariates are supposed to influence the response via the parameters of

the conditional distribution (e.g. through the location parameter, as the simplest

case, or through location and concentration, if a von Mises distribution is chosen).

Following the proposal by Presnell et al. (1998), Scapini et al. (2002) analyzed the

orientation of two species of sand hoppers, considering parametric multiple regression

methods for circular responses. A parametric multivariate circular regression prob-

lem was also studied by Kim and SenGupta (2017). Beyond parametric restrictions,

flexible approaches are also feasible in this context (circular response and covariates),

just imposing some regularity conditions on the regression function, but avoiding the

assumption of a specific parametric family neither for the regression function nor for

the conditional distribution. Local estimators of the regression function for circu-

lar response and a single real-valued covariate were introduced by Di Marzio et al.

(2013). The authors proposed nonparametric estimators for the regression function

which are defined as the inverse tangent function of the ratio between two sample

statistics, obtained as weighted average of the sines and the cosines of the response

variable, respectively. Different weights provide alternative estimators. A multivari-

ate angular regression model for both angular and linear predictors was studied by

Rivest et al. (2016). Maximum likelihood estimators for the parameters were derived

under two von Mises error structures.

The problem of nonparametrically estimating the conditional mean direction of

a circular random variable, given an Rd-valued covariate, is considered in this chap-

ter. If the relation between both variables is viewed from a model-based approach,

then the proposal aims to estimate the usual target regression function, given by

the inverse tangent function of the ratio between the conditional expectations of

the sine and cosine of the response variable. The proposal considers two regression

models for the sine and cosine components, which are indeed regression models with

real-valued response and d-dimensional covariate. Then, nonparametric estimators

for the circular regression function are obtained by computing the inverse tangent
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function of the ratio of multivariate nonparametric estimators for the two regression

functions of the sine and cosine models. The estimators obtained with this proposal

generalize to both higher dimensions and higher polynomial degrees the proposals in

Di Marzio et al. (2013). The approach of considering two flexible regression models

for the sine and cosine components has been also explored in Jammalamadaka and

Sarma (1993), where the objective is the estimation of the regression function in a

model with circular response and circular covariate. In this case, the conditional

expectations of the sine and the cosine of the response are approximated by trigono-

metric polynomials of a suitable degree. A similar approach has been also considered

in Di Marzio et al. (2014), where the problem of nonparametrically estimating a re-

gression function with spherical response and spherical covariate is addressed as

a multi-output regression problem. In this case, each Cartesian coordinate of the

spherical regression function is separately estimated.

This chapter is organized as follows. Section 3.2 contains a brief review on non-

parametric regression estimation considering a regression model with a circular re-

sponse and a single-real valued covariate. A multiple linear-circular regression model

is presented in Section 3.3. In Section 3.3.1, assuming this model, nonparametric

estimators of the circular regression function, based on considering two regression

models for the sine and cosine components of the response variable, are presented.

Their asymptotic biases and variances are derived. Section 3.3.2 presents an alterna-

tive formulation for the nonparametric estimators of the circular regression function,

by considering weighted average smoothers of the sines and the cosines of the re-

sponse variable. Their asymptotic properties are also derived. The finite sample

performance of the estimators is assessed through a simulation study, provided in

Section 3.3.3. Section 3.3.4 shows a real data application about sand hoppers orien-

tation. Finally, Section 3.4 includes the proofs of the main results.

3.2 A brief background on nonparametric circular

regression estimation with a single covariate

Let {(Xi,Θi)}ni=1 be a random sample from (X,Θ), where Θ is a circular random

variable taking values on T = [0, 2π), and X is a real-valued variable with density f
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supported on D ⊆ R. Assume the following regression model:

Θi = [mc(Xi) + εi](mod 2π), i = 1, . . . , n, (3.1)

where mc is a circular regression function, and the εi are independent and identically

distributed (i.i.d.) random angles, with zero mean direction, finite concentration,

and independent of the Xi.

The circular regression function mc in model (3.1) can be defined as the minimizer

of the risk E{1−cos[Θ−mc(X)] | X = x}. It can be proved that the minimizer of this

cosine risk is given by mc(x) = atan2[m1(x),m2(x)], where m1(x) = E[sin(Θ) | X =

x], m2(x) = E[cos(Θ) | X = x] and the function atan2 was defined in Section 1.3.

Di Marzio et al. (2013) proposed a kernel-type estimator of this circular regression

function. Defining g1(x) = m1(x)f(x) and g2(x) = m2(x)f(x), the minimizer of the

cosine risk can be also written as mc(x) = atan2[g1(x), g2(x)]. Consequently, the

estimator proposed by Di Marzio et al. (2013) is:

m̃c
h(x; p) = atan2[ĝ1,h(x; p), ĝ2,h(x; p)], (3.2)

where, for p = 0, 1, ĝ1,h(x; p) and ĝ2,h(x; p) are defined as follows:

ĝ1,h(x; p) =
1

n

n∑
i=1

Ŵh(Xi−x; p) sin(Θi) and ĝ2,h(x; p) =
1

n

n∑
i=1

Ŵh(Xi−x; p) cos(Θi),

being Ŵh(u; p) a local weight such that ĝ1,h(x; p)/ĝ2,h(x; p) is asymptotically unbiased

for g1(x)/g2(x). Di Marzio et al. (2013) considered the weights

Ŵh(u; 0) = Kh(u)

and

Ŵh(u; 1) =
1

n
Kh(u)

[
n∑
j=1

Kh(Xj − x)(Xj − x)2 − u
n∑
j=1

Kh(Xj − x)(Xj − x)

]
.

Note that Ŵh(u; 0) and Ŵh(u; 1) are the addends of the numerator of the Nadaraya–
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Watson and the local linear estimators, respectively.

As pointed out in Section 3.1, asymptotic properties of the estimator given in

(3.2) were derived for p = 0 and p = 1 in Theorems 3 and 4 of Di Marzio et al.

(2013), respectively.

3.3 Nonparametric circular regression estimation

with several covariates

This section is devoted to present nonparametric estimators for a regression model

with a circular response and an Rd-valued predictor. Let {(Xi,Θi)}ni=1 be a random

sample from (X,Θ), where Θ is a circular random variable taking values on T =

[0, 2π), and X is a random variable with density f supported on D ⊆ Rd. Assume

that Θ and X are related through the following regression model:

Θi = [mc(Xi) + εi](mod 2π), i = 1, . . . , n, (3.3)

where mc is a circular regression function, and εi, i = 1, . . . , n, is an independent

sample of a circular variable ε, satisfying E[sin(ε) | X = x] = 0 and having finite

concentration. Additionally, the following notation is used: `(x) = E[cos(ε) | X =

x], σ2
1(x) = Var[sin(ε) | X = x], σ2

2(x) = Var[cos(ε) | X = x] and σ12(x) =

E[sin(ε) cos(ε) | X = x].

The circular regression function mc in model (3.3) is the conditional mean di-

rection of Θ given X. This function can be defined (at a point x) as the mini-

mizer of the risk E{1 − cos[Θ − mc(X)] | X = x}, which is comparable to the

L2 risk in the circular setting. Specifically, the minimizer of this cosine risk is

given by mc(x) = atan2[m1(x),m2(x)], where m1(x) = E[sin(Θ) | X = x] and

m2(x) = E[cos(Θ) | X = x]. Notice that in this framework two regression models

for the sine and cosine of Θ on X, are being implicitly considered. In particular, the

following regression models for the sine component:

sin(Θi) = m1(Xi) + ξi i = 1, . . . , n, (3.4)
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and for the cosine component:

cos(Θi) = m2(Xi) + ζi i = 1, . . . , n, (3.5)

where the ξi and the ζi, for i = 1, . . . , n, are independent samples of the variables

ξ and ζ, respectively, absolutely bounded by 1, satisfying E(ξ | X = x) = E(ζ |
X = x) = 0. Additionally, the following notation is used: s2

1(x) = Var(ξ | X = x),

s2
2(x) = Var(ζ | X = x) and c(x) = E(ξζ | X = x) at every x ∈ D. Defining ν2

1(x) =

E[sin2(Θ)|X = x] and ν2
2(x) = E[cos2(Θ)|X = x] and c̃(x) = E[cos(Θ) sin(Θ)|X =

x], it is clear that ν2
j (x) = m2

j(x) + s2
j(x), j = 1, 2 and c̃(x) = m1(x)m2(x) + c(x).

Some equations relating certain functions referred to model (3.3), and to models

(3.4) and (3.5), can be derived. Using the sine and cosine addition formulas in model

(3.3), it follows that, for i = 1, . . . , n,

sin(Θi) = sin[mc(Xi)] cos(εi) + cos[mc(Xi)] sin(εi) (3.6)

and

cos(Θi) = cos[mc(Xi)] cos(εi)− sin[mc(Xi)] sin(εi). (3.7)

Hence, defining f1(x) = sin[mc(x)] and f2(x) = cos[mc(x)] and applying condi-

tional expectations in (3.6) and (3.7), it holds that

m1(x) = f1(x)`(x) and m2(x) = f2(x)`(x). (3.8)

Note that f1(x) and f2(x) correspond to the normalized versions of m1(x) and

m2(x), respectively. Indeed, taking into account that f 2
1 (x) + f 2

2 (x) = 1, it can be

easily deduced that `(x) = [m2
1(x) + m2

2(x)]1/2. Hence, `(x) amounts to the mean

resultant length of Θ given X = x, which also corresponds to the mean resultant

length of ε given X = x, since E[sin(ε) | X = x] = 0 is assumed.

Moreover, equating expressions (3.4) and (3.6), and (3.5) and (3.7), and using

(3.8), the errors in models (3.4) and (3.5) can be written as:

ξi = f1(Xi)[cos(εi)− `(Xi)] + f2(Xi) sin(εi) i = 1, . . . , n (3.9)
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and

ζi = f2(Xi)[cos(εi)− `(Xi)]− f1(Xi) sin(εi) i = 1, . . . , n. (3.10)

As a consequence, the following explicit expressions for the conditional variances

of the error terms involved in models (3.4) and (3.5), can be obtained:

s2
1(x) = f 2

1 (x)σ2
2(x) + 2f1(x)f2(x)σ12(x) + f 2

2 (x)σ2
1(x), (3.11)

s2
2(x) = f 2

2 (x)σ2
2(x)− 2f2(x)f1(x)σ12(x) + f 2

1 (x)σ2
1(x), (3.12)

as well as for the covariance between the error terms in (3.4) and (3.5):

c(x) = f1(x)f2(x)σ2
2(x)− f 2

1 (x)σ12(x) + f 2
2 (x)σ12(x)− f1(x)f2(x)σ2

1(x). (3.13)

As pointed out in Section 3.1, two approaches to derive regression estimators of

mc are designed and the corresponding regression estimators are analyzed. Both

approximations account the regression models (3.4) and (3.5) for the sine and cosine

components of the response variable. However, the first proposal consists in con-

sidering local polynomial type estimators for m1 and m2, while the second (equiv-

alent) approach focuses on functions of m1 and m2 and considers weighted average

smoothers of these functions. This alternative formulation extends in some way the

results of Di Marzio et al. (2013) for an arbitrary dimension d.

3.3.1 Local polynomial type estimators

A direct nonparametric regression estimator for model (3.3) is presented and studied

in this section. Given that the minimizer of the cosine risk is given by mc(x) =

atan2[m1(x),m2(x)], replacing m1 and m2 by appropriate estimators, an estimator

for mc can be directly obtained. In particular, a whole class of kernel-type estimators

for mc at x ∈ D can be defined by considering local polynomial estimators for m1(x)

and m2(x). Specifically, estimators of the form:

m̂c
H(x; p) = atan2[m̂1,H(x; p), m̂2,H(x; p)] (3.14)
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are considered, where for any integer p ≥ 0, m̂1,H(x; p) and m̂2,H(x; p) denote the pth

order local polynomial estimators (with bandwidth matrix H) of m1(x) and m2(x),

respectively. The special cases p = 0 and p = 1 yield a Nadaraya–Watson-type

estimator and a local linear-type estimator of mc(x), respectively.

Asymptotic (conditional) bias and variance of the estimator given in (3.14) are

derived below. We will mainly focus on the cases in which p = 0 and p = 1.

The asymptotic properties of the corresponding Nadaraya–Watson and local linear

estimators of mj(x), j = 1, 2, are firstly recalled just considering that models (3.4)

and (3.5) hold. These results are then used to obtain the asymptotic properties

of the estimator presented in (3.14) with polynomial degrees p = 0 and p = 1.

Finally, asymptotic properties of local polynomial estimators with a higher order p

and D ⊆ R are also studied.

Nadaraya–Watson-type estimator

Considering models (3.4) and (3.5), and using (1.6), Nadaraya–Watson estimators for

the regression functions mj, j = 1, 2, at a given point x ∈ D ⊆ Rd, are respectively

defined as:

m̂j,H(x; 0) =



∑n
i=1 KH(Xi − x) sin(Θi)∑n

i=1 KH(Xi − x)
if j = 1,

∑n
i=1KH(Xi − x) cos(Θi)∑n

i=1KH(Xi − x)
if j = 2.

(3.15)

Next, the asymptotic conditional bias and variance expressions for m̂c
H(x; 0)

are derived. First, using the asymptotic properties on the multivariate Nadaraya–

Watson estimator given in (1.7) and (1.8), the asymptotic conditional bias and vari-

ance of m̂j,H(x; 0), j = 1, 2, must be calculated. These preliminary results, along

with the covariance between m̂1,H(x; 0) and m̂2,H(x; 0), are collected in Lemma 3.1.

The following assumption is required.

(C1) All second-order derivatives of the regression functions mj and s2
j , for j = 1, 2,

are continuous at x ∈ D, and s2
j(x) > 0.
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Lemma 3.1 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D × T. Under assumptions (A1), (C1), (H1) and (K1), if x is an interior point of

the support of f , then, for j = 1, 2,

E[m̂j,H(x; 0)−mj(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hmj

(x)]

+
µ2(K)

f(x)
∇Tmj(x)H2∇f(x)

+oP[tr(H2)], (3.16)

Var[m̂j,H(x; 0) | X1, . . . ,Xn] =
R(K)s2

j(x)

n|H|f(x)
+ oP

(
1

n|H|

)
,

Cov[m̂1,H(x; 0), m̂2,H(x; 0) | X1, . . . ,Xn] =
R(K)c(x)

n|H|f(x)
+ oP

(
1

n|H|

)
.

Proof See Section 3.4.

Now, using the previous lemma, the following theorem provides the asymptotic

conditional bias and the asymptotic conditional variance of the estimator m̂c
H(x; 0).

Theorem 3.1 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D × T. Under assumptions (A1), (C1), (H1) and (K1), the asymptotic conditional

bias of estimator m̂c
H(x; 0), at a fixed interior point x in the support of f , is given

by:

E[m̂c
H(x; 0)−mc(x) | X1, . . . ,Xn] =

1

2
µ2(K)tr[H2Hmc(x)]

+
µ2(K)

`(x)f(x)
∇Tmc(x)H2∇(`f)(x)

+oP[tr(H2)], (3.17)

and the asymptotic conditional variance is:

Var[m̂c
H(x; 0) | X1, . . . ,Xn] =

R(K)σ2
1(x)

n|H|`2(x)f(x)
+ oP

(
1

n|H|

)
. (3.18)

Proof See Section 3.4.

Note that both the asymptotic conditional bias and the asymptotic conditional
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variance of m̂c
H(x; 0) share the form of the corresponding quantities for the Nadaraya–

Watson estimator of a regression function with real-valued response. In the asymp-

totic bias expression, both the gradient and the Hessian matrix of mc refer to a

circular regression function. In addition, the asymptotic conditional variance de-

pends on the ratio σ2
1(x)/`2(x), accounting for the variability of the errors in model

(3.3).

Similarly to the Euclidean case (see Section 1.1.1 for further details), from The-

orem 3.1, it is possible to define the AMSE of m̂c
H(x; 0), as the sum of the square of

the main term of bias and the main term of the variance,

AMSE[m̂c
H(x; 0)]

=

{
1

2
µ2(K)tr[H2Hmc(x)] +

µ2(K)

`(x)f(x)
∇Tmc(x)H2∇(`f)(x)

}2

+
R(K)σ2

1(x)

n|H|`2(x)f(x)

=
1

4
µ2

2(K)tr2

(
H2

{
1

`(x)f(x)
[∇(`f)(x)∇Tmc(x) + ∇mc(x)∇T(`f)(x)]

+Hmc(x)

})
+

R(K)σ2
1(x)

n|H|`2(x)f(x)
. (3.19)

The minimizer of equation (3.19), with respect to H, provides an asymptotically

optimal local bandwidth matrix for m̂c
H(x; 0), which is given by:

Hc
opt(x; 0) =

[
R(K)σ2

1(x)

ndµ2
2(K)f(x)

|G̃c(x)|1/2
]1/(d+4)

·
[
G̃c(x)

]−1/2

, (3.20)

where

G̃c(x) =

{
Gc(x) if Gc(x) is positive definite,

−Gc(x) if Gc(x) is negative definite,
(3.21)

with

Gc(x) =
1

`(x)f(x)
[∇(`f)(x)∇Tmc(x) + ∇mc(x)∇T(`f)(x)] + Hmc(x).

The previous minimization problem can be solved using Proposition A.3 included
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in Appendix A. Notice that in the particular case ofH = hId, the estimator m̂c
H(x; 0)

given in (3.14), with x being an interior point of the support, achieves an optimal

convergence rate of n−4/(d+4), which is the same as the one for the multivariate

Nadaraya–Watson estimator with real-valued response (Härdle and Müller, 2012).

Despite deriving the previous explicit expression for the local optimal bandwidth

(3.20), its use in practice is limited given that it depends on unknown functions,

such as the design density f and the variance of the sine of the errors σ2
1. In addi-

tion, as pointed out in Section 1.1.1, it is more usual in practice to consider a global

bandwidth for the whole curve. An asymptotic global optimal bandwidth matrix H

could be obtained by minimizing a global error measurement (such as the integrated

version of the AMSE). Again, this will depend on unknowns and, moreover, this op-

timization problem is not trivial, not being possible to obtain a closed form solution.

Alternatively, a suitable adapted cross-validation criterion can be used to select the

bandwidth matrix. This is indeed the bandwidth selection method employed in the

numerical analysis and the real data application. More details will be provided in

Section 3.3.3.

Local linear-type estimator

This section is devoted to present the local linear case, corresponding to p = 1.

Specifically, for models (3.4) and (3.5), and using (1.9), the local linear estimators

of the regression functions mj, j = 1, 2, at x ∈ D ⊂ Rd, are defined by:

m̂j,H(x; 1) =


eT

1 (XT
xWxX x)−1XT

xWxS if j = 1,

eT
1 (XT

xWxX x)−1XT
xWxC if j = 2,

(3.22)

where S = [sin(Θ1), . . . , sin(Θn)]T and C = [cos(Θ1), . . . , cos(Θn)]T.

The asymptotic conditional bias, variance and covariance of m̂j,H(x; 1), j = 1, 2,

are calculated. Note that the asymptotic conditional bias and variance of m̂j,H(x; 1),

j = 1, 2, can be directly obtained using the asymptotic results for the multivariate

local linear estimator given in (1.10) and (1.11). The expressions, along with the

covariance between m̂1,H(x; 1) and m̂2,H(x; 1) are provided in the following result.
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Lemma 3.2 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D × T. Under assumptions (A1), (C1), (H1) and (K1), if x is an interior point of

the support of f , then, for j = 1, 2,

E[m̂j,H(x; 1)−mj(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hmj

(x)]

+oP[tr(H2)], (3.23)

Var[m̂j,H(x; 1) | X1, . . . ,Xn] =
R(K)s2

j(x)

n|H|f(x)
+ oP

(
1

n|H|

)
,

Cov[m̂1,H(x; 1), m̂2,H(x; 1) | X1, . . . ,Xn] =
R(K)c(x)

n|H|f(x)
+ oP

(
1

n|H|

)
.

Proof See Section 3.4.

The following theorem provides the asymptotic conditional bias and the asymp-

totic conditional variance of the estimator m̂c
H(x; 1) given in (3.14).

Theorem 3.2 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D × T. Under assumptions (A1), (C1), (H1) and (K1), the asymptotic conditional

bias of estimator m̂c
H(x; 1), with x being a fixed interior point in the support of f , is

given by:

E[m̂c
H(x; 1)−mc(x) | X1, . . . ,Xn] =

1

2
µ2(K)tr[H2Hmc(x)]

+
µ2(K)

`(x)
∇Tmc(x)H2∇`(x)

+oP[tr(H2)], (3.24)

while its asymptotic conditional variance is:

Var[m̂c
H(x; 1) | X1, . . . ,Xn] =

R(K)σ2
1(x)

n|H|`2(x)f(x)
+ oP

(
1

n|H|

)
. (3.25)

Proof See Section 3.4.

Estimators m̂c
H(x; 0) and m̂c

H(x; 1) have the same leading terms in their asymp-

totic conditional variances, while their asymptotic conditional biases, also being of

the same order, have different leading terms. In particular, the main term of the
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asymptotic conditional bias of m̂c
H(x; 1) does not depend on the density function

f . Moreover, as a consequence of its definition, the local linear-type estimator,

differently from the Nadaraya–Watson-type one, automatically adapts to boundary

regions, in the sense that for compactly supported f , the asymptotic conditional bias

has the same order both for the interior and for the boundary of the support of f

(see Ruppert and Wand, 1994).

As a consequence of Theorem 3.2, an asymptotically optimal local bandwidth

can be also obtained for m̂c
H(x; 1), which coincides with (3.20), but taking Gc(x) =

`−1(x)[∇`(x)∇Tmc(x) + ∇mc(x)∇T`(x)] + Hmc(x).

Higher order polynomials for univariate covariate

Asymptotic theory on local polynomial estimators (Fan and Gijbels, 1996) can be

used to generalize the above results to local polynomial estimators of arbitrary order

p. Here, following the lines in Ruppert and Wand (1994), we will only focus on

the case d = 1 to analyze asymptotically the nonparametric regression estimator

given in (3.14) for p > 1. In particular, from (1.13), the pth degree local polynomial

estimators for mj, j = 1, 2, at x ∈ D ⊆ R, are:

m̂j,h(x; p) =


eT

1 (XT
x,pWxX x,p)

−1XT
x,pWxS if j = 1,

eT
1 (XT

x,pWxX x,p)
−1XT

x,pWxC if j = 2.

(3.26)

In this univariate framework, the pth degree local polynomial estimator of mc at

x, denoted by m̂c
h(x; p), has the same expression as the one given in (3.14), but using

estimators m̂j,h(x; p), j = 1, 2, defined in (3.26), as the arguments of the atan2 func-

tion. Considering (1.14), (1.15) and (1.16), it is clear that the conditional asymptotic

bias of m̂c
h(x; p) will depend on whether the polynomial degree is even or odd. Since

computations are tedious for high-order polynomials, asymptotic properties of esti-

mator m̂c
h(x; p) at x ∈ D ⊂ Rd will be derived only when the polynomial degree p is

equal to two and three. Notice that in the case of the regression function, Fan and

Gijbels (1996) recommend to use polynomial orders p = 1 or p = 3 for estimating

this curve. Results could be extended for higher-order polynomial degrees.
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Theorem 3.3 Let {(Xi,Θi)}ni=1 be a random sample from (X,Θ) supported on D×
T, with D ⊆ R, and let x be an interior point of the support of the design density

f . Under assumptions (A1), (C1), (H1) and (K1) (adapted for d = 1) and assuming

that mj, j = 1, 2, admits continuous derivatives up to order four in a neighborhood

of x, then,

E[m̂c
h(x; 2)−mc(x) | X1, . . . , Xn] =

h4µ4(K(2))f
(1)(x)

3!f(x)
[mc(3)(x) + a(x)]

+
h4µ4(K(2))

4!
[mc (4)(x) + b(x)] + oP

(
h4
)

and

Var[m̂c
h(x; 2) | X1, . . . , Xn] =

R
(
K(2)

)
nh`2(x)f(x)

σ2
1(x) + oP

(
1

nh

)
,

where

a(x) =
2`(2)(x)mc(1)(x) + 4`(1)(x)mc(2)(x)

`(x)

+
m

(2)
2 (x)m

(1)
1 (x)−m(2)

1 (x)m
(1)
2 (x) + 2`(1)2

(x)mc(1)(x)

`2(x)

and

b(x) =
2`(3)(x)mc(1)(x) + 6`(1)(x)mc(3)(x) + 6`(2)(x)mc(2)(x)

`(x)

+
2m

(3)
2 (x)m

(1)
1 (x)− 2m

(3)
1 (x)m

(1)
2 (x)

`2(x)

+
6`(1)2

(x)mc(2)(x) + 6`(1)(x)`(2)(x)mc(1)(x)

`2(x)
.

Proof See Section 3.4.

Theorem 3.4 Let {(Xi,Θi)}ni=1 be a random sample from (X,Θ) supported on D×
T, with D ⊆ R, and let x be an interior point of the support of the design density

f . Under assumptions (A1), (C1), (H1) and (K1) (adapted for d = 1) and assuming

that mj, j = 1, 2, admits continuous derivatives up to order five in a neighborhood
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of x, then,

E[m̂c
h(x; 3)−mc(x) | X1, . . . , Xn] =

h4µ4(K(3))

4!
[mc(4)(x) + b(x)] + oP

(
h4
)

and

Var[m̂c
h(x; 3) | X1, . . . , Xn] =

R
(
K(3)

)
nh`2(x)f(x)

σ2
1(x) + oP

(
1

nh

)
.

Proof See Section 3.4.

Similar arguments to those used to prove Theorems 3.1, 3.2, 3.3 and 3.4, can be

applied to derive that the conditional bias of the pth order polynomial type estimator,

given in (3.14), will be of order OP{[tr(H2)](p+1)/2}. Moreover, if p is even, f has a

continuous derivative in a neighborhood of x and x is an interior point of the support

of the design density f , then the bias will be of order OP{[tr(H2)p/2+1]}.

3.3.2 Local weighted average type estimators

In this section, another equivalent approach is considered to estimate the circular

regression function mc in model (3.3). This procedure is an extension of that studied

in Di Marzio et al. (2013) for several covariates. As pointed out in Section 3.2 for

a single covariate, in this case, defining g1(x) = m1(x)f(x) and g2(x) = m2(x)f(x),

the minimizer of the cosine risk E{1−cos[Θ−mc(X)] | X = x} can be also written as

mc(x) = atan2[g1(x), g2(x)]. Therefore, the proposed estimator with this formulation

is defined as:

m̃c
H(x; p) = atan2[ĝ1,H(x; p), ĝ2,H(x; p)], (3.27)

where, for p = 0, 1, the local weighted averages ĝ1,H(x; p) and ĝ2,H(x; p) are:

ĝ1,H(x; p) =
1

n

n∑
i=1

ŴH(Xi − x; p) sin(Θi) (3.28)

and

ĝ2,H(x; p) =
1

n

n∑
i=1

ŴH(Xi − x; p) cos(Θi), (3.29)
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being ŴH(u; p), a local weight such as ĝ1,H(x; p)/ĝ2,H(x; p) is asymptotically unbi-

ased for g1(x)/g2(x). For several covariates, the weights ŴH(u; p), p = 0, 1 are:

ŴH(u; 0) = KH(u) (3.30)

and

ŴH(u; 1) =
1

n
KH(u)

[
n∑
j=1

KH(Xj − x)(Xj − x)T(Xj − x)

−uT

n∑
j=1

KH(Xj − x)(Xj − x)

]
. (3.31)

Taking into account the definition of the atan2 function, it is clear that the

estimator given in (3.27) is equivalent to the one proposed in (3.14). Asymptotic

properties of the estimator (3.27) will be obtained considering the Nadaraya–Watson

and local linear weights, given in (3.30) and (3.31), respectively.

Nadaraya–Watson weights

Asymptotic bias and variance of the estimator (3.27), considering the weights ŴH(u; 0),

given in (3.30), are discussed in this section. In order to derive these expressions,

first, the asymptotic expectation, variance and covariance of the weighted averages

ĝj,H(x; 0), j = 1, 2 defined in (3.28) and (3.29), are obtained.

Lemma 3.3 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D × T. If x is an interior point of the support of f , then under assumptions (A1),

(C1), (H1) and (K1), for j = 1, 2, it follows

E[ĝj,H(x; 0)] = gj(x) +
1

2
µ2(K)tr[H2Hgj(x)] + o[tr(H2)],

Var[ĝj,H(x; 0)] =
1

n|H|
R(K)ν2

j (x)f(x) + o
(

1

n|H|

)
,

Cov[ĝ1,H(x; 0), ĝ2,H(x; 0)] =
1

n|H|
R(K)c̃(x)f(x) + o

(
1

n|H|

)
.
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Proof See Section 3.4.

Theorem 3.5 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D × T. If x is an interior point of the support of f , then under assumptions (A1),

(C1), (H1) and (K1), it follows

E[m̃c
H(x; 0)] = mc(x) +

1

2
µ2(K)tr[H2Hmc(x)] +

µ2(K)

`(x)f(x)
∇Tmc(x)H2∇(`f)(x)

+o[tr(H2)],

Var[m̃c
H(x; 0)] =

R(K)σ2
1(x)

n|H|`2(x)f(x)
+ o

(
1

n|H|

)
.

Proof See Section 3.4.

Notice that results obtained in Lemma 3.3 and Theorem 3.5 correspond to the

multivariate version of those provided in Lemma 3 and Theorem 3 of Di Marzio et al.

(2013), respectively, for interior points of the support of f . This correspondence

is immediately clear for the asymptotic bias terms. For the asymptotic variance,

the equivalence between the expressions can be obtained considering the relations

between the variance of the error term in model (3.3) with the variance of the error

terms in models (3.4) and (3.5):

m2
1(x)s2

2(x) +m2
2(x)s2

1(x)− 2m1(x)m2(x)c(x)

m2
1(x) +m2

2(x)
= σ2

1(x). (3.32)

Local linear weights

In this section, the asymptotic expressions for the bias and variance of the estimator

given in (3.27) are derived using the weights ŴH(u; 1) given in (3.31).

Lemma 3.4 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D × T. If x is an interior point of the support of f , then under assumptions (A1),
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(C1), (H1) and (K1), for j = 1, 2, it follows

E[ĝj,H(x; 1)] = µ2(K)tr(H2)f(x)gj(x)

+µ2
2(K)

1

2
tr(H2)f(x)tr[H2Hgj(x)]

−µ2
2(K)∇Tf(x)H4∇gj(x) + o[tr(H4)],

Var[ĝj,H(x; 1)] =
1

n|H|
µ2

2(K)R(K)tr2(H2)f 3(x)ν2
j (x) + o

[
tr2(H2)

n|H|

]
,

Cov[ĝ1,H(x; 1), ĝ2,H(x; 1)] =
1

n|H|
µ2

2(K)R(K)tr2(H2)f 3(x)c̃(x) + o
[

tr2(H2)

n|H|

]
.

Proof See Section 3.4.

Theorem 3.6 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D × T. If x is an interior point of the support of f , then under assumptions (A1),

(C1), (H1) and (K1), it follows

E[m̃c
H(x; 1)] = mc(x) +

1

2
µ2(K)tr[H2Hmc(x)] +

µ2(K)

`(x)
∇Tmc(x)H2∇`(x)

+o[tr(H2)],

Var[m̃c
H(x; 1)] =

R(K)σ2
1(x)

n|H|`2(x)f(x)
+ o

(
1

n|H|

)
.

Proof See Section 3.4.

Similar comments at those given after Theorem 3.5 can also apply for local linear

weights. In this case, the asymptotic expressions given in Lemma 3.4 and Theorem

3.6 are an extension to the multivariate case of those provided in Lemma 4 and

Theorem 4 of Di Marzio et al. (2013), respectively, for interior points of the support

of f .

Despite using different formulations in Section 3.3.1 and 3.3.2, results in Theo-

rems 3.1 and 3.2 for polynomial degrees p = 0 and p = 1, respectively, coincide with

those obtained in Theorems 3.5 and 3.6. However, note that conditional biases and

variances are provided in Section 3.3.1, whereas unconditional results are given in

Section 3.3.2.
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3.3.3 Simulation study

In order to illustrate the performance of the regression estimators proposed in (3.14)

(or equivalently, in (3.27)), a simulation study considering different scenarios and

model (3.3) is carried out for d = 2 (that is, considering a regression model with a

circular response and a bidimensional covariate). For each scenario, 500 samples of

size n (n = 64, 100, 225 and 400) are generated on a regular grid in the unit square

D = [0, 1]× [0, 1], considering the following regression models, for i = 1, . . . , n:

M1 : Θi = [atan2(6X5
i1 − 2X3

i1 − 1,−2X5
i2 − 3Xi2 − 1) + εi](mod 2π), i = 1, . . . , n

M2 : Θi = [acos(X5
i1 − 1) +

3

2
asin(X3

i2 −Xi2 + 1) + εi](mod 2π) i = 1, . . . , n,

where {(Xi1, Xi2)}ni=1 denotes a sample of the bidimensional covariate X = (X1, X2),

and the circular errors εi are drawn from a von Mises distribution vM(0, κ), with

density function given in (1.40), for different values of the concentration (κ = 5, 10

and 15).

Figure 3.1 shows two realizations of simulated data (model M1 in top row and

model M2 in bottom row). In both cases, the sample size is n = 225. Left plots show

the regression functions evaluated in the regularly spaced sample {(Xi1, Xi2)}ni=1.

Central panels present the random errors generated from a von Mises distribution

with zero mean direction and concentration κ = 5, for model M1, and κ = 15, for

model M2. Right panels show the values of the response variables, obtained adding

regression functions and circular errors. It can be seen that the errors in the top

row, corresponding to κ = 5, present more variability than the ones generated with

κ = 15.

Numerical and graphical outputs summarize the finite sample performance of

Nadaraya–Watson- and local linear-type estimators in the different scenarios. In all

cases, the smoothing parameter is chosen by cross-validation, selecting the bandwidth

matrix HCVc that minimizes the function:

CVc(H) =
n∑
i=1

{
1− cos

[
Θi − m̂c

H,−i(Xi; p)
]}
, (3.33)

where m̂c
H,−i(Xi; p) stands for the circular Nadaraya–Watson-type estimator (p = 0)

or the circular local linear-type estimator (p = 1), computed using all observations
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Figure 3.1: Illustration of model generation (model M1: top row; model M2: bottom
row) on a 15 × 15 grid. In left panels, regression functions evaluated at the grid
points. In center panels, independent errors from a von Mises distribution with zero
mean and concentration κ = 5, for model M1, and κ = 15, for model M2. In right
panels, random response variables obtained by adding the two previous plots.

except (Xi,Θi) and evaluated at Xi. Taking into account the type of regression

functions considered in models M1 and M2 and to speed up the computing times, in

this simulation study, the bandwidth matrix is restricted to be diagonal with possibly

different elements. A multivariate triweight kernel is considered for simulations.

Table 3.1 shows, for model M1 and in the different scenarios, the average (over

the 500 replicates) of the circular average squared error (CASE), defined as (Kim

and SenGupta, 2017):

CASE[m̂c
H(x; p)] =

1

n

n∑
i=1

{1− cos [mc(Xi)− m̂c
H(Xi; p)]} , (3.34)
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κ n Nadaraya–Watson Local Linear
HCVc HCASE HCVc HCASE

5 64 0.0610 0.0152 0.0672 0.0147
100 0.0280 0.0111 0.0358 0.0100
225 0.0124 0.0066 0.0158 0.0051
400 0.0075 0.0047 0.0091 0.0033

10 64 0.0094 0.0092 0.0071 0.0076
100 0.0102 0.0072 0.0055 0.0057
225 0.0065 0.0042 0.0028 0.0028
400 0.0042 0.0029 0.0019 0.0019

15 64 0.0182 0.0072 0.0201 0.0056
100 0.0091 0.0054 0.0110 0.0041
225 0.0046 0.0032 0.0050 0.0021
400 0.0032 0.0023 0.0029 0.0014

Table 3.1: Average error (over 500 replicates) of the CASE given in (3.34), for re-
gression model M1, using Nadaraya–Watson- and local linear-type estimators. Errors
are generated from a von Mises distribution with different concentration parameters
(κ = 5, 10, 15). Bandwidth matrix is selected by cross-validation, HCVc . Addition-
ally, results when using the optimal bandwidth HCASE are also included.

with p = 0 (Nadaraya–Watson) and p = 1 (local linear), when H is selected by

cross-validation. For comparative purposes, the diagonal optimal bandwidth matrix

HCASE minimizing (3.34) (obtained by intensive search) is also computed. Note

that this bandwidth matrix can not be used in a practical situation where the true

regression is unknown. For this reason, it can not be considered as a criterion

to select the bandwidth, but it is used to get a benchmark value for comparison.

The corresponding averages of the minimum values of the CASE are also included

in Table 3.1. It can be seen that the average errors decrease when the sample size

increase, and it is smaller for the local linear-type estimator for most of the scenarios.

Additionally, as expected, results are generally better when the error concentration

gets larger. Average errors of the CASE for model M2 are shown in Table 3.2.

Numerical outputs are completed with some additional plots. As an illustration

of the correct performance of Nadaraya–Watson- and local linear-type estimators,

Figure 3.2 shows the theoretical regression functions for models M1 and M2 (left
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κ n Nadaraya–Watson Local Linear
HCVc HCASE HCVc HCASE

5 64 0.0638 0.0303 0.0684 0.0209
100 0.0330 0.0239 0.0369 0.0154
225 0.0190 0.0158 0.0170 0.0089
400 0.0141 0.0120 0.0102 0.0061

10 64 0.0297 0.0139 0.0315 0.0088
100 0.0181 0.0116 0.0172 0.0068
225 0.0131 0.0087 0.0085 0.0041
400 0.0109 0.0075 0.0054 0.0029

15 64 0.0198 0.0139 0.0206 0.0088
100 0.0138 0.0116 0.0118 0.0068
225 0.0114 0.0087 0.0061 0.0041
400 0.0100 0.0075 0.0041 0.0029

Table 3.2: Average error (over 500 replicates) of the CASE given in (3.34), for re-
gression model M2, using Nadaraya–Watson- and local linear-type estimators. Errors
are generated from a von Mises distribution with different concentration parameters
(κ = 5, 10, 15). Bandwidth matrix is selected by cross-validation, HCVc . Addition-
ally, results when using the optimal bandwidth HCASE are also included.

panels) and the corresponding average, over the 500 replicates, of the estimates

using the specific scenarios in Figure 3.1 (Nadaraya–Watson- and local linear-type

estimates in the center and right panels, respectively). Notice that, for comparison

purposes, the theoretical regression functions are plotted in a 100× 100 regular grid

of the explanatory variables (the same grid where the estimations were computed).

Plots in the top row present the results for the data generated from model M1 and

those in the bottom row for model M2. Although both estimators have a similar

and correct behavior, the local linear-type estimator seems to show a slightly better

performance, at least, for these samples.

More reliable comparisons between Nadaraya–Watson- and local linear-type es-

timators can be performed computing the circular bias (CB), the circular variance

(CVAR), and the circular mean squared error (CMSE) for both estimators, in a grid
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Figure 3.2: Theoretical regression function (left panels), jointly with the average,
over 500 replicates, of Nadaraya–Watson- and local linear-type estimators (center
and right panels, respectively), using the specific scenarios considered in Figure 3.1,
for model M1 (top row panels) and model M2 (bottom row panels).

of values of the explanatory variables. These quantities, at a point x, are defined as:

CB[m̂c
H(x; p)] = E{sin[m̂c

H(x; p)−mc(x)]}, (3.35)

CVAR[m̂c
H(x; p)] = E{1− cos[m̂c

H(x; p)− µ(x; p)]}, (3.36)

CMSE[m̂c
H(x; p)] = E{1− cos[mc(x)− m̂c

H(x; p)]}, (3.37)

where µ(x; p) in CVAR denotes the circular mean of m̂c
H(x; p). Notice that, using

Taylor expansions, equations (3.35), (3.36) and (3.37) are equivalent to the Euclidean

versions of these expressions (Kim and SenGupta, 2017).

Figures 3.3 and 3.4 show, in the scenarios considered in Figure 3.1, the CB,

CVAR and CMSE computed in a 100×100 regular grid of the explanatory variables,

when using Nadaraya–Watson- and local linear-type estimators (top and bottom
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Figure 3.3: Circular bias (left panels), circular variance (center panels) and CMSE
(right panels) surfaces for model M1 for a 100 × 100 regular grid, using Nadaraya–
Watson- and local linear-type estimators (top and bottom row panels, respectively).
n = 225 and von Mises errors with zero mean and κ = 5.

row panels, respectively), for models M1 and M2, respectively. The expectations in

(3.35), (3.36) and (3.37) are approximated by the averages over the 500 replicates

generated. It can be seen that the Nadaraya–Watson-type estimator (p = 0) provides

larger biases and smaller variances than the local linear-type estimator (p = 1) in

both settings. However, the CMSE is smaller for the local linear fit in most of the

grid points. Similar results for the CB, CVAR and CMSE for both estimators were

obtained in other scenarios.

3.3.4 Real data illustration

A real data example is presented in order to illustrate the application of the proposed

estimators. Based on the simulation study, where the local linear-type estimator
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Figure 3.4: Circular bias (left panels), circular variance (center panels) and CMSE
(right panles) surfaces for model M2 for a 100 × 100 regular grid, using Nadaraya–
Watson- and local linear-type estimators (top and bottom row panels, respectively).
n = 225 and von Mises errors with zero mean and κ = 15.

presented a slightly better performance than the Nadaraya–Watson one, just results

corresponding to mc
H(x; 1) are provided for real data.

Orientations of two species of sand hoppers1 (Talorchestia brito and Talitrus

saltator) on the Zouara beach in north-western Tunisia are considered. As pointed

out in Scapini et al. (2002), experiments were performed in two different periods,

April and October 1999. April represents the beginning of the warm season, with

individuals having survived the winter, and October the end of it, with individuals

1The author thanks Professor Felicita Scapini and her research team who kindly provided the
sand hoppers data that are used in Chapters 3 and 5 of this dissertation. Data were collected
within the Project ERB ICI8-CT98-0270 from the European Commission, Directorate General XII
Science.
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having survived extremely warm and dry summer conditions. The sand hoppers were

captured in the morning of each day with intercepting traps. The experiments were

carried out using two experimental arenas, one permitting the view of both sky and

landscape and the other of the sky only. A total of 777 individuals of Talorchestia

brito and 867 Talitrus saltator were tested, and identified for species and sex in the

laboratory.

Following the proposal in Presnell et al. (1998), these observations were ana-

lyzed in Scapini et al. (2002). They considered a projected multivariate linear model

(PMLM) to analyze the orientation of two species of sand hoppers as a function of

different covariates. We refer to Scapini et al. (2002) and Marchetti and Scapini

(2003) for details on the experiment, a thorough data analysis and sound biological

conclusions. Dealing with the same dataset, in Marchetti and Scapini (2003), the

authors conclude that the orientation is different for the two sexes (males and fe-

males) and they explicitly mention that nonparametric smoothers are flexible tools

that may suggest unexpected features of the data.

The illustration with our proposal is a first attempt to analyze this dataset with

nonparametric tools in order to check how orientation (in degrees) behaves when

temperature (in Celsius degrees) and (relative) humidity (in percentage) are included

as covariates. For illustration purposes, only observations corresponding to (relative)

humidity values larger than 45% are considered in this analysis. The corresponding

datasets are plotted in Figure 3.5 (males in the left panel and females in the right

panel), being the sample sizes n = 330 and n = 404, for male and female sand

hoppers, respectively.

Figure 3.6 shows the local linear-type estimates for male (left panel) and female

(right panel) mean orientations, considering temperature (horizontal axis) and rela-

tive humidity (vertical axis) as covariates. Note that configurations of temperature

and humidity are the same for males and females, given that these values correspond

to experimental conditions. In this example, unlike in the simulation experiments,

the CVc bandwidth matrix has been searched in the family of the symmetric and

definite positive full bandwidth matrices, using an optimization algorithm based on

the Nelder–Mead simplex method described in Lagarias et al. (1998). Using the
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Figure 3.5: Observed orientation of male (left panel) and female (right panel) sand
hoppers as a function of temperature and relative humidity.

initial bandwidth matrix Hinit = 1.5 · diag {σ̂X1 , σ̂X2}, the algorithm converged to

Hm
CVc =

[
2.7781 0.0001

0.0001 15.2529

]
, (3.38)

for males, and to

Hf
CVc =

[
4.0930 −0.0009

−0.0009 13.1937

]
, (3.39)

for females, where σ̂X1 and σ̂X2 denote the sample standard deviations of the covari-

ates X1 = “temperature” and X2 = “humidity”, respectively. As in the previous

section, a multivariate triweight kernel is considered.

Note that the estimation grid of explanatory variables on which the estimates of

the mean were computed was constructed by overlying the survey values of temper-
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Figure 3.6: Estimates of the mean orientation of males (left panel) and females (right
panel) sand hoppers, considering a local linear-type estimator with cross-validation
bandwidth. Horizontal axis: temperature in Celsius degrees. Vertical axis: relative
humidity in percentage.

ature and humidity with a 100× 100 grid and, then, dropping every grid point that

did not satisfy one of the following two requirements: (a) it is within 15 “grid cell

length” from an observation point, or (b) the calculation for the estimates of the sine

and cosine components at that grid point uses a smoothing vector that is sufficiently

stable. Both requirements are admittedly somewhat arbitrary, but they represent a

compromise between coverage over the region of interest and ability to avoid singular

design matrices. Even with these restrictions, some of the estimates for low temper-

ature values (around 20 Celsius degrees) seem to be spurious, specially in the case

of male individuals. This can be due to data sparseness or a boundary effect, two

well-known situations where kernel-based smoothing methods may present certain

limitations. Trying to avoid some of these problems and taking into account that

there are repeated values of the covariates, additional estimates have been obtained

after jittering the original data (the corresponding plots are not shown), obtaining

estimates that follow similar patterns to those shown in Figure 3.6. The mean di-

rection followed by male and female sand hoppers is different for some temperature

and humidity conditions. Seawards orientation was roughly 7π/4, so it can be seen

that females are more seawards oriented than males, specially for mid to low values

of temperature.
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3.4 Proofs of the main results

This section is devoted to present a detailed proof of Lemma 3.1 and Theorem 3.1,

Lemma 3.2 and Theorem 3.2, Theorems 3.3 and 3.4, as well as, the proof of Lemma

3.3 and Theorem 3.5, and Lemma 3.4 and Theorem 3.6. More specifically, the asymp-

totic properties of the proposed nonparametric regression estimator m̂c
H(x; p) given

in (3.14), for p = 0, 1, are established in Theorems 3.1 and 3.2, respectively. Lem-

mas 3.1 and 3.2 contain some previous results. For d = 1, the extensions for p = 2

and p = 3 are considered in Theorems 3.3 and 3.4, respectively. The corresponding

asymptotic properties of the estimators m̃c
H(x; p), for p = 0, 1, given in (3.27), con-

sidering local weighted average type estimators, are provided in Theorems 3.5 and

3.6. Some previous results for local weighted average type estimators are in Lemmas

3.3 and 3.4.

For simplicity, in Taylor expansions used in the proofs of these results, m̂j,H and

mj denote m̂j,H(x; p) and mj(x), respectively, for j = 1, 2. Moreover, ĝj,H and gj

stands for ĝj,H(x; p) and gj(x), respectively, for j = 1, 2.

Proof of Lemma 3.1 The asymptotic bias and variance of m̂j,H(x; 0), for j =

1, 2, can be directly obtained using the asymptotic properties on the multivariate

Nadaraya–Watson estimator given in (1.7) and (1.8).

Regarding the conditional covariance between m̂1,H(x; 0) and m̂2,H(x; 0), using

(A.1) and (A.4) of Lemma A.1, it follows that

Cov[m̂1,H(x; 0), m̂2,H(x; 0) | X1, . . . ,Xn] =

∑n
i=1

∑n
j=1 KH(Xi − x)KH(Xj − x)∑n

i=1 KH(Xi − x)
∑n

j=1KH(Xj − x)

·Cov[sin(Θi), cos(Θj) | X1, . . . ,Xn]

=

∑n
i=1 K

2
H(Xi − x)c(Xi)

[
∑n

i=1 KH(Xi − x)]
2

=
R(K)c(x)

n|H|f(x)
+ oP

(
1

n|H|

)
,

since
1

n

n∑
i=1

KH(Xi − x) = f(x) + oP(1)
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and
1

n

n∑
i=1

K2
H(Xi − x)c(Xi) =

1

|H|
R(K)f(x)c(x) + oP

(
|H|−1

)
.

Proof of Theorem 3.1 First, to obtain the bias of the estimator m̂c
H(x; 0) given in

(3.14), the function atan2(m̂1,H, m̂2,H) is expanded in Taylor series around (m1,m2),

to get

atan2(m̂1,H, m̂2,H) = atan2(m1,m2) +
m2

m2
1 +m2

2

(m̂1,H −m1)

− m1

m2
1 +m2

2

(m̂2,H −m2) +
m1m2

(m2
1 +m2

2)2
(m̂2,H −m2)2

− m1m2

(m2
1 +m2

2)2
(m̂1,H −m1)2

− m2
1 −m2

2

(m2
1 +m2

2)2
(m̂1,H −m1)(m̂2,H −m2)

+O
[
(m̂1,H −m1)3

]
+O

[
(m̂2,H −m2)3

]
. (3.40)

Hence, noting that `(x) = [m2
1(x) + m2

2(x)]1/2 and taking expectations in the

above expression, it follows that

E[m̂c
H(x; 0)]−mc(x)

=
m2(x)

`2(x)
E[m̂1,H(x; 0)−m1(x)]− m1(x)

`2(x)
E[m̂2,H(x; 0)−m2(x)]

+
m1(x)m2(x)

`4(x)
E{[m̂2,H(x; 0)−m2(x)]2}

−m1(x)m2(x)

`4(x)
E{[m̂1,H(x; 0)−m1(x)]2}

−m
2
1(x)−m2

2(x)

`4(x)
E{[m̂1,H(x; 0)−m1(x)][m̂2,H(x; 0)−m2(x)]}

+O{[m̂1,H(x; 0)−m1(x)]3}+O{[m̂2,H(x; 0)−m2(x)]3}.

Noting that E [(m̂j,H −mj)
2 | X1, . . . ,Xn] = Var(m̂j,H | X1, . . . ,Xn)+[E(m̂j,H−
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mj | X1, . . . ,Xn)]2, and using the results in Lemma 3.1, it is obtained that

E[m̂c
H(x; 0)−mc(x) | X1, . . . ,Xn] =

1

2

m2(x)

`2(x)
µ2(K)tr

[
H2Hm1(x)

]
+
m2(x)

`2(x)

µ2(K)

f(x)
∇Tm1(x)H2∇f(x)

−1

2

m1(x)

`2(x)
µ2(K)tr

[
H2Hm2(x)

]
−m1(x)

`2(x)

µ2(K)

f(x)
∇Tm2(x)H2∇f(x)

+ oP[tr(H2)].

By straightforward calculations, one gets that

E[m̂c
H(x; 0)−mc(x) | X1, . . . ,Xn]

=
1

2

µ2(K)

`2(x)
tr

{
H2

[
m2(x)Hm1(x)−m1(x)Hm2(x)

]}
+

µ2(K)

`2(x)f(x)

{[
m2(x)∇Tm1(x)−m1(x)∇Tm2(x)

]
H2∇f(x)

}
+ oP[tr(H2)].

Moreover, note that

∇mc(x) =
1

m2
1(x) +m2

2(x)
[∇m1(x)m2(x)−∇m2(x)m1(x)]

=
1

`2(x)
[∇m1(x)m2(x)−∇m2(x)m1(x)] , (3.41)

Hmc(x) =
1

`2(x)

[
Hm1(x)m2(x) + ∇m1(x)∇Tm2(x)

−∇m2(x)∇Tm1(x) − Hm2(x)m1(x)]

− 2

`3(x)
∇`(x) [∇m1(x)m2(x)−∇m2(x)m1(x)]

=
1

`2(x)

[
Hm1(x)m2(x) + ∇m1(x)∇Tm2(x)

−∇m2(x)∇Tm1(x)−Hm2(x)m1(x)
]

− 2

`(x)
∇`(x)∇Tmc(x). (3.42)
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Therefore, it follows that

E[m̂c
H(x; 0)−mc(x) | X1, . . . ,Xn]

=
1

2
µ2(K)tr

{
H2

[
Hmc(x) +

2

`(x)
∇`(x)∇Tmc(x)

]}
+
µ2(K)

f(x)
∇Tmc(x)H2∇f(x) + oP[tr(H2)]

=
1

2
µ2(K)tr[H2Hmc(x)] +

µ2(K)

`(x)
∇Tmc(x)H2∇`(x)

+
µ2(K)

f(x)
∇Tmc(x)H2∇f(x) + oP[tr(H2)]

=
1

2
µ2(K)tr[H2Hmc(x)] +

µ2(K)

`(x)f(x)
∇Tmc(x)H2∇(`f)(x) + oP[tr(H2)].

Now, in order to derive the variance of the estimator m̂c
H(x; 0), the function

atan22(m̂1,H, m̂2,H) is expanded in Taylor series around (m1,m2), and thus, to obtain

that

atan22(m̂1,H, m̂2,H) = atan22(m1,m2) +
2atan2(m1,m2)m2

m2
1 +m2

2

(m̂1,H −m1)

−2atan2(m1,m2)m1

m2
1 +m2

2

(m̂2,H −m2)

+
2atan2(m1,m2)m1m2

(m2
1 +m2

2)2
(m̂2,H −m2)2

−2atan2(m1,m2)m1m2

(m2
1 +m2

2)2
(m̂1,H −m1)2

−2atan(m1,m2)(m2
1 −m2

2)

(m2
1 +m2

2)2
(m̂1,H −m1)(m̂2,H −m2)

+
m2

1

(m2
1 +m2

2)2
(m̂2,H −m2)2 +

m2
2

(m2
1 +m2

2)2
(m̂1,H −m1)2

− 2m1m2

(m2
1 +m2

2)2
(m̂1,H −m1)(m̂2,H −m2)

+O
[
(m̂1,H −m1)3

]
+O

[
(m̂2,H −m2)3

]
. (3.43)

Taking expectations in the Taylor expansions given in (3.40) and (3.43), one gets
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that

Var[m̂c
H(x; 0)]

= atan22[m1,H(x),m2,H(x)] +
2atan2[m1(x),m2(x)]m2(x)

`2(x)
E[m̂1,H(x; 0)−m1(x)]

−2atan2[m1(x),m2(x)]m1(x)

`2(x)
E[m̂2,H(x; 0)−m2(x)]

+
2atan2[m1(x),m2(x)]m1(x)m2(x)

`4(x)
E{[m̂2,H(x; 0)−m2(x)]2}

−2atan2[m1(x),m2(x)]m1(x)m2(x)

`4(x)
E{[m̂1,H(x; 0)−m1(x)]2}

−2atan[m1(x),m2(x)][m2
1(x)−m2

2(x)]

`4(x)
E{[m̂1,H(x; 0)−m1(x)][m̂2,H(x; 0)−m2(x)]}

+
m2

1(x)

`4(x)
E{[m̂2,H(x; 0)−m2(x)]2}+

m2
2(x)

`4(x)
E{[m̂1,H(x; 0)−m1(x)]2}

−2m1(x)m2(x)

`4(x)
E{[m̂1,H(x; 0)−m1(x)][m̂2,H(x; 0)−m2(x)]}

−
(

atan2[m1(x),m2(x)] +
m2(x)

`2(x)
E[m̂1,H(x; 0)−m1(x)]

−m1(x)

`2(x)
E[m̂2,H(x; 0)−m2(x)] +

m1(x)m2(x)

`4(x)
E{[m̂2,H(x; 0)−m2(x)]2}

−m1(x)m2(x)

`4(x)
E{[m̂1,H(x; 0)−m1(x)]2}

−m
2
1(x)−m2

2(x)

`4(x)
E{[m̂1,H(x; 0)−m1(x)][m̂2,H(x; 0)−m2(x)]}

+O{[m̂1,H(x; 0)−m1(x)]3}+O{[m̂2,H(x; 0)−m2(x)]3}
)2

+O{[m̂1,H(x; 0)−m1(x)]3}+O{[m̂2,H(x; 0)−m2(x)]3}.
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By straightforward calculations, it can be obtained that

Var[m̂c
H(x; 0)] =

m2
1(x)

`4(x)
E{[m̂2,H(x; 0)−m2(x)]2}+

m2
2(x)

`4(x)
E{[m̂1,H(x; 0)−m1(x)]2}

−2m1(x)m2(x)

`4(x)
E{[m̂1,H(x; 0)−m1(x)][m̂2,H(x; 0)−m2(x)]}

−m
2
2(x)

`4(x)
{E[m̂1,H(x; 0)−m1(x)]}2 − m2

1(x)

`4(x)
{E[m̂2,H(x; 0)−m2(x)]}2

+
2m1(x)m2(x)

`4(x)
E[m̂1,H(x; 0)−m1(x)]E[m̂2,H(x; 0)−m2(x)]

+O{[m̂1,H(x; 0)−m1(x)]3}+O{[m̂2,H(x; 0)−m2(x)]3}.

So, noting that E [(m̂j,H −mj)
2 | X1, . . . ,Xn] = Var(m̂j,H | X1, . . . ,Xn)+[E(m̂j,H−

mj | X1, . . . ,Xn)]2, it can be obtained that the conditional variance is:

Var[m̂c
H(x; 0) | X1, . . . ,Xn] =

m2
1(x)

`4(x)
Var[m̂2,H(x; 0) | X1, . . . ,Xn]

+
m2

2(x)

`4(x)
Var[m̂1,H(x; 0) | X1, . . . ,Xn]

−2m1(x)m2(x)

`4(x)
Cov[m̂1,H(x; 0), m̂2,H(x; 0) | X1, . . . ,Xn]

+O
{

[m̂1,H(x; 0)−m1(x)]3
}

+O
{

[m̂2,H(x; 0)−m2(x)]3
}
.

Therefore, using Lemma 3.1, one gets that

Var[m̂c
H(x; 0) | X1, . . . ,Xn] =

1

n|H|
R(K)

m2
1(x)s2

2(x)

`4(x)f(x)
+

1

n|H|
R(K)

m2
2(x)s2

1(x)

`4(x)f(x)

− 2

n|H|
R(K)

m1(x)m2(x)c(x)

`4(x)f(x)
+ oP

(
1

n|H|

)
.

Considering (3.8), (3.11), (3.12) and (3.13), and taking into account that f 2
1 (x)+
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f 2
2 (x) = 1, it follows that

m2
1(x)s2

2(x) +m2
2(x)s2

1(x)− 2m1(x)m2(x)c(x)

= f 2
1 (x)f 2

2 (x)`2(x)σ2
2(x)− 2f2(x)f 3

1 (x)`2(x)σ12(x) + f 4
1 (x)`2(x)σ2

1(x)

+f 2
2 (x)f 2

1 (x)`2(x)σ2
2(x) + 2f 3

2 (x)f1(x)`2(x)σ12(x) + f 4
2 (x)`2(x)σ2

1(x)

−2f 2
1 (x)f 2

2 (x)`2(x)σ2
2(x) + 2f 3

1 (x)f2(x)`2(x)σ12(x)− 2f 3
2 (x)f1(x)`2(x)σ12(x)

+2f 2
1 (x)f 2

2 (x)`2(x)σ2
1(x)

= `2(x)σ2
1(x). (3.44)

Therefore,

Var[m̂c
H(x; 0) | X1, . . . ,Xn] =

R(K)σ2
1(x)

n|H|`2(x)f(x)
+ oP

(
1

n|H|

)
.

Proof of Lemma 3.2 The asymptotic bias and variance of m̂j,H(x; 1), for j = 1, 2,

can be derived using the asymptotic properties on the multivariate local linear es-

timator given in (1.10) and (1.11). In this case, the conditional covariance between

m̂1,H(x; 1) and m̂2,H(x; 1) is:

Cov[m̂1,H(x; 1), m̂2,H(x; 1) | X1, . . . ,Xn]

= eT
1 (XT

xWxX x)−1XT
xWxΣ

cWxX x(XT
xWxX x)−1e1,

where Σc is the covariance matrix of sin(Θ) and cos(Θ), whose (i, j)-entry is Σc(i, j) =

Cov[sin(Θi), cos(Θj) | Xi,Xj], i, j = 1, . . . , n. Notice that Σc(i, j) = 0, for i 6= j.

Defining

k1,n(x) = n−1
∑n

i=1 KH(Xi − x),

k2,n(x) = n−1
∑n

i=1 KH(Xi − x)(Xi − x),

k3,n(x) = n−1
∑n

i=1 KH(Xi − x)(Xi − x)(Xi − x)T,

s31,n(x) = n−2
∑n

i=1 K
2
H(Xi − x)c(Xi),

s32,n(x) = n−2
∑n

i=1 K
2
H(Xi − x)(Xi − x)c(Xi),

s33,n(x) = n−2
∑n

i=1 K
2
H(Xi − x)(Xi − x)(Xi − x)Tc(Xi),
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and using (A.1), (A.2), (A.3) (A.4), (A.5) and (A.6) of Lemma A.1, it follows that

k1,n(x) = f(x) + oP(1),

k2,n(x) = µ2(K)∇f(x)H2 + oP(H21d),

k3,n(x) = µ2(K)f(x)H2 + oP(H1d×dH),

s31,n(x) =
1

n|H|
R(K)f(x)c(x) + oP

(
1

n|H|

)
, (3.45)

s32,n(x) =
1

n|H|
oP(1d), (3.46)

s33,n(x) =
1

n|H|
oP(1d×d). (3.47)

Therefore,

(
n−1XT

xWxX x

)−1
=

(
k1,n(x) kT

2,n(x)

k2,n(x) k3,n(x)

)−1

=

(
1

f(x)
+ oP(1) −∇Tf(x)

f2(x)
+ oP(1T

d )
−∇f(x)
f2(x)

+ oP(1d)
1

µ2(K)f(x)H2 + oP(H1d×dH)

)
, (3.48)

n−2XT
xWxΣ

cWxX x =

(
s31,n(x) sT

32,n(x)

s32,n(x) s33,n(x)

)

=
1

n|H|

(
R(K)f(x)c(x) + oP(1) oP(1T

d )

oP(1d) oP(1d×d)

)
.

Consequently, by straightforward calculations, one gets

Cov[m̂1,H(x; 1), m̂2,H(x; 1) | X1, . . . ,Xn] =
1

n|H|f(x)
R(K)c(x) + oP

(
1

n|H|

)
.

Proof of Theorem 3.2 To obtain the bias of the estimator m̂c
H(x; 1) given in

(3.14), following the arguments used in the proof of Theorem 3.1 and using results
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in Lemma 3.2, one gets that

E[m̂c
H(x; 1)−mc(x) | X1, . . . ,Xn] =

1

2
µ2(K)

m2(x)

`2(x)
tr
[
H2Hm1(x)

]
−1

2
µ2(K)

m1(x)

`2(x)
tr
[
H2Hm2(x)

]
+ oP[tr(H2)]

=
1

2

µ2(K)

`2(x)
tr
{
H2 [m2(x)Hm1(x)−m1(x)Hm2(x)]

}
+oP[tr(H2)].

Considering (3.41) and (3.42), it can be obtained that

E[m̂c
H(x; 1)−mc(x) | X1, . . . ,Xn]

=
1

2
µ2(K)tr

{
H2

[
Hmc(x) +

2

`(x)
∇`(x)∇Tmc(x)

]}
+ oP[tr(H2)]

=
1

2
µ2(K)tr[H2Hmc(x)] +

µ2(K)

`(x)
∇Tmc(x)H2∇`(x) + oP[tr(H2)].

As for the variance of m̂c
H(x; 1), using (3.44) and Lemma 3.2, it follows that

Var[m̂c
H(x; 1) | X1, . . . ,Xn] =

1

n|H|
R(K)

m2
1(x)s2

2(x)

`4(x)f(x)
+

1

n|H|
R(K)

m2
2(x)s2

1(x)

`4(x)f(x)

− 2

n|H|
R(K)

m1(x)m2(x)c(x)

`4(x)f(x)
+ oP

(
1

n|H|

)
=

R(K)σ2
1(x)

n|H|`2(x)f(x)
+ oP

(
1

n|H|

)
.

.

Proof of Theorem 3.3 Using the asymptotic properties of the local quadratic es-

timator given in (1.14) and (1.16), close expressions of E[m̂j,h(x; 2) | X1, . . . , Xn] and

Var[m̂j,h(x; 2) | X1, . . . , Xn], for j = 1, 2, can be obtained. To derive the bias of

m̂c
h(x; 2), following the arguments used in the proof of Theorems 3.1 and 3.2, one
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gets that

E[m̂c
h(x; 2)−mc(x) | X1, . . . , Xn] =

h4µ4(K(2))f
(1)(x)

3!f(x)

m2(x)

`2(x)
m

(3)
1 (x)

+
h4µ4(K(2))

4!

m2(x)

`2(x)
m

(4)
1 (x)

−
h4µ4(K(2))f

(1)(x)

3!f(x)

m1(x)

`2(x)
m

(3)
2 (x)

−
h4µ4(K(2))

4!

m1(x)

m2
1(x) +m2

1(x)
m

(4)
2 (x) + oP(h4).

Therefore,

E[m̂c
h(x; 2)−mc(x) | X1, . . . , Xn] =

h4µ4(K(2))f
(1)(x)

3!f(x)`2(x)
[m2(x)m

(3)
1 (x)−m1(x)m

(3)
2 (x)]

+
h4µ4(K(2))

4!`2(x)
[m2(x)m

(4)
1 (x)−m1(x)m

(4)
2 (x)]

+oP(h4).

Now, taking into account that

mc(1)(x) =
1

`2(x)

[
m

(1)
1 (x)m2(x)−m(1)

2 (x)m1(x)
]
,

mc(2)(x) =
1

`2(x)

[
m

(2)
1 (x)m2(x)−m(2)

2 (x)m1(x)
]
− 2

`(x)
`(1)(x)mc(1)(x),

mc(3)(x) =
1

`2(x)

[
m

(3)
1 (x)m2(x)−m(3)

2 (x)m1(x) +m
(2)
1 (x)m

(1)
2 (x)−m(1)

1 (x)m
(2)
2 (x)

]
− 4

`(x)
`(1)(x)mc(2)(x)− 2

`2(x)
`(1)2

(x)mc(1)(x)− 2

`(x)
`(2)(x)mc(1)(x),

mc(4)(x) =
1

`2(x)

[
m

(4)
1 (x)m2(x)−m(4)

2 (x)m1(x) + 2m
(3)
1 (x)m

(1)
2 (x)− 2m

(1)
1 (x)m

(3)
2 (x)

]
− 6

`(x)
`(1)(x)m(3)(x)− 2

`(x)
`(3)(x)mc(1)(x)− 6

`(x)
`(2)(x)mc(2)(x)

− 6

`(x)2
`(1)2

(x)mc(2)(x)− 6

`(x)2
`(1)(x)`(2)(x)mc(1)(x),
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it follows that

E[m̂c
h(x; 2)−mc(x) | X1, . . . , Xn]

=
h4µ4(K(2))f

(1)(x)

3!f(x)

[
m(3)(x) +

2`(2)(x)mc(1)(x)

`(x)
+
m

(2)
2 (x)m

(1)
1 (x)−m(2)

1 (x)m
(1)
2 (x)]

`2(x)

+
4`(1)(x)mc(2)(x)

`(x)
+

2`(1)2
(x)mc(1)(x)

`2(x)

]
+
h4µ4(K(2))

4!

[
m(4)(x) +

2`(3)(x)mc(1)(x)

`(x)

+
2m

(3)
2 (x)m

(1)
1 (x)− 2m

(3)
1 (x)m

(1)
2 (x)

`2(x)
+

6`(1)(x)m(3)(x) + 6`(2)(x)mc(2)(x)

`(x)

+
6`(1)2

(x)mc(2)(x) + 6`(1)(x)`(2)(x)mc(1)(x)

`2(x)

]
+ oP

(
h4
)
.

As for the variance of m̂c
h(x; 2), the same arguments as those employed in the

proof of Theorem 3.1 and 3.2 can be used. The conditional covariance between both

m̂1,h(x; 2) and m̂2,h(x; 2) is

Cov[m̂1,h(x; 2), m̂2,h(x; 2) | X1, . . . , Xn] =
1

nhf(x)
R(K(2))c(x) + oP

(
1

nh

)
,

and, therefore, the variance of m̂c
h(x; 2) is:

Var[m̂c
h(x; 2) | X1, . . . , Xn] =

1

nh`2(x)f(x)
R(K(2))σ

2
1(x) + oP

(
1

nh

)
.

Proof of Theorem 3.4 To obtain the conditional bias of m̂c
h(x; 3), using the asymp-

totic properties of the local cubic estimator given in (1.15) and (1.16), one gets that

E[m̂c
h(x; 3)−mc(x) | X1, . . . , Xn]

=
h4µ4(K(2))

4!

m2(x)

`2(x)
m

(4)
1 (x)−

h4µ4(K(2))

4!

m1(x)

m2
1(x) +m2

1(x)
m

(4)
2 (x) + oP(h2)

=
h4µ4(K(2))

4!

[
m(4)(x) +

2`(3)(x)mc(1)(x)

`(x)
+

2m
(3)
2 (x)m

(1)
1 (x)− 2m

(3)
1 (x)m

(1)
2 (x)

`2(x)

+
6`(1)(x)m(3)(x) + 6`(2)(x)mc(2)(x)

`(x)
+

6`(1)2
(x)mc(2)(x) + 6`(1)(x)`(2)(x)mc(1)(x)

`2(x)

]
+oP

(
h4
)
.
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Reasoning as in the proof of Theorem 3.4, the conditional variance of m̂c
h(x; 3)

can be obtained:

Var[m̂c
h(x; 3) | X1, . . . , Xn] =

1

nh`2(x)f(x)
R(K(2))σ

2
1(x) + oP

(
1

nh

)
.

Proof of Lemma 3.3 First, using the result for the conditional mean E[ĝj,H(x; 0)] =

E{E[ĝj,H(x; 0)|X1, . . . ,Xn]}, and that

E[ĝj,H(x; 0)|X1, . . . ,Xn] =
1

n

n∑
i=1

mj(Xi)ŴH(Xi − x; 0), (3.49)

with ŴH(u; 0) given in (3.30), under assumptions (A1), (C1), (H1) and (K1), it

follows that,

E[ĝj,H(x; 0)] =

∫
mj(u)ŴH(u− x; 0)f(u)du =

∫
KH(u− x)mj(u)f(u)du

=

∫
K(p)mj(x + Hp)f(x + Hp)dp

=

∫
K(p)[mj(x) + pTH∇mj(x) +

1

2
pTHHmj

(x)Hp]

·[f(x) + pTH∇f(x) +
1

2
pTHHf (x)Hp]dp + o[tr(H2)]

= f(x)mj(x)

∫
K(p)dp +

∫
K(p)pTH∇mj(x)pTH∇f(x)dp

+
1

2
mj(x)

∫
K(p)pTHHf (x)Hpdp

+
1

2
f(x)

∫
K(p)pTHHmj

(x)Hpdp + o[tr(H2)].

By straightforward calculations, it can be proved that∫
K(p)pTHHf (x)Hpdp = tr

[
HHf (x)H

∫
K(p)ppTdp

]
= µ2(K)tr[H2Hf (x)], (3.50)
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and, similarly,∫
K(p)pTH∇mj(x)pTH∇f(x)dp = µ2(K)tr[H2∇mj(x)∇Tf(x)],∫

K(p)pTHHmj
(x)Hpdp = µ2(K)tr[H2Hmj

(x)].

Therefore,

E[ĝj,H(x; 0)] = f(x)mj(x) + µ2(K)tr[H2∇mj(x)∇Tf(x)]

+
1

2
µ2(K)mj(x)tr[H2Hf (x)]

+
1

2
µ2(K)f(x)tr[H2Hmj

(x)] + o[tr(H2)]

= gj(x) +
1

2
µ2(K)tr[H2Hgj(x)] + o[tr(H2)],

because of gj(x) = mj(x)f(x), j = 1, 2, and

∇gj(x) = ∇mj(x)f(x) + ∇f(x)mj(x), (3.51)

Hgj(x) = Hmj
(x)f(x) + ∇mj(x)∇Tf(x) + ∇f(x)∇Tmj(x)

+Hf (x)mj(x). (3.52)

Concerning the variance of ĝj,H(x; 0), for j = 1, 2, it follows that

Var[ĝj,H(x; 0)] = E{Var[ĝj,H(x; 0)|X1, . . . ,Xn]}

+Var{E[ĝj,H(x; 0)|X1, . . . ,Xn]}.

Firstly,

Var[ĝj,H(x; 0)|X1, . . . ,Xn] =
1

n2

n∑
i=1

s2
j(Xi)Ŵ

2
H(Xi − x; 0). (3.53)
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Therefore, considering (3.30) and under assumptions (A1), (C1), (H1) and (K1),

E{Var[ĝj,H(x; 0)|X1, . . . ,Xn]} =
1

n

∫
s2
j(u)Ŵ 2

H(u− x; 0)f(u)du

=
1

n

∫
K2

H(u− x)s2
j(u)f(u)

=
1

n|H|

∫
K2(p)s2

j(x + Hp)f(x + Hp)dp

=
1

n|H|

∫
K2(p)[s2

j(x) + o(1)][f(x) + o(1)]dp

=
1

n|H|
R(K)s2

j(x)f(x) + o
(

1

n|H|

)
. (3.54)

On the other hand, considering (3.30) and (3.49), and under assumptions (A1),

(C1), (H1) and (K1), it follows that,

Var{E[ĝj,H(x; 0)|X1, . . . ,Xn]}

=
1

n

∫
m2
j(u)Ŵ 2

H(u− x; 0)f(u)du

− 1

n

∫
mj(u)ŴH(u− x; 0)f(u)du

∫
mj(v)ŴH(v − x; 0)f(v)dv

=
1

n|H|
R(K)m2

j(x)f(x)− 1

n
g2
j (x) + o

(
1

n|H|

)
. (3.55)

Hence, from (3.53), (3.54), (3.55), and observing that ν2
j (x) = m2

j(x)+s2
j(x), one

gets that

Var[ĝj,H(x; 0)] =
1

n|H|
R(K)ν2

j (x)f(x) + o
(

1

n|H|

)
.

Finally, for the covariance between ĝ1,H(x; 0) and ĝ2,H(x; 0), taking into account

that

Cov[ĝ1,H(x; 0), ĝ2,H(x; 0)]

= E{E[ĝ1,H(x; 0)ĝ2,H(x; 0)|X1, . . . ,Xn]}

−E{E[ĝ1,H(x; 0)|X1, . . . ,Xn]}E{E[ĝ2,H(x; 0)|X1, . . . ,Xn]},
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and that

E[ĝ1,H(x; 0)ĝ2,H(x; 0)|X1, . . . ,Xn]

=
1

n2

n∑
i=1

c̃(Xi)Ŵ
2
H(Xi − x; 0)

+
1

n2

n∑
i 6=j

m1(Xi)m2(Xj)ŴH(Xi − x; 0)ŴH(Xj − x; 0),

under assumptions (A1), (C1), (H1) and (K1), from (3.30) it follows that

Cov[ĝ1,H(x; 0), ĝ2,H(x; 0)]

=
1

n

∫
c̃(u)Ŵ 2

H(u− x; 0)f(u)du

+
n− 1

n

∫
m1(u)ŴH(u− x; 0)f(u)du

∫
m2(v)ŴH(v − x; 0)f(v)dv

−
∫
m1(u)ŴH(u− x; 0)f(u)du

∫
m2(v)ŴH(v − x; 0)f(v)dv

=
1

n|H|
R(K)c̃(x)f(x) + o

(
1

n|H|

)
.

Proof of Theorem 3.5 First, to obtain the bias of the estimator m̃c
H(x; 0) given

in (3.27), using the same linearization arguments as in the proof of Theorem 3.1, the

function atan2(ĝ1,H, ĝ2,H) is expanded in Taylor series around (g1, g2):

atan2(ĝ1,H, ĝ2,H) = atan2(g1, g2) +
f2

`f
(ĝ1,H − g1)− f1

`f
(ĝ2,H − g2)

+
f1f2

`2f 2
(ĝ2,H − g2)2 − f1f2

`2f 2
(ĝ1,H − g1)2

−f
2
1 − f 2

2

`2f 2
(ĝ1,H − g1)(ĝ2,H − g2)

+O[(ĝ1,H − g1)3] +O[(ĝ2,H − g2)3]. (3.56)
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Hence, taking expectations in the above expression, it follows that

E[m̃c
H(x; 0)]−mc(x) =

f2(x)

`(x)f(x)
E[ĝ1,H(x; 0)− g1(x)]

− f1(x)

`(x)f(x)
E[ĝ2,H(x; 0)− g2(x)]

+
f1(x)f2(x)

`2(x)f 2(x)
E{[ĝ2,H(x; 0)− g2(x)]2}

−f1(x)f2(x)

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)]2}

−f
2
1 (x)− f 2

2 (x)

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)][ĝ2,H(x; 0)− g2(x)]}

+O{[ĝ1,H(x; 0)− g1(x)]3}+O{[ĝ2,H(x; 0)− g2(x)]3}.

Noting that E[(ĝi−gi)2] = Var(ĝi)+[E(ĝi)−gi]2, and using the results in Lemma

3.3, one gets that

E[m̃c
H(x; 0)]−mc(x) =

f2(x)

`(x)f(x)

1

2
µ2(K)tr[H2Hg1(x)]

− f1(x)

`(x)f(x)

1

2
µ2(K)tr[H2Hg2(x)] +O

(
1

n|H|

)
+ o[tr(H2)].

Now, recalling that gj(x) = `(x)f(x)fj(x), j = 1, 2, it follows that

∇gj(x) = ∇(`f)(x)fj(x) + ∇fj(x)(`f)(x),

Hgj(x) = H(`f)(x)fj(x) + ∇(`f)(x)∇Tfj(x)

+∇fj(x)∇T(`f)(x) + Hfj(x)(`f)(x).

Therefore,

f2(x)tr[H2Hg1(x)]− f1(x)tr[H2Hg2(x)]

= tr{H2[f2(x)H(`f)(x)f1(x) + f2(x)∇(`f)(x)∇Tf1(x) + f2(x)∇f1(x)∇T(`f)(x)

+f2(x)Hf2(x)(`f)(x)− f1(x)H(`f)(x)f2(x)− f1(x)∇(`f)(x)∇Tf2(x)

−f1(x)∇f2(x)∇T(`f)(x)− f1(x)Hf2(x)(`f)(x)]}
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= tr(H2{∇(`f)(x)[f2(x)∇Tf1(x)− f1(x)∇Tf2(x)]

+[f2(x)∇f1(x)− f1(x)∇f2(x)]∇T(`f)(x)

+(`f)(x)[f2(x)Hf1(x)− f1(x)Hf2(x)]}).

Taking into account that mc(x) = atan2[g1(x), g2(x)], it can be obtained that

∇mc(x) = ∇f1(x)f2(x)−∇f2(x)f1(x), (3.57)

Hmc(x) = Hf1(x)f2(x) + ∇f2(x)∇Tf1(x)−∇f1(x)∇Tf2(x)

−Hf2(x)f1(x). (3.58)

Therefore,

f2(x)tr[H2Hg1(x)]− f1(x)tr[H2Hg2(x)]

= tr(H2{∇(`f)(x)∇Tmc(x) + ∇mc(x)∇T(`f)(x)

+(`f)(x)[Hmc(x)−∇f2(x)∇Tf1(x) + ∇f1(x)∇Tf2(x)]})

= tr{H2[2∇(`f)(x)∇Tmc(x) + `(x)f(x)H2Hmc(x)]}

= 2∇Tmc(x)H2∇(`f)(x) + tr[`(x)f(x)H2Hmc(x)]. (3.59)

Then,

E[m̃c
H(x; 0)]−mc(x)

=
µ2(K)

`(x)f(x)

1

2
{2∇Tmc(x)H2∇(`f)(x) + tr[`(x)f(x)H2Hmc(x)]}+ o[tr(H2)]

=
1

2
µ2(K)tr[H2Hmc(x)] +

µ2(K)

`(x)f(x)
∇Tmc(x)H2∇(`f)(x) + o[tr(H2)].

To derive the variance, the function atan22(ĝ1,H, ĝ2,H) is expanded in Taylor series

around (g1, g2), as follows:
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atan22(ĝ1,H, ĝ2,H) = atan22(g1,H, g2,H) +
2atan2(g1, g2)f2

`f
(ĝ1,H − g1,H)

−2atan2(g1, g2)f1

`f
(ĝ2,H − g2,H)

+
2atan2(g1, g2)f1f2

`2f 2
(ĝ2,H − g2,H)2

−2atan2(g1, g2)f1f2

`2f 2
(ĝ1,H − g1,H)2

−2atan(g1, g2)(f 2
1 − f 2

2 )

`2f 2
(ĝ1,H − g1,H)(ĝ2,H − g2,H)

+
f 2

1

`2f 2
(ĝ2,H − g2,H)2 +

f 2
2

`2f 2
(ĝ1,H − g1,H)2

−2f1f2

`2f 2
(ĝ1,H − g1,H)(ĝ2,H − g2,H)

+O[(ĝ1,H − g1,H)3] +O[(ĝ2,H − g2,H)3]. (3.60)

Now, noting that Var(m̃c
H) = E [(m̃c

H)2] − [E(m̃c
H)]2, and taking expectations in

the expressions (3.56) and (3.60), it can be obtained that

Var[m̃c
H(x; 0)]

= atan22[g1,H(x), g2,H(x)] +
2atan2[g1(x), g2(x)]f2(x)

`(x)f(x)
E[ĝ1,H(x; 0)− g1(x)]

−2atan2[g1(x), g2(x)]f1(x)

`(x)f(x)
E[ĝ2,H(x; 0)− g2(x)]

+
2atan2[g1(x), g2(x)]f1(x)f2(x)

`2(x)f 2(x)
E{[ĝ2,H(x; 0)− g2(x)]2}

−2atan2[g1(x), g2(x)]f1(x)f2(x)

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)]2}

−2atan[g1(x), g2(x)][f 2
1 (x)− f 2

2 (x)]

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)][ĝ2,H(x; 0)− g2(x)]}

+
f 2

1 (x)

`2(x)f 2(x)
E{[ĝ2,H(x; 0)− g2(x)]2}+

f 2
2 (x)

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)]2}

−2f1(x)f2(x)

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)][ĝ2,H(x; 0)− g2(x)]}.
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−
(

atan2[g1(x), g2(x)] +
f2(x)

`(x)f(x)
E[ĝ1,H(x; 0)− g1(x)]

− f1(x)

`(x)f(x)
E[ĝ2,H(x; 0)− g2(x)] +

f1(x)f2(x)

`2(x)f 2(x)
E{[ĝ2,H(x; 0)− g2(x)]2}

−f1(x)f2(x)

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)]2}

−f
2
1 (x)− f 2

2 (x)

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)][ĝ2,H(x; 0)− g2(x)]}

+O{[ĝ1,H(x; 0)− g1(x)]3}+O{[ĝ2,H(x; 0)− g2(x)]3}
)2

+O{[ĝ1,H(x; 0)− g1(x)]3}+O{[ĝ2,H(x; 0)− g2(x)]3}.

By straightforward calculations, it can be obtained that

Var[m̃c
H(x; 0)] =

f 2
1 (x)

`2(x)f 2(x)
E{[ĝ2,H(x; 0)− g2(x)]2}

+
f 2

2 (x)

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)]2}

−2f1(x)f2(x)

`2(x)f 2(x)
E{[ĝ1,H(x; 0)− g1(x)][ĝ2,H(x; 0)− g2(x)]}

− f 2
2 (x)

`2(x)f 2(x)
{E[ĝ1,H(x; 0)− g1(x)]}2

− f 2
1 (x)

`2(x)f 2(x)
{E[ĝ2,H(x; 0)− g2(x)]}2

+
2f1(x)f2(x)

`2(x)f 2(x)
E[ĝ1,H(x; 0)− g1(x)]E[ĝ2,H(x; 0)− g2(x)]

+O{[ĝ1,H(x; 0)− g1(x)]3}+O{[ĝ2,H(x; 0)− g2(x)]3}.

So, taking into account the results in Lemma 3.3, the variance of m̃c
H(x; 0) is:

Var[m̃c
H(x; 0)] =

f 2
1 (x)

`2(x)f 2(x)
Var[ĝ2,H(x; 0)] +

f 2
2 (x)

`2(x)f 2(x)
Var[ĝ1,H(x; 0)]

−2f1(x)f2(x)

`2(x)f 2(x)
Cov[ĝ1,H(x; 0), ĝ2,H(x; 0)]

+O{[ĝ1,H(x; 0)− g1(x)]3}+O{[ĝ2,H(x; 0)− g2(x)]3}
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=
f 2

1 (x)

`2(x)f(x)

1

n|H|
R(K)ν2

2(x) +
f 2

2 (x)

`2(x)f(x)

1

n|H|
R(K)ν2

1(x)

−2f1(x)f2(x)

`2(x)f(x)

1

n|H|
R(K)c̃(x) + o

(
1

n|H|

)
=

1

n|H|`2(x)f(x)
R(K)[f 2

1 (x)ν2
2(x) + f 2

2 (x)ν2
1(x)− 2f1(x)f2(x)c̃(x)]

+o
(

1

n|H|

)
.

Taking into account that ν2
j (x) = mj(x) + s2

j(x), j = 1, 2, c̃(x) = m1(x)m2(x) +

c(x) and f 2
1 (x)+f 2

2 (x) = 1, and considering (3.8), (3.11), (3.12) and (3.13), it follows

that

f 2
1 (x)ν2

2(x) + f 2
2 (x)ν2

1(x)− 2f1(x)f2(x)c̃(x)

= f 2
1 (x)f 2

2 (x)`2(x) + f 2
1 (x)f 2

2 (x)σ2
2(x)− 2f2(x)f 3

1 (x)σ12(x) + f 4
1 (x)σ2

1(x)

+f 2
2 (x)f 2

1 (x)`2(x) + f 2
2 (x)f 2

1 (x)σ2
2(x) + 2f 3

2 (x)f1(x)σ12(x) + f 4
2 (x)σ2

1(x)

−2f 2
1 (x)f 2

2 (x)`2(x)− 2f 2
1 (x)f 2

2 (x)σ2
2(x) + 2f 3

1 (x)f2(x)σ12(x)

−2f 3
2 (x)f1(x)σ12(x) + 2f 2

1 (x)f 2
2 (x)σ2

1(x)

= σ2
1(x). (3.61)

Therefore,

Var[m̃c
H(x; 0)] =

R(K)σ2
1(x)

n|H|`2(x)f(x)
+ o

(
1

n|H|

)
.

Proof of Lemma 3.4 First, using the result for the conditional mean E[ĝj,H(x; 1)] =

E{E[ĝj,H(x; 1)|X1, . . . ,Xn]}, and that

E[ĝj,H(x; 1)|X1, . . . ,Xn] =
1

n

n∑
i=1

mj(Xi)ŴH(Xi − x; 1), (3.62)

with the weights ŴH(u; 1) given in (3.31), under the assumptions (A1), (C1), (H1)
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and (K1), and using (3.50), (3.51) and (3.52), it follows that,

E[ĝj,H(x; 1)]

=

∫
mj(u)ŴH(u− x; 1)f(u)du

=

∫
KH(u− x)mj(u)f(u){µ2(K)tr(H2)f(x) + o[tr(H2)]

−(u− x)T[µ2(K)H2∇f(x) + o(H21d)]}du

=

∫
K(p)mj(x + Hp)f(x + Hp){µ2(K)tr(H2)f(x)dp + o[tr(H2)]}

−
∫
K(p)mj(x + Hp)f(x + Hp)(Hp)T[µ2(K)H2∇f(x) + o(H21d)]dp

=

∫
K(p)[mj(x) + pTH∇mj(x) +

1

2
pTHHmj

(x)Hp]

·[f(x) + pTH∇f(x) +
1

2
pTHHf (x)Hp]{µ2(K)tr(H2)f(x) + o[tr(H2)]}dp

−
∫
K(p)[mj(x) + pTH∇mj(x) +

1

2
pTHHmj

(x)Hp]

·[f(x) + pTH∇f(x) +
1

2
pTHHf (x)Hp]pTH[µ2(K)H2∇f(x) + o(H21d)]dp

= µ2(K)tr(H2)f 2(x)mj(x)

∫
K(p)dp

+µ2(K)tr(H2)f(x)

∫
K(p)pTH∇mj(x)pTH∇f(x)dp

+
1

2
µ2(K)tr(H2)f(x)mj(x)

∫
K(p)pTHHf (x)Hpdp

+
1

2
µ2(K)tr(H2)f 2(x)

∫
K(p)pTHHmj

(x)Hpdp

−µ2(K)mj(x)

∫
K(p)pTH∇f(x)pTH3∇f(x)dp

−µ2(K)f(x)

∫
K(p)pTH∇mj(x)pTH3∇f(x)dp + o[tr(H4)]

= µ2(K)tr(H2)f 2(x)mj(x) + µ2
2(K)tr(H2)f(x)tr[H2∇mj(x)∇Tf(x)]

+
1

2
µ2

2(K)tr(H2)f(x)mj(x)tr[H2Hf (x)] +
1

2
µ2

2(K)tr(H2)f 2(x)tr[H2Hmj
(x)]

−µ2
2(K)mj(x)tr[H4∇f(x)∇Tf(x)]− µ2

2(K)f(x)tr[H4∇f(x)∇Tmj(x)] + o[tr(H4)]

= µ2(K)tr(H2)f(x)gj(x) +
1

2
µ2

2(K)tr(H2)f(x)tr[H2Hgj(x)]

−µ2
2(K)∇Tf(x)H4∇gj(x) + o[tr(H4)].
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Concerning the variance of ĝj,H(x; 1), for j = 1, 2, it follows that

Var[ĝj,H(x; 1)] = E{Var[ĝj,H(x; 1)|X1, . . . ,Xn]}

+Var{E[ĝj,H(x; 1)|X1, . . . ,Xn]}.

Firstly,

Var[ĝj,H(x; 1)|X1, . . . ,Xn] =
1

n2

n∑
i=1

s2
j(Xi)Ŵ

2
H(Xi − x; 1). (3.63)

Therefore, considering (3.31) and under the assumptions (A1), (C1), (H1) and

(K1),

E{Var[ĝj,H(x; 1)|X1, . . . ,Xn]}

=
1

n

∫
s2
j(u)Ŵ 2

H(u− x; 1)f(u)du

=
1

n

∫
K2

H(u− x)s2
j(u)f(u)

·
{
µ2(K)tr(H2)f(x) + o[tr(H2)]− (u− x)T[µ2(K)H2∇f(x) + o(H21d)]

}2
du

=
1

n|H|

∫
K2(p)s2

j(x + Hp)f(x + Hp){µ2
2(K)tr2(H2)f 2(x) + o[tr2(H2)]}dp

+
1

n|H|

∫
K2(p)s2

j(x + Hp)f(x + Hp){pTH[µ2(K)H2∇f(x) + o(H21d)]}2dp

− 2

n|H|

∫
K2(p)s2

j(x + Hp)f(x + Hp)µ2(K)tr(H2)f(x)pTH

·[µ2(K)H2∇f(x) + o(H21d)]dp

=
1

n|H|
µ2

2(K)R(K)s2
j(x)f 3(x)tr2(H2) + o

[
tr2(H2)

n|H|

]
. (3.64)

On the other hand, using the expressions (3.31) and (3.62), it follows that under
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the assumptions (A1), (C1), (H1) and (K1),

Var{E[ĝj,H(x; 1)|X1, . . . ,Xn]}

=
1

n

∫
m2
j(u)Ŵ 2

H(u− x; 1)f(u)du

− 1

n

∫
mj(u)ŴH(u− x; 1)f(u)du

∫
mj(v)ŴH(v − x; 1)f(v)dv

=
1

n|H|
µ2

2(K)R(K)m2
j(x)f 3(x)tr2(H2)− 1

n
µ2

2(K)tr2(H2)f 2(x)g2
j (x)

+o
[

tr2(H2)

n|H|

]
. (3.65)

Hence, from (3.63), (3.64), (3.65), and observing that ν2
j (x) = m2

j(x)+s2
j(x), one

gets that

Var[ĝj,H(x; 1)] =
1

n|H|
µ2

2(K)R(K)ν2
j (x)f 3(x)tr2(H2) + o

[
tr2(H2)

n|H|

]
.

Finally, for the covariance, taking into account that

Cov[ĝ1,H(x; 1), ĝ2,H(x; 1)]

= E{E[ĝ1,H(x; 1)ĝ2,H(x; 1)|X1, . . . ,Xn]}

−E{E[ĝ1,H(x; 1)|X1, . . . ,Xn]}E{E[ĝ2,H(x; 1)|X1, . . . ,Xn]},

and that

E[ĝ1,H(x; 1)ĝ2,H(x; 1)|X1, . . . ,Xn]

=
1

n2

n∑
i=1

c̃(Xi)Ŵ
2
H(Xi − x; 1)

+
1

n2

n∑
i 6=j

m1(Xi)m2(Xj)ŴH(Xi − x; 1)ŴH(Xj − x; 1),

under assumptions (C1), using (3.31), and following similar arguments to those used

for the bias and the variance, it follows that



148 Chapter 3. Nonparametric regression estimation with a circular response

Cov[ĝ1,H(x; 1), ĝ2,H(x; 1)]

=
1

n

∫
c̃(u)Ŵ 2

H(u− x; 1)f(u)du

+
n− 1

n

∫
m1(u)ŴH(u− x; 1)f(u)du

∫
m2(v)ŴH(v − x; 1)f(v)dv

−
∫
m1(u)ŴH(u− x; 1)f(u)du

∫
m2(v)ŴH(v − x; 1)f(v)dv

=
1

n|H|
µ2

2(K)R(K)c̃(x)f 3(x)tr2(H2) + o
[

tr2(H2)

n|H|

]
.

Proof of Theorem 3.6 For the bias, the function atan2(ĝ1,H, ĝ2,H) is expanded in

Taylor series around (g∗1, g
∗
2) = (tr(H2)fµ2(K)g1, tr(H

2)fµ2(K)g2):

atan2(ĝ1,H, ĝ2,H) = atan2(g∗1,H, g
∗
2,H) +

f2

tr(H2)µ2(K)`f 2
(ĝ1,H − g∗1)

− f1

tr(H2)µ2(K)`f 2
(ĝ2,H − g∗2) +

f1f2

tr2(H2)µ2
2(K)`2f 4

(ĝ2,H − g∗2)2

− f1f2

tr2(H2)µ2
2(K)`2f 4

(ĝ1,H − g∗1)2

− f 2
1 − f 2

2

tr2(H2)µ2
2(K)`2f 4

(ĝ1,H − g∗1)(ĝ2,H − g∗2)

+O[(ĝ1,H − g∗1)3] +O[(ĝ2,H − g∗2)3]. (3.66)

Hence, taking expectations in the above expression, it follows that

E[m̃c
H(x; 1)]−mc(x)

=
f2(x)

tr(H2)µ2(K)`(x)f 2(x)
E[ĝ1,H(x)− g∗1(x)]

− f1(x)

tr(H2)µ2(K)`(x)f 2(x)
E[ĝ2,H(x)− g∗2(x)]

+
f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ2,H(x)− g∗2(x)]2}

− f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)]2}

− f 2
1 (x)− f 2

2 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)][ĝ2,H(x)− g∗2(x)]}

+O{[ĝ1,H(x)− g∗1(x)]3}+O{[ĝ2,H(x)− g∗2(x)]3}.
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Noting that E[(ĝi−gi)2] = Var(ĝi)+[E(ĝi)−gi]2, and using the results in Lemma

3.4, one gets that

E[m̃c
H(x; 1)]−mc(x)

=
f2(x)

tr(H2)`(x)f 2(x)
µ2(K)

{
1

2
tr(H2)f(x)tr[H2Hg1(x)]−∇Tf(x)H4∇g1(x)

}
− f1(x)

tr(H2)`(x)f 2(x)
µ2(K)

{
1

2
tr(H2)f(x)tr[H2Hg2(x)]−∇Tf(x)H4∇g2(x)

}
+O

[
tr2(H2)

n|H|

]
+ o[tr(H2)].

Using (3.57) and (3.58), it can be obtained that

f2(x)∇Tf(x)H4∇g1(x)− f1(x)∇Tf(x)H4∇g2(x)

= ∇Tf(x)H4[f2(x)∇(`f)(x)f1(x) + f2(x)∇f1(x)(`f)(x)

−f1(x)∇(`f)(x)f2(x)− f1(x)∇f2(x)(`f)(x)]

= ∇Tf(x)H4(`f)(x)[f2(x)∇f1(x)− f1(x)∇f2(x)]

= (`f)(x)∇Tf(x)H4∇mc(x).

Then, using (3.59) and the last expression, it follows that

E[m̃c
H(x; 1)]−mc(x)

=
µ2(K)

`(x)f(x)

1

2
{2∇Tmc(x)H2∇(`f)(x) + tr[`(x)f(x)H2Hmc(x)]}

− µ2(K)

tr(H2)f(x)
∇Tf(x)H4∇mc(x) + o[tr(H2)]

=
µ2(K)

`(x)
∇Tmc(x)H2∇`(x) +

µ2(K)

f(x)
∇Tf(x)H2∇mc(x)

+
µ2(K)

2
tr[H2Hmc(x)]− µ2(K)

tr(H2)f(x)
∇Tf(x)H4∇mc(x) + o[tr(H2)]

=
1

2
µ2(K)tr[H2Hmc(x)] +

µ2(K)

`(x)
∇Tmc(x)H2∇`(x) + o[tr(H2)].
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To derive the variance, the function atan22(ĝ1,H, ĝ2,H) is expanded in Taylor series

around (g∗1, g
∗
2) = (tr(H2)fµ2(K)g1, tr(H

2)fµ2(K)g2).

atan22(ĝ1,H, ĝ2,H) = atan22(g∗1,H, g
∗
2,H) +

2atan2(g1, g2)f2

tr(H2)µ2(K)`f 2
(ĝ1,H − g∗1)

− 2atan2(g1, g2)f1

tr(H2)µ2(K)`f 2
(ĝ2,H − g∗2)

+
2atan2(g1, g2)f1f2

tr2(H2)µ2
2(K)`2f 4

(ĝ2,H − g∗2)2

−2atan2(g1, g2)f1f2

tr2(H2)µ2
2(K)`2f 4

(ĝ1,H − g∗1)2

−2atan(g1, g2)(f 2
1 − f 2

2 )

tr2(H2)µ2
2(K)`2f 4

(ĝ1,H − g∗1)(ĝ2,H − g∗2)

+
f 2

1

tr2(H2)µ2
2(K)`2f 4

(ĝ2,H − g∗2)2

+
f 2

2

tr2(H2)µ2
2(K)`2f 4

(ĝ1,H − g∗1)2

− 2f1f2

tr2(H2)µ2
2(K)`2f 4

(ĝ1,H − g∗1)(ĝ2,H − g∗2)

+O[(ĝ1,H − g∗1)3] +O[(ĝ2,H − g∗2)3].

Now, taking expectations in the above expression and in the expression (3.66), it

is obtained that

Var[m̃c
H(x; 1)]

= atan22[g1,H(x), g2,H(x)] +
2atan2[g1(x), g2(x)]f2(x)

tr(H2)µ2(K)`(x)f 2(x)
E[ĝ1,H(x)− g∗1(x)]

−2atan2[g1(x), g2(x)]f1(x)

tr(H2)µ2(K)`(x)f 2(x)
E[ĝ2,H(x)− g∗2(x)]

+
2atan2[g1(x), g2(x)]f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ2,H(x)− g∗2(x)]2}

−2atan2[g1(x), g2(x)]f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)]2}

−2atan[g1(x), g2(x)][f 2
1 (x)− f 2

2 (x)]

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)][ĝ2,H(x)− g∗2(x)]}
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+
f 2

1 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ2,H(x)− g∗2(x)]2}

+
f 2

2 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)]2}

− 2f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)][ĝ2,H(x)− g∗2(x)]}

−
(

atan2[g1(x), g2(x)] +
f2(x)

tr(H2)µ2(K)`(x)f 2(x)
E[ĝ1,H(x)− g∗1(x)]

− f1(x)

tr(H2)µ2(K)`(x)f 2(x)
E[ĝ2,H(x)− g∗2(x)]

+
f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ2,H(x)− g∗2(x)]2}

− f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)]2}

− f 2
1 (x)− f 2

2 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)][ĝ2,H(x)− g∗2(x)]}

+O{[ĝ1,H(x)− g∗1(x)]3}+O{[ĝ2,H(x)− g∗2(x)]3}
)2

+O{[ĝ1,H(x)− g∗1(x)]3}+O{[ĝ2,H(x)− g∗2(x)]3}.

By straightforward calculations, it can be obtained that

Var[m̃c
H(x; 1)] =

f 2
1 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ2,H(x)− g∗2(x)]2}

+
f 2

2 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)]2}

− 2f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E{[ĝ1,H(x)− g∗1(x)][ĝ2,H(x)− g∗2(x)]}

− f 2
2 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

{E[ĝ1,H(x)− g∗1(x)]}2

− f 2
1 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

{E[ĝ2,H(x)− g∗2(x)]}2

+
2f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

E[ĝ1,H(x)− g∗1(x)]E[ĝ2,H(x)− g∗2(x)]

+O{[ĝ1,H(x)− g∗1(x)]3}+O{[ĝ2,H(x)− g∗2(x)]3}.
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So, taking into account the results of Lemma 3.4 and considering (3.61), the

variance of m̃c
H(x; 1) is:

Var[m̃c
H(x; 1)] =

f 2
1 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

Var[ĝ2,H(x)]

+
f 2

2 (x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

Var[ĝ1,H(x)]

− 2f1(x)f2(x)

tr2(H2)µ2
2(K)`2(x)f 4(x)

Cov[ĝ1,H(x), ĝ2,H(x)]

+O{[ĝ1,H(x)− g∗1(x)]3}+O{[ĝ2,H(x)− g∗2(x)]3}

=
f 2

1 (x)

`2(x)f(x)

1

n|H|
R(K)ν2

2(x) +
f 2
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`2(x)f(x)

1

n|H|
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1(x)

−2f1(x)f2(x)

`2(x)f(x)

1

n|H|
R(K)c(x) + o

(
1

n|H|

)
=

1

n|H|`2(x)f(x)
R(K)[f 2

1 (x)ν2
2(x) + f 2

2 (x)ν2
1(x)− 2f1(x)f2(x)c(x)]

+o
(

1

n|H|

)
=

R(K)σ2
1(x)

n|H|`2(x)f(x)
+ o

(
1

n|H|

)
.



Chapter 4

Nonparametric regression

estimation for a circular response

and an Rd-valued covariate with

spatially correlated errors

4.1 Introduction

In many scientific fields, such as oceanography, meteorology or biology, data are

angular measurements (points in the unit circle), exhibiting in some cases a spatial

dependence structure which should be accounted for in any modeling approach. Lit-

erature on circular spatial modeling is not very extensive. For geostatistical data,

Morphet (2009) introduced the cosineogram (trying to imitate the variogram) as

a measure of spatial autocorrelation between angles. The author also presented

a method to simulate spatially correlated circular data using a transformation of

a Gaussian spatial process. For the analysis of wind data (speed and direction),

Modlin et al. (2012) proposed a Bayesian hierarchical model, specified by a circular

conditional autoregressive process. This model is based on the wrapped circular dis-

tribution of the direction vector and a spatial Gaussian autoregressive model for the

logarithm of the wind speed. In a practical setting, the authors analyzed hurricane

surface wind fields. In a similar framework, Casson and Coles (1998) provided a

153
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spatial analysis about the direction of maximum wind speed at locations on the Gulf

and Atlantic coasts of the United States, by considering conditionally independent

directions modeled with a von Mises distribution, introducing the spatial structure

in the modal direction and concentration parameters.

In other scenarios, circular measurements are also accompanied by observations

of other real-valued random variables, as in Mastrantonio et al. (2018), who proposed

a Markov model for multivariate circular-linear data to forecast the wind speed and

direction in the city of Taranto (Italy); or Garćıa-Portugués et al. (2014), who ana-

lyzed the relation between orientation and size of wildfires in Portugal. Alternative

approaches using copulas for dependence modeling have been also considered in sim-

ilar contexts. For instance, Carnicero et al. (2013), explored the relation between

wind direction and rainfall amount in the North of Spain, as well as the dependence

between the wind directions in two nearby buoys at the Atlantic ocean.

Focusing on the analysis of wave heights and wave directions, some other authors

developed different approaches to model spatial or spatio-temporal circular data. For

example, Jona-Lasinio et al. (2012) formulated the so-called wrapped Gaussian spa-

tial process, as a spatial process for circular data, allowing only symmetric marginal

distributions. They analyzed outgoing wave directions at the Adriatic Sea area dur-

ing a storm period by using a Markov Chain Monte Carlo (MCMC) model fitting.

Mastrantonio et al. (2016) introduced the wrapped skew Gaussian spatial process

as an alternative to the wrapped Gaussian spatial process which allows for asym-

metric marginal distributions. This circular process was also used to analyze wave

directions at the Adriatic Sea. Wang and Gelfand (2014) developed the projected

Gaussian spatial process, induced from a linear bivariate Gaussian spatial process.

Using MCMC methods, the authors modeled wave directions at Adriatic Sea from

a calm period transitioning to a storm period. Wang et al. (2015) proposed a fully

model-based approach to capture spatial and temporal joint dependence structure

between a linear and an angular variable. More specifically, the joint distribution

of the wave height and direction is specified by modeling the conditional distribu-

tion of the wave height given the wave direction through a Bayesian geostatistical

model. Lagona et al. (2015) introduced a hidden Markov model accounting for the

correlation of spatio-temporal linear-circular data, providing an approach to iden-
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tify regimes of marine currents. The author considered a flexible model based on

the multivariate von Mises distribution, adapting it to heteroscedasticity and an

autoregressive correlation structure.

An alternative to the previous approaches to analyze spatial circular data con-

sists in the formulation of a linear-circular regression model taking the spatial correla-

tion into account and, subsequently, estimating the corresponding circular regression

function. Following this idea and for a single real-valued covariate, Di Marzio et al.

(2013) introduced a nonparametric estimator of the regression function when the

data come from mixing processes. The same approach has been also applied, with

due modifications, in the context of time series by Di Marzio et al. (2012). The

authors considered smoothing and prediction in the time domain for circular time-

series data. In this chapter, using a similar approach, the regression model (3.3) with

circular response and several Euclidean covariates, but assuming spatially correlated

errors, is considered. Then, the nonparametric estimators given in (3.14) are ana-

lyzed in this framework. As expected, the asymptotic variance of these estimators

will depend on the correlation.

As pointed out in the previous chapter, a crucial step to compute estimators (3.14)

is the selection of an appropriate bandwidth or smoothing matrix. Following similar

arguments to those used in Chapter 3, some guidelines to select locally optimal

bandwidth matrices for the nonparametric estimators given in (3.14) are provided

in this chapter, when considering the regression model (3.3) for spatially correlated

errors. For practical purposes, cross-validation criteria are also defined and analyzed

in practice. It should be noted that for correlated data, the standard leave-one-

out cross-validation method will not provide satisfactory bandwidths (see Section

1.1.2 for further details). In this chapter, a modified version of the cross-validation

criterion (MCVc), given in (3.33), is provided. Different simulation scenarios will be

designed, considering circular spatial errors generated from wrapped and projected

Gaussian processes, introduced in Jona-Lasinio et al. (2012) and Wang and Gelfand

(2014), respectively.

This chapter is organized as follows. An introduction on different models of spa-

tial processes for circular data are provided in Section 4.2. Some of these models

will be employed in the simulation study included in Section 4.5. Section 4.3 intro-
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duces the linear-circular regression model, which adds a spatial random process to

a deterministic trend. Marginal models for the sine and cosine components required

for the proposed estimators are also presented in this section. In Section 4.4, the

asymptotic conditional variance of the nonparametric estimators of the circular re-

gression function, given in (3.14), are derived, under certain conditions on the model

dependence structure. Additionally, some proposals for bandwidth selection are in-

troduced. A simulation study for assessing the performance of the estimators and

the bandwidth selectors, in this context of spatial dependence, is provided in Section

4.5. The simulations were carried out considering that the errors are drawn from a

wrapped and a projected Gaussian spatial process. Section 4.6 shows the illustration

of the nonparametric approaches to the wave direction dataset (for a certain time

and period) in the Adriatic Sea area previously cited. Finally, Section 4.7 includes

the proofs of the main results.

4.2 Modeling circular processes with spatial

dependence

This section describes different models of spatial processes for circular data. Some of

these models will be employed in the simulation study presented in Section 4.5. In

Section 4.2.1, we briefly describe the wrapped Gaussian spatial process (Jona-Lasinio

et al., 2012), which is induced from a linear Gaussian spatial process. Projected

Gaussian spatial processes (Wang and Gelfand, 2014), which are obtained from linear

bivariate Gaussian spatial processes, are presented in Section 4.2.2. Other circular

spatial processes such as those obtained from transformations of Gaussian spatial

processes (Morphet, 2009), are formulated in Section 4.2.3.

4.2.1 Wrapped Gaussian spatial processes

Wrapped Gaussian spatial processes, which are induced from linear Gaussian spatial

processes, were introduced by Jona-Lasinio et al. (2012). The wrapping approach

consists on wrapping a linear variable around the unit circle, and consequently, its

circular density function is obtained by using a modulo operation and wrapping the
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density function of the linear random variable. Next, the steps followed to construct

a wrapped Gaussian spatial process are described.

Given a collection of spatial coordinates, Xi, with i = 1, . . . , n, consider a realiza-

tion {Yi = Y (Xi), i = 1, . . . , n} from a real-valued Gaussian spatial process, where

each observation can be decomposed as:

Yi = µ+ wi, i = 1, . . . , n (4.1)

being µ = µ(Xi) the mean and wi random variables of a zero mean Gaussian spatial

process with Cov(wi, wj | Xi,Xj) = σ2ρn(Xi −Xj). The variance of wi is denoted

by σ2 and ρn is a continuous stationary correlation function satisfying ρn(0) = 1,

ρn(x) = ρn(−x), and |ρn(x)| ≤ 1, ∀x. Then, a realization of a wrapped spatial

process {Θi, i = 1, . . . , n}, linked to the spatial coordinates Xi, with i = 1, . . . , n, is

obtained as:

Θi = Yi(mod 2π), i = 1, . . . , n.

Note that this realization can be viewed in vector form as Θ = (Θ1, . . . ,Θn)T,

with mean direction vector µ1n, being 1n a n × 1 vector with every entry equal to

1, and covariance matrix σ2Rn, where Rn(i, j) = ρn(Xi −Xj) is the (i, j)-entry of

the correlation matrix Rn.

The exponential spatial correlation function

Cov(wi, wj | Xi,Xj) = σ2[exp(−‖Xi −Xj‖/ae)], (4.2)

where ae is the practical range, and the circular correlation of the corresponding

wrapped Gaussian spatial process (using a circular correlation coefficient) were com-

pared in Jona-Lasinio et al. (2012, Figure 4), obtaining very similar shapes for both

correlations. This comparison is also performed here using a simulated dataset. For

this purpose, 500 samples of size n = 400 are generated on a regular grid in the

unit square D = [0, 1] × [0, 1], from a Gaussian spatial process with zero mean and

exponential variogram (4.2) with σ2 = 1 and two values of the range parameter ae

(ae = 0.1, 0.3). The corresponding zero mean wrapped spatial processes with the

same values of σ2 and ae are computed. Figure 4.1 shows the exponential correla-
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Figure 4.1: Exponential correlation function (black lines) and the corresponding cor-
relation coefficient rn at different distances, for a wrapped (red lines) and a projected
Gaussian spatial process (green lines), for two values of the range parameter, ae = 0.1
(left panel) and ae = 0.3 (right panel) for µ = 0 and σ = 1.

tion function (black lines) and the associated circular sample correlation coefficient

rn (red lines) given in (1.39), for two values of the range parameter, ae = 0.1 (left

panel) and ae = 0.3 (right panel). As ae gets larger, the circular correlation can

depart considerably from the exponential correlation function of the inline process.

However, the simulation results show that the circular correlation function of the

wrapped Gaussian spatial process is monotonically decreasing as the distance be-

tween two locations increases, and the induced circular correlation curve is always

below the spatial correlation curve for the linear process, except for large distances.

More accurate results could possibly be obtained if the sample was larger.

Fixing the values of µ = 0 and σ = 1, the effect of the range parameter ae on a

realization on a 15 × 15 grid of the wrapped circular process can be seen in Figure

4.2. Larger values of the range ae yield a smoother pattern. Similar arguments were

pointed out in Jona-Lasinio et al. (2012).

4.2.2 Projected Gaussian spatial processes

Another way of generating circular observations that exhibit spatial correlation are

the projected Gaussian spatial processes, which are induced from bivariate Gaussian

spatial processes (Wang and Gelfand, 2014).
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Figure 4.2: Simulated samples of a wrapped Gaussian spatial process on a 15 × 15
grid with exponential correlation being ae = 0.1 (left), ae = 0.3 (center) and ae = 0.6
(right), for µ = 0 and σ = 1 in (4.1) and (4.2).

Consider a bivariate Gaussian spatial process, Y, observed at a collection of

spatial coordinates Xi, with i = 1, . . . , n. The observations Yi = (Y1i, Y2i), with

Yi = Y(Xi) and (Y1i, Y2i) = [Y1i(Xi), Y2i(Xi)], can be decomposed as follows:

Yi = µ+ wi, i = 1, . . . , n, (4.3)

where µ = µ(Xi) ∈ R2 is the mean vector and the wi are random variables of a zero

mean bivariate Gaussian spatial process with cross covariance function ρn(x) ⊗ T,

being ρn a continuous stationary correlation function and T a matrix , defined as

T =

(
σ2 τσ

τσ 1

)
,

with σ > 0 and τ ∈ [−1, 1]. The operator ⊗ denotes the usual Kronecker product.

A realization of a circular spatial process (in vector form), Θ = (Θ1, . . . ,Θn)T

can be obtained as:

Θi = atan2(Y2i, Y1i), i = 1, . . . , n.

Wang and Gelfand (2014) proved that the correlation functions of the projected

and the original bivariate Gaussian spatial processes are similar. An analogous

experiment to that perform in the previous section allows to compare the shape of
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Figure 4.3: Simulated samples of a projected Gaussian spatial process on a 15× 15
grid with exponential correlation being ae = 0.1 (left), ae = 0.3 (center) and ae = 0.6
(right), for µ = (1, 1)T, σ = 1 and τ = 0.9 in (4.3) and (4.4).

the correlation functions of the projected and the original bivariate Gaussian spatial

processes. Considering µ = (1, 1)T and the cross-covariance function

Cov(wi,wj | Xi,Xj) = [exp(−‖Xi −Xj‖/ae)] ·T, (4.4)

with σ = 1 and τ = 0.9, Figure 4.1 shows the exponential correlation function (black

line) and the corresponding correlation for the projected Gaussian spatial process

(green line), computed at different distances, for two values of the range parameter,

ae = 0.1 (left panel) and ae = 0.3 (right panel). Sensitivity to the choice of the larger

range parameter ae can be observed.

Figure 4.3 shows a sample on a 15×15 grid of a simulated projected Gaussian spa-

tial process for different values of the range parameter, ae = 0.1 (weak correlation),

ae = 0.3 (medium correlation) and ae = 0.6 (strong correlation), for µ = (1, 1)T,

σ = 1 and τ = 0.9. From left to right, the range increases, i.e., there is a stronger

spatial dependence structure, and, consequently, the corresponding circular process

realization shows a smoother pattern.

4.2.3 Other circular spatial processes

In this section, other remarkable circular processes with spatial dependence are pre-

sented. More specifically, circular spatial processes obtained by transformations of

Gaussian spatial processes (Morphet, 2009) are introduced. They represent an al-
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ternative to generate circular data with spatial correlation, however, for the sake

of illustration, wrapped and projected spatial processes (which were described in

Sections 4.2.1 and 4.2.2, respectively) will be only employed in the simulation study

of Section 4.5. Next, the steps followed to generate a sample of circular spatial

processes using this approach are described.

Given a collection of spatial coordinates, Xi, with i = 1, . . . , n, generate a

Gaussian spatial process {Yi = Y (Xi), i = 1, . . . , n} with mean µ = µ(Xi) and

Cov(Yi, Yj | Xi,Xj) = σ2ρn(Xi − Xj). The variance of Yi, i = 1, . . . , n, is denoted

by σ2 and ρn is a continuous stationary correlation function satisfying ρn(0) = 1,

ρn(x) = ρn(−x), and |ρn(x)| ≤ 1, ∀x. Then, a realization of the circular spatial pro-

cess {Θi, i = 1, . . . , n}, can be obtained by computing the inverse of the cumulative

distribution function as:

Θi = G−1
Θ [FY (Yi)], i = 1, . . . , n,

where GΘ and FY are the cumulative distribution functions of Θ and Y , respectively.

Close expressions of the cumulative distribution functions for circular distributions,

GΘ, and their corresponding inverses were provided in Morphet (2009, Table 5.2).

An example of a simulated circular spatial process with the von Mises distribution,

obtained from a transformation of a Gaussian spatial process, can be found in Mor-

phet (2009, Figure 5.1). We refer to Morphet (2009, Section 5.3) for further details

on this method of generating a circular spatial process. Moreover, the distributional

and spatial properties of this circular spatial process were derived by Morphet (2009,

Section 5.4). For instance, the similarity on the shape of the inverted cosineogram

(which is an analogue of the covariogram) of the circular spatial process and the

variogram of a Gaussian spatial process was illustrated (Morphet, 2009, Figure 5.4).

4.3 Nonparametric circular regression estimation

with spatially correlated errors

This section introduces the linear-circular regression model, which adds a spatial

circular random process to the trend or regression function. In this case, we assume
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the linear-circular regression model given in (3.3), but supposing that the circular

errors are spatially correlated. More specifically, we consider the regression model

given in (3.3):

Θi = [mc(Xi) + εi](mod 2π), i = 1, . . . , n, (4.5)

where mc is a smooth trend or regression function and the εi are random angles,

such that, E[sin(εi) | X = x] = 0, and additionally, satisfying in this dependence

framework that

Cov[sin(εi), sin(εj) | Xi,Xj] = σ2
1ρ1,n(Xi −Xj),

Cov[cos(εi), cos(εj) | Xi,Xj] = σ2
2ρ2,n(Xi −Xj),

Cov[sin(εi), cos(εj) | Xi,Xj] = σ12ρ3,n(Xi −Xj),

with σ2
k < ∞ for k = 1, 2, and σ12 < ∞. The continuous stationary correlation

functions ρk,n satisfy ρk,n(0) = 1, ρk,n(x) = ρk,n(−x), and |ρk,n(x)| ≤ 1, for any

x ∈ D ⊂ Rd, and k = 1, 2, 3. The subscript n in ρk,n indicates that the correlation

functions vary with n (specifically, the correlation functions shrink as n goes to

infinity). Note also that the subscript k does not correspond to an integer sequence

and it just indicates if the correlation corresponds to the sine process (k = 1), the

cosine process (k = 2) or if it is the cross-correlation between them (k = 3).

In this context, considering model (4.5), the regression function mc can be non-

parametrically estimated using the local polynomial type estimators given in (3.14).

As pointed out in Chapter 3, this approach implicitly brings the consideration of

two regression models for the sine and cosine components of Θ on X. However, in

contrast to models (3.4) and (3.5), in this case, the errors of these two models are

also spatially correlated. These regression models are:

sin(Θi) = m1(Xi) + ξi (4.6)

cos(Θi) = m2(Xi) + ζi, (4.7)

where, as in models (3.4) and (3.5), the ξi and the ζi, i = 1, . . . , n, are sam-

ples of the variables ξ and ζ, respectively, absolutely bounded by 1, satisfying

E(ξ | X = x) = E(ζ | X = x) = 0. Additionally, for every x ∈ D, set Var(ξ |
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X = x) = s2
1(x), Var(ζ | X = x) = s2

2(x), E(ξζ | X = x) = c(x), and taking

into account that the errors in model (4.5) are spatially correlated, we use the no-

tation Cov(ξi, ξj | Xi,Xj) = Cn,1(Xi,Xj), Cov(ζi, ζj | Xi,Xj) = Cn,2(Xi,Xj) and

Cov(ξi, ζj | Xi,Xj) = Cn,3(Xi,Xj), for i, j = 1, . . . , n, and i 6= j.

Notice that expressions (3.8), (3.11), (3.12) and (3.13) also hold in this framework.

Moreover, recalling that f1(x) = sin[mc(x)] and f2(x) = cos[mc(x)], and using sine

and cosine addition formulas, the following relation between the covariance Cn,1,

Cn,2 and Cn,3, defined in models (4.6) and (4.7), and the correlations ρk,n, k = 1, 2, 3,

directly derived from model (4.5), can be obtained:

Cn,1(Xi,Xj) = f1(Xi)f1(Xj)σ
2
2ρ2,n(Xi −Xj) + f1(Xi)f2(Xj)σ12ρ3,n(Xi −Xj)

+f2(Xi)f1(Xj)σ12ρ3,n(Xi −Xj)

+f2(Xi)f2(Xj)σ
2
1ρ1,n(Xi −Xj), (4.8)

Cn,2(Xi,Xj) = f2(Xi)f2(Xj)σ
2
2ρ2,n(Xi −Xj)− f2(Xi)f1(Xj)σ12ρ3,n(Xi −Xj)

−f1(Xi)f2(Xj)σ12ρ3,n(Xi −Xj)

+f1(Xi)f1(Xj)σ
2
1ρ1,n(Xi −Xj), (4.9)

Cn,3(Xi,Xj) = f1(Xi)f2(Xj)σ
2
2ρ2,n(Xi −Xj)− f1(Xi)f1(Xj)σ12ρ3,n(Xi −Xj)

+f2(Xi)f2(Xj)σ12ρ3,n(Xi −Xj)

−f2(Xi)f1(Xj)σ
2
1ρ1,n(Xi −Xj). (4.10)

In Chapter 3 (Section 3.3.1) of this dissertation, the asymptotic conditional bias

and variance of the circular regression estimators, given in (3.14), were derived for

independent data. In the following section, these asymptotic expressions for esti-

mators (3.14), with polynomial degrees p = 0 and p = 1, considering the regression

model with spatially correlated errors (4.5), will be obtained.

Note that the asymptotic conditional bias of these estimators is the same for

independent and for dependent data and, therefore, in this chapter, we will only

focus on deriving the their asymptotic conditional variance under model (4.5).
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4.4 Asymptotic properties of local polynomial

estimators

The Nadaraya–Watson and local linear estimators of the regression functions mj (de-

noted by m̂j,H(x; p)), j = 1, 2, at x ∈ D ⊂ Rd, were defined in (3.15) and (3.22), for

p = 0 and p = 1, respectively. Asymptotic properties of m̂j,H(x; p), j = 1, 2, p = 0, 1,

considering models (4.6) and (4.7) for the sine and cosine components, respectively,

can be obtained using some results given in Liu (2001). For this, apart from the

hypotheses required in the case of independent data (Chapter 3), the following extra

assumption on the design is needed:

(C2) For the correlation functions ρk,n, k = 1, 2, 3, there exist ρMk
and ρck such that

n
∫
|ρk,n(x)|dx < ρMk

and limn→∞ n
∫
ρk,n(x)dx = ρck . For any sequence εn > 0

satisfying n1/2εn →∞,

n

∫
‖x‖≥εn

|ρk,n(x)|dx→ 0 as n→∞.

Note that hypothesis (C2) establishes similar conditions on the correlation func-

tions to those specified in assumption (A3), included in the Introduction of this

dissertation. Therefore, the comments pointed out in Section 1.1.2 regarding as-

sumption (A3) can be adapted here for assumption (C2). Instead of the correlation

function ρn, they refer to the correlation functions ρk,n, k = 1, 2, 3.

The asymptotic conditional bias and variance of the circular regression estimator

m̂c
H(x; p), for p = 0, 1, given in (3.14), can be derived by using the asymptotic bias

and variance of estimators m̂j,H(x; p), j = 1, 2, as well as the asymptotic covariance

between m̂1,H(x; p) and m̂2,H(x; p), for p = 0, 1. The asymptotic bias of estimators

m̂j,H(x; p), j = 1, 2 coincides with those obtained for independent data and they

were given in (3.16) and (3.23), for p = 0 and p = 1, respectively. The asymptotic

variance of estimators m̂j,H(x; p), j = 1, 2, for p = 0, 1, and the asymptotic covariance

between m̂1,H(x; p) and m̂2,H(x; p), for p = 0, 1 are given below.

It should be noted that although assumption (C2) establishes conditions about

correlations ρk,n, k = 1, 2, 3, directly derived from model (4.5), using the sine and

cosine addition formulas, it is straightforward to obtain equations (4.8)–(4.10), which
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relate these covariances with those coming from models (4.6) and (4.7).

Lemma 4.1 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D × T. Under assumptions (A1), (C1), (C2), (H2), (K1) and (K2), if x is an

interior point of the support of f , then, for j = 1, 2, and p = 0, 1,

Var[m̂j,H(x; p) | X1, . . . ,Xn] =
R(K)[s2

j(x) + f(x)Cj(x)]

n|H|f(x)

+oP
(

1

n|H|

)
,

Cov[m̂1,H(x; p), m̂2,H(x; p) | X1, . . . ,Xn] =
R(K)[c(x) + f(x)C3(x)]

n|H|f(x)

+oP
(

1

n|H|

)
,

where

C1(x) = σ2
2f

2
1 (x)ρc2 + 2σ12f1(x)f2(x)ρc3 + σ2

1f
2
2 (x)ρc1 , (4.11)

C2(x) = σ2
2f

2
2 (x)ρc2 − 2σ12f1(x)f2(x)ρc3 + σ2

1f
2
1 (x)ρc1 , (4.12)

C3(x) = σ2
2f1(x)f2(x)ρc2 − σ12f

2
1 (x)ρc3 + σ12f

2
2 (x)ρc3 − σ2

1f1(x)f2(x)ρc1 . (4.13)

Proof See Section 4.7.

Note that the asymptotic conditional bias of estimators m̂j,H(x; p), for j = 1, 2,

and p = 0, 1, considering models (4.6) and (4.7), are the same as those obtained in

Lemmas 3.1 and 3.2, for independent data. This is also the case for the asymptotic

conditional bias of m̂c
H(x; p), given in (3.17) and (3.24), for p = 0 and p = 1,

respectively. However, the asymptotic conditional variance of m̂c
H(x; p) depends on

the spatial correlation. Considering an interior point in the support of the design

density f , the Nadaraya–Watson- and local linear-type estimators of mc have the

same asymptotic conditional variance. The following theorem provides this result.

Theorem 4.1 Let {(Xi,Θi)}ni=1 be a random sample from a density supported on

D×T. Then, under assumptions (A1), (C1), (C2), (H2), (K1) and (K2), the asymp-

totic conditional variance of m̂c
H(x; p), for p = 0, 1, at a fixed interior point x in the
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support of f , is given by:

Var[m̂c
H(x; p) | X1, . . . ,Xn] =

R(K)σ2
1{1 + f(x)ρc1}

n|H|`2(x)f(x)
+ op

(
1

n|H|

)
. (4.14)

Proof See Section 4.7.

Notice that the expressions of the asymptotic conditional variance of estimators

m̂c
H(x; p), for p = 0, 1, have a similar structure to those obtained for the Nadaraya–

Watson and local linear estimators in a regression model with Euclidean response

and spatially correlated errors. For independent data, it follows that ρc1 = 0 in The-

orem 4.1 and, consequently, the asymptotic conditional variance of both estimators

coincides with the expressions obtained for independent data in (3.18) or (3.25), for

p = 0 and p = 1, respectively.

The AMSE of m̂c
H(x; 0), defined as the sum of the square of the leading term of

the bias (3.17) and the leading term of the variance (4.14), is given in this framework

by:

AMSE[m̂c
H(x; 0)]

=

{
1

2
µ2(K)tr[H2Hmc(x)] +

µ2(K)

`(x)f(x)
∇Tmc(x)H2∇(`f)(x)

}2

+
R(K)σ2

1{1 + f(x)ρc1}
n|H|`2(x)f(x)

=
1

4
µ2

2(K)tr2

(
H2

{
1

`(x)f(x)
[∇(`f)(x)∇Tmc(x) + ∇mc(x)∇T(`f)(x)] + Hmc(x)

})

+
R(K)σ2

1{1 + f(x)ρc1}
n|H|`2(x)f(x)

. (4.15)

An asymptotically optimal local bandwidth matrix, Hc,s
opt(x; 0), for m̂c

H(x; 0) can

be directly derived minimizing equation (4.15), with respect to H:

Hc,s
opt(x; 0) =

{
R(K)|G̃c

(x)|1/2σ2
1[1 + f(x)ρc1 ]

ndµ2
2(K)`2(x)f(x)

}1/(d+4)

· [G̃c
(x)]−1/2, (4.16)
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where G̃c
(x) was given in (3.21).

Similarly, an optimal local bandwidth can be also obtained for the local linear

type estimator. In this case, the AMSE of m̂c
H(x; 1) is given by:

AMSE[m̂c
H(x; 1)]

=
1

4
µ2

2(K)tr2

(
H2

{
1

`(x)
[∇`(x)∇Tmc(x) + ∇mc(x)∇T`(x)] + Hmc(x)

})

+
R(K)σ2

1{1 + f(x)ρc1}
n|H|`2(x)f(x)

.

Consequently, the bandwidth matrix which minimizes this expression coincides

with (4.16), but taking Gc(x) = `−1(x)[∇`(x)∇Tmc(x)+∇mc(x)∇T`(x)]+Hmc(x).

Local bandwidth matrices may be useful for estimating the trend at a given point

x ∈ D ⊂ Rd, however, the nonparametric estimators computed with them may not

be accurate enough for reconstructing the whole trend. To get an asymptotic global

optimal bandwidth matrix, H can be selected minimizing the AMISE. Unfortunately,

as it was pointed out in Chapter 3 for independent data, there is not a closed form

solution for this optimization problem. Moreover, the optimal bandwidth matrices,

depending on unknown quantities, cannot be used for practical purposes. Practical

bandwidth selection rules, based on cross-validation methods, are considered in what

follows.

4.4.1 Bandwidth matrix selection

This section presents cross-validation criteria to select the bandwidth matrix for

computing m̂c
H(x; p), p = 0, 1, in practice. The CVc criterion given in (3.33), as well

as other smoothing parameter selection methods in nonparametric regression, should

not be directly used for selecting the bandwidth when working with dependent data,

given that its expectation is severely affected by the correlation (Liu, 2001; Opsomer

et al., 2001). In the present setting, the CVc criterion should be modified in order to

account for the effect of the spatial correlation. With this issue in mind, we propose

a modified cross-validation (MCVc) criterion, which selects the bandwidth matrix H
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that minimizes the function:

MCVc(H) =
n∑
i=1

{
1− cos

[
Θi − m̂c

H,−Ni
(Xi; p)

]}
,

where m̂c
H,−Ni

(Xi; p) denotes the Nadaraya–Watson-type estimator (p = 0) or the

local linear-type estimator (p = 1), computed using all observations except those

located within a neighborhood of Xi, namely Ni, and evaluated at Xi. For applying

this criterion, the size of the neighborhood Ni must be selected. For simplicity, we

consider the MCVc criterion when Ni = {Xj : ‖Xj − Xi‖ ≤ l}. For d = 2, the

neighborhood Ni consists of observations within the circle centered at Xi and radius

l. If there is a strong spatial correlation, more observations should be omitted in the

bandwidth selection procedure, and consequently, the value of l for constructing Ni

should be larger. The use of the CVc and MCVc criteria to select the bandwidth

matrix is explored in the following section.

4.5 Simulation study

The performance of the proposed estimators and the cross-validation bandwidth

selection criteria are analyzed in a simulation study for d = 2. Considering regression

model (4.5), 500 samples of size n (n = 100, 225, 400) are generated on a regular grid

in the unit square D = [0, 1]× [0, 1]. The regression functions in models M1 and M2

defined in Section 3.3.3 will be also considered in this simulation study. Notice that

in this case, X = (X1, X2) are spatial locations.

Two different procedures are used to generate the circular spatially correlated er-

rors in model (4.5): the wrapped (Jona-Lasinio et al., 2012) and projected Gaussian

approaches (Wang and Gelfand, 2014), introduced in Section 4.2. For each sample,

Nadaraya–Watson- and local linear-type estimators of the circular regression func-

tion given in (3.14) are computed. In both cases, a multiplicative triweight kernel

is considered, while the smoothing matrix H is chosen by using CVc and MCVc

criteria. Different values of the radius l are considered in the MCVc method. Given

that the covariates are located in unit square, we set l(b) =
√

2b/10, where b = 0

would correspond with the CVc method and b = 10 would provide the maximum
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distance between two points in the unit square. After some tests, only three values

of b (b = 1, 2, 3) are considered. The corresponding CVc and MCVc bandwidths

are denoted by HCVc and HMCVc
b
, b = 1, 2, 3, respectively. Taking into account

the structure of the regression functions, and in order to speed up the computing

times, the bandwidth matrix is restricted to be diagonal with possibly different el-

ements. The CASE given in (3.34) is used as a comparative error measure (Kim

and SenGupta, 2017). Additionally, the diagonal optimal bandwidth matrix HCASE

minimizing (3.34), obtained by intensive search, is also computed.

In the first part of the simulation study, the circular spatial errors are generated

using the wrapping approach described in Section 4.2.1. In this case, to obtain a

realization of the circular (error) process, {εi, i = 1, . . . , n}, a real-valued Gaussian

spatial process Yi, i = 1, . . . , n, following the model given in (4.1), with zero mean

and exponential covariance function (4.2) is considered. The value of the variance

σ2 in (4.2) is fixed equal to one and different values of parameter ae are considered:

ae = 0.1 (weak correlation), ae = 0.3 (medium correlation) and ae = 0.6 (strong

correlation). Then, a realization of a wrapped spatial process {εi, i = 1, . . . , n} is

obtained by:

εi = Yi(mod 2π), i = 1, . . . , n.

Notice that although the vector of circular variables ε = (ε1, . . . , εn)T has almost

zero mean direction, to properly apply the estimation procedure in practice, ε must

be centered.

Considering the regression function of model M1, Table 4.1 shows the average,

over 500 replicates, of the CASE given in (3.34) considering the bandwidths selected

by the CVc and MCVc
l methods, and the minimum value of CASE[m̂c

H(x; p)], which

can be viewed as a benchmark. Note that the optimal error increases as the de-

pendence range becomes larger. It should be noted first the poor behavior of the

CVc bandwidth, as expected, providing average values of the CASE far from the

optimal value, not even decreasing for large sample sizes. In general, MCVc criterion

appears to provide a significant improvement over CVc when correlation is present.

It can be observed that HMCVc
3

provides good results for all cases, decreasing the

error as n gets larger. For stronger dependence (larger range values), this is the only
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Estimator ae n HCVc HMCVc
1

HMCVc
2

HMCVc
3

HCASE

Nadaraya–Watson 0.1 100 0.2087 0.0902 0.0721 0.0609 0.0387
225 0.2880 0.1291 0.0768 0.0602 0.0365
400 0.2932 0.1195 0.0702 0.0585 0.0359

0.3 100 0.2852 0.1752 0.1342 0.0803 0.0529
225 0.3080 0.2054 0.1500 0.0788 0.0520
400 0.2764 0.1967 0.1351 0.0778 0.0497

0.6 100 0.2316 0.1591 0.1316 0.0806 0.0677
225 0.2417 0.1775 0.1455 0.0798 0.0620
400 0.2177 0.1701 0.1325 0.0778 0.0569

Local Linear 0.1 100 0.1818 0.0933 0.0839 0.0672 0.0550
225 0.2649 0.1190 0.0782 0.0667 0.0532
400 0.2920 0.1114 0.0771 0.0667 0.0518

0.3 100 0.2499 0.1651 0.1474 0.1143 0.1062
225 0.2979 0.2026 0.1546 0.1196 0.1053
400 0.2785 0.1965 0.1495 0.1168 0.1019

0.6 100 0.2117 0.1520 0.1392 0.1146 0.1097
225 0.2361 0.1783 0.1488 0.1212 0.1093
400 0.2192 0.1725 0.1413 0.1171 0.1074

Table 4.1: Results obtained when the errors in model (4.5) are simulated from
wrapped Gaussian spatial processes. Average (over 500 replicates) of the CASE
given in (3.34), for the regression function of model M1, using Nadaraya–Watson-
and local linear-type estimators (left and right, respectively). Bandwidth matrix
is selected by minimizing CVc(HCVc), MCVc(HMCVc

1
, HMCVc

2
, HMCVc

3
) and CASE

(HCASE) as a benchmark.

selector that provides a reasonable behavior. Similar conclusions can be deduced

when considering the regression function of model M2. The corresponding results

are displayed in Table 4.2. Notice that when ae = 0.1 (weak spatial correlation),

the best behavior is observed when HMCVc
2

is employed. As expected, for larger

values of the practical range ae, HMCVc
3

provides better results. Note that no major

differences have been found if the Nadaraya–Watson or local linear type estimators

are employed.

In the second part of the simulation study, the circular spatial errors are gener-

ated using the projected approach described in Section 4.2.2. In this case, to obtain

a realization of a circular spatial (error) process {εi, i = 1, . . . , n}, the observa-

tions Yi = (Y1i, Y2i) in model (4.3) are generated setting µ = (1, 1)T in (4.3) (to
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Estimator ae n HCVc HMCVc
1

HMCVc
2

HMCVc
3

HCASE

Nadaraya–Watson 0.1 100 0.2231 0.1331 0.1233 0.1282 0.0871
225 0.3044 0.1475 0.1120 0.1122 0.0792
400 0.2941 0.1369 0.1008 0.1051 0.0748

0.3 100 0.1927 0.1740 0.1622 0.1531 0.1277
225 0.2053 0.1879 0.1620 0.1519 0.1030
400 0.2154 0.1936 0.1529 0.1414 0.1017

0.6 100 0.2392 0.1704 0.1605 0.1561 0.1440
225 0.1891 0.1765 0.1729 0.1553 0.1196
400 0.1947 0.1687 0.1624 0.1467 0.1063

Local Linear 0.1 100 0.1804 0.1163 0.1092 0.1114 0.0781
225 0.2574 0.1264 0.0976 0.0980 0.0704
400 0.2916 0.1160 0.0886 0.0973 0.0668

0.3 100 0.1991 0.1688 0.1627 0.1526 0.1299
225 0.2090 0.1869 0.1563 0.1518 0.1277
400 0.2189 0.1875 0.1505 0.1432 0.1208

0.6 100 0.2072 0.1605 0.1602 0.1597 0.1348
225 0.1903 0.1717 0.1669 0.1594 0.1343
400 0.1962 0.1653 0.1608 0.1509 0.1227

Table 4.2: Results obtained when the errors in model (4.5) are simulated from
wrapped Gaussian spatial processes. Average (over 500 replicates) of the CASE
given in (3.34), for the regression function of model M2, using Nadaraya–Watson-
and local linear-type estimators (left and right, respectively). Bandwidth matrix
is selected by minimizing CVc(HCVc), MCVc(HMCVc

1
, HMCVc

2
, HMCVc

3
) and CASE

(HCASE) as a benchmark.

ensure unimodality of the errors and thus obtain homogeneous samples) and cross-

covariance function given in (4.4) with σ = 1 and τ = 0.9, to better convey the

dependence structure from the linear to the circular process (see Wang and Gelfand,

2014, Figure 4). Different degrees of spatial dependence were chosen in expression

(4.4), considering values of ae = 0.1 (weak correlation), ae = 0.3 (medium correla-

tion) and ae = 0.6 (strong correlation). Finally, a realization of the circular spatial

process ε = (ε1, . . . , εn)T is obtained by:

εi = atan2(Y2i, Y1i), i = 1, . . . , n.

Notice that as for the wrapping approach, the realization of the circular error
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Estimator ae n HCVc HMCVc
1

HMCVc
2

HMCVc
3

HCASE

Nadaraya–Watson 0.1 100 0.1465 0.0629 0.0482 0.0452 0.0249
225 0.2207 0.0874 0.0417 0.0386 0.0216
400 0.2639 0.0722 0.0380 0.0385 0.0209

0.3 100 0.2562 0.1746 0.1382 0.1142 0.0564
225 0.2235 0.1851 0.1248 0.1123 0.0558
400 0.2498 0.1987 0.1279 0.1109 0.0474

0.6 100 0.2368 0.1871 0.1567 0.1378 0.0620
225 0.2452 0.2126 0.1659 0.1371 0.0585
400 0.2424 0.1991 0.1600 0.1303 0.0525

Local Linear 0.1 100 0.1376 0.0735 0.0667 0.0596 0.0381
225 0.1976 0.0891 0.0552 0.0566 0.0321
400 0.2430 0.0745 0.0497 0.0535 0.0301

0.3 100 0.2452 0.1823 0.1658 0.1534 0.1205
225 0.2300 0.1948 0.1555 0.1498 0.1203
400 0.2524 0.1974 0.1554 0.1478 0.1125

0.6 100 0.1988 0.1772 0.1703 0.1622 0.1376
225 0.2072 0.1927 0.1710 0.1612 0.1361
400 0.2051 0.1868 0.1637 0.1578 0.1300

Table 4.3: Results obtained when the errors in model (4.5) are simulated from pro-
jected Gaussian spatial processes. Average (over 500 replicates) of the CASE given
in (3.34), for the regression function of model M1, using Nadaraya–Watson- and local
linear-type estimators (left and right, respectively). Bandwidth matrix is selected
by minimizing CVc(HCVc), MCVc(HMCVc

1
, HMCVc

2
, HMCVc

3
) and CASE (HCASE) as

a benchmark.

process ε must be centered.

Considering the regression function of model M1, numerical results are summa-

rized in Table 4.3. For this regression function, as it was pointed in Section 4.2.1 for

wrapped Gaussian spatial processes, when the CVc bandwidth is used, the CASE

corresponding to the CVc bandwidth matrix is the largest in all the scenarios. Re-

garding the MCVc criterion, when the dependence structure is stronger, the value

of b must be larger (that is, the value of the radius l must be larger). For example,

considering a weak dependence structure (ae = 0.1), the use of HMCVc
2

seems to

show a slightly better performance. If the dependence structure is stronger, HMCVc
3

provides better results. Table 4.4 shows the results for the regression function M2.

Numerical outputs are completed with some additional plots. Given that similar
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Estimator ae n HCVc HMCVc
1

HMCVc
2

HMCVc
3

HCASE

Nadaraya–Watson 0.1 100 0.1764 0.1111 0.1055 0.1083 0.0813
225 0.2324 0.1177 0.0865 0.0901 0.0578
400 0.2689 0.1048 0.0772 0.0854 0.0516

0.3 100 0.2701 0.2132 0.1822 0.1752 0.1457
225 0.2890 0.2354 0.1919 0.1723 0.1043
400 0.2850 0.2223 0.1734 0.1583 0.0940

0.6 100 0.2458 0.2068 0.1934 0.1847 0.1472
225 0.2558 0.2211 0.1953 0.1777 0.1010
400 0.2444 0.2082 0.1806 0.1679 0.0960

Local Linear 0.1 100 0.1551 0.1023 0.0935 0.0957 0.0792
225 0.2023 0.1024 0.0769 0.0790 0.0513
400 0.2470 0.0909 0.0701 0.0717 0.0465

0.3 100 0.2510 0.1998 0.1832 0.1796 0.1621
225 0.2708 0.2268 0.1913 0.1749 0.1412
400 0.2773 0.2134 0.1769 0.1687 0.1326

0.6 100 0.2344 0.1995 0.1900 0.1877 0.1849
225 0.2441 0.2143 0.1923 0.1856 0.1517
400 0.2403 0.2017 0.1801 0.1752 0.1439

Table 4.4: Results obtained when the errors in model (4.5) are simulated from pro-
jected Gaussian spatial processes. Average (over 500 replicates) of the CASE given
in (3.34), for the regression function of model M2, using Nadaraya–Watson- and local
linear-type estimators (left and right, respectively). Bandwidth matrix is selected
by minimizing CVc(HCVc), MCVc(HMCVc

1
, HMCVc

2
, HMCVc

3
) and CASE (HCASE) as

a benchmark.

results were obtained for m̂c
H(x; 0) and m̂c

H(x; 1) in the previous simulations, plots

are only shown for m̂c
H(x; 1). As an illustration of the appropriate performance of

the estimator m̂c
H(x; 1), Figure 4.4 shows the theoretical regression functions for

models M1 and M2 (left panels) and the corresponding average, over 500 replicates,

of the fit values using m̂c
H(x; 1) considering samples of size n = 400 and when the

circular errors are generated from a wrapped Gaussian spatial process (center panels)

and from a projected Gaussian spatial process (right panels). In this example, for

both types of circular errors, an exponential covariance model is used with range

parameter equal to 0.3. Estimates are computed employing the bandwidth matrix

HMCVc
3
. Notice that, for comparison purposes, the theoretical regression functions

are plotted in a 30 × 30 regular grid on the covariate region (the same grid where
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Figure 4.4: Theoretical regression function (left panels), jointly with the local linear-
type estimators using wrapped (center panels) and projected Gaussian spatial pro-
cesses (right panels) to generate the errors in model (4.5), for the regression function
of model M1 (top row panels) and M2 (bottom row panels).

the estimations are computed). Plots in the top row present the results for the data

generated using M1 and those in the bottom row using M2. The estimation of the

circular trend surfaces seems to be quite accurate, no matter the approach (wrapped

or projected) used to generate the circular spatial errors.

4.6 Real data illustration

In this section, to illustrate our nonparametric proposal, an oceoanography dataset,

previously analized by several authors, containing wave directions recorded in 1494

grid points on the Adriatic Sea area (from a calm period transitioning to a storm pe-

riod at different times) is considered. These data outputs were derived from a wave
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Figure 4.5: Random sample of 150 wave directions in the Adriatic Sea area on April
2, 2010 at 6am during a calm period.

model implemented by Istituto Superiore per la Protezione e la Ricerca Ambien-

tale (ISPRA) and they are available in the R package CircSpaceTime (Jona-Lasinio

et al., 2019). In this illustration, we only consider wave directions for a calm period,

corresponding to measurements taken at 06:00 on April 2 at Adriatic Sea. Figure

4.5 shows a random sample of size 150 of those observations. As intuition suggests,

these data seem to exhibit a spatial pattern.

We consider the linear-circular regression model given in (4.5), where Xi =

(Xi1, Xi2), for i = 1, . . . , 1494, represent the different locations, with Xi1 the longi-

tude and Xi2 the latitude, and Θi the corresponding wave direction at that location.

The nonparametric estimator of the circular regression function, given in (3.14), is

computed. Taking into account that the performance of m̂c
H(x; 0) and m̂c

H(x; 1)

was similar in the simulation study, only results employing m̂c
H(x; 1) are shown in

this application. As for the simulation study, a multiplicative triweight kernel is

considered.
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Figure 4.6: Prediction errors given in (4.17) for each bandwidth matrix selected by
CVc and MCVc

b, b = 1, . . . , 10.

The bandwidth matrix is selected employing a cross-validation criterion. In order

to decide if using CVc or MCVc (and, in that case, a suitable value for the radius l),

the whole sample is split in two parts, a randomly selected training sample of size

1345 (90% of the data), denoted by {(X̃i, Θ̃i)}1345
i=1 , and a test sample, made up of

the remaining observations, of size 149 (10% of the data), denoted by {(X̌j, Θ̌j)}149
j=1.

Then, estimations at each testing point X̌j, j = 1, . . . , 149, with different bandwidths,

are compared with the testing responses using the following prediction error:

149∑
j=1

{
1− cos

[
Θ̌j − m̂Ĥ(X̌j; 1)

]}
, (4.17)

where m̂Ĥ(X̌j; 1) is the local linear-type circular regression estimator computed us-

ing the training sample and evaluated at the testing point X̌j, j = 1, . . . , 149, and Ĥ

denotes the bandwidth matrix selected using CVc or MCVc, employing the training

sample. In the case of the MCVc criterion, different values of the radius l are con-

sidered. As in the simulation study, we set l(b) =
√

2b/10, now with b = 1, . . . , 10.

These bandwidth matrices are searched in the family of the symmetric and defi-

nite positive full bandwidth matrices, using an optimization algorithm based on the

Nelder–Mead simplex method described in (Lagarias et al., 1998). To apply this opti-
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Figure 4.7: Regression function estimation using the local linear-type estimator
m̂c

Ĥ
(x; 0), using the bandwidth matrix H given in (4.18), selected with the MCVc

(b = 2) criterion.

mization procedure, we use the initial bandwidth matrix Hinit = 1.5·diag
{
σ̂X̃1

, σ̂X̃2

}
,

where σ̂X̃1
and σ̂X̃2

, with X̃ = (X̃1, X̃2), are the training sample standard deviations

of X̃1 and X̃2, respectively. Figure 4.6 shows the prediction error given in (4.17) for

each bandwidth matrix Ĥ. It can be seen that the minimum error is achieved when

MCVc, with b = 2, is employed, converging the algorithm when using this criterion

to

HMCVc
2

=

(
0.4744 0.0081

0.0081 0.3529

)
. (4.18)

Figure 4.7 shows the circular trend surface estimation using HMCVc
2
, given in

(4.18). The estimation grid was constructed by overlying the survey values of longi-

tude and latitude with a 100 × 100 grid and, then, dropping every grid point that

did not satisfy at least one of the following two requirements: (a) it is within two

“grid cell length” from an observation point, or (b) the calculation for the estimates

of the sine and cosine components at that grid point uses a smoothing vector that is
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sufficiently stable. The sine and cosine of the detrended wave direction dataset were

tested for isotropy and stationarity, following the proposals by Bowman and Cru-

jeiras (2013). For both tests, p-values were larger than the usual significance levels

(for isotropy: 0.3206 and 0.1271 for sine and cosine, respectively; for stationarity,

p-values were larger than 0.99 for both processes).

From Figure 4.7, it can be clearly seen the shoreline orientation of the waves

(recall that our measurements correspond to a calm period), providing the different

color pattern along the coastline. Something which is interesting to notice is the

behavior in the Gulf, where waves rotate to different directions, and a main current

can be also observed. According to this pattern, more variation can be observed

in the North, something that was also pointed out by Jona-Lasinio et al. (2012),

although for a storm period.

4.7 Proofs of the main results

This section is devoted to present the proof of Lemma 4.1 and Theorem 4.1. The

asymptotic variance of the proposed nonparametric regression estimator m̂c
H(x; p),

for p = 0, 1, given in (3.14), for spatially correlated data, is calculated in Theorem

4.1. Some previous results are given in Lemma 4.1.

Proof of Lemma 4.1 First, the asymptotic variance of m̂j,H(x; p) is derived. When

p = 0, if j = 1, it follows that

Var[m̂1,H(x; 0) | X1, . . . ,Xn]

=

∑n
i=1

∑n
j=1 KH(Xi − x)KH(Xj − x)∑n

i=1 KH(Xi − x)
∑n

j=1KH(Xj − x)
Cov[sin(Θi), sin(Θj) | X1, . . . ,Xn]

=

∑n
i=1 K

2
H(Xi − x)s2

1(Xi)

[
∑n

i=1 KH(Xi − x)]2
+

∑
i 6=jKH(Xi − x)KH(Xj − x)Cn,1(Xi,Xj)

[
∑n

i=1 KH(Xi − x)]2
.

Using (A.4) of Lemma A.1 and (A.7) of Lemma A.2, it is obtained that

1

n

n∑
i=1

KH(Xi − x) = f(x) + oP(1),
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1

n

n∑
i=1

K2
H(Xi − x)s2

1(Xi) =
1

|H|
R(K)f(x)s2

1(x) + oP(1). (4.19)

and

1

n2

∑
i 6=j

KH(Xi − x)KH(Xj − x)Cn,1(Xi,Xj)

=
1

n2

∑
i 6=j

KH(Xi − x)KH(Xj − x)[f1(Xi)f1(Xj)σ
2
2ρ2,n(Xi −Xj)

+f1(Xi)f2(Xj)σ12ρ3,n(Xi −Xj) + f2(Xi)f1(Xj)σ12ρ3,n(Xi −Xj)

+f2(Xi)f2(Xj)σ
2
1ρ1,n(Xi −Xj)]

=
1

n|H|
R(K)f(x)[σ2

2f
2
1 (x)ρc2 + 2σ12f1(x)f2(x)ρc3 + σ2

1f
2
2 (x)ρc1 ]

=
1

n|H|
R(K)f 2(x)C1(x) + oP(1). (4.20)

Therefore, using also (A.1) of Lemma A.1, it follows that

Var[m̂1,H(x; 0) | X1, . . . ,Xn] =
1

n|H|f(x)
R(K)[s2

1(x) + f(x)C1(x)] + oP
(

1

n|H|

)
.

Similarly, when j = 2, it follows that

Var[m̂2,H(x; 0) | X1, . . . ,Xn] =
1

n|H|f(x)
R(K)[s2

2(x) + f(x)C2(x)]

+oP
(

1

n|H|

)
.

When p = 1, if j = 1, one gets that

Var[m̂1,H(x; 1) | X1, . . . ,Xn]

= eT
1 (XT

xWxX x)−1XT
xWxΣ

c,s
1 WxX x(XT

xWxX x)−1e1,

where Σc,s
1 is the covariance matrix of sin(Θ), whose (i, j)-entry is given by Σc,s

1 (i, j) =

Cov[sin(Θi), sin(Θj) | Xi,Xj], i, j = 1, . . . , n. Using (A.4), (A.5) and (A.6) of Lemma

A.1, (A.7) of Lemma A.2, (A.13) and (A.14) of Lemma A.3, with similar arguments
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to those employed in (4.19) and (4.20), and defining

s11,n(x) = n−2
∑n

i=1 K
2
H(Xi − x)s2

1(Xi),

s12,n(x) = n−2
∑n

i=1 K
2
H(Xi − x)(Xi − x)s2

1(Xi),

s13,n(x) = n−2
∑n

i=1 K
2
H(Xi − x)(Xi − x)(Xi − x)Ts2

1(Xi),

c11,n(x) = n−2
∑

i 6=jKH(Xi − x)KH(Xj − x)Cn,1(Xi,Xj),

c12,n(x) = n−2
∑

i 6=jKH(Xi − x)KH(Xj − x)(Xi − x)Cn,1(Xi,Xj),

c13,n(x) = n−2
∑

i 6=jKH(Xi − x)KH(Xj − x)(Xi − x)(Xj − x)TCn,1(Xi,Xj),

it can be obtained that

s11,n(x) = n−1|H|−1R(K)f(x)s2
1(x) + oP

(
n−1|H|−1

)
,

s12,n(x) = n−1|H|−1oP(1d),

s13,n(x) = n−1|H|−1oP(1d×d),

c11,n(x) = n−1|H|−1R(K)f 2(x)C1(x) + oP
(
n−1|H|−1

)
,

c12,n(x) = n−1|H|−1oP(1d),

c13,n(x) = n−1|H|−1oP(1d×d).

Therefore, it follows that

n−2XT
xWxΣ

c,s
1 WxX x =

(
s11,n(x) + c11,n(x) sT

12,n(x) + cT
12,n(x)

s12,n(x) + c12,n(x) s13,n(x) + c13,n(x)

)

=
1

n|H|

(
R(K)f(x)[s2

1(x) + f(x)C1(x)] + oP(1) oP(1T
d )

oP(1d) oP(1d×d)

)
.

Consequently, using (3.48) and the previous expression, by straightforward cal-

culations, one gets

Var[m̂1,H(x; 1) | X1, . . . ,Xn] =
1

n|H|f(x)
R(K)[s2

1(x) + f(x)C1(x)] + oP
(

1

n|H|

)
.
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Similarly, when j = 2, it can be obtained that

Var[m̂2,H(x; 1) | X1, . . . ,Xn] =
1

n|H|f(x)
R(K)[s2

2(x) + f(x)C2(x)] + oP
(

1

n|H|

)
.

Regarding the conditional covariance between m̂1,H(x; 0) and m̂2,H(x; 0), using

(3.45) and similar arguments to those employed in (4.20), considering (A.1) of Lemma

A.1, it follows that

Cov[m̂1,H(x; 0), m̂2,H(x; 0) | X1, . . . ,Xn]

=

∑n
i=1

∑n
j=1KH(Xi − x)KH(Xj − x)∑n

i=1KH(Xi − x)
∑n

j=1 KH(Xj − x)
Cov[sin(Θi), cos(Θj) | X1, . . . ,Xn]

=

∑n
i=1K

2
H(Xi − x)c(Xi)

[
∑n

i=1KH(Xi − x)]2
+

∑
i 6=jKH(Xi − x)KH(Xj − x)Cn,3(Xi,Xj)

[
∑n

i=1KH(Xi − x)]2

=
1

n|H|f(x)
R(K)[c(x) + f(x)C3(x)] + oP

(
1

n|H|

)
.

When p = 1, the conditional covariance between m̂1,H(x; 1) and m̂2,H(x; 1) is:

Cov[m̂1,H(x; 1), m̂2,H(x; 1) | X1, . . . ,Xn]

= eT
1 (XT

xWxX x)−1XT
xWxΣ

c,sWxX x(XT
xWxX x)−1e1,

where Σc,s is the covariance matrix of sin(Θ) and cos(Θ), whose (i, j)-entry is

Σc,s(i, j) = Cov[sin(Θi), cos(Θj) | Xi,Xj], i, j = 1, . . . , n. Using (A.7) of Lemma

A.2, (A.13) and (A.14) of Lemma A.3, employing similar arguments to those given

in (4.19) and (4.20), and defining

c31,n(x) = n−2
∑

i 6=jKH(Xi − x)KH(Xj − x)Cn,3(Xi,Xj),

c32,n(x) = n−2
∑

i 6=jKH(Xi − x)KH(Xj − x)(Xi − x)Cn,3(Xi,Xj),

c33,n(x) = n−2
∑

i 6=jKH(Xi − x)KH(Xj − x)(Xi − x)(Xj − x)TCn,3(Xi,Xj),
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it can be obtained that

c31,n(x) =
1

n|H|
R(K)f 2(x)C3(x) + oP

(
1

n|H|

)
, (4.21)

c32,n(x) =
1

n|H|
oP(1d), (4.22)

c33,n(x) =
1

n|H|
oP(1d×d). (4.23)

Therefore, using (3.45), (3.46), (3.47), (4.21), (4.22) and (4.23), it follows that

n−2XT
xWxΣ

c,sWxX x =

(
s31,n(x) + c31,n(x) sT

32,n(x) + cT
32,n(x)

s32,n(x) + c32,n(x) s33,n(x) + c33,n(x)

)

=
1

n|H|

(
R(K)f(x)[c(x) + f(x)C3(x)] + oP(1) oP(1T

d )

oP(1d) oP(1d×d)

)
.

Consequently, using (3.48) and the above expression, by straightforward calcula-

tions, one gets

Cov[m̂1,H(x; 1), m̂2,H(x; 1) | X1, . . . ,Xn] =
1

n|H|f(x)
R(K)[c(x) + f(x)C3(x)]

+oP
(

1

n|H|

)
.

Proof of Theorem 4.1 To derive the variance of m̂c
H(x; p), for p = 0, 1, following

the arguments used in the proof of Theorem 3.1 and 3.2, one gets that

Var[m̂c
H(x; p) | X1, . . . ,Xn] =

m2
1(x)

`4(x)
Var[m̂2,H(x; p) | X1, . . . ,Xn]

+
m2

2(x)

`4(x)
Var[m̂1,H(x; p) | X1, . . . ,Xn]

−2m1(x)m2(x)

`4(x)
Cov[m̂1,H(x; p), m̂2,H(x; p) | X1, . . . ,Xn]

+O
{

[m̂1,H(x; p)−m1(x)]3
}

+O
{

[m̂2,H(x; p)−m2(x)]3
}
.
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Using Lemma 4.1, one gets that

Var[m̂c
H(x; p) | X1, . . . ,Xn] =

1

n|H|
R(K)

f(x)

m2
1(x)

`4(x)
[s2

2(x) + f(x)C2(x)]

+
1

n|H|
R(K)

f(x)

m2
2(x)

`4(x)
[s2

1(x) + f(x)C1(x)]

− 2

n|H|
R(K)

f(x)

m1(x)m2(x)

`4(x)
[c(x) + f(x)C3(x)]

+oP
(

1

n|H|

)
.

Using (3.11), (3.12), (3.13), (4.11), (4.12) and (4.13), it follows that

m2
1(x)[s2

2(x) + f(x)C2(x)] +m2
2(x)[s2

1(x) + f(x)C1(x)]

−2m1(x)m2(x)[c(x) + f(x)C3(x)]

= f 2
1 (x)`2(x)[f 2

2 (x)σ2
2 − 2f2(x)f1(x)σ12 + f 2

1 (x)σ2
1 + f(x)σ2

2f
2
2 (x)ρc2

−2f(x)σ12f1(x)f2(x)ρc3 + f(x)σ2
1f

2
1 (x)ρc1 ] + f 2

2 (x)`2(x)[f 2
1 (x)σ2

2

+2f1(x)f2(x)σ12 + f 2
2 (x)σ2

1 + f(x)σ2
2f

2
1 (x)ρc2 + 2f(x)σ12f1(x)f2(x)ρc3

+f(x)σ2
1f

2
2 (x)ρc1 ]− 2f1(x)f2(x)`2(x)[f1(x)f2(x)σ2

2 − f 2
1 (x)σ12

+f 2
2 (x)σ12 − f1(x)f2(x)σ2

1 + f(x)σ2
2f1(x)f2(x)ρc2

−f(x)σ12f
2
1 (x)ρc3 + f(x)σ12f

2
2 (x)ρc3 − σ2

1f1(x)f2(x)ρc1 ]

= `2(x)σ2
1[1 + f(x)ρc1 ].

Consequently, it can be directly obtained that

Var[m̂c
H(x; p) | X1, . . . ,Xn] =

R(K)σ2
1[1 + f(x)ρc1 ]

n|H|`2(x)f(x)
+ oP

(
1

n|H|

)
.





Chapter 5

Some ideas on testing parametric

regression models with a circular

response and an Rd-valued

covariate

5.1 Introduction

In a variety of contexts, circular measurements are accompanied by observations

of other Euclidean random variables. The joint behavior of these circular and Eu-

clidean variables can be analyzed by considering a regression model, allowing at

the same time to explain the possible relation between the variables and, at the

same time, also to make predictions on the variable of interest. As pointed out in

Chapter 3 of this dissertation, parametric regression estimators for linear-circular

models (regression models with a circular response and an Rd-valued covariate) with

independent data were studied by Fisher and Lee (1992), Presnell et al. (1998) and

Kim and SenGupta (2017), among others. In the presence of spatial correlation (as

it was indicated in Chapter 4), for instance, Jona-Lasinio et al. (2012), Wang and

Gelfand (2014), Lagona et al. (2015) and Mastrantonio et al. (2016), employed para-

metric methods to model circular spatial processes. Alternatively, nonparametric

kernel-type estimators of the regression function considering a model with a circular

185
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response and a univariate Euclidean covariate were introduced in Di Marzio et al.

(2013). The extension to a model with an Rd-valued covariate was considered in

Chapter 3 (for independent data) and in Chapter 4 (for spatially correlated data).

As pointed out in both chapters, to compute these kernel-type estimators it is crucial

to select a bandwidth (a symmetric d× d matrix for an Rd-valued covariate) which

directly impacts the smoothness of the estimator. If the bandwidth matrix is ap-

propriately chosen, these nonparametric methods provide more flexible and robust

estimators than those obtained when using parametric approaches, avoiding misspec-

ification problems. However, if a suitable parametric regression model is assumed,

parametric methods usually provide estimators which are more efficient and easier

to interpret.

At this point, an important question in this context is to decide if a certain para-

metric family is appropriate to model the unknown circular regression function. If

this assumption holds, a parametric method should be preferably used to estimate

it. If not, it would possibly be more convenient to use a nonparametric approach to

estimate this function. Both approaches, parametric and nonparametric, have been

used to analyze different datasets in the literature. For instance, the classical blue

periwinkles dataset (which collects measurements of direction and distance moved by

31 blue periwinkles) was analyzed using parametric methods in Fisher and Lee (1992)

and Presnell et al. (1998), considering the direction as the response variable and the

distance as the covariable. On the other hand, also considering this dataset and this

regression model, nonparametric techniques were employed in Di Marzio et al. (2013)

to estimate the corresponding regression function. Another such example is the sand

hopper orientation dataset (described in Chapter 3 of this dissertation), which was

studied by Scapini et al. (2002) using parametric methods. Following the proposal

in Presnell et al. (1998), these authors considered a projected multivariate linear

model (PMLM) to analyze the orientation of two species of sand hoppers as a func-

tion of different covariates. On the other hand, this dataset was also explored using

nonparametric tools in Section 3.3.4, considering a regression model with a circular

response (sand hopper orientation) and two real-valued covariates (temperature and

humidity). In this case, the regression function was estimated nonparametrically

using a local linear-type estimator. In order to determine if a parametric regres-
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sion model is a suitable representation of such datasets, goodness-of-fit tests can be

designed and analyzed, providing a tool for assessing a general class of parametric

linear-circular regression models.

There is a substantial literature on testing parametric regression models in-

volving Euclidean data, for example Kozek (1991), Härdle and Mammen (1993),

González Manteiga and Vilar Fernández (1995), Biedermann and Dette (2000) and

Park et al. (2015), among others. See also González-Manteiga and Crujeiras (2013)

for a review on this topic. The previous testing procedures, as well as the one formu-

lated in Chapter 2 of this dissertation, are based on measuring differences between

a suitable parametric estimator under the null hypothesis and a nonparametric one.

Specifically, L2-norm or supremum-norm tests, among others, can be employed for

testing parametric regression models with Euclidean responses and covariates. In the

context of regression models with directional response and directional or Euclidean

explanatory variables, the literature on goodness-of-fit tests is relatively scarce. In

this setting, in Deschepper et al. (2008), an exploratory tool and a lack-of-fit test for

circular-linear regression models (Euclidean response and circular covariates) were

proposed. The same problem was studied by Garćıa-Portugués et al. (2016), using

nonparametric methods. The authors proposed a testing procedure based on the

weighted squared distance between a nonparametric and a parametric regression es-

timator, where the nonparametric regression estimator was obtained by a projected

local regression on the sphere. Local linear-type estimators have been recently used

by Alonso-Pena et al. (2020) in order to propose no-effect and ANCOVA tests for

regression models with circular response and/or covariate. However, the problem of

assessing a certain class of parametric regression models with circular response and

Euclidean covariates (up to the knowledge of the author), has not been considered

in the statistical literature yet, neither for independent nor for spatially dependent

observations.

In this chapter, new approaches for testing a linear-circular parametric regression

model (circular response and Rd-valued covariate) are proposed and empirically ana-

lyzed, both for independent and spatially correlated errors. Following similar ideas to

those used in Chapter 2, the test statistics considered in these procedures are based

on a comparison between a (non-smoothed or smoothed) parametric fit under the null
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hypothesis and a nonparametric estimator of the circular regression function. More

specifically, two different test statistics are designed. In the first one, a parametric

estimator of the regression function under the null hypothesis is directly used, while

in the second one, a smoothed version of this estimator is employed. Notice that,

in this framework, a suitable measure of circular distance must be employed (see

Jammalamadaka and SenGupta, 2001, Section 1.3.2). The null hypothesis that the

regression function belongs to a certain parametric family is rejected if the distance

between both fits exceeds a certain threshold. To perform the parametric estimation,

procedures based on least squares or maximum likelihood are used (see Fisher and

Lee, 1992; Lund, 1999; Presnell et al., 1998). For the nonparametric alternative,

local polynomial-type estimators given in (3.14) are considered.

For the practical application of the proposals, the test statistics must be accom-

panied by a calibration procedure. In this case, such a procedure is not based on

the asymptotic distribution, given that the convergence to the limit distribution un-

der the null hypothesis will presumably be too slow. Instead, bootstrap methods

are designed and their performance is analyzed and compared employing numerical

experiments. For independent data, standard resampling procedures adapted to the

context of regression models with a circular response and Euclidean covariates are

used: a parametric circular residual bootstrap (PCB) and a nonparametric circular

residual bootstrap (NPCB). The PCB approach consists in using the residuals ob-

tained from the parametric fit in the bootstrap algorithm. If the circular regression

function belongs to the parametric family considered in the null hypothesis, then the

residuals will tend to be quite similar to the theoretical errors and, therefore, it is

expected that the PCB method has a good performance. Following the proposal by

González-Manteiga and Cao (1993), the NPCB method aims to increase the power of

the test and, for this purpose, the residuals obtained from the nonparametric fit are

the ones employed in the bootstrap procedure. The previous resampling procedures

(PCB and NPCB) for independent data must be properly adapted for handling spa-

tial correlation. Two specific procedures for test calibration which take the spatial

correlation into account are also introduced: a parametric spatial circular residual

bootstrap (PSCB) and a nonparametric spatial circular residual bootstrap (NPSCB).

Similarly to the PCB but now for spatially correlated errors, the PSCB considers
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the residuals obtained from the parametric fit under the null hypothesis. The rele-

vant difference between PCB and PSCB is that, in order to mimic the dependence

structure of the errors, a spatial circular process is fit to the residuals in PSCB.

Samples coming from the fit process are employed in the bootstrap algorithm. The

steps followed in NPSCB are similar at those employed in PSCB, but the residuals

are obtained from the nonparametric regression estimator.

This chapter is organized as follows. Section 5.2 is devoted to present some ideas

of goodness-of-fit tests for parametric circular regression models with independent

data. Parametric circular regression estimators employed in the test statistics are

presented in Section 5.2.1. Section 5.2.2 introduces the proposed test statistics. A

description of the calibration algorithms considered is given in Section 5.2.3. Section

5.2.4 contains a simulation study for assessing the performance of the tests when

using the PCB and NPCB resampling approaches to approximate the sampling dis-

tribution of the test statistics. Section 5.2.5 illustrates the testing proposals with

the blue periwinkle and sand hopper orientation datasets introduced above. The

extension of the testing procedures for spatially correlated data is presented in Sec-

tion 5.3. Section 5.3.1 contains bootstrap approaches to calibrate the tests in this

spatial framework. A simulation study for assessing the performance of the tests

using PSCB and NPSCB methods is provided in Section 5.3.2.

5.2 Goodness-of-fit tests for parametric circular

regression models with independent data

Considering the regression model (3.3), the goal of this chapter is to propose and

analyze empirically different testing procedures to assess the suitability of a general

class of parametric circular regression models. That is, solving a testing problem

similar to that given in (1.34), but taking into account that, in this case, the para-

metric (circular) family is Mc
β = {mc

β,β ∈ B}, where mc
β is a certain parametric

circular regression model with parameter vector β. The specific testing problem is

formulated as:

H0 : mc ∈Mc
β vs. Ha : mc /∈Mc

β. (5.1)
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As pointed out in Section 5.1, this testing problem is tackled by comparing a

(non-smoothed or smoothed) parametric fit with a nonparametric estimator of the

circular regression function mc, measuring the circular distance between both fits

and employing this distance as a test statistic. The parametric estimation methods

considered in this proposal are described in the following section. For the nonpara-

metric approach, the kernel-type circular regression estimators proposed in (3.14)

are employed. These estimators are used to design two different test statistics. In

the first one, the parametric estimator of the regression function is directly used,

while in the second one, a smoothed version of this estimator is employed.

Notice that in Chapter 2 of this dissertation, in order to solve the testing prob-

lem (1.34), the (non-smoothed) parametric fit was not considered to define the test

statistic, and only the smoothed parametric was used. As pointed out there, unlike

the parametric fit, the smoothed version of the parametric estimator has the same

expected value as the nonparametric one, under H0, and thus the asymptotic distri-

bution of the corresponding test statistic would be easier to derive. In this chapter,

we will focus on analyzing empirically the performance of the test and, consequently,

both test statistics are compared and studied.

5.2.1 Parametric circular regression estimation

As mentioned in Section 5.1, our proposal requires a parametric estimator of the

circular regression function mc, once a parametric family is set as the null hypothesis.

Notice that, for instance, the procedures based on least squares, such as those ones

presented in Sections 1.1.1 and 1.1.2 for Euclidean data, are not appropriate when

the response variable is of circular nature. Minimizing the sum of squared differences

between the observed and predicted values may lead to erroneous results, since the

squared difference is not an appropriate measure on the circle.

A circular analog to least squares regression for models with a circular response

and a set of Euclidean covariates was presented by Lund (1999). Specifically, as-

suming that regression model (3.3) holds and mc ∈ Mc
β, a parametric estimator of

mc
β is constructed obtaining an estimator of β, namely β̂, and computing mc

β̂
. A

parameter estimate of β could be obtained by minimizing the sum of the circular
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distances between the observed and predicted values as follows:

β̂ = arg min
β

n∑
i=1

{
1− cos

[
Θi −mc

β(Xi)
]}
. (5.2)

An equivalent parameter estimator can be obtained using a maximum-likelihood

approach (Lund, 1999). If it is assumed that the response variable (conditionally on

X) follows a von Mises distribution with mean direction given by mc
β and concentra-

tion parameter κ, the maximum likelihood estimator of mc
β maximizes the following

expression

n∑
i=1

cos
[
Θi −mc

β(Xi)
]
. (5.3)

Notice that the circular least squares estimator given in (5.2) also maximizes the

expression (5.3) and, therefore, assuming a von Mises distribution, the circular least

squares estimator coincides with the maximum likelihood estimator (for further de-

tails, see Lund, 1999). Given the maximum likelihood estimator of β, the maximum

likelihood estimator of κ is given by the solution to

A(κ̂) =
1

n

n∑
i=1

cos
[
Θi −mc

β̂
(Xi)

]
,

where A(κ) = I1(κ)/I0(κ), being I0 and I1 the modified Bessel functions of the first

kind with order zero and one, respectively. As indicated in Lund (1999), numerical

solutions to A−1(x) can be found in Best and Fisher (1981).

Assuming that the response variable follows a von Mises distribution and con-

sidering the general class of models for the circular regression function Mc
β =

{µ0 + g(βT
1 X), µ0 ∈ [0, 2π),β1 ∈ Rd}, where g is a link function mapping the real

line onto the circle, an iterative reweighted least squares algorithm can be used to

compute the maximum likelihood estimators of κ, µ0 and β1 (see Fisher and Lee,

1992; Lund, 1999). The extension of these results to the case of a generic parametric

family has not been explicitly considered.

Although the assumption that the response variable follows a von Mises distri-

bution is quite common, other circular distributions can be used in this context. For
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example, considering a projected normal distribution allows to define general regres-

sion models, such as the PMLM (Presnell et al., 1998; Scapini et al., 2002). This

class of models deals with directional observations as projections onto the unit circle

of unobserved response vectors in a multivariate linear model. Considering these

type of regression models, the estimation of the parameters can be performed using

maximum likelihood methods employing iterative procedures. For further details on

the estimation approach in this case, we refer to Presnell et al. (1998).

5.2.2 The test statistics

In this section, two tests statistics to address the testing problem (5.1) (that is,

to check if the circular regression function belongs to a general class of parametric

models) are proposed. The first approach considers a weighted circular distance

between the nonparametric and parametric fits:

T c,1n,p =

∫
D
{1− cos[m̂c

H(x; p)−mc
β̂
(x)]}w(x)dx, (5.4)

for p = 0, 1, where w is a weight function that helps in mitigating possible boundary

effects. The estimators m̂c
H(x; p), for p = 0, 1, are the Nadaraya–Watson- or the local

linear-type estimators of the circular regression function mc, given in (3.14). As for

the parametric estimator mc
β̂
, the approaches described in Section 5.2.1 can be used

to compute (5.4).

The second test statistic is similar to the first one, but considering a smoothed

version of the parametric fit:

T c,2n,p =

∫
D
{1− cos[m̂c

H(x; p)− m̂c
H,β̂

(x; p)]}w(x)dx, (5.5)

where m̂c
H,β̂

(x; p), for p = 0, 1, are smoothed versions of the parametric estimator

mc
β̂
, which are given by:

m̂c
H,β̂

(x; p) = atan2[m̂1,H,β̂(x; p), m̂2,H,β̂(x; p)], (5.6)

being
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m̂j,H,β̂(x; 0) =



∑n
i=1 KH(Xi − x) sin[mc

β̂
(Xi)]∑n

i=1 KH(Xi − x)
if j = 1,

∑n
i=1 KH(Xi − x) cos[mc

β̂
(Xi)]∑n

i=1KH(Xi − x)
if j = 2,

and

m̂j,H,β̂(x; 1) =


eT

1 (XT
xWxX x)−1XT

xWxŜ if j = 1,

eT
1 (XT

xWxX x)−1XT
xWxĈ if j = 2,

with Ŝ = {sin[mc
β̂
(X1)], . . . , sin[mc

β̂
(Xn)]}T and Ĉ = {cos[mc

β̂
(X1)], . . . , cos[mc

β̂
(Xn)]}T.

It should be noted that although the methodological developments are presented for

the cases of p = 0 (Nadaraya–Watson) and p = 1 (local linear), they can be gener-

alized to a higher polynomial degree p.

In order to formally address problem (5.1) using the test statistics T c,1n,p and T c,2n,p

given in (5.4) and in (5.5), respectively, it is essential to approximate the distri-

bution of these test statistics under the null hypothesis. Deriving the asymptotic

distribution of the statistics is out of the scope of this dissertation. However, some

guidelines to compute these expressions are provided in Section 6.4. For the applica-

tion in practice of our proposal, the distribution of the tests under the null hypoth-

esis is approximated using bootstrap procedures and analyzed through an empirical

study. Based on the practical results of Chapters 3 and 4, where the local linear-

type estimator mc
H(x; 1) presented in general a slightly better performance than the

Nadaraya–Watson one, just results corresponding to T c,1n,1 and T c,2n,1 are provided in

this chapter.

Notice that if the null hypothesis in the testing problem given in (5.1) holds,

then the (non-smoothed or smoothed) parametric fit and the nonparametric circular

regression estimator will be similar and, therefore, the value of the test statistics T c,1n,p

and T c,2n,p will be small. Conversely, if the null hypothesis does not hold, the fits will

be different and the value of T c,1n,p and T c,2n,p will be large. So, the null hypothesis will

be rejected if the circular distance between the parametric and the nonparametric

fits exceeds a critical value.

For a visual illustration of the performance of the tests (for simplicity, a model
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Figure 5.1: Linear (top panels) and cylinder (bottom panels) representations. Red
lines: local linear-type regression estimator (left panels), parametric fit (center pan-
els) and smoothed version of the parametric fit (right panels), with sample points
and circular regression function (black lines). Equally-spaced sample of size n = 200
generated on the unit interval D = [0, 1], following model (3.3), with regression
function (5.8), for c = 0, and circular errors εi drawn from a vM(0, 10).

with a single covariate, that is, d = 1, is initially employed), consider an equally-

spaced sample of size n = 200, generated in the unit interval D = [0, 1], following

model (3.3), with regression function (5.8) and c = 0. The random errors εi are drawn

from a von Mises distribution vM(0, 10), with density function given in (1.40). If

we want to test if mc(X) ∈ Mc
1,β = {µ0 + 2atan(β1X), µ0 ∈ [0, 2π), β1 ∈ R}, us-

ing the test statistics given in (5.4) and in (5.5), for p = 1, the local linear-type

regression estimator, m̂c
h(x; 1), given in (3.14), as well as a parametric fit, mc

β̂
(x),

and its smoothed version m̂c
h,β̂

(x; 1) (denoting by h the bandwidth parameter when

d = 1) must be computed. In this case, the estimator obtained from (5.3) is consid-

ered for the parametric fit. A triweight kernel and the optimal bandwidth obtained

by minimizing the CASE, given in (3.34), are considered to compute m̂c
h(x; 1) and
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m̂c
h,β̂

(x; 1).

Figure 5.1 shows the linear (top panels) and cylinder (bottom panels) represen-

tations of the estimates. In red lines the local linear-type regression estimator (left

panel), the parametric fit (center panel) and the smoothed version of the paramet-

ric fit (right panel), with sample points and the circular regression function (black

lines). All estimates show a very similar behaviour and, therefore, the value of the

test statistics T c,1n,1 and T c,2n,1 would presumably be small. Consequently, there may be

no evidences against the assumption that the circular regression function belongs to

the parametric family Mc
1,β.

A similar visual experiment considering a regression model with a circular re-

sponse and two covariates is also presented. A sample of size n = 400 is generated

on a regular grid in the unit square D = [0, 1] × [0, 1], assuming the linear-circular

regression model (3.3), with regression function (5.10) and c = 0. The random errors

εi are also drawn from a von Mises distribution vM(0, 10). In this case, as in the pre-

vious example, in order to test if mc(X) ∈ Mc
2,β = {µ0 + 2atan(β1X1 + β2X2), µ0 ∈

[0, 2π), β1, β2 ∈ R}, being X = (X1, X2), using the test statistics T c,1n,1 and T c,2n,1, the

estimator obtained from (5.3) is employed for the parametric fit. The local linear-

type estimator and the smoothed parametric fit are computed using a multiplicative

triweight kernel and an optimal bandwidth obtained by minimizing the CASE, given

in (3.34).

Figure 5.2 shows the theoretical circular regression function (top left panel), the

local linear-type regression estimator (top right panel), the parametric fit (bottom

left panel) and the smoothed version of the parametric fit (bottom right panel). It

can be observed that estimates at top right, bottom left and bottom right panels

seem to be very similar and, therefore, analogous conclusions to those given for d = 1,

but in this case for d = 2, can be derived.

Notice that the test statistics given in (5.4) and in (5.5), as it happened in the

test proposed in (2.1) for Euclidean data, require a d× d bandwidth matrix H (or a

bandwidth parameter h, if d = 1). Similarly to Chapter 2, the performance of the

proposed test statistics is analyzed for a range of bandwidths, in order to evaluate

the impact of this parameter in the numerical results (both in the simulation study

and in the real data illustrations).
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Figure 5.2: Circular regression function (top left panel), the local linear-type re-
gression estimator (top right panel), the parametric fit (bottom left panel) and the
smoothed version of the parametric fit (bottom right panel). Sample of size n = 400
generated on a regular grid in the unit square D = [0, 1] × [0, 1], following model
(3.3), with regression function (5.10), for c = 0, and circular errors εi drawn from a
vM(0, 10).

5.2.3 Calibration in practice

Once a suitable test statistic is available, in order to solve the testing problem (5.1),

a procedure for calibration of critical values is required. This task can be done by

means of bootstrap resampling algorithms.

In what follows, a description of two bootstrap proposals (PCB and NPCB)

designed to approximate the distribution (under the null hypothesis) of the tests

statistics, given in (5.4) and in (5.5), is presented. The main difference between them

is the mechanism employed to obtain the residuals. As pointed out in Section 5.1, the

residuals used in PCB come from the parametric regression estimator. On the other

hand, for the NPCB algorithm, the residuals employed in the resampling process
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are obtained from the nonparametric regression estimator. In order to present the

PCB and NPCB resampling methods, a generic bootstrap algorithm is described. No

matter the method used, m̂c denotes the parametric or the nonparametric circular

regression estimator.

Algorithm 2

1. Compute the nonparametric or the parametric regression estimates (described

in Sections 3.3.1 and 5.2.1, respectively), namely m̂c(Xi), i = 1, . . . , n, depending if

a parametric (PCB) or a nonparametric (NPCB) bootstrap procedure is employed.

2. From the residuals ε̂i = [Θi − m̂c(Xi)](mod 2π), i = 1, . . . , n, draw independent

bootstrap residuals, ε̂∗i , i = 1, . . . , n.

3. Obtain bootstrap samples {(Xi,Θ
∗
i )}ni=1 with Θ∗i = [mc

β̂
(Xi)+ε̂∗i ](mod 2π), being

mc
β̂
(Xi) the parametric regression estimator under H0.

4. Using the bootstrap sample {(Xi,Θ
∗
i )}ni=1, the bootstrap test statistics T c,l,∗n,p ,

with l = 1, 2, are computed as in (5.4) and in (5.5).

5. Repeat Steps 2-4 a large number of times B.

The PCB is similar to the PB discussed in Section 2.3.1 for spatially correlated

Euclidean data, but, in this case, for independent and circular observations. In Step

1 of the previous algorithm, the circular regression function is estimated paramet-

rically, employing one of the procedures described in Section 5.2.1. Alternatively,

the NPCB tries to avoid possible misspecification problems, using more flexible re-

gression estimation methods than those employed in PCB. Then, following the same

arguments as in González-Manteiga and Cao (1993) to increase the power of the

test, in the NCPB method, the nonparametric circular regression estimator given in

(3.14) is employed in Step 1 of the bootstrap Algorithm 2.

Notice that the empirical distribution of the B bootstrap test statistics can be

employed to approximate the finite sample distribution of the test statistics T c,1n,p and

T c,2n,p under the null hypothesis. Denoting by {T c,l,∗n,p,1, · · · , T
c,l,∗
n,p,B} (for l = 1, 2) the

sample of the B bootstrap test statistics, given in (5.4) and in (5.5), and defining

its (1 − α) quantile tc,l,∗α,p , the null hypothesis in (5.1) will be rejected if T c,ln,p > tc,l,∗α,p .

Additionally, as it was pointed out for Euclidean data in Chapter 2, the p-values of

the test statistics can be approximated as in (2.7).
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5.2.4 Simulation study

The finite sample performance of the proposed tests, using the bootstrap approaches

described in Algorithm 2 for their calibration, is illustrated in what follows with a

simulation study, considering a regression model with a single real-valued covariate

and also with a bidimensional one. As pointed out previously, only results for p = 1

are presented in this section.

Simulation experiment with a single covariate

In order to study empirically the performance of the proposed tests considering a

regression model with a circular response and a single real-valued covariate, the

parametric regression family

Mc
1,β = {µ0 + 2atan(β1X), µ0 ∈ [0, 2π), β1 ∈ R} (5.7)

is chosen, and for different values of c, the regression function

mc
1(X) = 2atan(X) + c asin(2X5 − 1) (5.8)

is considered. Therefore, the parameter c controls whether the null (c = 0) or the

alternative (c 6= 0) hypotheses hold in problem (5.1). Values c = 0, 1, and 2 are

considered in the study. This circular regression function was plotted in Figure 5.1

(black lines) considering c = 0. For each value of c, 500 samples of sizes n = 50, 100

and 200 are generated on the unit interval D = [0, 1], considering an equally-spaced

explanatory variable X, following model (3.3) with regression function (5.8). The

independent circular errors εi are drawn from a von Mises distribution vM(0, κ), with

density function given in (1.40), for different values of the concentration (κ = 5, 10

and 15).

To analyze the behavior of the test statistics given in (5.4) and in (5.5), for p = 1,

in the different scenarios, the bootstrap procedures described in Section 5.2.3 are ap-

plied, using B = 500 replications. The non-smoothed or smoothed parametric fits

used for constructing (5.4) and (5.5) are computed using the estimators obtained from

(5.3) and (5.6), respectively. The nonparametric fit is obtained using the estimator
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given in (3.14), for p = 1, with a triweight kernel. We address the bandwidth selec-

tion problem by using the same procedure as the one used in Härdle and Mammen

(1993), Alcalá et al. (1999), Opsomer and Francisco-Fernández (2010), among others,

applying the tests on a grid of several bandwidths. In order to use a reasonable grid

of bandwidths, the optimal bandwidth selected by minimizing the CASE given in

(3.34), for d = 1, is calculated for each sample and for each scenario. In this case, the

values of the average of the CASE optimal bandwidths are in the interval [0.2, 0.6].

Therefore, the values of the bandwidth parameter h = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65,

are considered to compute both test statistics (5.4) and (5.5). The weight function

used in both tests is w(x) = I{x∈[1/
√
n,1−1/

√
n]}, to avoid possible boundary effects.

Effect of sample size. Proportions of rejections of the null hypothesis, for a sig-

nificance level α = 0.05, considering κ = 10, and different sample sizes, are shown in

Tables 5.1 and 5.2, when using T c,1n,1 and T c,2n,1, respectively. If c = 0 (null hypothesis),

the proportions of rejections are similar to the theoretical level, although they are

quite affected by the value of h. The tests attain the nominal significance level of 5%,

since for appropriate values of h, the majority of proportions of rejections under the

null hypothesis lie within the intervals (0, 0.110), (0.007, 0.093) and (0.020, 0.080),

when n = 50, 100 and 200, respectively. For alternative assumptions (c = 1 and

c = 2), as expected, as the sample size increases the proportions of rejections are

larger. For all the scenarios, the power of the tests becomes larger as the value of c

increases. Notice that, in most of the cases, an increasing power of the tests when the

values of h decrease is observed. It should be noted that NPCB presents a slightly

better performance than the PCB. On the other hand, although both test statistics

provide a similar behavior of the testing procedure, T c,2n,1 seems to give slightly better

results.

Effect of κ. The performance of the tests T c,1n,1 and T c,2n,1 (for α = 0.05) is studied

for n = 200 and for different values of the concentration parameter κ. Results are

included in Tables 5.3 and 5.4, when using T c,1n,1 and T c,2n,1, respectively. If c = 0,

the proportions of rejections are similar to the theoretical level when using both

bootstrap approaches (PCB and NPCB). For alternative assumptions, as expected,

large values of the concentration parameter κ lead to an increase in power, which

justifies the correct performance of the bootstrap procedures.
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c n Method h = 0.15 h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65
0 50 PCB 0.032 0.036 0.034 0.040 0.042 0.042

NPCB 0.048 0.040 0.044 0.048 0.046 0.050
100 PCB 0.026 0.026 0.032 0.032 0.036 0.034

NPCB 0.028 0.028 0.032 0.034 0.036 0.034
200 PCB 0.024 0.028 0.028 0.034 0.036 0.034

NPCB 0.026 0.034 0.026 0.036 0.040 0.046
1 50 PCB 0.100 0.124 0.148 0.162 0.156 0.152

NPCB 0.142 0.156 0.170 0.184 0.184 0.174
100 PCB 0.212 0.264 0.300 0.324 0.318 0.304

NPCB 0.250 0.306 0.344 0.352 0.352 0.336
200 PCB 0.504 0.604 0.642 0.660 0.668 0.666

NPCB 0.548 0.636 0.674 0.686 0.692 0.680
2 50 PCB 0.380 0.506 0.574 0.606 0.618 0.598

NPCB 0.478 0.582 0.638 0.672 0.678 0.670
100 PCB 0.856 0.934 0.952 0.958 0.962 0.962

NPCB 0.896 0.944 0.964 0.972 0.970 0.970
200 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.1: Proportions of rejections of the null hypothesis for the parametric family
Mc

1,β with different sample sizes and κ = 10. The test statistic T c,1n,1 is employed, and
the Algorithm 2 is used. Significance level: α = 0.05.

c n Method h = 0.15 h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65
0 50 PCB 0.032 0.032 0.040 0.044 0.042 0.040

NPCB 0.044 0.042 0.046 0.050 0.052 0.050
100 PCB 0.026 0.028 0.038 0.032 0.030 0.030

NPCB 0.026 0.030 0.038 0.036 0.036 0.036
200 PCB 0.028 0.028 0.028 0.024 0.032 0.038

NPCB 0.026 0.030 0.030 0.022 0.032 0.038
1 50 PCB 0.106 0.118 0.144 0.140 0.156 0.146

NPCB 0.140 0.154 0.168 0.182 0.188 0.180
100 PCB 0.214 0.260 0.288 0.290 0.290 0.270

NPCB 0.248 0.298 0.324 0.334 0.336 0.312
200 PCB 0.502 0.582 0.610 0.618 0.644 0.620

NPCB 0.536 0.610 0.632 0.650 0.654 0.640
2 50 PCB 0.380 0.500 0.548 0.570 0.562 0.558

NPCB 0.476 0.574 0.620 0.626 0.638 0.620
100 PCB 0.840 0.924 0.944 0.946 0.948 0.944

NPCB 0.894 0.944 0.962 0.966 0.960 0.958
200 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 0.998

Table 5.2: Proportions of rejections of the null hypothesis for the parametric family
Mc

1,β with different sample sizes and κ = 10. The test statistic T c,2n,1 is employed, and
the Algorithm 2 is used. Significance level: α = 0.05.
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c κ Method h = 0.15 h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65
0 5 PCB 0.030 0.030 0.024 0.024 0.028 0.030

NPCB 0.034 0.030 0.024 0.024 0.028 0.030
10 PCB 0.024 0.028 0.028 0.034 0.036 0.034

NPCB 0.026 0.034 0.026 0.036 0.040 0.046
15 PCB 0.026 0.034 0.030 0.034 0.038 0.040

NPCB 0.026 0.030 0.028 0.034 0.034 0.036
1 5 PCB 0.200 0.262 0.282 0.306 0.290 0.278

NPCB 0.216 0.276 0.306 0.314 0.320 0.294
10 PCB 0.504 0.604 0.642 0.660 0.668 0.666

NPCB 0.548 0.636 0.674 0.686 0.692 0.680
15 PCB 0.764 0.836 0.878 0.880 0.868 0.850

NPCB 0.784 0.856 0.882 0.882 0.872 0.868
2 5 PCB 0.872 0.916 0.930 0.942 0.942 0.928

NPCB 0.884 0.918 0.938 0.946 0.940 0.930
10 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000
15 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.3: Proportions of rejections of the null hypothesis for the parametric family
Mc

1,β with different values of κ and n = 200. The test statistic T c,1n,1 is employed, and
the Algorithm 2 is used. Significance level: α = 0.05.

c κ Method h = 0.15 h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65
0 5 PCB 0.032 0.028 0.022 0.022 0.028 0.026

NPCB 0.034 0.028 0.026 0.030 0.030 0.028
10 PCB 0.028 0.028 0.028 0.024 0.032 0.038

NPCB 0.026 0.030 0.030 0.022 0.032 0.038
15 PCB 0.028 0.034 0.038 0.034 0.034 0.034

NPCB 0.026 0.038 0.036 0.036 0.032 0.034
1 5 PCB 0.198 0.252 0.264 0.272 0.268 0.250

NPCB 0.218 0.274 0.280 0.290 0.280 0.264
10 PCB 0.502 0.582 0.610 0.618 0.644 0.620

NPCB 0.536 0.610 0.632 0.650 0.654 0.640
15 PCB 0.752 0.826 0.862 0.868 0.868 0.858

NPCB 0.782 0.846 0.874 0.874 0.884 0.868
2 5 PCB 0.870 0.910 0.918 0.932 0.928 0.918

NPCB 0.884 0.916 0.930 0.942 0.938 0.932
10 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 0.998
15 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.4: Proportions of rejections of the null hypothesis for the parametric family
Mc

1,β with different values of κ and n = 200. The test statistic T c,2n,1 is employed, and
the Algorithm 2 is used. Significance level: α = 0.05.



202 Chapter 5. Testing parametric regression models with circular response

Simulations experiment with several covariates

The extension for regression models with a circular response and two covariates is

analyzed in this section. For this purpose, the parametric regression family

Mc
2,β = {µ0 + 2atan(β1X1 + β2X2), µ0 ∈ [0, 2π), β1, β2 ∈ R} (5.9)

is chosen, and for different values of c the regression function

mc
2(X) = 2atan(−X1 +X2) + c asin(2X3

1 − 1), (5.10)

being X = (X1, X2), is considered. This circular regression function was plotted in

Figure 5.2 (top left panel) considering c = 0. For each value of c (c = 0, 1, and 2),

500 samples of sizes n = 100, 225 and 400 are generated on a regular grid in the unit

square D = [0, 1]× [0, 1], following model (3.3), with regression function (5.10). The

circular errors εi are drawn from a von Mises distribution vM(0, κ), with density

function given in (1.40), for κ = 5, 10 and 15. The bootstrap procedures described

in Section 5.2.3 are applied, using B = 500 replications. The non-smoothed or

smoothed parametric fits used for constructing (5.4) and (5.5) are computed using

the estimators obtained from (5.3) and (5.6), respectively. The nonparametric fit

is obtained using the estimator given in (3.14), for p = 1, with a multiplicative

triweight kernel. In order to simplify the calculations, the bandwidth matrix is

restricted to a class of diagonal matrices with both equal elements. In this case, the

diagonal elements of the average of the CASE optimal bandwidths are in the interval

[0.3, 0.8]. Therefore, diagonal bandwidth matrices H = diag(h, h) with different

values of h, h = 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, are considered to compute both

test statistics (5.4) and (5.5). The weight function used in both tests is w(x) =

I{x∈[1/
√
n,1−1/

√
n]×[1/

√
n,1−1/

√
n]}.

Effect of sample size. Proportions of rejections of the null hypothesis, for a

significance level α = 0.05, considering κ = 10, and different sample sizes, are

shown Tables 5.5, when using T c,1n,1. It can be observed that using both bootstrap

methods (PCB and NPCB), the tests have a reasonable behavior. If c = 0 (null

hypothesis), the tests preserve the nominal significance level, since most of the

proportions of rejections lie within the intervals (0.007, 0.093), (0.022, 0.078) and
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(0.029, 0.071), when n = 100, 225 and 400, respectively. For alternative assumptions

(c = 1 and c = 2), NPCB presents a slightly better performance than the PCB.

Notice that, in most of the cases, an increasing power of the tests when the values of

h increase is observed. For all the scenarios, the power of the tests becomes larger as

the value of c increases. Analogous conclusions at those given for T c,1n,1 were obtained

when the test statistic T c,2n,1 was employed (Table 5.6).

Effect of κ. The performance of the bootstrap procedures is analyzed for n =

400 and for different values of the concentration parameter κ when using T c,1n,1, for

α = 0.05, in Table 5.7. If c = 0, the proportions of rejections are similar to the

theoretical level when using both bootstrap approaches (PCB and NPCB). It can

be observed that for larger values of the concentration parameter κ, the bandwidth

values providing an effective calibration must be smaller. For alternative assump-

tions, if the value of the concentration parameter κ is larger, an increasing power

is obtained. Results considering the test statistic T c,2n,1 are summarized in Table 5.8.

Similar conclusions to those provided for T c,1n,1 were obtained.

c n Method h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65 h = 0.75 h = 0.85
0 100 PCB 0.030 0.034 0.048 0.050 0.062 0.066 0.068

NPCB 0.044 0.048 0.058 0.062 0.062 0.064 0.068
225 PCB 0.030 0.032 0.028 0.038 0.042 0.042 0.042

NPCB 0.024 0.030 0.032 0.038 0.042 0.044 0.044
400 PCB 0.042 0.040 0.042 0.038 0.030 0.036 0.038

NPCB 0.034 0.038 0.040 0.030 0.032 0.036 0.036
1 100 PCB 0.102 0.066 0.034 0.008 0.004 0.004 0.000

NPCB 0.158 0.106 0.038 0.014 0.004 0.004 0.000
225 PCB 0.362 0.264 0.140 0.058 0.020 0.008 0.004

NPCB 0.372 0.280 0.152 0.068 0.022 0.008 0.004
400 PCB 0.724 0.614 0.396 0.198 0.066 0.030 0.020

NPCB 0.722 0.616 0.392 0.190 0.076 0.032 0.020
2 100 PCB 0.574 0.548 0.442 0.302 0.176 0.098 0.070

NPCB 0.640 0.600 0.478 0.342 0.202 0.114 0.078
225 PCB 0.992 0.990 0.976 0.916 0.776 0.638 0.472

NPCB 0.992 0.994 0.980 0.924 0.804 0.664 0.508
400 PCB 1.000 1.000 1.000 0.998 0.992 0.976 0.932

NPCB 1.000 1.000 1.000 0.998 0.996 0.984 0.940

Table 5.5: Proportions of rejections of the null hypothesis for the parametric family
Mc

2,β with different sample sizes and κ = 10. The test statistic T c,1n,1 is employed, and
the Algorithm 2 is used. Significance level: α = 0.05.
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c n Method h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65 h = 0.75 h = 0.85
0 100 PCB 0.040 0.048 0.060 0.054 0.062 0.050 0.050

NPCB 0.060 0.064 0.066 0.064 0.066 0.070 0.068
225 PCB 0.032 0.032 0.030 0.038 0.046 0.044 0.046

NPCB 0.038 0.034 0.032 0.044 0.048 0.044 0.042
400 PCB 0.030 0.034 0.040 0.042 0.036 0.038 0.030

NPCB 0.032 0.032 0.040 0.036 0.030 0.034 0.034
1 100 PCB 0.132 0.220 0.292 0.332 0.336 0.344 0.342

NPCB 0.194 0.266 0.332 0.368 0.382 0.386 0.370
225 PCB 0.398 0.554 0.636 0.672 0.680 0.682 0.672

NPCB 0.418 0.552 0.640 0.670 0.678 0.676 0.662
400 PCB 0.944 0.984 0.994 0.994 0.990 0.990 0.988

NPCB 0.938 0.978 0.994 0.994 0.992 0.988 0.988
2 100 PCB 0.508 0.736 0.856 0.894 0.904 0.904 0.898

NPCB 0.556 0.752 0.854 0.898 0.902 0.902 0.902
225 PCB 0.980 0.996 0.998 1.000 1.000 1.000 1.000

NPCB 0.980 0.996 0.998 0.998 1.000 1.000 1.000
400 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.6: Proportions of rejections of the null hypothesis for the parametric family
Mc

2,β with different sample sizes and κ = 10. The test statistic T c,2n,1 is employed, and
the Algorithm 2 is used. Significance level: α = 0.05.

c κ Method h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65 h = 0.75 h = 0.85
0 5 PCB 0.026 0.034 0.040 0.038 0.042 0.038 0.038

NPCB 0.026 0.036 0.038 0.038 0.042 0.038 0.038
10 PCB 0.042 0.040 0.042 0.038 0.030 0.036 0.038

NPCB 0.034 0.038 0.040 0.030 0.032 0.036 0.036
15 PCB 0.038 0.044 0.040 0.038 0.032 0.038 0.038

NPCB 0.030 0.036 0.038 0.036 0.034 0.040 0.038
1 5 PCB 0.354 0.268 0.176 0.090 0.046 0.020 0.014

NPCB 0.360 0.290 0.178 0.094 0.048 0.020 0.012
10 PCB 0.724 0.614 0.396 0.198 0.066 0.030 0.020

NPCB 0.722 0.616 0.392 0.190 0.076 0.032 0.020
15 PCB 0.936 0.802 0.560 0.294 0.140 0.050 0.022

NPCB 0.922 0.792 0.554 0.302 0.136 0.050 0.026
2 5 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.7: Proportions of rejections of the null hypothesis for the parametric family
Mc

2,β with different values of κ and n = 400. The test statistic T c,1n,1 is employed, and
the Algorithm 2 is used. Significance level: α = 0.05.
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c κ Method h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65 h = 0.75 h = 0.85
0 5 PCB 0.030 0.024 0.024 0.026 0.028 0.030 0.026

NPCB 0.046 0.046 0.050 0.050 0.050 0.054 0.052
10 PCB 0.030 0.034 0.040 0.042 0.036 0.038 0.030

NPCB 0.032 0.032 0.040 0.036 0.030 0.034 0.034
15 PCB 0.034 0.042 0.040 0.044 0.038 0.042 0.040

NPCB 0.024 0.024 0.038 0.044 0.042 0.036 0.036
1 5 PCB 0.566 0.684 0.744 0.776 0.786 0.794 0.786

NPCB 0.574 0.692 0.752 0.776 0.794 0.790 0.780
10 PCB 0.944 0.984 0.994 0.994 0.990 0.990 0.988

NPCB 0.938 0.978 0.994 0.994 0.992 0.988 0.988
15 PCB 0.990 0.998 0.998 0.998 0.998 0.998 0.998

NPCB 0.990 0.998 0.998 0.998 0.998 0.998 0.998
2 5 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.8: Proportions of rejections of the null hypothesis for the parametric family
Mc

2,β with different values of κ and n = 400. The test statistic T c,2n,1 is employed, and
the Algorithm 2 is used. Significance level: α = 0.05.

5.2.5 Real data illustration

In order to illustrate the performance in practice of the test statistics T c,1n,1 and T c,2n,1,

given in (5.4) and in (5.5), respectively, two datasets are used. Considering regression

model (3.3) with a single real-valued covariate, the testing procedure is applied to

the blue periwinkles dataset. For a bidimensional real-valued covariate, the sand

hoppers dataset, previously introduced in Chapter 3, is employed to illustrate the

proposed methodology.

Based on the simulation study, where both T c,1n,1 and T c,2n,1 presented a very similar

behavior, only the test statistic T c,2n,1 was employed in these illustrations. Moreover,

taking into account that NPCB presented a slightly better performance than the

PCB in the simulations, only the NPCB resampling approach was used to calibrate

the test.
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Blue periwinkle data

The blue periwinkle dataset, mentioned in Section 5.1, is described in this section

in more detail, to illustrate the application of the proposed goodness-of-fit test T c,2n,1

for a regression model with a single real-valued covariate. These data can be found

in Table 1 of Fisher and Lee (1992), and are available in the R package circular

(Lund et al., 2020).

Directions and distances moved by small blue periwinkles, after they had been

transplanted downshore from the height at which they normally live, are considered.

Figure 5.3 (left panel) shows the observations of this dataset, which were analyzed

and modeled by different authors in the literature. In order to study how orienta-

tion varies with distance, in Fisher and Lee (1992), a parametric regression model

was fit, considering that the regression function belongs to the parametric family

Mc
1,β, given in (5.7). An iterative reweighted least squares algorithm to perform

the maximum likelihood estimation of the parameters was employed. On the other

hand, in Presnell et al. (1998), a parametric approach was also used to model these

data. However, in this case, a PMLM was assumed, considering linear models on

the covariate (distance) for the means of the bivariate normal distribution that is

projected. Notice that if a projected normal distribution is assumed, with identity

covariance matrix in (1.41), it holds that tan(µ) = µ2/µ1, being µ the circular mean

direction, and µ1 and µ2 the mean components of the bivariate normal distribution

that is projected (Presnell et al., 1998; Wang and Gelfand, 2013). Therefore, using

this approach, the following parametric family is considered:

Mc
3,β = {atan2(β0,2 + β1,2X, β0,1 + β1,1X), β0,2, β1,2, β0,1, β1,1 ∈ R},

where X represents the distance moved by the small blue periwinkles. This dataset

was also explored by Di Marzio et al. (2013) using a nonparametric approach. Con-

sidering a regression model with a circular response (direction) and a single real-

valued covariate (distance), the regression function was estimated using kernel-type

methods.

In order to decide if Mc
1,β or Mc

3,β are plausible parametric models for the re-

gression function with this dataset, the test statistic T c,2n,1 is applied twice considering
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Figure 5.3: Left panel: Sample of directions and distances moved by periwinkles (cir-
cle points), smoothed versions of the parametric fits when considering the parametric
familiesMc

1,β (dashed line) andMc
3,β (dotted line), and local linear-type regression

estimator (solid line), using the CVc bandwidth. Right panel: p-values of the test
when considering the parametric family Mc

1,β (dashed line) and Mc
3,β (dotted line)

as the null hypothesis for different values of h. Horizontal solid line represents the
value 0.05.

B = 500 replications. In both cases, the parametric fits were computed by maximum

likelihood (see Section 5.2.1). For further details on the estimation procedures, we

refer to Fisher and Lee (1992) and Presnell et al. (1998). As for the nonparametric

fit, the local linear-type estimator given in (3.14) with a triweight kernel was consi-

dered. As pointed out before, the performance of the test is analyzed in a range of

bandwidths.

Figure 5.3 (left panel) shows the smoothed versions of the parametric fits when

considering the parametric families Mc
1,β (dashed line) and Mc

3,β (dotted line),

and the nonparametric regression estimator (solid line), using the CVc bandwidth

(see Di Marzio et al., 2013, for further details on bandwidth selection in this con-

text). These curves are compared in the proposed test statistic. Figure 5.3 (right

panel) shows the p-values of the tests when considering the parametric familiesMc
1,β

(dashed line) orMc
3,β (dotted line) as the null hypothesis, using the significance trace

(as it was performed in Chapter 2 for regression models with Euclidean response and
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covariates, and spatially correlated errors). Taking into account this plot, there are

no evidences to reject the null hypothesis in both testing problems. However, it

can be observed that for h larger than 15, the p-value decreases considerably when

considering the parametric family Mc
1,β in the null hypothesis.

Sand hopper data

In this section, the testing procedure is applied to the sand hopper dataset, previously

introduced in Chapter 3. With the purpose of analyzing how male and female sand

hopper orientation behaves when other variables are included as covariates (such as

azimuth, pressure, temperature, among others), both parametric and nonparametric

approaches have been considered. For instance, following the proposal in Presnell

et al. (1998), Scapini et al. (2002) employed a parametric approach, assuming a

projected normal distribution for the scape directions. The authors considered linear

models on the covariates for the means of the bivariate normal distribution that is

projected. Using nonparametric tools, in Chapter 3 of this dissertation, this dataset

(for males and females) was also explored in order to study how orientation behaves

when temperature and (relative) humidity are included as covariates.

In order to determine if a parametric multiple regression model is an appropri-

ate representation of these datasets (male and female sand hoppers), it is necessary

to carry out a goodness-of-fit test for the selected parametric model. Similarly to

Chapter 3, for illustration purposes, only observations corresponding to (relative)

humidity values larger than 45% are considered. Assuming the parametric model

used in Presnell et al. (1998) for these datasets, and taking into account the argu-

ments in the previous section regarding the PMLM, the following parametric family

is chosen:

Mc
4,β = {atan2(β0,2 + β1,2X1 + β2,2X2, β0,1 + β1,1X1 + β2,1X2)},

with β0,2, β1,2, β2,2, β0,1, β1,1, β2,1 ∈ R, andX1 = “temperature” andX2 = “humidity”.

The test (5.5) is applied with B = 500 replications. The parametric fit was

computed by maximum likelihood (for further details on the estimation procedure,

we refer to Presnell et al., 1998). As for the nonparametric fit, the local linear-type

estimator given in (3.14) with a multiplicative triweight kernel was considered. The
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Figure 5.4: Smoothed version of the parametric fit for male (top left panel) and
female (bottom left panel), and local linear-type regression estimators for male (top
right panel) and for female (bottom right panel), using the CVc bandwidth matrices
given in (3.38) and in (3.39), for male and female, respectively. Horizontal axis:
temperature in Celsius degrees. Vertical axis: relative humidity in percentage.

bandwidth was taken as a diagonal matrix H = diag(h1, h2), being the values of h1

and h2 different. The range of bandwidths was selected taking into account the CVc

bandwidth matrices, given in (3.38) and in (3.39), for male and female, respectively.

Figure 5.4 shows the smoothed version of the parametric fit for male (top left

panel) and female (bottom left panel), and the nonparametric regression estima-

tors for male (top right panel) and for female (bottom right panel), using the CVc

bandwidth matrices given in (3.38) and in (3.39), for male and female, respectively.

The plots corresponding to the left panels are compared with the right panels in the

proposed test statistic. Figure 5.5 shows approximated the p-values of the test for

male (left panel) and female (right panel), using the significance trace. Taking into

account this figure, there are no evidences against the circular regression function
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Figure 5.5: For male (left panel) and female (right panel) sand hopper orientation
dataset, p-values of the test for different values of h1 and h2, considering the para-
metric family Mc

4,β as the null hypothesis.

belonging to the parametric family Mc
4,β, for both sexes.

5.3 Goodness-of-fit tests for parametric circular

regression models with spatially correlated

data

The testing problem (5.1) is addressed in Section 5.2 for independent data, by

constructing weighted test statistics. In this section, these test statistics are also an-

alyzed considering a linear-circular regression model with spatially correlated errors.

For this purpose, the estimators described in Section 5.2.1 are also employed for the

parametric fit. Probably, more accurate results would be obtained if an estimator

taking the spatial dependence structure into account was used. However, the prob-

lem of estimating parametrically the regression function accounting the dependence

structure, up to the knowledge of the author, has not been tackled in the statistical

literature. Some guidelines about a possible iterative least squares estimator (tak-

ing the possible spatial dependence structure into account) are provided in Section

6.4 of this dissertation. Kernel-type estimators given in (3.14) are employed for the

nonparametric fit.
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For illustration purposes, a sample of size n = 400 is generated on a bidimensional

regular grid in the unit square, assuming the linear-circular regression model (3.3)

with spatially correlated errors, and regression function (5.10), being c = 0. The

errors are drawn from a wrapped Gaussian spatial process (Jona-Lasinio et al., 2012),

described in Section 4.2.1, with zero mean and exponential covariance structure,

given in (4.2), with σ2 = 1 and ae = 0.3. In order to test if the circular regression

function can be assumed to belong to the parametric family Mc
2,β, given in (5.9),

using the test statistics given in (5.4) and in (5.5), for p = 1, m̂c
H(x; 1), mc

β̂
(x) and

m̂c
H,β̂

(x; 1) fits must be computed. For the parametric fit, the estimator obtained

from (5.3) is employed. A multiplicative triweight kernel and the optimal bandwidth

obtained by minimizing the CASE, given in (3.34), of the local linear-type estimator

are considered to compute m̂c
H(x; 1) and m̂c

H,β̂
(x; 1). Figure 5.6 shows the theoretical

circular regression function (top left panel), the local linear-type regression estimator

(top right panel), the parametric fit (bottom left panel) and the smoothed version

of the parametric fit (bottom right panel). It can be observed that estimates at top

right, bottom left and bottom right panels seem to be very similar and, therefore, the

value of the test statistics T c,1n,1 and T c,2n,1 should be small. Consequently, the formal

application of the tests will probably lead to assert that there is no evidences against

the assumption that the regression function belongs to the parametric familyMc
2,β.

Practical methods to calibrate the test statistics T c,1n,1 and T c,2n,1, given in (5.4) and in

(5.5), for spatially correlated data are presented in the following section.

5.3.1 Calibration in practice

This section is devoted to present bootstrap resampling methods to calibrate in

practice the test statistics T c,1n,p and T c,2n,p, given in (5.4) and in (5.5), respectively,

considering the linear-circular regression model (3.3) with spatially correlated errors.

The bootstrap Algorithm 2, which was designed for independent data, should

not be used for spatial processes, as it does not account for the correlation structure.

The aim of this section is to describe two different proposals for test calibration

which take the dependence of the data into account (PSCB and NPSCB). Similarly

to the methods presented in Section 5.2.3, the main difference between them is

how the resampling residuals (required for mimicking the dependence structure of

the errors) are computed. In PSCB (similarly to PCB), the residuals are obtained
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Figure 5.6: Circular regression function (top left panel), the local linear-type re-
gression estimator (top right panel), the parametric fit (bottom left panel) and the
smoothed version of the parametric fit (bottom right panel). Sample of size n = 400
generated on a regular grid in the unit square D = [0, 1] × [0, 1], following model
(3.3), with regression function (5.10), for c = 0, and circular errors εi drawn from
from wrapped Gaussian spatial processes with zero mean and exponential covariance
structure, given in (4.2), with σ2 = 1 and ae = 0.3.

from the parametric regression estimator, while in NPSCB (analogously to NPCB),

the residuals are obtained from the nonparametric regression estimator. In both

approaches, in order to mimic the dependence structure of the errors, an appropriate

spatial circular process model is fit to the residuals.

Next, a generic bootstrap algorithm is introduced to present the PSCB and

NPSCB resampling approaches. As in Algorithm 2, no matter the method used,

either parametric or nonparametric, m̂c denotes the parametric or the nonparamet-

ric circular regression estimator.
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Algorithm 3

1. Compute the nonparametric or the parametric circular regression estimator

(described in Sections 3.3.1 and 5.2.1, respectively), namely m̂c(Xi), i = 1, . . . , n,

depending if a parametric (PSCB) or a nonparametric (NPSCB) bootstrap proce-

dure is employed.

2. From the residuals ε̂i = [Θi−m̂c(Xi)](mod 2π), i = 1, . . . , n, fit a spatial circular

process.

3. Generate a random sample from the fit model, ε̂∗i , i = 1, . . . , n.

4. Obtain bootstrap samples {(Xi,Θ
∗
i )}ni=1 with Θ∗i = [mc

β̂
(Xi)+ε̂∗i ](mod 2π), being

mc
β̂
(Xi) the parametric regression estimator.

5. Using the bootstrap sample {(Xi,Θ
∗
i )}ni=1, the bootstrap test statistics T c,1,∗n,p

and T c,2,∗n,p are computed as in (5.4) and in (5.5), respectively.

6. Repeat Steps 3-5 a large number of times B.

Notice that Algorithm 3 is a modification of Algorithm 2. Two additional steps

are included in Algorithm 3 (Steps 2 and 3) trying to mimic properly the distribution

of spatial dependence structure of the circular errors in the bootstrap procedure.

As pointed out in Section 5.2.3 for independent data, considering the test statis-

tics T c,ln,p (l = 1, 2), given in (5.4) and in (5.5), the null hypothesis in (5.1) will be

rejected if T c,ln,p > tc,l,∗α,p , where tc,l,∗α,p is the (1−α) quantile of the sample of the B boot-

strap test statistics {T c,l,∗n,p,1, · · · , T
c,l,∗
n,p,B}. Moreover, the p-value of the test statistic

can be approximated as in (2.7).

5.3.2 Simulation experiment

The performance of the proposed test statistics and the bootstrap procedures, de-

scribed in Algorithm 3, are analyzed in a simulation study. As pointed out previously,

only results for p = 1 are presented. The parametric circular regression familyMc
2,β,

given in (5.9), is chosen, and for different values of c (c = 0, 1, 2), the regression func-

tion (5.10) is considered.

In this study, 500 samples of sizes n = 100, 225 and 400 are generated on a regular

grid in the unit squareD = [0, 1]×[0, 1], assuming the linear-circular regression model

(3.3), with regression function (5.10), but considering circular spatially correlated
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errors generated from wrapped Gaussian spatial processes (Jona-Lasinio et al., 2012),

described in Section 4.2.1. Specifically, the circular errors {εi, i = 1, . . . , n} are

drawn considering the same scenarios as in Section 4.5, namely, realizations of zero

mean processes with exponential covariance structure given in (4.2). The value of

the variance σ2 is fixed equal to one, and different values of the range parameter are

considered: ae = 0.1, 0.3, 0.6.

The performance of Algorithm 3 is analyzed in this section. Notice that Algo-

rithm 2, which was designed for independent observations, should not be used in a

spatial framework. In order to illustrate this issue (details of this algorithm were

provided in Section 5.2.4), Tables 5.9 and 5.10 show the proportions of rejections of

the null hypothesis for different sample sizes and α = 0.05, when using T c,1n,1 and T c,2n,1,

respectively, and the Algorithm 2 is applied. Considering both test statistics, it may

seem that PCB and NPCB present a good behavior in terms of power, however, the

proportions of rejections under the null hypothesis are very large. Results for n = 400

and different spatial dependence degrees (controlled by the range parameter, ae) are

summarized in Tables 5.11 and 5.12, when using T c,1n,1 and T c,2n,1, respectively. Again,

it can be obtained that the tests do not work properly under the null hypothesis.

c n Method h = 0.25 h = 0.40 h = 0.55 h = 0.70 h = 0.85 h = 1.00 h = 1.15 h = 1.30
0 100 PCB 0.696 0.728 0.634 0.562 0.494 0.434 0.366 0.336

NPCB 0.778 0.756 0.672 0.592 0.530 0.492 0.424 0.396
225 PCB 0.996 0.984 0.966 0.928 0.882 0.832 0.772 0.722

NPCB 0.996 0.988 0.966 0.932 0.894 0.852 0.790 0.742
400 PCB 1.000 1.000 0.988 0.982 0.960 0.928 0.910 0.878

NPCB 1.000 1.000 0.990 0.982 0.960 0.928 0.914 0.880
1 100 PCB 0.450 0.522 0.510 0.484 0.466 0.448 0.436 0.430

NPCB 0.586 0.582 0.556 0.538 0.510 0.480 0.470 0.456
225 PCB 0.742 0.666 0.616 0.566 0.548 0.534 0.520 0.504

NPCB 0.798 0.732 0.662 0.622 0.594 0.578 0.554 0.550
400 PCB 0.832 0.776 0.740 0.700 0.680 0.658 0.638 0.634

NPCB 0.864 0.818 0.780 0.758 0.738 0.706 0.692 0.676
2 100 PCB 0.602 0.750 0.768 0.766 0.750 0.736 0.724 0.710

NPCB 0.824 0.824 0.814 0.804 0.802 0.794 0.784 0.778
225 PCB 0.746 0.752 0.740 0.726 0.722 0.706 0.680 0.678

NPCB 0.802 0.798 0.790 0.780 0.772 0.760 0.734 0.728
400 PCB 0.772 0.762 0.750 0.742 0.712 0.692 0.676 0.664

NPCB 0.816 0.808 0.794 0.786 0.770 0.764 0.732 0.722

Table 5.9: Proportions of rejections of the null hypothesis for the parametric family
M2,β with different sample sizes. Model parameters: σ2 = 1 and ae = 0.3. The
test statistic T c,1n,1 is employed, and the Algorithm 2 for independent data is used.
Significance level: α = 0.05.
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c n Method h = 0.25 h = 0.40 h = 0.55 h = 0.70 h = 0.85 h = 1.00 h = 1.15 h = 1.30
0 100 PCB 0.700 0.728 0.630 0.560 0.496 0.420 0.372 0.344

NPCB 0.780 0.760 0.676 0.590 0.530 0.478 0.420 0.404
225 PCB 0.996 0.986 0.968 0.926 0.876 0.844 0.788 0.742

NPCB 0.996 0.986 0.968 0.932 0.890 0.850 0.806 0.774
400 PCB 1.000 1.000 0.988 0.982 0.964 0.934 0.892 0.878

NPCB 1.000 1.000 0.990 0.982 0.966 0.936 0.898 0.882
1 100 PCB 0.450 0.522 0.510 0.484 0.466 0.448 0.436 0.430

NPCB 0.596 0.594 0.566 0.542 0.524 0.504 0.500 0.492
225 PCB 0.746 0.684 0.638 0.602 0.586 0.568 0.568 0.558

NPCB 0.808 0.740 0.684 0.642 0.616 0.610 0.600 0.606
400 PCB 0.840 0.792 0.762 0.736 0.728 0.716 0.710 0.712

NPCB 0.866 0.822 0.794 0.768 0.762 0.752 0.746 0.742
2 100 PCB 0.602 0.750 0.768 0.766 0.750 0.736 0.724 0.710

NPCB 0.828 0.830 0.824 0.814 0.806 0.800 0.800 0.800
225 PCB 0.752 0.762 0.756 0.742 0.738 0.730 0.724 0.722

NPCB 0.806 0.804 0.796 0.790 0.788 0.780 0.776 0.774
400 PCB 0.780 0.778 0.770 0.760 0.758 0.756 0.754 0.752

NPCB 0.824 0.818 0.816 0.802 0.798 0.792 0.792 0.790

Table 5.10: Proportions of rejections of the null hypothesis for the parametric family
M12,β with different sample sizes. Model parameters: σ2 = 1 and ae = 0.3. The
test statistic T c,2n,1 is employed, and the Algorithm 2 for independent data is used.
Significance level: α = 0.05.

c ae Method h = 0.25 h = 0.40 h = 0.55 h = 0.70 h = 0.85 h = 1.00 h = 1.15 h = 1.30
0 0.1 PCB 0.888 0.672 0.522 0.420 0.396 0.338 0.288 0.254

NPCB 0.884 0.680 0.534 0.436 0.398 0.346 0.298 0.270
0.3 PCB 1.000 1.000 0.988 0.982 0.960 0.928 0.910 0.878

NPCB 1.000 1.000 0.990 0.982 0.960 0.928 0.914 0.880
0.6 PCB 0.988 0.982 0.970 0.960 0.952 0.940 0.924 0.914

NPCB 0.988 0.982 0.970 0.960 0.954 0.946 0.926 0.916
1 0.1 PCB 0.836 0.804 0.774 0.746 0.724 0.694 0.654 0.648

NPCB 0.902 0.872 0.832 0.796 0.774 0.748 0.712 0.704
0.3 PCB 0.832 0.776 0.740 0.700 0.680 0.658 0.638 0.634

NPCB 0.864 0.818 0.780 0.758 0.738 0.706 0.692 0.676
0.6 PCB 0.786 0.704 0.622 0.566 0.466 0.392 0.292 0.234

NPCB 0.828 0.802 0.770 0.744 0.724 0.706 0.670 0.660
2 0.1 PCB 0.808 0.810 0.798 0.780 0.756 0.730 0.710 0.688

NPCB 0.882 0.878 0.862 0.858 0.838 0.806 0.778 0.758
0.3 PCB 0.772 0.762 0.750 0.742 0.712 0.692 0.676 0.664

NPCB 0.816 0.808 0.794 0.786 0.770 0.764 0.732 0.722
0.6 PCB 0.796 0.790 0.774 0.758 0.754 0.742 0.730 0.718

NPCB 0.838 0.830 0.818 0.802 0.786 0.768 0.762 0.760

Table 5.11: Proportions of rejections of the null hypothesis for the parametric family
Mc

2,β with different values of ae. Model parameters: σ2 = 1 and n = 400. The

test statistic T c,1n,1 is employed, and the Algorithm 2 for independent data is used.
Significance level: α = 0.05.
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c ae Method h = 0.25 h = 0.40 h = 0.55 h = 0.70 h = 0.85 h = 1.00 h = 1.15 h = 1.30
0 0.1 PCB 0.888 0.682 0.534 0.436 0.400 0.360 0.314 0.284

NPCB 0.888 0.674 0.554 0.444 0.402 0.366 0.318 0.298
0.3 PCB 1.000 1.000 0.988 0.982 0.964 0.934 0.892 0.878

NPCB 1.000 1.000 0.990 0.982 0.966 0.936 0.898 0.882
0.6 PCB 0.988 0.982 0.970 0.960 0.952 0.938 0.932 0.920

NPCB 0.988 0.982 0.972 0.962 0.956 0.946 0.932 0.920
1 0.1 PCB 0.842 0.824 0.792 0.764 0.748 0.738 0.734 0.736

NPCB 0.916 0.884 0.852 0.824 0.808 0.802 0.812 0.806
0.3 PCB 0.840 0.792 0.762 0.736 0.728 0.716 0.710 0.712

NPCB 0.866 0.822 0.794 0.768 0.762 0.752 0.746 0.742
0.6 PCB 0.806 0.770 0.746 0.726 0.718 0.702 0.688 0.688

NPCB 0.836 0.812 0.780 0.758 0.744 0.730 0.722 0.718
2 0.1 PCB 0.800 0.798 0.792 0.766 0.734 0.720 0.682 0.674

NPCB 0.772 0.698 0.604 0.490 0.372 0.280 0.240 0.222
0.3 PCB 0.780 0.778 0.770 0.760 0.758 0.756 0.754 0.752

NPCB 0.824 0.818 0.816 0.802 0.798 0.792 0.792 0.790
0.6 PCB 0.804 0.800 0.788 0.782 0.776 0.766 0.762 0.760

NPCB 0.526 0.542 0.534 0.524 0.508 0.492 0.466 0.450

Table 5.12: Proportions of rejections of the null hypothesis for the parametric family
Mc

2,β with different values of ae. Model parameters: σ2 = 1 and n = 400. The

test statistic T c,2n,1 is employed, and the Algorithm 2 for independent data is used.
Significance level: α = 0.05.

The bootstrap procedures described in Algorithm 3 are now applied using B =

500 replications. Again, the test statistics T c,1n,1 and T c,2n,1 given in (5.4) and in (5.5),

are computed using the non-smoothed or smoothed parametric fits, obtained from

(5.3) and (5.6), respectively, while the nonparametric fit is obtained employing the

estimator given in (3.14), for p = 1, with a multiplicative triweight kernel. In order

to analyze the effect of the bandwidth matrix in the test statistics, T c,1n,1 and T c,2n,1 are

computed in a grid of (diagonal) matrices with both equal elements, H = diag(h, h).

In this case, values of h = 0.25, 0.40, 0.55, 0.70, 0.85, 1.00, 1.15, 1.30 are considered.

Moreover, the same weight function w as in Section 5.2.4 is used here.

In practice, in order to implement the bootstrap Algorithm 3, a wrapped Gaussian

spatial process model is employed in Step 2. Following the proposal by Jona-Lasinio

et al. (2012), the model fitting within a Bayesian framework is performed using a

Markov Chain Monte Carlo method. Assuming a linear Gaussian spatial process of

the form (4.1), to perform a Bayesian fit of the model, priors are needed for the model

parameters. The authors suggest a normal prior for µ, a truncated inverse gamma

prior for σ2 and a uniform prior (with support allowing small ranges up to ranges
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a bit larger than the maximum distance over the region) for the decay parameter

3/ae. More specifically, the prior of µ is a Gaussian distribution with zero mean

and variance one. For σ2, we choose an inverse Gamma IG(aσ, bσ) with aσ = 2 and

bσ = 1, then the mean is bσ/(aσ − 1) = 1. For the decay parameter, the uniform

distribution on the interval [3/ae − 1, 3/ae + 1) is considered when ae = 0, 1, and on

the interval [3/ae − 0.5, 3/ae + 0.5) when ae = 0.3, 0.6. The parameters are updated

using a Metropolis–Hastings algorithm (Hastings, 1970). For further details on the

wrapped Gaussian spatial model fitting we refer to Jona-Lasinio et al. (2012). The

means of the posterior parameter estimates are considered in Step 3 of Algorithm

3. Notice that, in this case, the circular spatially correlated errors are generated

from a wrapped Gaussian spatial process and, in Step 2 of Algorithm 3, a wrapped

Gaussian spatial process model is employed for model fitting. This model only

allows symmetric marginal distributions, therefore, if the errors were drawn by using

other procedure, such as a projected Gaussian spatial processes (with asymmetric

marginals), it would be more convenient to use an alternative approach. The impact

of using a model that differs from the one used to generate the errors is briefly

discussed in Section 6.4.

Effect of sample size. Table 5.13 shows the proportions of rejections of the null

hypothesis for different sample sizes and α = 0.05, when using T c,1n,1. Under the null

hypothesis (c = 0), it can be observed that the test has an acceptable performance

using both bootstrap approaches PSCB and NPSCB. Proportions of rejections are

similar to the theoretical level considered, namely α = 0.05. However, these propor-

tions clearly depend on the value of the bandwidth h. For alternative assumptions

(c = 1 and c = 2), the performance of the test is satisfactory. As expected, the power

of the test is larger when the value of c is also larger. A slightly better performance

of the test is obtained when considering the test statistic T c,2n,1. In this case, the

proportions of rejections of the null hypothesis are presented in Table 5.14.

Effect of ae. Results for n = 400 and different spatial dependence degrees (ae =

0.1, 0.3, 0.6) are shown in Table 5.15, when using T c,1n,1. PSCB and NPSCB approaches

provide good results for both the null and the alternative hypotheses. As expected,

the power of the test is larger when the dependence structure is weaker. In these

scenarios, results considering the test statistic T c,2n,1 are summarized in Table 5.16.
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c n Method h = 0.25 h = 0.40 h = 0.55 h = 0.70 h = 0.85 h = 1.00 h = 1.15 h = 1.30
0 100 PSCB 0.030 0.032 0.028 0.032 0.028 0.024 0.026 0.030

NPSCB 0.058 0.044 0.054 0.050 0.052 0.046 0.044 0.044
225 PSCB 0.032 0.028 0.034 0.028 0.030 0.028 0.024 0.020

NPSCB 0.044 0.040 0.050 0.038 0.040 0.040 0.040 0.038
400 PSCB 0.030 0.028 0.036 0.036 0.036 0.030 0.034 0.034

NPSCB 0.042 0.042 0.042 0.044 0.046 0.040 0.036 0.034
1 100 PSCB 0.088 0.192 0.238 0.248 0.246 0.236 0.216 0.208

NPSCB 0.172 0.246 0.278 0.292 0.286 0.266 0.252 0.238
225 PSCB 0.146 0.216 0.228 0.222 0.214 0.206 0.198 0.192

NPSCB 0.188 0.244 0.252 0.244 0.242 0.228 0.220 0.216
400 PSCB 0.166 0.210 0.204 0.212 0.212 0.198 0.190 0.180

NPSCB 0.222 0.254 0.264 0.262 0.242 0.232 0.216 0.210
2 100 PSCB 0.670 0.702 0.722 0.718 0.696 0.686 0.668 0.656

NPSCB 0.732 0.744 0.748 0.746 0.724 0.716 0.700 0.690
225 PSCB 0.602 0.628 0.620 0.612 0.598 0.582 0.552 0.550

NPSCB 0.658 0.670 0.656 0.644 0.628 0.614 0.600 0.590
400 PSCB 0.562 0.576 0.570 0.560 0.548 0.520 0.514 0.506

NPSCB 0.610 0.604 0.596 0.586 0.572 0.558 0.538 0.528

Table 5.13: Proportions of rejections of the null hypothesis for the parametric family
M2,β with different sample sizes. Model parameters: σ2 = 1 and ae = 0.3. The test
statistic T c,1n,1 is employed, and the Algorithm 3 is used. Significance level: α = 0.05.

c n Method h = 0.25 h = 0.40 h = 0.55 h = 0.70 h = 0.85 h = 1.00 h = 1.15 h = 1.30
0 100 PSCB 0.030 0.032 0.028 0.030 0.028 0.024 0.030 0.032

NPSCB 0.058 0.044 0.056 0.050 0.046 0.046 0.044 0.044
225 PSCB 0.032 0.028 0.028 0.028 0.026 0.030 0.024 0.022

NPSCB 0.044 0.044 0.048 0.040 0.034 0.038 0.040 0.038
400 PSCB 0.030 0.028 0.034 0.034 0.034 0.028 0.034 0.036

NPSCB 0.040 0.040 0.042 0.042 0.044 0.036 0.040 0.040
1 100 PSCB 0.120 0.178 0.254 0.280 0.262 0.236 0.212 0.202

NPSCB 0.180 0.272 0.290 0.308 0.300 0.288 0.282 0.278
225 PSCB 0.146 0.220 0.238 0.230 0.224 0.218 0.212 0.206

NPSCB 0.188 0.248 0.258 0.246 0.244 0.236 0.236 0.232
400 PSCB 0.168 0.214 0.222 0.220 0.224 0.220 0.222 0.224

NPSCB 0.226 0.262 0.274 0.264 0.250 0.248 0.258 0.260
2 100 PSCB 0.674 0.710 0.732 0.732 0.716 0.700 0.690 0.686

NPSCB 0.738 0.758 0.762 0.762 0.754 0.740 0.730 0.722
225 PSCB 0.608 0.644 0.642 0.626 0.618 0.614 0.610 0.604

NPSCB 0.670 0.686 0.678 0.664 0.652 0.646 0.642 0.640
400 PSCB 0.566 0.590 0.582 0.580 0.582 0.570 0.572 0.566

NPSCB 0.622 0.624 0.618 0.614 0.610 0.608 0.602 0.594

Table 5.14: Proportions of rejections of the null hypothesis for the parametric family
M2,β with different sample sizes. Model parameters: σ2 = 1 and ae = 0.3. The test
statistic T c,2n,1 is employed, and the Algorithm 3 is used. Significance level: α = 0.05.
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c ae Method h = 0.25 h = 0.40 h = 0.55 h = 0.70 h = 0.85 h = 1.00 h = 1.15 h = 1.30
0 0.1 PSCB 0.036 0.032 0.044 0.040 0.042 0.042 0.038 0.034

NPSCB 0.036 0.038 0.048 0.040 0.048 0.044 0.038 0.034
0.3 PSCB 0.030 0.028 0.036 0.036 0.036 0.030 0.034 0.034

NPSCB 0.042 0.042 0.042 0.044 0.046 0.040 0.036 0.034
0.6 PSCB 0.032 0.026 0.032 0.026 0.024 0.024 0.016 0.016

NPSCB 0.048 0.042 0.046 0.034 0.032 0.030 0.022 0.018
1 0.1 PSCB 0.654 0.650 0.636 0.600 0.572 0.554 0.540 0.528

NPSCB 0.706 0.692 0.670 0.644 0.614 0.590 0.564 0.550
0.3 PSCB 0.166 0.210 0.204 0.212 0.212 0.198 0.190 0.180

NPSCB 0.222 0.254 0.264 0.262 0.242 0.232 0.216 0.210
0.6 PSCB 0.088 0.102 0.114 0.116 0.104 0.104 0.100 0.088

NPSCB 0.150 0.156 0.164 0.160 0.144 0.142 0.132 0.124
2 0.1 PSCB 0.800 0.798 0.792 0.766 0.734 0.720 0.682 0.674

NPSCB 0.838 0.834 0.822 0.808 0.786 0.748 0.726 0.702
0.3 PSCB 0.562 0.576 0.570 0.560 0.548 0.520 0.514 0.506

NPSCB 0.610 0.604 0.596 0.586 0.572 0.558 0.538 0.528
0.6 PSCB 0.286 0.336 0.368 0.364 0.344 0.320 0.298 0.276

NPSCB 0.526 0.542 0.534 0.524 0.508 0.492 0.466 0.450

Table 5.15: Proportions of rejections of the null hypothesis for the parametric family
Mc

2,β with different values of ae. Model parameters: σ2 = 1 and n = 400. The test

statistic T c,1n,1 is employed, and the Algorithm 3 is used. Significance level: α = 0.05.

c ae Method h = 0.25 h = 0.40 h = 0.55 h = 0.70 h = 0.85 h = 1.00 h = 1.15 h = 1.30
0 0.1 PSCB 0.036 0.030 0.042 0.040 0.044 0.042 0.038 0.038

NPSCB 0.036 0.040 0.048 0.040 0.048 0.042 0.038 0.038
0.3 PSCB 0.030 0.028 0.034 0.034 0.034 0.028 0.034 0.036

NPSCB 0.040 0.040 0.042 0.042 0.044 0.036 0.040 0.040
0.6 PSCB 0.034 0.026 0.028 0.026 0.026 0.026 0.018 0.018

NPSCB 0.048 0.038 0.044 0.036 0.032 0.030 0.026 0.022
1 0.1 PSCB 0.658 0.668 0.658 0.626 0.602 0.610 0.616 0.612

NPSCB 0.718 0.706 0.692 0.670 0.668 0.650 0.660 0.662
0.3 PSCB 0.168 0.214 0.222 0.220 0.224 0.220 0.222 0.224

NPSCB 0.226 0.262 0.274 0.264 0.250 0.248 0.258 0.260
0.6 PSCB 0.092 0.108 0.114 0.120 0.114 0.114 0.108 0.104

NPSCB 0.152 0.158 0.166 0.166 0.160 0.158 0.154 0.152
2 0.1 PSCB 0.816 0.824 0.820 0.810 0.808 0.806 0.804 0.806

NPSCB 0.856 0.860 0.860 0.850 0.846 0.846 0.844 0.840
0.3 PSCB 0.566 0.590 0.582 0.580 0.582 0.570 0.572 0.566

NPSCB 0.622 0.624 0.618 0.614 0.610 0.608 0.602 0.594
0.6 PSCB 0.294 0.352 0.374 0.384 0.378 0.364 0.344 0.334

NPSCB 0.532 0.548 0.546 0.538 0.534 0.532 0.522 0.510

Table 5.16: Proportions of rejections of the null hypothesis for the parametric family
Mc

2,β with different values of ae. Model parameters: σ2 = 1 and n = 400. The test

statistic T c,2n,1 is employed, and the Algorithm 3 is used. Significance level: α = 0.05.





Chapter 6

Conclusions and discussion

This dissertation has focused on studying some inference problems for regression

models with Euclidean and circular data, considering scenarios where the data are

independent and also spatially correlated.

The first aim was to propose and analyze goodness-of-fit tests for multiple regres-

sion models with spatially correlated errors. These contents are included in Chapter

2. The second goal focused on proposing nonparametric approaches to estimate the

regression function in a linear-circular regression model (circular response and Eu-

clidean covariates). The results on this issue are collected in Chapter 3. The third

objective is centered on extending the previous proposals, but assuming that the

circular errors of the regression model are spatially correlated. The developments of

this point are provided in Chapter 4. The fourth aim was to introduce goodness-of-

fit tests for multiple linear-circular regression models with independent and spatially

correlated data. The empirical analysis of the proposed procedures is presented in

Chapter 5. In what follows, some final comments and discussion on each chapter are

presented.

6.1 Goodness-of-fit tests for parametric regression

models with spatially correlated errors

A goodness-of-fit test for a parametric regression model with spatially correlated

errors was presented in Chapter 2. This test is based on a L2-distance between a

221
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smoothed version of a parametric fit and a nonparametric estimator of the regression

function. A least squares procedure has been considered as a parametric approach,

given its efficiency, but other procedures such as maximum likelihood methods, could

be also used, as long as a
√
n-consistency property is satisfied. In this case, it

should be noted that both the regression function and the dependence structure of

the errors are jointly estimated, but usually restricted to a (multivariate) Gaussian

distribution of the process realization. In both cases (least squares and maximum

likelihood), a parametric form for the correlation is considered. Without being the

target function and viewing spatial correlation as a nuisance (that should certainly

be accounted for, but it is not of primary interest), it is expected that the proposed

goodness-of-fit test has a good performance even when the correlation is misspecified

as long as it can be reasonably well approximated. Testing approaches as those

introduced by Maglione and Diblasi (2004) can be useful for this task. For the

nonparametric fit of the proposed test statistic, the Nadaraya–Watson and local

linear estimators were considered. However, the procedure could be generalized and

studied for higher polynomial p degrees. Other kernel estimators such as Priestley–

Chao estimator could be also used. This estimator has a very simple expression and

can be applied to multidimensional problems. This is not the case of the Gasser-

Muller estimator, which is difficult to extend to the multidimensional case because

its calculation involves sorting and taking middle points in the design space.

The asymptotic distribution of the test, under the null and under local alterna-

tives, was derived considering the assumption of increasing-domain spatial asymp-

totics. For practical implementation, due to the slow convergence to the limit dis-

tribution, resampling methods were used to calibrate the test. Specifically, three

bootstrap procedures were designed and applied in practice: PB, NPB and CNPB.

The NPB and CNPB resampling methods avoid model selection and, therefore, pre-

vents against misspecification problems in the estimation of the regression function

and dependence structure, unlike the PB approach. The CNPB also corrects the bias

induced by the use of the residuals in the approximation of the dependence struc-

ture, using an iterative method, providing good results of the test under the null and

alternative hypotheses. On the one hand, as it was pointed out by Fernández-Casal

and Francisco-Fernández (2014), a similar tool for bias adjustment could be included
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in the parametric semivariogram estimation in the PB approach (see Davison and

Hinkley, 1997). However, this way of proceeding would not avoid the misspecification

problem in the parametric estimation of both the semivariogram and the regression

function. On the other hand, given that a composite hypothesis is tested in (1.34),

a double bootstrap (Beran, 1987, 1988; Hall, 1986) could be included in order to

improve the effectiveness of bias correction in the PB approach.

As usual in this type of problems, the performance of the goodness-of-fit test has

been explored in a grid of different bandwidths to check how it is affected by the

bandwidth choice. Simulations were carried out when considering regression model

(1.1) with different regression functions and random errors drawn from Gaussian

or non-Gaussian processes. No major differences (in terms of performance of the

test) have been found if Gaussian or non-Gaussian processes are used to generate

the errors. In the vast majority of scenarios considered in the simulation study,

results obtained by the CNPB improve those achieved by PB and NPB. The use of

non-scalar bandwidths has not provided better results for CNPB. The PB proposal

works properly for calibration, but it shows a limited capacity to detect alternatives.

On the other hand, although similar resampling methods to NPB have given good

results when are employed in goodness-of-fit tests considering regression models with

independent and univariate data, this is not the case in the spatial framework. In

this setting, the proportions of rejections under the null hypothesis are very large

compared with the significance level considered, due to the underestimation of the

variability of the process.

The three resampling approaches compared in this research are based on com-

puting the residuals from a pilot fit, estimating the corresponding covariance matrix

of the errors and, finally, using a Cholesky decomposition to approximate a vector of

independent errors to generate bootstrap resamples. Other resampling procedures,

such as the block bootstrap (see Lahiri, 2003), could be used to calibrate the test.

This method requires an appropriate partition of the observation region, unlike para-

metric and nonparametric bootstrap-based methods. In addition, block bootstrap-

based approaches present difficulties when the interest is focused on estimating the

second-order structure (dependence) of the process, which is often necessary to es-

timate properly the large-scale variability. These procedures fail to reproduce the
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variability of the process, thus leading to an underestimation of the semivariogram,

possibly caused by the selection of the blocks. In Castillo-Páez et al. (2019), para-

metric, corrected nonparametric and block bootstrap mechanisms were compared

by checking their performance in the approximation of the bias and the variance of

two variogram estimators. For inference on spatial processes and, particularly, on

dependence structure estimation, the authors recommend the use of corrected non-

parametric bootstrap methods. For these reasons, block bootstrap approaches were

not employed in the present research.

The consistency of the proposed bootstrap algorithms could be analyzed, for

instance, by an imitation procedure (Shao and Tu, 2012). It would be also interesting

to consider a wild bootstrap approach to generate the independent errors to be

multiplied by the matrix derived from the Cholesky decomposition in Algorithm 1.

As pointed out before, the type of tests considered in Chapter 2 are smooth-

based tests taking an L2-distance for constructing the test statistics. Given hat these

procedures rely on the use of smooth regression curves, obtained by local-constant

and local-linear fits, the tests somehow inherit two of the shortcomings of kernel

methods. On the one hand, a bandwidth (a matrix, in this case) must be selected

and, on the other hand, the curse-of-dimensionality hampers the practical use of

this approach for higher dimensions. An alternative route that may be explored

for constructing goodness-of-fit tests in this context, avoiding the selection of the

bandwidth, may be found using the ideas employed in correlation-distance based

tests (see Székely et al., 2007). Actually, this type of approaches are not apparently

affected by the increase of dimensionality, so it will facilitate the application of the

methods in other settings with a higher number of covariates.

Although a homoscedastic regression model has been considered in Chapter 2,

under suitable assumptions, the asymptotic results of the proposed test statistic

could be also derived for certain heteroscedastic regression models. In such a context,

the bootstrap methods to calibrate the test, described in Section 2.3, could be also

modified, using an appropriate route to estimate the dependence of the model. To do

this, the nonparametric approach described by Fernández-Casal et al. (2017) could

be used. Note that in that case, due to heteroscedasticity, the use of a wild bootstrap

procedure in the different resampling processes could be more convenient. The design
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of this type of resampling approach in this context is, indeed, an interesting issue for

a future research.

In practice, the numerical studies performed in Chapter 2 (and in the rest of

chapters of this dissertation) were run in an Intel Core i7-9700K at 3.60Ghz. The

procedures used in the simulation study and in the illustration with real data were

implemented in the statistical environment R (R Development Core Team, 2020),

using functions included in the npsp and geoR packages (Fernández-Casal, 2019;

Ribeiro and Diggle, 2020) to estimate the variogram and the spatial regression func-

tions. In particular, the bias correction in CNPB bootstrap algorithm is implemented

in the function np.svariso.corr of the npsp R package. The computing time for

running the whole testing procedure (simulate a sample, compute the test statistics

in a range of bandwidths and apply the bootstrap methods considering B = 500

replications) for a sample of size n = 100, 225 and 400 is around 2, 8 and 27 seconds,

respectively, no matter the nonparametric estimator (Nadaraya–Watson or local lin-

ear) used. However, PB seems to be slightly more computationally expensive than

NPB and CNPB.

6.2 Nonparametric regression estimation for a

circular response and an Rd-valued covariate

Nonparametric regression estimation for circular response and Rd-valued covariate

was studied in Chapter 3. The proposal considers kernel-based approaches, with

special attention on Nadaraya–Watson- and local linear-type estimators in general

dimension, and for higher order polynomials in the one-dimensional case. Asymptotic

conditional bias and variance were derived and the performance of the estimators

was assessed in a simulation study.

One of the advantages of the proposed procedure (if the bandwidth matrix is

appropriately chosen, and a suitable bandwidth selector is also provided in that

chapter) is that it relaxes parametric assumptions, and consequently enables one

to explore and model the data more flexibly, avoiding misspecification problems.

Moreover, this estimator can be employed as a first attempt to explore if a certain

parametric family is appropriate or not to model the data.
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For practical implementation, the selection of a d-dimensional bandwidth matrix

is required. In the regression Euclidean context, the bandwidth selection problem

has been widely addressed in the last decades (see, for example, Köhler et al., 2014,

where a review on bandwidth selection methods for kernel regression was provided).

More related to the topic of Chapter 3, a rule-of-thumb and a bandwidth rule for se-

lecting scalar or diagonal bandwidth matrices for multivariate local linear regression

with real-valued response and Rd-valued covariate was derived in Yang and Tsch-

ernig (1999). Also in that context, in González-Manteiga et al. (2004), a bootstrap

method to estimate the mean squared error and the smoothing parameter for the

multidimensional regression local linear estimator was proposed. However, in the

framework of nonparametric regression methods for circular variables, the research

on bandwidth selection is very scarce or non-existent.

The practical results obtained in Chapter 3 were derived with a cross-validation

bandwidth given that, up to the knowledge of the author, there are no other band-

width selectors available in this context. Cross-validation techniques have the draw-

back of being unable to provide satisfactory results in a reasonable time for very

large sample sizes due to its computational complexity. To overcome this problem,

bagging cross-validation bandwidths studied for density and regression estimation

with Euclidean data (Hall and Robinson, 2009) could be adapted to this context.

Additionally, note that even though cross-validation bandwidths present appealing

theoretical properties, in practice, their computation could present certain difficulties

in a multidimensional framework.

The design of alternative procedures to select the bandwidth matrix for the es-

timators studied in this framework based, for example, on bootstrap methods are

indeed of great interest. This problem is out of the scope of this thesis, but it is

an interesting topic of research for a future study. On the other hand, it should be

noted that just global bandwidths are considered in the numerical studies of this

dissertation. A limitation derived from the use of global bandwidths is that the cor-

responding nonparametric estimators may provide spurious estimates in areas with

sparse observations. In such regions, the number of observations within the neighbor-

hood determined by the bandwidth may be too small, producing unstable estimates.

A way to overcome this problem is employing local bandwidths that automatically
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adapt to the number of observations near the grid points where calculating the esti-

mates. The problem of using local bandwidths is that a high computing time would

be required, specially if the sample size is very large.

Once the problem of including a Rd-valued covariate for explaining the behavior

of a circular response is solved, it seems natural to think about the consideration

of covariates of different nature. Since the proposed estimator was constructed by

considering the atan2 of the smooth estimators of the regression functions for the sine

and cosine components of the response, an adaptation of our proposal for different

types of covariates implies the use of suitable weights. For instance, if a spherical

(circular, as a particular case) or a mixture of spherical and real-valued covariates

are considered to influence a circular response, weights for estimating the sine and

cosine components could be constructed following the ideas in Garćıa-Portugués

et al. (2013) for cylindrical density estimation. If a categorical covariate is included

in the model, a similar approach to the one in Racine and Li (2004) or in Li and

Racine (2004) could be also followed. In all these cases, bandwidth matrices should

be selected, and cross-validation techniques could be applied.

The results obtained in Theorems 3.3 and 3.4 can be extended to an arbitrary

dimension d of the space of the covariates by using the asymptotic properties for

m̂j,H(x; p), for p = 2, 3, provided in Gu et al. (2015). The authors considered the

leading term of biases and variances of multivariate local polynomial estimators of

general order p. Results on the asymptotic distribution of multivariate local poly-

nomial estimators are also provided in Gu et al. (2015). The joint asymptotic nor-

mality of m̂1,H(x; p) and m̂2,H(x; p) can be used to derive, via the delta-method, the

asymptotic distribution of statistics which can be expressed in terms of m̂1,H(x; p)

and m̂2,H(x; p). For example, a suitable adaptation of Proposition 3.1 of Jammala-

madaka and SenGupta (2001) can be used to derive the limiting distribution of the

tangent of m̂c
H(x; p).

The asymptotic normality of the proposed estimators would allow the construc-

tion of pointwise confidence intervals for the circular regression function mc at x ∈ D.

Notice that both bias and variance of the nonparametric circular regression estima-

tors mc
H(x; p) depend on unknown functions, therefore, in order to make use of the

asymptotic result, they should be estimated. The coverage rates will be affected
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by the bias of the circular regression estimators mc
H(x; p). Alternatively, confidence

intervals for the circular regression function mc could be also obtained by using

bootstrap procedures (Hall, 1992).

In practice, the simulations were implemented in the statistical environment R (R

Development Core Team, 2020), using functions included in the npsp and circular

packages (Fernández-Casal, 2019; Lund et al., 2020). The real data application was

performed in MATLAB software (www.mathworks.com). The computing time for

running the procedure (simulate a sample, select the bandwidth matrix, compute

the circular nonparametric estimator and evaluate the CASE) for just one sample of

size of 225 is less than 2 seconds.

6.3 Nonparametric regression estimation for a

circular response and an Rd-valued covariate

with spatially correlated errors

In the scenario of Chapter 3, data generated from the regression model are assumed

to be independent, and nonparametric circular regression estimators were proposed.

However, in many practical situations, the independence assumption does not seem

reasonable (e.g. data area collected over time or space). The simple construc-

tion scheme behind the proposed class of estimators makes possible to easily obtain

asymptotic properties in more general frameworks. Nonparametric regression esti-

mators in a model with circular response and real-valued covariates in the presence

of spatial correlation were studied in Chapter 4. The estimators proposed in Chapter

3 were also considered in this framework. The asymptotic conditional bias of the

kernel-type proposed estimators is the same as that obtained for independent data.

However, the asymptotic conditional variance depends on the spatial correlation.

Although there is a substantial literature on modeling circular data with spatial

dependence by introducing and formulating spatial processes for circular data, such

as wrapped and projected Gaussian spatial processes (Jona-Lasinio et al., 2012; Wang

and Gelfand, 2014), our proposal follows a different perspective. We consider an

appropriate linear-circular regression model for spatially correlated data and estimate



6.3. Nonparametric circular regression with spatially correlated errors 229

nonparametrically the corresponding circular spatial trend. This is an alternative

to model circular data at different spatial locations. It should be noted that no

other direct competitor, up to the knowledge of the author, has yet been proposed

following these ideas, neither from a parametric nor from a nonparametric approach.

Regarding the bandwidth matrix needed to compute the circular regression es-

timators given in (3.14), it can be selected by leave-one-out cross-validation, but

this matrix is not necessarily a good one for spatially correlated data, given that

E[CV(H)] (and consequently E[CVc(H)]) is severely affected by the correlation (Liu,

2001; Opsomer et al., 2001). In this context, it is advisable to consider other band-

width selection criteria that take the spatial dependence structure into account. In

the practical results of this chapter, we also considered a modified cross-validation

method suitably adjusted for the presence of spatial correlation, which considers to

“leave Ni observations out”. The idea of modifying the selection criterion in this

manner is not new. An example of such adjustment is the “leave 2l + 1 out” cross-

validation approach (Hart and Vieu, 1990). It should be noted that in the context of

that paper, ordinary cross-validation criterion worked reasonably well for moderate

correlation structures. Further, for mid to low values of the parameter which controls

the dependence structure, it was obtained a very small improvement when using the

modified cross-validation method. This was not the case for the spatial framework

considered in this thesis, where results were considerably better when the modified

cross-validation criterion (MCVc) was used, compared to those obtained when simple

cross-validation (CVc) was employed. The importance of the dependence structure

becomes more relevant as the dimension increases and, probably, for that reason,

in the context of this thesis a clearer improvement is observed when the modified

cross-validation criterion is used, no matter the dependence degree considered. Note

that in the case of the marine currents in the Adriatic Sea, a suitable parameter l in

MCVc
l , controlling the number of observations left out, has been selected by mini-

mizing the prediction error given in (4.17). An interesting point would be to design a

fully automatic procedure to compute the optimal radius in the MCVc method. This

approach should account for the spatial correlation of the covariates and, although

it is out of the scope of this dissertation, it would be an interesting topic of further

research.
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Alternatively to the cross-validation methods previously described, the band-

width could be selected as follows. First, as described in Chapter 4, the whole

sample is split in two parts, a training and a testing samples. First, as described in

Section 4.6, the whole sample is split in two parts, a training and a testing samples.

Then, using the overall dataset and a pilot bandwidth matrix, the nonparametric

estimator is computed at each training data point. From this estimation, and us-

ing a wrapped (Jona-Lasinio et al., 2012) or a projected Gaussian spatial process

(Wang and Gelfand, 2014), the residuals can be modeled, obtaining predictions at

the testing locations. Finally, the bandwidth matrix can be selected by minimizing

the corresponding prediction error computed with the testing sample. Notice that a

drawback of this approach is a possible misspecification of the fit model. The mod-

eling based on wrapped Gaussian spatial processes allows only symmetric marginal

distributions, while projected Gaussian processes have marginal distributions that

can be asymmetric, possibly bimodal.

In the current setting, real-valued covariates for explaining the behavior of a cir-

cular response in presence of spatial correlation are considered. However, it might

be the case that other types of covariates, such as other circular, or more generally,

spherical covariates, may influence the circular response. For these more complex

scenarios, there is a substantial research on modeling and on analyzing inference ap-

proaches for random fields on spheres as well as on spheres across time. For instance,

Porcu et al. (2016) developed cross-covariance functions of the great circle distances

on the sphere. Alegŕıa et al. (2019) proposed a flexible parametric family of matrix-

valued covariance functions. To overcome the problem of generating samples from

random fields, Emery and Porcu (2019) introduced an algorithm to generate isotropic

vector-valued Gaussian random fields defined over the unit two-dimensional sphere

embedded in the three-dimensional Euclidean space. Some of these approaches could

be incorporated in model (4.5), and although these extensions are also out of the

scope of this thesis, they can be the focus of future works.

In practice, the simulations were implemented in the statistical environment

R (R Development Core Team, 2020), using functions included in the npsp and

CircSpaceTime packages (Fernández-Casal, 2019; Jona-Lasinio et al., 2019). The

real data application was performed in MATLAB software (www.mathworks.com).
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The computing time for running the whole procedure for one sample of size of 225

is around 2 seconds, no matter the bandwidth matrix selection method employed

and regardless of the estimator (Nadaraya–Watson or local linear) used. However,

it should be noted that the computing time for obtaining a bandwidth matrix with

the MCV criterion increases with l. In addition, the projection approach for the

circular errors generation seems to be slightly more computationally expensive than

the wrapping method.

6.4 Goodness-of-fit tests for parametric regression

models with a circular response and an

Rd-valued covariate

Testing procedures for assessing a parametric circular regression model (with a cir-

cular response and an Rd-valued covariate) were proposed and empirically analyzed

in Chapter 5 for independent and for spatially correlated data. The proposed test

statistics were constructed by measuring a circular distance between a (non-smoothed

or smoothed) parametric fit and a nonparametric estimator of the circular regression

function. For the parametric approach, taking into account that the classical least

squares regression method is not appropriate when the response variable is of circular

nature, a circular analog can be used (Fisher and Lee, 1992; Lund, 1999). Alterna-

tive parametric fitting approaches, such as maximum likelihood methods, could be

also used (Presnell et al., 1998). Regarding the nonparametric fit, local polynomial

type estimators, given in (3.14), were considered in the test statistics.

Although the calculation of the asymptotic distribution of the tests, under the

null and under local alternatives, is out of the scope of this thesis, its derivation can

follow from using a Taylor approximation of the function 1 − cos(Θ) by Θ2/2, for

Θ ∈ [0, 2π) (Kim and SenGupta, 2017). Using this approach, the expressions 1 −
cos[m̂c

H(x; p)−mc
β̂
(x)] and 1−cos[m̂c

H(x; p)−m̂c
H,β̂

(x; p)] in the test statistics T c,1n,p and

T c,2n,p, given in (5.4) and in (5.5), respectively, can be approximated by 1/2[m̂c
H(x; p)−

mc
β̂
(x)]2 and 1/2[m̂c

H(x; p) − m̂c
H,β̂

(x; p)]2, respectively. Consequently, T c,1n,p and T c,2n,p

can be approximated by test statistics similar to Tn,p, given in (2.1), for regression
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models with Euclidean response and covariates. Notice that the regression estimators

involved in the test statistics T c,1n,p and T c,2n,p have more complicated expressions than

those in Tn,p. Therefore, as intuition suggests, it will be more difficult to calculate

the close expressions of their asymptotic distributions.

For practical implementation, bootstrap resampling methods were used to cal-

ibrate the tests. For independent data, two procedures have been designed and

compared: PCB and NPCB. Both methods are based on computing the residuals

and generating independent bootstrap resamples. The main difference between them

is the mechanism employed to obtain the residuals. In PCB, the residuals come from

the parametric regression estimator. Alternatively, in NPCB, the residuals are ob-

tained from the nonparametric regression estimator. For dependent data, in order

to imitate the distribution of the (spatially correlated) errors, new bootstrap proce-

dures were proposed: PSCB and NPSCB. Again, the main difference between both

approaches is how the residuals are obtained. In the case of the PSCB, the residuals

come from the parametric fit, whereas in NPSCB, the residuals are obtained from

the nonparametric estimator. In practice, in order to implement the procedures, a

wrapped Gaussian spatial process model (Jona-Lasinio et al., 2012) was fit to the

residuals to mimic the dependence structure. This wrapped Gaussian spatial process

model was fit within a Bayesian framework, therefore, some prior parameter values

must be provided to use the Markov Chain Monte Carlo model fitting. For further

details on wrapped Gaussian model fitting, we refer to Jona-Lasinio et al. (2012).

Alternatively, other spatial-circular process models, such as asymmetric wrapped

Gaussian spatial processes (Mastrantonio et al., 2016) or projected Gaussian spatial

processes (Wang and Gelfand, 2014) could be employed to model the residuals, and

thus try to imitate the dependence structure of the errors. The impact of using

a model that differs from the one used to generate the errors was explored. For

instance, if errors are drawn from a wrapped Gaussian spatial process, and a pro-

jected Gaussian spatial process if fit, the procedure works fairly well, for appropriate

prior parameter values, since this model is highly flexible. Conversely, although the

wrapping approach gives results that are really easy to interpret, a limitation derived

from the use of a wrapped Gaussian spatial process is that such modeling allows only

symmetric marginal distributions. If the errors are generated from an (asymmetric)
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projected Gaussian spatial process and a wrapped Gaussian spatial process is fit, the

results obtained using the testing procedure are not entirely satisfactory.

Once the model is fit, error bootstrap samples are generated from it. These errors

bootstrap samples could be also employed to design a parametric iterative least

squares estimator, accounting for the possible spatial dependence structure, that

could be used in the tests for spatially correlated data (instead of the parametric

estimator given in Section 5.2.1). Specifically, using the error bootstrap samples,

the variance-covariance matrix of the circular errors can be approximated. Then,

applying a Cholesky decomposition of this matrix, the original circular responses

and the Rd-valued covariate are transformed, as it is done in the generalized least

squares method. Finally, the parameter estimate is obtained applying (5.2) to the

transformed observations. Obviously, this algorithm could be applied iteratively.

Although, we have not applied this method in practice, we do not believe that it

provides great improvements over using the circular least squares method described

in Section 5.2.1, even though the data are indeed dependent. The possible benefits

of taking the correlation of the data into account could be offset by the difficulty of

adequately estimating the variance-covariance matrix of the circular errors.

For independent data, in the majority of scenarios considered in the simulation

study, results obtained with NPCB improved those achieved by PCB, especially, for

alternative assumptions. Moreover, a better behavior is observed when T c,2n,1, given in

(5.5), is employed. For spatially correlated data, it is obtained that both tests do not

work properly under the null hypothesis, when using PCB and NPCB, designed for

independence. Regarding PSCB and NPSCB, the use of the nonparametric residuals

in the bootstrap procedure provides the best results. As expected, the power of the

tests is larger when the spatial dependence structure is weaker. More satisfactory

results are achieved when T c,2n,1 is used. In both frameworks (independent and spatially

correlated data), the proportions of rejections of the null hypothesis clearly depends

on the bandwidth matrix considered. The whole simulation study (for independent

and for spatially correlated data) was repeated when using the Nadaraya–Watson-

type estimator for the nonparametric fits, given in (5.4) and in (5.5), for p = 0.

For independent data, the procedures work fairly well when PCB is employed, while

NPCB provides quite poor results. Similar conclusions can be derived for spatially
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correlated data, where the tests have an acceptable performance using PSCB, while

results obtained when NPSCB approach is employed are generally not good. It seems

that the tests statistics suffer from boundary problems induced by the use of the

Nadaraya–Wtason-type estimator, while this issue is overcome employing the local

linear-type estimator. When using the Nadaraya–Watson-type estimator, probably

a modification of the weight functions w used in the simulation study is required

to obtain better results. Although the test statistics T c,1n,p and T c,2n,p, given in (5.4)

and in (5.5), were presented and numerically analyzed only for p = 0, 1, they may

be also defined considering a local polynomial-type estimator of a general order p.

Nevertheless, significantly better results than the ones obtained for p = 1 (local

linear case) are not expected.

The procedures used in the simulation study were implemented in the statisti-

cal environment R (R Development Core Team, 2020), using functions included in

the npsp, CircSpaceTime and Rfast packages (Fernández-Casal, 2019; Jona-Lasinio

et al., 2019; Papadakis et al., 2020). For regression models with a single real-valued

covariate, the computing time for running the whole testing procedure (simulate a

sample, compute the test statistics in a range of bandwidths and apply the bootstrap

methods considering B = 500 replications) for a sample of size n = 50, 100 and 200

is around 2, 3 and 5 seconds, respectively, no matter the bootstrap method (PCB or

NPCB) used to calibrate the test. For a bidimensional one, the computing times are

around 4, 6 and 14 seconds, when n = 100, 225 and 400, respectively. As expected,

considering a bidimensional covariate is more computationally expensive than using

a single covariate. In the spatial framework, the computing time for running the

testing procedure for a sample of size n = 100, 225 and 400 is around 3, 7 and 15, re-

spectively, when using Algorithm 2. This time is slightly increased when Algorithm

3 is employed (4, 13 and 49 seconds, respectively).
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Auxiliary results

This appendix contains some auxiliary results employed in the proofs of Chapters

2, 3 and 4 of this dissertation. Some helpful results involving kernel and correla-

tion functions are provided in Section A.1. For a fixed design scheme, Riemann

approximations of sums by integrals are provided in Section A.2. Finally, Section

A.3 contains other helpful results.

A.1 Some results involving kernel and correlation

functions

In this section, some results including kernel and correlation functions are given. In

order to prove some of these results, notice that, using Chebychev’s inequality,

Xn = E(Xn) +OP[
√

Var(Xn)],

being Xn a stochastic sequence such that each element has finite variance.

235
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Lemma A.1 Let

k̃1,n(x) = n−1
∑n

i=1KH(Xi − x)g1(Xi)g2(Xi),

k̃2,n(x) = n−1
∑n

i=1KH(Xi − x)(Xi − x)g1(Xi)g2(Xi),

k̃3,n(x) = n−1
∑n

i=1KH(Xi − x)(Xi − x)(Xi − x)Tg1(Xi)g2(Xi),

k̃4,n(x) = n−1
∑n

i=1K
2
H(Xi − x)g1(Xi)g2(Xi),

k̃5,n(x) = n−1
∑n

i=1K
2
H(Xi − x)(Xi − x)g1(Xi)g2(Xi),

k̃6,n(x) = n−1
∑n

i=1K
2
H(Xi − x)(Xi − x)(Xi − x)Tg1(Xi)g2(Xi),

where g1 and g2 are bounded functions at x, under assumptions(A1), (H2) and (K1),

if x is an interior point of the support of f , then,

k̃1,n(x) = f(x)g1(x)g2(x) + oP(1), (A.1)

k̃2,n(x) = µ2(K)∇f(x)g1(x)g2(x)H2 + oP(H21d), (A.2)

k̃3,n(x) = µ2(K)f(x)g1(x)g2(x)H2 + oP(H1d×dH), (A.3)

k̃4,n(x) = |H|−1R(K)f(x)g1(x)g2(x) + oP
(
|H|−1

)
, (A.4)

k̃5,n(x) = |H|−1oP(1d), (A.5)

k̃6,n(x) = |H|−1oP(1d×d). (A.6)

Proof of Lemma A.1 Firstly, expression (A.1) is proved. Notice that

E[k̃1,n(x)] =

∫
KH (u− x) g1(u)g2(u)f(u)du

=

∫
K (p) g1(x + Hp)g2(x + Hp)f(x + Hp)dp

= [g1(x) + o(1)][g2(x) + o(1)][f(x) + o(1)]

= g1(x)g2(x)f(x) + o(1),

Var[k̃1,n(x)] ≤ n−1

∫
K2

H (u− x) g2
1(u)g2

2(u)f(u)du

=
1

n|H|

∫
K2 (p) g2

1(x + Hp)g2
2(x + Hp)f(x + Hp)dp

=
1

n|H|
R(K)[g1(x) + o(1)]2[g2(x) + o(1)]2[f(x) + o(1)].
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Under (H2), and thus (H1), it follows that

Var[k̃1,n(x)] = o(1).

Now, expression (A.2) is proved. First,

E[H−2k̃2,n(x)] = H−2

∫
KH (u− x) (u− x) g1(u)g2(u)f(u)du

= H−1

∫
K (p) pg1(x + Hp)g2(x + Hp)f(x + Hp)dp

= H−1

∫
K (p) pg1(x + Hp)g2(x + Hp)

·[f(x) + pTH∇f(x) +
1

2
pTHHf (x)Hp]dp

= µ2(K)∇f(x)[g1(x) + o(1)][g2(x) + o(1)]

= µ2(K)∇f(x)g1(x)g2(x) + o(1).

Moreover,

Var[H−2k̃2,n(x)] ≤ n−1H−2

∫
K2

H (u− x) (u− x) (u− x)T g2
1(u)g2

2(u)

·f(u)duH−2

=
1

n|H|
H−2

∫
K2 (p) HppTHg2

1(x + Hp)g2
2(x + Hp)

·f(x + Hp)dpH−2

=
1

n|H|
H−2µ2(K)∇f(x)[g1(x) + o(1)]2[g2(x) + o(1)]2

·[f(x) + o(1)].

Under (H2), it follows that n|H|λ2
min(H)→∞, when n→∞, which is equivalent

to n−1|H|−1H−2 → 0, when n→∞, and therefore

Var[H−2k̃2,n(x)] = o(1d).
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Regarding expression (A.3), it follows that

E[H−2k̃3,n(x)] = H−2

∫
KH (u− x) (u− x) (u− x)T g1(u)g2(u)f(u)du

= H−2

∫
K (p) HppTHg1(x + Hp)g2(x + Hp)f(x + Hp)dp

= µ2(K)Id[g1(x) + o(1)][g2(x) + o(1)][f(x) + o(1)]

= µ2(K)Idg1(x)g2(x)f(x) + o(1).

Furthermore,

Var[H−2k̃3,n(x)] ≤ n−1H−2

∫
K2

H (u− x) (u− x) (u− x)T (u− x) (u− x)T

·g2
1(u)g2

2(u)f(u)duH−2

=
1

n|H|
H−2

∫
K2 (p) HppTHHppTHg2

1(x + Hp)g2
2(x + Hp)

·f(x + Hp)dpH−2.

Using (H2), and hence (H1), one gets that

Var[H−2k̃3,n(x)] = o(1d×d).

Now, (A.4) is proved. Notice that

E[|H|k̃4,n(x)] = |H|
∫
K2

H (u− x) g1(u)g2(u)f(u)du

=

∫
K2 (p) g1(x + Hp)g2(x + Hp)f(x + Hp)dp

= R(K)[g1(x) + o(1)][g2(x) + o(1)][f(x) + o(1)]

= R(K)g1(x)g2(x)f(x) + o(1),

Var[|H|k̃4,n(x)] ≤ n−1|H|2
∫
K4

H (u− x) g2
1(u)g2

2(u)f(u)du

=
1

n|H|

∫
K4 (p) g2

1(x + Hp)g2
2(x + Hp)f(x + Hp)dp

= o (1) .
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As for expression (A.5), it follows that

E[|H|k̃5,n(x)] = |H|
∫
K2

H (u− x) (u− x) g1(u)g2(u)f(u)du

=

∫
K2 (p) Hpg1(x + Hp)g2(x + Hp)f(x + Hp)dp

= o(1d),

Var[|H|k̃5,n(x)] ≤ n−1|H|2
∫
K4

H (u− x) (u− x) (u− x)T g2
1(u)g2

2(u)f(u)du

=
1

n|H|

∫
K4 (p) HppTHg2

1(x + Hp)g2
2(x + Hp)f(x + Hp)dp

= o(1d).

Finally, in order to prove expression (A.6), note that

E[|H|k̃6,n(x)] = |H|
∫
K2

H (u− x) (u− x) (u− x)T g1(u)g2(u)f(u)du

=

∫
K2 (p) HppTHg1(x + Hp)g2(x + Hp)f(x + Hp)dp

= o(1d×d),

Var[|H|k̃6,n(x)] ≤ n−1|H|2
∫
K4

H (u− x) (u− x) (u− x)T (u− x) (u− x)T

·g2
1(u)g2

2(u)f(u)du

=
1

n|H|

∫
K4 (p) HppTHHppTHg2

1(x + Hp)g2
2(x + Hp)f(x + Hp)dp

= o(1d×d).

Proposition A.1 Under assumption (A3), there exists a constant A, such that,

n2|H2|
∫∫∫

‖p‖≤1,‖q‖≤1,‖r‖≤1

|ρn[H(p− q)]ρn[H(p− r)]|dpdqdr ≤ A.

Proof of Proposition A.1 The proof can be found in Liu (2001, Proposition 2.2).
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Proposition A.2 Under assumptions (A1)–(A3), (H2), (K1) and (K2),

lim
n→∞

n|H|
∫
K(p)K(q)ρn[H(p− q)]dpdq = R(K)ρc.

Proof of Proposition A.2 The proof can be found in Liu (2001, Proposition 2.3).

Lemma A.2 Let

s̃1,n(x) =
1

n2

n∑
i 6=j

KH (Xi − x)KH (Xj − x) g1(Xi)g2(Xj)ρn(Xi −Xj),

s̃2,n(x) =
1

n2

n∑
i 6=j

|KH (Xi − x)KH (Xj − x) g1(Xi)g2(Xj)ρn(Xi −Xj)|,

where g1 and g2 are bounded functions at x, under assumptions (A1)–(A3), (H2),

(K1) and (K2), if x is an interior point of the support of f , then,

s̃1,n(x) =
1

n|H|
R(K)f 2(x)g1(x)g2(x)ρc + oP

(
1

n|H|

)
, (A.7)

s̃2,n(x) = OP

(
1

n|H|

)
. (A.8)

Proof of Lemma A.2 First, we will prove expression (A.7). Notice that

E[n|H|s̃1,n(x)] = E
[
|H|
n

n∑
i 6=j

KH (Xi − x)KH (Xj − x) g1(Xi)g2(Xj)ρn(Xi −Xj)

]
= (n− 1)|H|

∫∫
K (p)K (q) ρn[H(p− q)]f(x + Hp)f(x + Hq)

·g1(x + Hp)g2(x + Hq)dpdq

=
n− 1

n
f 2(x)g1(x)g2(x)

{
n|H|

∫∫
K (p)K (q) ρn[H(p− q)]dpdq

}
·[1 + o(1)].

Using Proposition A.2, it follows that

E[n|H|s̃1,n(x)] = R(K)f 2(x)g1(x)g2(x)ρc + o(1).
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For the variance, note that

Var[n|H|s̃1,n(x)] = Var

[
|H|
n

n∑
i 6=j

KH (Xi − x)KH (Xj − x) g1(Xi)g2(Xj)ρn(Xi −Xj)

]

= 4n−2|H|2
n−1∑
i=1

n∑
j=i+1

n−1∑
k=1

n∑
l=k+1

Cov[χij(x), χkl(x)], (A.9)

where

χij(x) = KH (Xi − x)KH (Xj − x)g1(Xi)g2(Xj)ρn(Xi −Xj).

Now, consider the value of Cov[χij(x), χkl(x)] according to the following three

exclusive cases: when i = k and j = l, when i = k and j 6= l, and, finally, when

i, j, k, l are all distinct.

First, when i = k and j = l, the total number of such terms is n(n − 1)/2. In

this case, one gets

Cov[χij(x), χij(x)] ≤ E
[
K2

H (Xi − x)K2
H (Xj − x) g2

1(Xi)g
2
2(Xj)ρ

2
n(Xi −Xj)

]
= |H|−2f 2(x)g2

1(x)g2
2(x)

∫∫
K2 (p)K2 (q) ρ2

n[H(p− q)]dpdq

·[1 + o(1)]

≤
K4
Mf

2
Mg

2
1,Mg

2
2,M

n|H|3

∫
‖q‖≤1

{n|H|
∫
‖p‖≤1

ρ2
n[H(p− q)]dp}dq

·[1 + o(1)],

where fM , g1,M , g2,M and KM denote the upper bounds of f , g1, g2 and K, respec-

tively.

Since

n|H|
∫
‖p‖≤1

ρ2
n[H(p− q)]dp ≤ n

∫
|ρn(t)|dt ≤ A1,
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then

Cov[χij(x), χij(x)] ≤
K4
Mf

2
Mg

2
1,Mg

2
2,MA1

n|H|3
× Volume of the ball {u : ‖u‖ ≤ 1}

=
A2

n|H|3
. (A.10)

Second, when i = k and j 6= l in the expression (A.9). Notice that in this case,

the total number of such terms can be bounded by n3. It follows that

Cov[χij(x), χil(x)] = E[χij(x)χil(x)]− E[χij(x)]E[χil(x)]

= E[χij(x)χil(x)]− [E[χij(x)]]2

≤ E[χij(x)χil(x)]

= E
[
K2

H (Xi − x)KH(Xj − x)KH (Xl − x) g2
1(Xi)g2(Xj)g2(Xl)

·ρn(Xi −Xj)ρn(Xi −Xl)

]
= |H|−1f 3(x)g2

1(x)g2
2(x)

∫∫∫
K2 (p)K (q)K (r) ρn[H(p− q)]

·ρn[H(p− r)]dpdqdr · [1 + o(1)]

≤
K4
Mf

3
Mg

2
1,Mg

2
2,M

n2|H|3

·{n2|H2|
∫∫∫

‖p‖≤1,‖q‖≤1,‖r‖≤1

|ρn[H(p− q)]ρn[H(p− r)]|dpdqdr}

·[1 + o(1)].

Using Proposition A.1, it follows that

Cov[χij(x), χil(x)] ≤
K4
Mf

3
Mg

2
1,Mg

2
2,MA

n2|H|3

=
A3

n|H|3
. (A.11)

Finally, when i, j, k, l are all distinct in (A.9), given that φij and φkl are indepen-

dent,

Cov[χij(x), χkl(x)] = 0. (A.12)
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Then, considering (A.9), (A.10), (A.11) and (A.12), it follows that

Var[n|H|s̃1,n(x)] = 4n−2|H|2
(
n2 − n

2

A2

n|H|3
+ n3 A3

n2|H|3

)
= o(1).

Using similar arguments, expression (A.8) can be directly proved.

Lemma A.3 Let

s̃3,n(x) =
1

n2

∑
i 6=j

KH (Xi − x)KH (Xj − t) g1(Xi)g2(Xj)ρn(Xi −Xj)(Xi − x),

s̃4,n(x) =
1

n2

∑
i 6=j

KH (Xi − x)KH (Xj − t) g1(Xi)g2(Xj)ρn(Xi −Xj)(Xi − x)

·(Xj − x)T,

where g1 and g2 are bounded functions at x, under assumptions (A1)–(A3), (H2),

(K1) and (K2), if x is an interior point of the support of f , then,

s̃3,n(x) =
1

n|H|
oP(1d), (A.13)

s̃4,n(x) =
1

n|H|
oP(1d×d). (A.14)

Proof of Lemma A.3 First, expression (A.13) is proved. Notice that, expression

(A.13) is equivalent to

vTs̃3,n(x) = oP
(

1

n|H|

)
,

for any v ∈ Rd.

First,

vTs̃3,n(x) =
1

n2

∑
i 6=j

KH (Xi − x)KH (Xj − t) g1(Xi)g2(Xj)ρn(Xi −Xj)v
T (Xi − x)

·I{‖H−1(Xi−x)‖≤1}.
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Note that

|vTs̃3,n(x)| ≤ ‖v‖‖H‖ 1

n2

∑
i 6=j

|KH (Xi − x)KH (Xj − t) g1(Xi)g2(Xj)ρn(Xi −Xj)|,

where ‖·‖ denotes the matrix norm.

Using (A.8) of Lemma A.2, it can be obtained that

|vTs̃3,n(x)| = ‖v‖‖H‖OP

(
1

n|H|

)
= OP

(
‖H‖
n|H|

)
= oP

(
1

n|H|

)
.

Now, expression (A.14) is proved. Note that, (A.14) is equivalent to

vT
1 s̃4,n(x)v2 = oP

(
1

n|H|

)
,

for any v1,v2 ∈ Rd.

Notice that

vT
1 s̃4,n(x)v2 =

1

n2

∑
i 6=j

KH (Xi − x)KH (Xj − t) g1(Xi)g2(Xj)ρn(Xi −Xj)

·vT
1 (Xi − x) (Xj − x)T v2I{‖H−1(Xi−x)‖≤1}

and, therefore,

|vT
1 s̃4,n(x)v2| ≤ ‖v‖‖H‖2 1

n2

∑
i 6=j

|KH (Xi − x)KH (Xj − t) g1(Xi)g2(Xj)ρn(Xi −Xj)|.

Using (A.8) of Lemma A.2, it can be obtained that

|vT
1 s̃4,n(x)v2| = ‖v‖‖H‖2OP

(
1

n|H|

)
= oP

(
1

n|H|

)
.
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A.2 Approximation of a summation by an integral

For a fixed design, an approximation of a summation by an integral is provided.

More specifically, the approximation of a summation by an integral involving a kernel

function is given in Lemma A.4. For other approximations, an analogous procedure

to that used in the proof of Lemma A.4 can be used. These approximations are

employed in the proof of Theorem 2.2.

Lemma A.4 For any x ∈ D ⊂ Rd, under assumption (K1), it follows that

n∑
i=1

n−1KH (xi − x) =

∫
K(p)dp + o(1).

Proof of Lemma A.4 Let φ(xi) = K[H−1(xi − x)] being x = (x1, x2) and xi =

(xi1, xi2). For i = 1, . . . , n, consider the multivariate Ostrowski’s inequality (Anas-

tassiou, 1997) provided in Theorem A.1 in Section A.3, where aj = aij = xij − lij/2,

bj = bij = xij+ lij/2, with lij = bij−aij = Kj/
√
n+o (Kj/

√
n), being Kj = maxi xij,

for j = 1, 2. With this choice, it follows that∣∣∣∣φ(xi1, xi2)− 1

li1li2

∫ bi1

ai1

∫ bi2

ai2

φ(u1, u2)du2du1

∣∣∣∣
≤ 1

4

(
li1

∥∥∥∥ ∂φ∂u1

∥∥∥∥
∞

+ li2

∥∥∥∥ ∂φ∂u2

∥∥∥∥
∞

)
. (A.15)

For the sake of simplicity, a regular design in the unit square is assumed, and

consequently, K1 = K2 = 1 and l1 = l2 = 1/
√
n. Using (A.15) and denoting

ξi =
1

4

[
l1

∥∥∥∥ ∂φ∂u1

∥∥∥∥
∞

+ l2

∥∥∥∥ ∂φ∂u2

∥∥∥∥
∞

]
, it follows that

n∑
i=1

φ(xi1, xi2) =
n∑
i=1

1

li1li2

∫ bi1

ai1

∫ bi2

ai2

φ(u1, u2)du2du1 +
n∑
i=1

ξi.

= n

∫
D1

∫
D2

φ(u1, u2)du2du1 +
n∑
i=1

ξi

= n

∫
φ(u)du +

n∑
i=1

ξi. (A.16)
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Assume that H = diag(h1, h2). For u = (u1, u2), it is obtained that

H−1(u− x) =

(
h−1

1 (u1 − x1)

h−1
2 (u2 − x2)

)

and, therefore,

φ(u1, u2) = K

(
h−1

1 (u1 − x1)

h−1
2 (u2 − x2)

)
.

Denoting v1 = h−1
1 (u1 − x1) and v2 = h−1

2 (u2 − x2), the partial derivatives of the

function φ : R2 → R are

∂φ

∂u1

=
∂φ

∂v1

∂v1

∂u1

+
∂φ

∂v2

∂v2

∂u1

=
∂K

∂v1

1

h1

,

∂φ

∂u2

=
∂φ

∂v1

∂v1

∂u2

+
∂φ

∂v2

∂v2

∂u2

=
∂K

∂v2

1

h2

.

Therefore, the error term in (A.16) can be rewritten as

n∑
i=1

ξi =
1

4

n∑
i=1

[
li1

∥∥∥∥ ∂φ∂u1

∥∥∥∥
∞

+ li2

∥∥∥∥ ∂φ∂u2

∥∥∥∥
∞

]
=

1

4

n∑
i=1

[
li1

∥∥∥∥∂K∂v1

1

h1

∥∥∥∥
∞

+ li2

∥∥∥∥∂K∂v2

1

h2

∥∥∥∥
∞

]
.

If lij = n−1/2, for j = 1, 2, it follows that

n∑
i=1

ξi =
1

4
n

[
O
(

1

h1

1√
n

)
+O

(
1

h2

1√
n

)]
= O

( √
n

|H|1/2

)
. (A.17)

Using (A.16) and (A.17), it can be obtained that

n∑
i=1

φ(xi1, xi2) = n

∫
φ(u)du + o(n)

= n

∫
φ(u)du · [1 + o(1)].
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Consequently,

n∑
i=1

KH (xi − x) = n|H|−1

∫
K[H−1(u− x)]du · [1 + o(1)]

= n

∫
K(p)dp · [1 + o(1)]

= n · [1 + o(1)].

A.3 Auxiliary results

This sections contains other results which are employed throughout this thesis.

Proposition A.3 Let S = {B : B is a d×d symmetric, positive definite matrix}.
Assuming that C is a d × d symmetric matrix (either positive definite or negative

definite), and c1, c2 are positive numbers, then the solution to the optimization prob-

lem

min
B∈Sm

L(B) =

{
c1tr2(B2C) +

c2

|B|

}
is

B =

{
c2|C̃|1/2

4c1d

}1/(d+4)

C̃−1/2,

with

C̃ =

{
C if C is positive definite,

−C if C is negative definite.

Proof of Proposition A.3 The proof of this result can be found in Liu (2001,

Proposition 2.6).

Theorem A.1 (Multivariate Ostrowski’s inequality ) Let f be a continuously

differentiable function in
∏d

j=1[aj, bj], where aj < bj, with aj, bj ∈ R, j = 1, · · · , d,

and let x0 = (x01, · · · , x0d) ∈
∏d

j=1[aj, bj] be fixed. Then,∣∣∣∣∣f(x0)− 1∏d
j=1(bj − aj)

∫ b1

a1

· · ·
∫ bd

ad

f(z1, . . . , zd)dz1 . . . dzd

∣∣∣∣∣
≤

d∑
j=1

(
(x0j − aj)2 + (bj − x0j)

2

2(bj − aj)

)∥∥∥∥ ∂f∂zj
∥∥∥∥
∞
.
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Proof of Theorem A.1 The proof of this result can be found in Anastassiou (1997).



Resumen en castellano

Para analizar la dependencia de una variable de interés (variable respuesta o variable

dependiente) con respecto a otra(s) variable(s) (covariables, predictores, variables

explicativas o variables independientes), se pueden utilizar los modelos de regresión.

En general, en esta tesis se consideran modelos de regresión múltiples (respuesta

univariante y predictor multivariante) que presentan un cierto tipo de estructura

de dependencia espacial. En esta situación, para poder realizar inferencias fiables,

tanto la función de regresión como la estructura de dependencia, que suelen ser

desconocidas, deben especificarse adecuadamente.

La estimación de la función de regresión puede ser abordada empleando métodos

no paramétricos, obteniéndose estimadores flexibles y evitando problemas de mala

especificación. Alternativamente, también podŕıan utilizarse métodos paramétricos.

Los procedimientos paramétricos debeŕıan ser empleados si la función de regresión

pertenece a la familia paramétrica asumida. Sin embargo, una mala especificación de

esa familia puede llevar a conclusiones equivocadas. Los problemas de especificación

incorrecta de la función de regresión se pueden evitar aplicando un contraste de

bondad de ajuste para el modelo seleccionado. Para datos que presentan algún tipo

de complejidad, por ejemplo, datos circulares, los procedimientos clásicos utilizados

en regresión para datos Eucĺıdeos no pueden emplearse directamente, sino que deben

adaptarse y modificarse convenientemente.

El objetivo de esta tesis es doble. Primero, se analizan algunos problemas de in-

ferencia para modelos de regresión con respuesta y covariables Eucĺıdeas en presencia

de dependencia espacial. Concretamente, se presenta y se analiza un procedimiento

para contrastar si la función de regresión pertenece a una familia paramétrica, en

presencia de correlación espacial. El segundo objetivo es diseñar y estudiar nuevos
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procedimientos para abordar problemas de estimación y contrastes de la función re-

gresión (circular) para modelos con respuesta circular y covariable con valores en Rd.

En este contexto, se presentan y estudian propuestas no paramétricas para estimar

la función de regresión, bajo el supuesto de independencia y también para errores

espacialmente correlados. Además, en estos dos contextos, se presentan contrastes

de bondad de ajuste para determinar si la función de regresión circular pertenece a

una familia paramétrica.

A continuación se incluye un resumen con los distintos temas tratados a lo largo

de la tesis, aśı como las principales aportaciones realizadas en cada caṕıtulo de la

misma. Las demostraciones de los distintos resultados teóricos se pueden ver al final

de cada caṕıtulo.

Caṕıtulo 1: Introducción.

En este caṕıtulo se describen algunos métodos existentes para resolver ciertos

problemas de inferencia estad́ıstica (estimación y contrastes de bondad de ajuste)

que involucran datos Eucĺıdeos y circulares.

En primer lugar, se proporciona una revisión acerca de diferentes procedimientos

(paramétricos y no paramétricos) para estimar la función de regresión en modelos

con respuesta y covariables Eucĺıdeas, tanto para datos independientes como para

datos espacialmente correlados.

Sea {(Xi, Zi)}ni=1 una muestra aleatoria de (X, Z), donde Z es una variable re-

spuesta escalar que depende de d covariables (deterministas o aleatorias) X, con

soporte D ⊂ Rd. Supongamos el siguiente modelo de regresión:

Zi = m(Xi) + εi, i = 1, . . . , n, (1)

donde m es la función de regresión o tendencia y εi, i = 1, . . . , n, son variables

aleatorias generadas a partir de un proceso de media cero y estacionario de segundo

orden con covariograma o función de covarianza Cov(εi, εj) = σ2ρn(Xi −Xj), i, j =

1, . . . , n, donde σ2 es la varianza de los errores y ρn es una función de correlación

estacionaria y continua tal que ρn(0) = 1, ρn(x) = ρn(−x) y |ρn(x)| ≤ 1, ∀x ∈ D.

Suponiendo que la función de regresión pertenece a una familia paramétrica,
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m ∈ Mβ = {mβ,β ∈ B}, donde B ⊂ Rq es un conjunto compacto, y q es la

dimensión del espacio de parámetros B, un estimador paramétrico de m podŕıa obte-

nerse empleando métodos basados en mı́nimos cuadrados o máxima verosimilitud.

En un contexto de errores espacialmente correlados, se puede considerar el estimador

obtenido a partir de mı́nimos cuadrados iterados, que tiene en cuenta la estructura de

dependencia espacial subyacente (Newman y Jacobson, 1984). Alternativamente, sin

suponer una forma paramétrica para la función de regresión, esta podŕıa estimarse

no paramétricamente, por ejemplo, utilizando métodos tipo núcleo (kernel). En esta

tesis, nos centraremos principalmente en los estimadores de Nadaraya–Watson (o

estimador polinómico local de grado cero) y lineal local. En el caso multivariante,

estos estimadores dependen de una función kernel multivariante y de una matriz de

suavizado o matriz ventana. La elección de esta matriz es crucial en el procedimiento

de estimación. Para datos independientes, las propiedades asintóticas del estimador

de Nadaraya–Watson fueron calculadas por Härdle y Müller (2012), mientras que

las del estimador lineal local fueron estudiadas por Ruppert y Wand (1994). En un

contexto de errores espacialmente correlados, el sesgo y la varianza asintóticas de

estos estimadores fueron calculadas por Liu (2001).

Como se mencionó previamente, los métodos paramétricos pueden ser preferibles

si la función de regresión pertenece a la familia paramétrica asumida. Sin embargo,

estos procedimientos pueden proporcionar resultados erróneos si el modelo no se

especifica correctamente. Para determinar si una familia paramétrica es adecuada

para modelar la función de regresión, se pueden aplicar contrastes de bondad de

ajuste sobre el modelo seleccionado. El contraste de hipótesis que se formula es el

siguiente:

H0 : m ∈Mβ = {mβ,β ∈ B}, vs. Ha : m /∈Mβ. (2)

Este problema ha sido estudiado en diferentes contextos a lo largo de la literatura,

comparando un estimador no paramétrico y un estimador paramétrico de la función

de regresión bajo la hipótesis nula (Härdle y Mammen, 1993; Alcalá et al., 1999).

Sin embargo, este no hab́ıa sido considerado en el caso de datos con dependencia

espacial. En el Caṕıtulo 2 de esta tesis se aborda este problema para modelos de

regresión con respuesta y covariables Eucĺıdeas en presencia de dependencia espacial.
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En segundo lugar, en el Caṕıtulo 1 también se introduce el modelo de regresión

para datos circulares que se supone en esta memoria, bajo la hipótesis de indepen-

dencia (Caṕıtulos 3 y 5) y para datos espacialmente correlados (Caṕıtulos 4 y 5).

Más concretamente, si {(Xi,Θi)}ni=1 es una muestra de (X,Θ), donde Θ es una varia-

ble aleatoria circular que toma valores en T = [0, 2π), y X es una variable aleatoria

definida en D ⊆ Rd, se considera el modelo:

Θi = [mc(Xi) + εi](mod 2π), i = 1, . . . , n, (3)

donde mc es una función de regresión circular y εi, i = 1, . . . , n, son variables aleato-

rias circulares con dirección media cero y concentración finita.

En los Caṕıtulos 3, 4 y 5 de esta tesis, considerando el modelo de regresión (3), se

abordan ciertos problemas de inferencia estad́ıstica. Concretamente, en los Caṕıtulos

3 y 4, se proponen y estudian estimadores no paramétricos de la función de regresión

circular mc, para datos independientes y para datos espacialmente correlados, res-

pectivamente. Para estos dos contextos, en el Caṕıtulo 5 se presentan contrastes de

bondad de ajuste para determinar si la función de regresión circular pertenece a una

familia paramétrica.

Caṕıtulo 2: Contrastes de bondad de ajuste para funciones de re-

gresión paramétricas con errores espacialmente correlados.

En este caṕıtulo se contrasta si la función de regresión pertenece a una fa-

milia paramétrica, considerando modelos de regresión con respuesta y covariables

Eucĺıdeas en presencia de dependencia espacial. Es decir, considerando el modelo (1),

se resuelve el problema formulado en (2). El estad́ıstico de contraste propuesto com-

para en términos de una distancia L2 una versión suavizada de un ajuste paramétrico

con un estimador no paramétrico de la función de regresión:

Tn,p = n|H|1/2
∫
D

[m̂H(x; p)− m̂H,β̂(x; p)]2w(x)dx, p = 0, 1, (4)

donde w es una función de ponderación que ayuda a mitigar el posible efecto frontera.

Los estimadores no paramétricos m̂H(x; p) seŕıan el estimador de Nadaraya–Watson
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(cuando p = 0) y el estimador lineal local (cuando p = 1), mientras que m̂H,β̂(x; p)

seŕıan las correspondientes versiones suavizadas del ajuste paramétrico mβ̂ (obtenido

empleando mı́nimos cuadrados iterados).

El estad́ıstico de contraste dado en (4) depende de la matriz ventana H. La

selección de la matriz ventana se ha abordado en la literatura en el contexto de

estimación. Sin embargo, este es un problema abierto en el caso de los contrastes

de bondad de ajuste. En la práctica, como es habitual en este tipo de contextos, se

analiza el comportamiento del estad́ıstico de contraste en una rejilla de ventanas H.

En este caṕıtulo se calcula la distribución asintótica del estad́ıstico de contraste

propuesto (para diseño fijo y aleatorio) bajo la hipótesis nula y también bajo alter-

nativas de Pitman, generalizando los resultados obtenidos por Härdle y Mammen

(1993) y Alcalá et al. (1999) en el caso univariante y con errores independientes.

Dado que la convergencia a la distribución asintótica es lenta y, además, esta de-

pende de elementos desconocidos, no suele emplearse en la práctica. Para calibrar el

contraste, se proponen tres métodos bootstrap: un bootstrap paramétrico (PB), un

bootstrap no paramétrico (NPB) y un bootstrap no paramétrico corregido (CNPB).

En PB se utilizan los residuos obtenidos a partir del ajuste paramétrico y, a partir

de estos, se estima paramétricamente la estructura de dependencia. En NPC, para

aumentar la potencia del contraste, se consideran los residuos a partir del ajuste

no paramétrico (González-Manteiga y Cao, 1993). En cuanto a CNPB, este pro-

cedimiento es una modificación de NPB que corrige el sesgo obtenido debido a la

estimación no paramétrica del variograma.

El comportamiento emṕırico del contraste se comprueba a partir de un extenso

estudio de simulación. En este estudio se muestra que bajo la hipótesis nula, tanto

PB como CNPB funcionan correctamente, pues las proporciones de rechazos son

similares al nivel de significación considerado. Además, cuando la estructura de

dependencia es más fuerte (el valor del rango de dependencia de las observaciones

crece), la matriz ventana H que proporciona una calibración efectiva debe ser más

grande. Bajo hipótesis alternativas, el único procedimiento que funciona correcta-

mente es CNPB, ya que el comportamiento de PB es bastante pobre. Cabe destacar

que, aunque NPB proporciona una potencia alta, este procedimiento no proporciona

un calibrado efectivo, ya que las proporciones de rechazos bajo la hipótesis nula son
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excesivamente altas. Una vez comprobado el correcto funcionamiento de CNPB en

el estudio de simulación, se aplica el contraste propuesto al ejemplo del acúıfero de

Wolfcamp, un conjunto de datos clásico en la literatura geoestad́ıstica.

Las contribuciones de este caṕıtulo se pueden ver en Meilán-Vila et al. (2020e)

y Meilán-Vila et al. (2020b). En Meilán-Vila et al. (2020e), se considera un diseño

aleatorio y el estimador lineal local para el ajuste no paramétrico. Por otro lado, en

Meilán-Vila et al. (2020b), bajo diseño fijo y considerando el estimador de Nadaraya-

Watson, se proporciona un detallado análisis computacional del comportamiento del

contraste usando diferentes algoritmos bootstrap.

Caṕıtulo 3: Estimación no paramétrica de la función de regresión con

respuesta circular y covariable con valores en Rd.

El objetivo de este caṕıtulo es estimar la función de regresión para modelos de

regresión con respuesta circular y predictor Eucĺıdeo multidimensional.

Considerando el modelo (3), la función de regresión circular puede definirse como

el minimizador de la función de riesgo E{1−cos[Θ−mc(X)] | X = x}. Puede compro-

barse que el minimizador de esa función de riesgo es mc(x) = atan2[m1(x),m2(x)],

donde m1(x) = E[sin(Θ) | X = x] y m2(x) = E[cos(Θ) | X = x]. La función

atan2(y, x) devuelve el ángulo entre el eje x y el vector desde el origen hasta (x, y).

Substituyendo m1 y m2 por dos estimadores apropiados, se puede obtener un es-

timador para la función de regresión circular mc. Por lo tanto, considerando esti-

madores polinómicos locales para m1 y para m2, se tiene que el estimador de tipo

polinómico local de la función de regresión es:

m̂c
H(x; p) = atan2[m̂1,H(x; p), m̂2,H(x; p)], (5)

donde para cualquier entero p ≥ 0, m̂1,H(x; p) y m̂2,H(x; p) denotan los estimadores

polinómico locales de grado p (con matriz ventana H) de m1(x) y m2(x), respec-

tivamente. Cuando el grado del polinomio es cero, se tendŕıa el estimador de tipo

Nadaraya–Watson, mientras que cuando es uno, se obtendŕıa el estimador de tipo

lineal local.

En este caṕıtulo, se calculan las propiedades asintóticas del estimador (5) cuando
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p = 0 y p = 1. El sesgo y la varianza de estos estimadores tienen una estructura

similar a los obtenidos para el estimador de Nadaraya–Watson (en el caso de p = 0)

o el lineal local (si p = 1) cuando la respuesta del modelo de regresión es Eucĺıdea.

El sesgo de ambos estimadores es diferente (como ocurre en el caso Eucĺıdeo), ya que

en el caso del estimador de tipo lineal local no depende de la densidad del diseño.

Por otra parte, el término principal de la varianza es el mismo para p = 0 y p = 1.

Estos resultados generalizan los que obtuvieron Di Marzio et al. (2013) en el caso de

un único predictor. Para p > 1, procediendo como en Ruppert y Wand (1994), se

estudian los estimadores m̂c
H(x; p) cuando d = 1.

Para comprobar el funcionamiento práctico del estimador (5), se realiza un com-

pleto estudio de simulación considerando diferentes escenarios. La matriz ventana

se elige empleando el criterio de validación cruzada adaptada a un contexto circular,

seleccionando la matriz HCVc que minimiza la función:

CVc(H) =
n∑
i=1

{
1− cos

[
Θi − m̂c

H,−i(Xi; p)
]}
,

donde m̂c
H,−i(Xi; p) es el estimador de tipo Nadaraya–Watson (p = 0) o lineal local

(p = 1), calculado usando todas las observaciones excepto (Xi,Θi) y evaluado en Xi.

Para cada escenario, se calcula la media aritmética del error cuadrático promedio

circular (CASE), definido como (Kim y SenGupta, 2017):

CASE[m̂c
H(x; p)] =

1

n

n∑
i=1

{1− cos [mc(Xi)− m̂c
H(Xi; p)]} , (6)

para p = 0 (Nadaraya–Watson) y p = 1 (lineal local). A efectos comparativos

también se calcula la matriz óptima HCASE que minimiza el CASE. Aunque ambos

estimadores presentan un comportamiento similar, los resultados obtenidos para el

estimador de tipo lineal local son ligeramente mejores. El procedimiento de esti-

mación también se aplica a un conjunto de datos que contiene las direcciones de

escape de dos especies de pulgas (Scapini et al., 2002).

Las contribuciones de este caṕıtulo se pueden ver en Meilán-Vila et al. (2020d).
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Caṕıtulo 4: Estimación no paramétrica de la función de regresión con

respuesta circular y errores espacialmente correlados.

En este caṕıtulo se aborda el problema de estimar la función de regresión para

modelos con respuesta circular y covariables Eucĺıdeas en presencia de dependencia

espacial.

Considerando el modelo (3) con errores espacialmente correlados, la función de

regresión se podŕıa estimar empleando el estimador (5) propuesto para datos in-

dependientes, seleccionando la matriz ventana de manera adecuada. En este con-

texto, se calculan las propiedades asintóticas del estimador (5) para p = 0 y p = 1,

obteniéndose que el sesgo del estimador es el mismo que en el caso de datos in-

dependientes. Sin embargo, como es esperado, la varianza depende del modelo de

dependencia de los errores, y es la misma cuando p = 0 y p = 1. Además, la vari-

anza del estimador tiene la misma estructura que la que se obtuvo para el estimador

de Nadaraya–Watson o el lineal local de la función de regresión en modelos con

respuesta Eucĺıdea y errores espacialmente correlados (Liu, 2001).

El comportamiento emṕırico del estimador se muestra en un amplio estudio de

simulación. En este punto, la dificultad surge en la generación de un proceso circular

en el que se pueda controlar la estructura de dependencia espacial. En el estudio

de simulación realizado, los errores del modelo se generan a partir de procesos nor-

males enrollados y proyectados. Se puede comprobar que ambos procesos transfieren

correctamente la estructura de dependencia del proceso lineal al ćırculo. Para la se-

lección de la matriz ventana, dado que los métodos de validación cruzada no deben

utilizarse para datos dependientes, se diseña una versión modificada (MCVc), que

tiene en cuenta la estructura de dependencia subyacente. El criterio propuesto se-

lecciona la matriz ventana H que minimiza la función:

MCVc(H) =
n∑
i=1

{
1− cos

[
Θi − m̂c

H,−Ni
(Xi; p)

]}
,

donde m̂c
H,−Ni

(Xi; p) es el estimador de tipo Nadaraya–Watson (p = 0) o lineal local

(p = 1), calculado usando todas las observaciones excepto las que se encuentran en

un entorno Ni de Xi, y evaluado en Xi. Para aplicar este criterio, se debe seleccionar

el entorno Ni. Por simplicidad, se considera el criterio MCVc cuando Ni = {Xj :
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‖Xj−Xi‖ ≤ l}. Si la estructura de dependencia es fuerte, más observaciones deberán

ser omitidas en el procedimiento de selección de la ventana, y por lo tanto, el valor

de l deberá ser más grande.

En el estudio de simulación se muestra que el método CVc no funciona correcta-

mente, pues los promedios del CASE, dado en (6), que se obtienen utilizando esta

ventana son muy grandes en comparación con los que se obtienen si se emplea la

matriz óptima HCASE. Se observa un mejor funcionamiento del procedimiento de

estimación cuando se usa la versión modificada para seleccionar la matriz ventana.

Se puede ver que cuando la estructura de dependencia es más fuerte, el valor de l

seleccionado debe ser más grande. Además, se obtiene un comportamiento ligera-

mente mejor cuando se emplea el estimador de tipo lineal local. El procedimiento de

estimación también se aplica al conjunto de datos de direcciones de olas en el mar

Adriático (Jona-Lasinio et al., 2019).

Las contribuciones de esta parte se han recopilado en Meilán-Vila et al. (2020a).

Caṕıtulo 5: Contrastes de bondad de ajuste para funciones de regresión

paramétricas con respuesta circular y covariable con valores en Rd.

En este caṕıtulo se propone un contraste de bondad de ajuste para determinar

si la función de regresión circular en un modelo con respuesta circular y covariable

Eucĺıdea multidimensional pertenece a una familia paramétrica predeterminada. Es

decir, se resuelve un contraste similar al formulado en (2), pero teniendo en cuenta

que, en este caso, la familia paramétrica (circular) es Mc
β = {mc

β,β ∈ B}, donde

mc
β es un modelo de regresión paramétrico (circular) con vector de parámetros β.

En este caso, el problema que se formula es:

H0 : mc ∈Mc
β vs. Ha : mc /∈Mc

β. (7)

Se proponen y se analizan emṕıricamente dos estad́ısticos de contraste para abor-

dar el problema dado en (7). El primero compara un estimador no paramétrico con

un ajuste paramétrico de la función de regresión:

T c,1n,p =

∫
D
{1− cos[m̂c

H(x; p)−mc
β̂
(x)]}w(x)dx, p = 0, 1,
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donde w es una función de pesos que ayuda a mitigar el posible efecto frontera.

Los estimadores m̂c
H(x; p), para p = 0, 1, son los estimadores de tipo Nadaraya–

Watson o lineal local de la función de regresión circular mc, dados en (5). Para el

estimador paramétrico se consideran procedimientos basados en métodos de mı́nimos

cuadrados y máxima verosimilitud adaptados al contexto de datos circulares (Fisher

y Lee, 1992;Lund, 1999;Presnell et al., 1998). El segundo estad́ıstico de contraste

que se propone compara un estimador no paramétrico con una versión suavizada del

ajuste paramétrico:

T c,2n,p =

∫
D
{1− cos[m̂c

H(x; p)− m̂c
H,β̂

(x; p)]}w(x)dx, p = 0, 1, (8)

donde m̂c
H,β̂

(x; p), p = 0, 1, son versiones suavizadas del estimador paramétrico mc
β̂
.

El cálculo de la distribución asintótica de estos estad́ısticos de contraste no se

ha considerado dentro de los objetivos de esta tesis, pero aunque se obtuviera dicha

distribución, seŕıa necesario introducir un procedimiento de calibrado en la práctica.

La calibración de los valores cŕıticos se realiza empleando métodos bootstrap.

Para datos independientes, se proponen dos métodos bootstrap adaptados al

contexto de modelos de regresión con respuesta circular y predictor Eucĺıdeo mul-

tidimensional: un bootstrap residual paramétrico circular (PCB) y un bootstrap

residual no paramétrico circular (NPCB). En PCB se utilizan los residuos obtenidos

del ajuste paramétrico en el algoritmo bootstrap. Si la función de regresión cir-

cular pertenece a la familia paramétrica considerada en la hipótesis nula, entonces

los residuos tenderán a ser similares a los errores teóricos y, por tanto, se espera

que el método PCB tenga un buen comportamiento. En NPB, siguiendo las ideas

empleadas en González-Manteiga y Cao (1993) para aumentar la potencia del con-

traste, se usan los residuos obtenidos del ajuste no paramétrico en el procedimiento

bootstrap. Estos métodos de remuestreo (PCB y NPCB), diseñados para datos

independientes, deben adaptarse adecuadamente en un contexto de dependencia es-

pacial. En este caṕıtulo también se introducen dos procedimientos espećıficos para

calibrar el contraste teniendo en cuenta la estructura de dependencia: un bootstrap

residual circular espacial paramétrico (PSCB) y un bootstrap residual circular espa-

cial no paramétrico (NPSCB). Análogamente a PCB, pero en este caso para datos

espacialmente correlados, en PSCB se consideran los residuos obtenidos a partir del
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ajuste paramétrico bajo la hipótesis nula. La principal diferencia entre PCB y PSCB

es que en PSCB, para imitar la estructura de dependencia de los errores, se ajusta

un proceso circular espacial a los residuos. En el algoritmo bootstrap se emplean

muestras generadas del proceso ajustado. Los pasos seguidos en el procedimiento

NPSCB son similares a los empleados en PSCB, pero en el caso de NPSCB, los

residuos se obtienen del estimador de regresión no paramétrico.

Se analiza el funcionamiento de los métodos bootstrap propuestos (tanto para

datos independientes como para datos espacialmente correlados) a partir de un

exhaustivo estudio de simulación. En este estudio se muestra que para datos in-

dependientes, en la mayoŕıa de los escenarios considerados, los resultados obtenidos

con NPCB son ligeramente mejores a los proporcionados por PCB, especialmente

para las hipótesis alternativas consideradas. Además, se observa un comportamiento

mejor cuando se emplea T c,2n,1, dado en (8). Para datos espacialmente correlados,

se obtiene que ambos estad́ısticos de contraste no funcionan correctamente bajo la

hipótesis nula, cuando se utilizan PCB y NPCB, diseñados para datos independien-

tes. Con respecto a PSCB y NPSCB, el uso de residuos no paramétricos en el

procedimiento bootstrap proporciona mejores resultados. La potencia del contraste

es mayor cuando la estructura de dependencia espacial es más débil. Además, se ob-

tienen resultados más satisfactorios cuando se usa T c,2n,1. En ambos contextos (datos

independientes y datos espacialmente correlados), las proporciones de rechazos de la

hipótesis nula dependen de la matriz ventana H considerada. El procedimiento de

contraste propuesto también se ilustra con dos conjuntos de datos reales: direcciones

de b́ıgaros azules (Fisher y Lee, 1992) y direcciones de escape de dos especies de

pulgas (Scapini et al., 2002).

Las contribuciones de este caṕıtulo se pueden encontrar en Meilán-Vila et al.

(2020c).

Caṕıtulo 6: Conclusiones e investigación futura.

En este caṕıtulo se presentan las conclusiones finales de la tesis y se plantean

posibles trabajos futuros.

En primer lugar, en el contexto de modelos de regresión con errores espacialmente

correlados, se contrastó si la función de regresión pertenece a una familia paramétrica.
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En esta misma ĺınea, se podŕıa calcular la distribución asintótica del estad́ıstico

de contraste bajo la suposición de heterocedasticidad de los errores. Para ello, se

podŕıan emplear las ideas consideradas por Fernández-Casal et al. (2017). Además, se

podŕıa analizar la consistencia de los algoritmos bootstrap propuestos, por ejemplo,

mediante un procedimiento de imitación (Shao y Tu, 2012).

Para modelos de regresión con respuesta circular y predictor Eucĺıdeo multidi-

mensional, se propuso un estimador no paramétrico de la función de regresión. Este

estimador se estudió también para datos espacialmente correlados. Como ĺınea de

trabajo futura, se podŕıan diseñar nuevos métodos de selección de la matriz ven-

tana en el procedimiento de estimación, por ejemplo, empleando métodos tipo boot-

strap. En el contexto de datos espacialmente correlados, seŕıa interesante proponer

un procedimiento que permita una elección automática del radio l del ćırculo en

Ni = {Xj : ‖Xj −Xi‖ ≤ l}, es decir, el número de observaciones que deben elimi-

narse en la validación cruzada modificada. Además, el estimador propuesto podŕıa

estudiarse incluyendo otro tipo de covariables, como categóricas o direccionales, en-

tre otras. Para ello, se podŕıan emplear las ideas consideradas por Garćıa-Portugués

et al. (2013), Racine y Li (2004) o Li y Racine (2004).

Por último, se propuso y se analizó emṕıricamente un contraste de bondad de

ajuste para determinar si la función de regresión pertenece a una familia paramétrica

en un contexto de modelos con respuesta circular y predictor muldimensional Eucĺıdeo,

tanto para datos independientes como para datos espacialmente correlados. En esta

parte, se podŕıa calcular la distribución asintótica de los estad́ısticos de contraste

propuesto. Además, para datos espacialmente correlados, en el procedimiento boots-

trap, resultaŕıa interesante proponer un modelo que permita ajustar correctamente

los residuos circulares con dependencia espacial, y aśı imitar de forma satisfactoria

la estractura de dependencia de los errores.

Apéndice A: Resultados auxiliares.

En este apéndice se incluyen resultados auxiliares que son necesarios para desa-

rrollar las demostraciones de los Caṕıtulos 2, 3 y 4.



Bibliography

Adler, R. J. (2010). The Geometry of Random Fields. Wiley, New York.
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Garćıa-Portugués, E., Crujeiras, R. M., and González-Manteiga, W. (2013). Kernel
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Köhler, M., Schindler, A., and Sperlich, S. (2014). A review and comparison of band-

width selection methods for kernel regression. International Statistical Review,

82(2):243–274.

Kozek, A. S. (1991). A nonparametric test of fit of a parametric model. Journal of

Multivariate Analysis, 37(1):66–75.

Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. (1998). Convergence

properties of the Nelder–Mead simplex method in low dimensions. SIAM Journal

on Optimization, 9(1):112–147.



270 Bibliography

Lagona, F., Picone, M., and Maruotti, A. (2015). A hidden Markov model for the

analysis of cylindrical time series. Environmetrics, 26(8):534–544.

Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer, New York.

Lejeune, M. and Sarda, P. (1992). Smooth estimators of distribution and density

functions. Computational Statistics & Data Analysis, 14(4):457–471.

Ley, C. and Verdebout, T. (2017). Modern Directional Statistics. Chapman and

Hall/CRC, Boca Ratón.

Li, C. S. (2005). Using local linear kernel smoothers to test the lack of fit of nonlinear

regression models. Statistical Methodology, 2(4):267–284.

Li, Q. and Racine, J. (2004). Cross-validated local linear nonparametric regression.

Statistica Sinica, 14(2):485–512.

Liu, X. H. (2001). Kernel smoothing for spatially correlated data. PhD thesis, De-

partment of Statistics, Iowa State University.

Lund, U. (1999). Least circular distance regression for directional data. Journal of

Applied Statistics, 26(6):723–733.

Lund, U., Agostinelli, C., Arai, H., Gagliardi, A., Garcia-Portugués, E., Giunchi, D.,

Irisson, J. O., Pocernich, M., and Rotolo, F. (2020). circular: Circular Statistics.

R package version 0.4-93.

Maglione, D. and Diblasi, A. (2004). Exploring a valid model for the variogram

of an isotropic spatial process. Stochastic Environmental Research and Risk

Assessment, 18:366–376.

Marchetti, G. M. and Scapini, F. (2003). Use of multiple regression models in the

study of sandhopper orientation under natural conditions. Estuarine, Coastal

and Shelf Science, 58:207–215.

Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, London.

Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. Wiley, Chichester.



Bibliography 271

Masry, E. and Fan, J. (1997). Local polynomial estimation of regression functions

for mixing processes. Scandinavian Journal of Statistics, 24(2):165–179.

Mastrantonio, G., Gelfand, A. E., and Lasinio, G. J. (2016). The wrapped skew

Gaussian process for analyzing spatio-temporal data. Stochastic Environmental

Research and Risk Assessment, 30(8):2231–2242.

Mastrantonio, G., Pollice, A., and Fedele, F. (2018). Distributions-oriented wind

forecast verification by a hidden Markov model for multivariate circular–linear

data. Stochastic Environmental Research and Risk Assessment, 32(1):169–181.
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