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Abstract
Statistical fisheries models are frequently used by researchers and agencies to understand the behavior
of marine ecosystems or to estimate the maximum acceptable catch of different species of commercial
interest. The parameters of these models are usually adjusted through the use of optimization algorithms.
Unfortunately, the choice of the best optimization method is far from trivial. This work proposes the
use of population-based algorithms to improve the optimization process of the Globally applicable Area
Disaggregated General Ecosystem Toolbox (Gadget), a flexible framework that allows the development
of complex statistical marine ecosystem models. Specifically, parallel versions of the Differential Evolu-
tion (DE) and the Particle Swarm Optimization (PSO) methods are proposed. The proposals include an
automatic selection of the internal parameters to reduce the complexity of their usage, and a restart mecha-
nism to avoid local minima. The resulting optimization algorithms were called PMA (Parallel Multirestart
Adaptive) DE and PMA PSO respectively. Experimental results prove that the new algorithms are faster
and produce more accurate solutions than the other parallel optimization methods already included in
Gadget. Although the new proposals have been evaluated on fisheries models, there is nothing specific to
the tested models in them, and thus they can be also applied to other optimization problems. Moreover,
the PMA scheme proposed can be seen as a template that can be easily applied to other population-based
heuristics.

Keywords: Global optimization, Parallel programming, Marine ecosystem
models, Particle Swarm Optimization, Differential Evolution

1. Introduction1

Statistical fisheries models are an essential tool to understand the behav-2

ior of marine ecosystems and to develop simulations of future scenarios that3

allow the adoption of management measures for the sustainable exploitation4

of marine resources. Developing this kind of models is usually an iterative5

task that involves a parameter estimation process in which the output pro-6

vided by the model is compared with observed real data, obtaining a fitness7
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value that represents how well the model simulates the target ecosystem.8

Thus, the parameters of the model are iteratively adjusted to improve the9

fitness value and obtain a more accurate model.10

The search for the best parameters can be formulated as a mathemat-11

ical nonlinear optimization problem. Identifying the best optimization al-12

gorithm in this context is not trivial, as the search space usually contains13

non-linearities, multimodality and non-convexity, being computationally ex-14

pensive to reach a good solution [1, 2]. Stochastic methods such as heuristics15

or metaheuristics can be used to return a solution near to the global optimum16

in a reasonable computational time. Even so, usually these types of methods17

are still time-consuming for some cases, or they have too many tunable pa-18

rameters with a large impact on the behavior of the algorithm. To solve this19

problem, combinations of optimization methods have been tried to identify20

an optimal search procedure [3, 4, 5], although these works show that the21

best particular combination depends on the problem considered.22

Gadget [6, 7, 8] (Globally applicable Area Disaggregated General Ecosys-23

tem Toolbox) is a flexible framework to aid in the development of statistical24

models of marine ecosystems. It is an open source tool, written in C++25

that considers the impact related both to the fisheries harvesting and to the26

interactions between different species in a specific ecosystem. Gadget can27

take into account a great number of features such as: the existence of one28

or more species, migration between areas, predation, growth, maturation,29

reproduction, recruitment and commercial and scientific catches. Thus, it30

can be used to develop highly complex ecosystem models.31

Gadget has been successfully applied in many case studies such as the32

Icelandic continental shelf area for the cod and redfish stocks [9, 10, 11], the33

Bay of Biscay in Spain to predict the evolution of the anchovy stock [12], the34

North East Atlantic to model the porbeagle shark stock [13], or the Barents35

Sea to model dynamic species interactions [14]. Moreover, other successful36

works were also modeled using Gadget, providing tactical advice on sustain-37

able exploitation levels of a particular resource, such as southern European38

Hake stock, Icelandic Golden redfish, Tusk and Ling stocks, and Barent sea39

Greenland halibut, which are formally assessed by the International Council40

for the Exploration of the Sea (ICES) [15, 16, 17, 18].41

The Gadget framework consists of three parts: a parametric model to42

simulate the ecosystem, statistical functions to compare the model output43

to the observed data, and optimization algorithms to adjust the model pa-44

rameters. Currently, there are three different optimization methods included45
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in Gadget: Simulated Annealing (SA) [19, 20], Hooke & Jeeves (HJ) [21],46

and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [22]. The typical usage of47

Gadget involves combining these optimization methods in order to obtain the48

best possible result. Recently in [23], the SA and HJ algorithms have been49

parallelized using OpenMP [24] and speculative parallelization techniques,50

with the purpose of taking advantage of existing resources in current multi-51

core systems, and achieving improved results both in terms of execution time52

and accuracy of the solution.53

Unfortunately, the optimization methods implemented in Gadget can still54

get stuck in local optima, which gives place to a large dispersion in the55

convergence time and in the quality of the results, being hard to obtain a56

solution near to the global optimum. This work proposes the use of two57

well-known optimization algorithms to solve this problem: an evolutionary58

method called Differential Evolution (DE) [25], and a particle-based method59

known as Particle Swarm Optimization (PSO) [26]. Both of them are popu-60

lation algorithms, which are more suitable for parallelization than the ones61

previously available in Gadget, and thus, they can more easily exploit the62

characteristics of the today’s ubiquitous multicore systems. In addition, due63

to the large number of configuration parameters of these methods, the new al-64

gorithms were modified to auto-tune themselves at runtime, thus preventing65

the user from spending time in finding the best heuristic-parameter config-66

uration. Furthermore, an additional mechanism of diversity, consisting in a67

random restart of the population when the algorithms do not evolve, was68

implemented to avoid that the methods get stuck.69

The resulting optimization algorithms were called PMA (Parallel Mul-70

tirestart Adaptive) DE and PMA PSO respectively, and they were applied71

to the optimization of three different models developed with Gadget, obtain-72

ing improved results both in terms of the quality of the solutions and the73

computational time required. The good performance of the proposals is due74

to the combination of the adaptation strategies with the restart mechanisms75

implemented.76

This paper is organized as follows. Section 2 covers related work. Then,77

Section 3 describes the optimization problem to solve. Section 4 explains78

the original DE and PSO algorithms. Section 5 describes the modifications79

proposed, that is, the PMA DE and PMA PSO methods. Section 6 describes80

and discusses the results obtained when the proposed methods are applied to81

the optimization of three different Gadget models. This Section also includes82

comparisons with other DE and PSO algorithms. Finally, conclusions and83
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future work are discussed in Section 7.84

2. Related work85

Works in the field of marine ecosystems modeling use different optimiza-86

tion techniques to obtain good predictions with the aim of guiding important87

decisions. An example is [27], where the parameters of nonlinear dynamic88

models of marine ecosystems were calibrated using simulated annealing. An-89

other example is a more recent work [28], where also dynamic global op-90

timization problems were handled by an optimization environment named91

MarMOT (Marine Model Optimization Testbed) to develop different plank-92

ton ecosystem models. In this work, a genetic algorithm called GFAn Opti-93

mizer was used to estimate the model parameters. It is also worth to mention94

the Stock Synthesis tool [29], which is based on the automatic differentiation95

framework called ADMD [30]. This tool is broadly used to solve stock as-96

sessment models, although depending on the model complexity the time to97

achieve convergence ranges from seconds to many hours.98

As for the PSO and DE algorithms, Tashkova et al. [31] have performed99

a comparison among a local derivative-based method and four global meta-100

heuristic algorithms, including PSO and DE, for estimating the parameters101

of a non-linear model of an aquatic ecosystem. The study concludes that102

the meta-heuristic methods are clearly superior. Although the differences in103

performance among the different meta-heuristic methods are not significant,104

DE is the best solution for this problem.105

Relatedly, many works propose self-adaptation schemes to optimize the106

PSO and DE algorithms [32, 33, 34, 35, 36, 37, 38], as the time spent in107

calibrating the configuration parameters in these heuristics methods is one108

of their most critical issues. Many methods as jDE [39, 40], SaDE [41],109

APSO [42] or CLPSO [43] are popular proposals of self-adaptive heuristics,110

which have great success and influence in the development of current evo-111

lutionary algorithms. These strategies usually implement a memory with112

the goal of self-learning what configuration parameters are the more suitable113

during the optimization process.114

Regarding the parallelization, there are many proposals to parallelize via115

a distributed-memory paradigm both the DE [44, 45, 46, 47] and the PSO [48,116

49, 50] algorithms. Besides, the parallelization in shared-memory, focusing117

on the case of OpenMP, has also been widely used in these optimization118

methods, such as in [51, 52, 53].119
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In this work we adapt the DE and PSO global optimization algorithms120

to work as optimization methods in Gadget, proposing parallelization, self-121

adaptation and multi-restart mechanisms to improve both the quality of the122

obtained solutions and the execution times.123

3. Problem statement124

Gadget allows to develop a parametric simulation model of a marine125

ecosystem that can explain the changes in the fish populations produced126

in a geographic area, such as growth or predation rate. After this, statisti-127

cal functions can be used to compare the simulated data obtained with the128

observed data available to get a goodness-of-fit likelihood score that indi-129

cates how well the distribution from the model fits the distribution observed130

in the sampling process. Then, the parameters can be iteratively adjusted131

to improve the fit of the model with the observed data until an optimum132

is reached, this value corresponding with the lowest likelihood score in the133

model.134

There are different kinds of statistical functions to calculate the fitness of135

the model with respect to the observed data, depending on the component of136

the ecosystem to analyze. Thus, in order to consider all the data together, the137

overall likelihood score is computed as a weighted sum of several likelihood138

scores. Therefore, the process of iteratively adjusting the model parameters139

can be formulated as the following global optimization problem:140

minimize : L =
N∑

i=0
`i({xn}) ωi

where L is the overall likelihood function, `i is the likelihood function for the141

component i, ωi is its associated weight, and {xn} is a set of parameters to142

be estimated in this likelihood component. Thus, each likelihood component143

has its own cost function and parameters to be estimated, which are subject144

to bound constraints.145

Gadget also allows the use of likelihood components that apply a penalty146

to the overall likelihood score when an impossible situation arises. This147

happens for instance when ”understocking” occurs, that is, when the combi-148

nation of estimated parameters gives an insufficient number of a certain type149

of prey with respect to the requirements of predators.150

The number of parameters of the models developed in Gadget is a design151

decision to be taken by the modelers, being closely related to the complexity152
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of the problem to map: how many species interact in the ecosystem, how big153

is the area to study, or other similar details. In this work we have worked154

with models that contain 62, 47 and 38 parameters, covering only one species155

per model. Optimization problems obtained are already challenging. Thus,156

we have in mind that more challenging problems will appear as more com-157

plex models are developed, being important to design efficient optimization158

mechanisms to reduce the asociated computational cost.159

A full description of each one of the available likelihood components can160

be found in [8]. The choice of the likelihood components used to develop161

a given model depends on the characteristics of the model and the data162

available. It is also worth to mention that Gadget supports the use of datasets163

from both commercial fisheries and scientific surveys.164

4. Global optimization methods165

As stated before, Gadget already has a set of optimization algorithms,166

such as Simulated Annealing (SA) or Hooke and Jeeves (HJ), from which167

excellent results have been obtained [23]. However, it is possible to obtain168

better results by using population-based heuristics due to properties such as169

their ability to operate with several solutions at once or their easily paralleliz-170

able scheme. In this work we consider two well-known population methods:171

Differential Evolution and Particle Swarm Optimization. The next subsec-172

tions describe their algorithms in turn, followed by a brief discussion of two173

common issues in both methods: parameters selection and local optima.174

4.1. Differential Evolution (DE)175

DE is an evolutive method where, for each iteration, new solutions are176

created through difference operations. Starting from a population of pop size177

randomly generated nvars-dimensional solutions within the bound constraints178

of the problem, the method creates, using a Mutation Strategy (MStr), a set179

of candidate solutions for each iteration, which are intended to replace the180

solutions stored in the population. These mutation operations represent the181

difference among two or more solutions randomly chosen from the popula-182

tion, multiplied by the so-called Mutation Factor (F). There are many types183

of mutation strategies, this work uses some of them:184

• DE/best/2/bin:185

new pointi ← xbest+ F (pa − pb) + F (pc − pd) (1)
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• DE/current-to-rand/1/bin:186

new pointi ← pi + F (pa − pi) + F (pb − pc) (2)

• DE/current-to-best/1/bin:187

new pointi ← pi + F (xbest− pi) + F (pa − pb) (3)

• DE/rand-to-best/1/bin:188

new pointi ← pa + F (xbest− pa) + F (pb − pc) (4)

where pi is the current solution, pa, pb, pc and pd are solutions randomly se-189

lected belonging to the current population, xbest is the current best solution190

of the population, and new pointi is the candidate solution created.191

Algorithm 1 shows the basic scheme of DE using the mutation strategy192

DE/best/2/bin. The mutation strategy is applied element by element in193

some of the nvars positions of the solution. The crossover constant (CR)194

is a configuration parameter to decide how many positions of the candidate195

solution come from the original solution, and how many are the result of196

the mutation process. For each existing solution in the population, a new197

candidate is generated, but this candidate only replaces the solution it has198

been derived from if it is better. This process will be repeated until a specific199

stopping criterion is met. At that point, the best member of the pop size200

population is obtained as output of the method.201

Therefore, there are a lot configuration parameters in DE algorithms:202

population size, crossover constant, mutation factor and mutation strategy203

are the basic settings in this type of metaheuristic. Different combinations204

of these settings increase or decrease the performance depending of the opti-205

mization problem nature. Thus, a set of modifications of the classic scheme206

of DE have been emerged along last years, trying to improve the behaviour207

of this algorithm via implementing adaptive strategies. An example of them208

is jDE [39, 40], which proposed a self-tuning mechanism to control muta-209

tion and crossover parameters, assigning a pair F and Cr for each population210

member and adapting individually their value through adding random val-211

ues. Other alternative very popular in DE community is SaDE [41], where212

the mutation strategies and an associated CR and F settings are gradually213

tuned, using the acquired knowledge in an initial learning state.214
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Algorithm 1: Differential Evolution.
input : P, a population of pop size solutions
output: xbest, the best solution ∈ P

1 repeat
2 Select xbest ∈ P;
3 for ∀ solution pi ∈ P do
4 pa, pb, pc, pd ← different random individuals from P;
5 new pi = pi;
6 for each dimension k ∈ pi, 0 ≤ k < nvars do
7 rand = random point between (0,1);
8 if rand < CR then

/* Mutation strategy DE/best/2/bin */
9 new pi,k = xbestk + F (pa,k - pb,k) + F (pc,k - pd,k);

10 end
11 end
12 if Evaluation(new pi) is better than Evaluation(pi) then
13 pi = new pi;
14 end
15 end
16 until Stop conditions;

4.2. Particle Swarm Optimization (PSO)215

The PSO algorithm also operates on a population of solutions, called216

swarm in this case. For each iteration new candidate solutions, named here217

particles, are generated applying movements through the search-space using218

both local knowledge of the particles and global information of the method.219

Algorithm 2 shows the general scheme of PSO. At the beginning, pop size220

nvars-dimensional particles that conform the initial swarm are randomly221

generated within the bound constraints of the problem. Then, in the main222

loop, a certain movement is applied to each particle through the following223

expressions:224

vi ← ωvi + ϕlrl(pbesti − pi) + ϕgrg(gbest− pi) (5)

pi ← pi + vi (6)
where pi is the current solution for the particle i of the swarm, vi is the225

vector velocity, ω is the inertia constant, ϕg is the social coefficient, ϕl is the226

cognitive coefficient, rg and rl are two random numbers between zero and227

one, pbesti is the local best solution found by the current particle up to this228

iteration, and gbest is the best global solution found by any particle during229

the execution of the method. Using these two formulas, a new solution is230
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created through the sum of the current position with the new velocity vector,231

which is generated taking into account the following three factors in Equation232

(5) in this order:233

• Previous velocities and inertia weight: the velocity calculated for a par-234

ticle ”i” in past iterations is taken into account to compute the velocity235

in the current iteration. The inertial weight (ω) is a configurable pa-236

rameter of the heuristic, typically with values between zero and one, to237

adjust the importance of this accumulation of speeds.238

• Cognitive component: It is a vector calculated as the difference between239

the best value reached by the considered particle i and the current value240

of that particle. This vector takes into account the local knowledge241

about previous visited points. To adjust the impact of the influence of242

this cognitive component, it is multiplied by a random value between243

zero and one (this is what gives stochasticity to the method), and also244

by a configurable parameter called cognitive coefficient (ϕl).245

• Social component: It is a vector computed as the difference between the246

global best solution found among all the particles from the swarm and247

the current particle solution. Therefore, the social component takes248

into account the influence of the global solution when new solutions249

are created. Also, for this case, the vector generated is multiplied by a250

random number between zero and one, and by a configurable parameter251

known as social coefficient (ϕg).252

Then, if the new solution pi improves over pbesti, this best local solution is253

updated to pi. Similarly, if pi is better than the global best known solution254

gbest, the latter is updated to pi. This process will be repeated until a specific255

stopping criterion is met. At that point, gbest is obtained as output of the256

method.257

Moreover, as in the case of the DE, there are many popular implemen-258

tations of PSO, being the most promising that where the configuration pa-259

rameters, such as swarm size, cognitive/social coefficient or inertia, are able260

to self-adapt their settings during the runtime. An example is CLPSO [43],261

a very popular modification of the algorithm, where a learning strategy is262

used to decide what local best positions placed in different particles are can-263

didates to update the velocity of each solution, instead of the best local264

solution. Other option is APSO [42], a adaptive method able to learn about265
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Algorithm 2: Particle Swarm Optimization.
input : P, a set of pop size particles
output: gbest, the best particle ∈ P

1 repeat
2 initialize P ← random generation of the particles;
3 ∀ i, vi = 0;
4 pbesti ← local best solution in position i;
5 gbest ← global best solution;
6 for ∀ particle pi ∈ P do
7 for each dimension k ∈ pi, 0 ≤ k < nvars do
8 rp, rg = random numbers generated between (0,1);
9 vi,k = ω vi,k + ϕp rp(pbesti,k - pi,k) + ϕg rg(gbestk - pi,k);

10 pi,k ← pi,k + vi,k;
11 if bound constraints are violated in pi,k then vi,k = 0;
12 end
13 if Evaluation(pi) is better than Evaluation(pbesti) then
14 pbesti = pi;
15 if Evaluation(pi) is better than Evaluation(gbest) then
16 gbest = pi;
17 end
18 end
19 end
20 until Stop conditions;

the state of the search, and modifying the inertia or the coefficients according266

to the state in which the search is..267

4.3. Parameters selection and local optima avoidance268

Both the DE and the PSO methods have some parameters with a high269

impact on the performance of the optimization process that need to be con-270

figured by the users. This way, PSO has the social and cognitive coefficients271

that intensify the search, as well as the inertia weight to diversify it. Regard-272

ing DE, it has the crossover constant, the mutation strategy and the mutation273

factor, which, depending on their values, will make the search more intensive274

or more diverse. Moreover, the size of the population (pop size) is an impor-275

tant factor to take into account in both cases. The choice of values for the276

aforementioned configuration parameters is not trivial [54, 55], and it will be277

problem-dependent. In next section we propose an autotuning strategy to278

solve this issue.279

Another potential problem of these methods is that they can get stuck280

in a local optimum during the global optimization. The selftuning of the281

parameters can help to leave these areas, but it may not be enough to obtain282
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a solution of the desired quality. A restart mechanism is thus also proposed283

to avoid local optima.284

5. Improving the optimization methods285

The use of the classic versions of DE or PSO does not guarantee bet-286

ter results than the optimization methods already implemented in Gadget.287

However, thanks to the population-based scheme of these two algorithms, it288

is easy to apply a set of enhancements that improve their behavior for the289

optimization of the models developed using Gadget.290

In this work we propose an enhancement template, which has been called291

PMA (Parallel Multi-restart Adaptive), that helps to obtain a good solution292

in the non-linear, multimodal and non-convex optimization problems gener-293

ated by Gadget. It is based on the following new functionalities: (1) a parallel294

computation of the evaluations of the cost function in each iteration of the295

main loop of the methods; (2) a self-tuning of the configuration parameters296

to intensify the search when there is a promising result and obtain a good297

solution in a short time or, otherwise, to diversify it with a conservative pa-298

rameter configuration when the algorithm is stuck in the proximity of a local299

optimum; and (3) an additional mechanism to restart the solutions of the300

algorithm, without losing the best solution found, to explore other regions301

when the search is stagnated.302

5.1. Parallel algorithms303

Regarding the first enhancement, the most time-consuming task in the304

two optimization methods considered is the evaluation of the cost function305

for each solution of the population (line 12 in Algorithm 1 and line 13 in306

Algorithm 2). The evaluation of each new solution does not depend on any307

other new solution generated. Thus, the loop in line 3 in Algorithm 1 and308

the loop in line 6 in Algorithm 2 can be parallelized. We have decided to309

implement the parallel versions using OpenMP, in which the execution of a310

parallel loop is based on the fork-join programming model. By using the311

directive shown in line 1 of Algorithm 3, a group of threads is created at the312

beginning of the parallel loops so that each thread evaluates concurrently a313

subset of the solutions, obtaining at the end a shared matrix with the results314

of the fitness values for each new solution.315

There is a synchronization point at the end of the parallel loop: the dif-316

ferent threads join again into a single thread and the computation does not317
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Algorithm 3: Parallel evaluation of the solutions using openMP
1 # pragma omp parallel for schedule(dynamic,1)
2 for ∀ solution pi ∈ P do

/* The generation of solutions was shown in Algorithms 1 and 2 */
3 new pi = creation new solution(pi)
4 shared fit vectori = function evaluation(new pi)
5 end

continue until all of them have reached that point. Thus, if the workload has318

not been evenly distributed, many of the threads will remain idle waiting for319

the slowest one. Since there are variations in the computational load asso-320

ciated to the evaluation of different solutions, in order to avoid imbalances321

and reduce idle times, a dynamic schedule clause of OpenMP is included.322

Therefore, the computational load is distributed among the threads at run-323

time, sending more work to them as they complete their previously assigned324

evaluation.325

5.2. Parameters self-tuning and multi-restart326

The self-tuning of the configuration parameters and the multi-restart327

mechanism can be explained through the generation of a set of states, so328

that the optimization method changes of state and performs different ac-329

tions depending on its behavior at a specific moment.330

As the optimization progresses, three types of configuration parameters331

are dynamically adjusted in both methods (DE and PSO):332

• Population size: It is a critical parameter in the performance of these333

methods. When a large population is chosen, the methods converge334

slowly due to the exploration of unpromising search space areas. Con-335

versely, with a small population the methods can get stuck very easily336

in a local optimum. Thus, at runtime, our PMA template decreases337

the size of the population in order to intensify the search, or increases338

it to add diversity.339

• Range of F (DE) or ω (PSO): The modification of the mutation factor340

or the inertia weight produces similar effects. When large values are341

chosen, the global exploration of the search space is favored. With small342

values, the exploitation is promoted, moving the particles in a specific343

area as in a local search method. PMA generates these parameters344

randomly within certain preset bounds, the interval defined by the345
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bounds being smaller or larger depending on whether the method needs346

to intensify or diversify the search, respectively.347

• Modification of CR (DE) or ϕp/ϕg (PSO): The crossover constant and348

the social/cognitive coefficients have a great impact in the behavior349

of the optimization. These parameters measure the influence of past350

solutions in a new one generated. Our PMA template adjusts these con-351

figuration parameters at runtime. When the optimization progresses352

properly these parameters remain fixed, since it is assumed that their353

configuration is good. But if the method is stagnated, they are changed354

by oscillating their values within a previously fixed interval. For exam-355

ple, and only when the search requires it, the parameter CR of the DE356

algorithm initially increases gently its value for each iteration of the357

algorithm until it reaches the upper bound (0.9 in this case). Then,358

the same process is repeated, but now decreasing CR until it reaches359

the lower bound (0.1 in this case), changing again the sense of mod-360

ification, and repeating this cycle of increases and decreases. In the361

case of PSO, the process is the same, but the interval is [0.1, 2.5], and362

when the method decreases the social coefficient, the cognitive one is363

increased, and vice versa. It deserves to be mentioned that these pa-364

rameters ranges have been chosen based on the recommendations found365

in the literature [56, 57, 58, 59].366

Once the three adaptive configuration parameters have been described,367

the flow of the algorithm and its states can be explained. They are shown368

in an abstract way in Figure 1 together with the definition of the main vari-369

ables that control the state changes. A more detailed definition of the PMA370

template is found in the pseudocode in Algorithm 4. The PMA template371

considers five different states:372

• State 0 is attained when the method does not achieve significant im-373

provements in consecutive iterations (it consec impr < 2), the number374

of consecutive iterations in which the current best solution does not375

improve is lower than 10 (it stuck < 10), and the number of iterations,376

not necessarily consecutive, with little improvements is lower than 10377

(it little impr < 10). We define a significant improvement as one in378

which the best solution found enhances the fitness at least by 0.1%379

with respect to the previous best one, while a little improvement is380

one in which the enhancement is below 0.1%. State 0 has a balanced381
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Figure 1: State diagram of the PMA template

behavior between intensification and diversification, producing values382

of F or ω according to this, and keeping the CR and ϕ coefficients383

constant because it is assumed that the configuration is good.384

• State 1 is reached when the method is stuck, that is, when it has not385

been able to improve the best solution in at least the last 10 iterations386

(it stuck ≥ 10). In this case, the method opens the bounds of F or ω387

and begins to swing the value of CR or the social/cognitive coefficients,388

with the goal of testing both intense and diverse configurations in order389

to look for a good solution, and stop being stuck. If a new best solution390

is obtained, the counter it stuck is set to zero. If this solution does391

not improve significantly the previous best one, it little impr is also392

incremented. If this latter counter reaches the value 10, the flow of393

the algorithm is changed to state 4. Otherwise, the method moves394

to state 0 because it is assumed that the search is again in a good395

condition. Finally, if no improved solution is found in 10 additional396

iterations (it stuck > 20), PMA moves to state 3.397
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• State 2 is obtained when the method has achieved to enhance the398

best known solution, by at least by 0.1% in consecutive iterations399

(it consec impr ≥ 2). We call that a significant improvement. Thus,400

it is in a promising area and the search is intensified decrementing401

smoothly the upper and lower bounds of F or ω and fixing the CR or402

ϕp/ϕg values. In the first iteration in this state in which no significant403

improvement is made, PMA returns to state 0.404

• State 3 marks the beginning of the restart mechanism. Stagnation in405

the search can be caused by not obtaining significant improvements in406

the last 20 iterations (it little impr > 20) or because the method has407

not obtained any improvement in the last 20 iterations (it stuck > 20),408

so it injects diversity in the population of the method modifying the409

population size and/or randomly restarting all their members. More410

details of this mechanism will be explained later. When the restart411

mechanism is fulfilled, the algorithm returns to the initial state 0 with-412

out losing the value of the best solution found.413

• State 4 represents the situation in which the method improves repeat-414

edly the best known solution, but with insignificant values (it little impr415

≥ 10), that is, with improvement rates below 0.1%. The search in the416

current zone is strengthened, decreasing the bounds of F or ω and417

changing the values of CR or ϕp/ϕg. If the mentioned behavior per-418

sists, the method will move to state 3 and it will apply the multi-restart419

mechanism. If a significant solution is found, it will move to state 0 and420

it will continue to exploit this zone from this state. In the worst case,421

if it stops finding improved solutions during at least 10 consecutive422

iterations, the flow will move to state 1.423

Using values of 10 or 20 iteration as thresholds to change state was moti-424

vated in the experience solving optimization problems produced by Gadget.425

Algorithm 4 explains in detail the PMA template, where for each iteration426

in the main loop, the method in use (PSO or DE) follows these steps: (1) the427

value of ω or F is obtained from the current state; (2) the value of ϕp/ϕg428

or CR is also calculated, taking into account the flag par trend mod, which429

controls how these parameters must be modified; (3) if the current state430

is state 3, the Restart Method procedure is called (Algorithm 5); (4) an431

iteration of the original method PSO or DE is carried on, obtaining a new432

best solution to compare with the current best known solution, updating the433
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Algorithm 4: Parallel Multirestart Adaptive (PMA) template
input : P, a population of pop size solutions with pop size=nvars (number of variables)
output: xbest, the best solution

1 STATE, growth trend popul, par trend mod, type restart=0;
2 it consec impr, it stuck, it little impr=0;
3 PSO case: ϕp, ϕg=1.0 / DE case: CR=0.5;
4 repeat

/* (1) CALC THE VALUE OF ω (PSO) OR F (DE) */
5 if STATE = 0 then ω or F ← random number between [0.6 , 0.8] ;
6 else if STATE = 1 then ω or F ← random number between [0.1 , 0.8] ;
7 else if STATE = 2 then ω or F ← random number between [0.4 , 0.6] ;
8 else if STATE = 4 then ω or F ← random number between [0.1 , 0.4] ;

/* (2) CALC THE VALUE OF ϕp/ϕg (PSO) OR CR (DE) */
9 if (STATE == 1) or (STATE == 4) then

10 if (par trend mod = 0)&(maximum ϕp/ϕg or CR is reached) then par trend mod=1;
11 if (par trend mod = 1)&(minimum ϕp/ϕg or CR is reached) then par trend mod=0;
12 if (par trend mod == 0) then
13 DE case: CR=CR + 0.1 / PSO case: ϕp=ϕp + 0.1; ϕg=ϕg − 0.1;
14 else
15 DE case: CR=CR − 0.1 / PSO case: ϕp=ϕp − 0.1; ϕg=ϕg + 0.1;
16 end
17 end

/* (3) RESIZE AND/OR RESTART POPULATION. Algorithm 5 for details. */
18 if (STATE = 3) then
19 Restart Method(P, it consec impr, it little impr, it stuck, pop size, nvars,

growth trend popul);
20 end

/* (4) CALL OPTIMIZATION METHOD (PSO or DE). Algorithm 1 or 2 for details. */
21 new xbest ← Optimization Method(P);
22 if (new xbest improves xbest) then
23 if (((xbest - new xbest)/xbest)*100 >= 0.1) then
24 it little impr, it stuck=0;
25 it consec impr=it consec impr+1;
26 else
27 it consec impr, it stuck=0;
28 it little impr=it little impr+1;
29 end
30 xbest =new xbest;
31 else it stuck=it stuck+1; it consec impr=0;

/* (5) CALCULATING THE CURRENT STATE */
32 if (it little impr > 20) or (it stuck > 20) then
33 if (STATE = 1) then growth trend popul=0;
34 else if (STATE = 4) then growth trend popul=1;
35 STATE=3;
36 else if (it stuck ≥ 10) then STATE=1 ;
37 else if (it little impr ≥ 10) then STATE=4 ;
38 else if (it consec impr ≥ 2) then STATE=2 ;
39 else STATE=0;
40 until Stop conditions;
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Algorithm 5: Restart method scheme.
1 Function Restart Method(P, it consec impr, it little impr, it stuck, pop size, nvars,

growth trend popul):
2 it consec impr, it little impr, it stuck = 0;
3 addpop = nvars;
4 if (growth trend popul = 0) then
5 restart flag = 0;
6 if (pop size − addpop) ≥ nvars then
7 pop size = pop size− addpop;
8 end
9 else

10 restart flag = 1;
11 if (pop size + addpop) ≤ nvars ∗ 5 then
12 pop size = pop size + addpop;
13 end
14 end
15 Resize population P creating or deleting solutions, according to new pop size;
16 if (restart flag = 1) then
17 Random restart of all solutions of P;
18 end

already explained counters it stuck, it consec impr, and it little impr, and434

also updating the best solution if necessary; (5) and finally, with the data435

obtained in the previous steps, it is decided whether the algorithm must make436

a transition to another state.437

Algorithm 5 shows the restart procedure. PMA invokes this procedure438

passing the population and its size, the number of problem variables nvars,439

the counters on which the state changes depend, and a new flag called440

growth trend popul. This flag is a binary variable that indicates whether441

the population must be increased or decreased. The amount to increment or442

decrement, represented by variable addpop, is equal to the number of problem443

variables, this value being also the minimum population size. The maximum444

population size is set to five times nvars. Thus, the PMA method does not445

allow to exceed these size bounds.446

If the population size is reduced, the solutions are randomly restarted447

to introduce diversity. On the other hand, if the population is increased,448

the solutions remain unchanged and the diversity is provided by the new449

population members.450

Figure 2 tries to explain graphically with a very simple example how the451

reset mechanism can help the method when it is stuck. In iteration 1, a452

population method has different solutions scattered across the search space453

(pink points), and one of them is in a promising region (red point). In454
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successive iterations, the best solution is stuck in that promising region,455

attracting the rest of the solutions. Later, in iteration N, all the pink points456

are in the vicinity of the best solution, and the search will appear to be457

stuck in the local optimum. The reason is that the method does not have458

the capacity to generate solutions to escape from that region. Thus, the459

restart mechanism comes into play in iteration N+1, randomly restarting the460

solutions without losing the best known solution. In the following iterations,461

the movements of the pink points are influenced again by the attraction462

of the local minimum where the red point is located, but this time in the463

iteration N+2, one of the points follows a different path and reaches a more464

promising area in the search space, becoming the new best known value, and465

attracting the rest of the solutions to this new region.466

We refer to PMA as a template because, although in this work it has been467

applied to the DE and the PSO methods, the proposed features can be easily468

extended to other population-based heuristics such as genetic algorithms or469

scatter search methods. Thus, throughout the present work, PMA DE or470

PMA PSO actually refers to the application of this template to the DE and471

PSO methods respectively.472

Furthermore, when adaptive scheme proposed is applied to DE requires473

an additional comment. The mutation strategy used for our PMA DE is474

rand-to-pbest/1/bin, being almost exactly equal to strategy defined in475

Expresion 4.1, but with the difference that pbest is a randomly chosen solu-476

tion between the p best solutions. Thus, depending to state, the size of pbest477

set can be bigger (exploration), or smaller (specialization).478

Comparing the proposed adaptation strategy with that implemented in479

other methods as SaDE or jDE, where the algorithms have a learning time480

to try to known what settings are the more successful, our proposal changes481

their parameters basing on try to understand the current status of the search:482

e.g. trapped in local optima, moved fast convergence, or stucked in flatted483

surfaces.484

6. Experimental results485

In order to assess the efficiency of our proposal, different experiments486

have been performed to compare the PMA template applied to PSO and DE487

with the original versions of these heuristics as well as other optimization488

methods already implemented in Gadget. The rest of this section will use489

the acronyms introduced in Table 1 to simplify the explanations.490
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Figure 2: An example of the benefits of the multi-restart mechanism proposed. The
example is minimizing the objective function.

The following three challenging optimization problems were used to check491

whether the enhancements proposed are adequate for the optimization of the492

models generated by Gadget:493

• Hake model [60]: It was developed to assess the southern hake stock494

and give catch advice to EU through ICES (International Council for495

the Exploration of the Sea), examining complex fleet interactions and496

discards. It contains 62 continuous variables to be estimated.497

• Tusk model [61]: It is an actual assessment model used to give tactical498

advices and it is based on over thirty years of data about a single-species499

of tusk (brosme brosme) in Icelandic waters. It was developed by the500
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Table 1: Methods used in the experiments.

Method Description
PSO Sequential Particle Swarm Optimization.

PMA PSO Parallel Multi-restart Adaptive Particle Swarm Optimization.
APSO Adaptive Particle Swarm Optimization [42].

CLPSO Comprehensive Learning Particle Swarm Optimization [43].
DE Sequential Differential Evolution.

PMA DE Parallel Multi-restart Adaptive Differential Evolution.
SaDE Self-adaptive Differential Evolution [41].
JDE Self-adaptive Differential Evolution [39, 40].
SA Sequential implementation of Simulated Annealing method.

SA specul Speculative parallel version of Simulated Annealing proposed in [23].
HJ Sequential implementation of Hooke and Jeeves method.

HJ specul Speculative parallel version of Hooke and Jeeves proposed in [23].

MRI (Marine Research Institute, Iceland), and it is used by ICES as501

the basis for catch advice. It contains 47 continuous variables to be502

estimated.503

• Haddock model [62]: It is a single-species, single-area model used to504

model the Icelandic haddock that is provided as an example with Gad-505

get (it can be downloaded from the Gadget web [6]). It is a toy example506

used for illustrative purposes and its parameter space is fairly limited,507

containing 38 continuous variables to be estimated.508

The experiments reported here have been performed in a multicore server509

whose main hardware and software features are described in Table 2. The510

optimization level O3 was used in all the compilations. Moreover, due to the511

stochastic properties existing in the different heuristics used, each experiment512

reported in this section was performed 30 times in order to compare fairly513

the different optimization methods.514

The experiments carried out are presented in three subsections. The first515

one is a comparative, using a single core, of the PMA template versus dif-516

ferent configurations of the original implementations of the DE and PSO517

algorithms. The aim is to prove the reliability of the tuning and restart518

mechanisms provided with the PMA template. The second one evaluates519

the efficiency and scalability of the parallelization technique implemented in520

the PMA proposals using different number of cores. The third one com-521

pares the PMA PSO and DE algorithms with the SA and HJ methods, both522

sequentially and in parallel, under two complementary points of view [63]:523

horizontal and vertical view approaches.524
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Table 2: Experimental environment.

Feature Value Feature Value
CPUs/Node 2 x Intel Xeon E5-2680 v3 Memory/node 64GB DDR4

#cores/CPU 12 Compiler g++ 6.3.0
Total #cores 2× 12 = 24 Compiler flags -O3
CPU Family Haswell OS Red Hat Enterprise

CPU Frequency 2.5 GHz Linux Server 6.7

Table 3: List of configuration parameters used in PSO and DE implementations,
selected according to [56, 57, 58, 59].

method ϕl ϕg popul. size ω

PSO Configuration 1 2.0 2.0 nvars×3 0.7
PSO Configuration 2 2.0 2.0 nvars 0.7
PSO Configuration 3 0.75 0.75 nvars 0.7
PSO Configuration 4 2.0 2.0 nvars×3 adaptive1

APSO adaptive adaptive nvars×3 adaptive
CLPSO 2.0 - nvars×3 0.7
PMA PSO adaptive adaptive adaptive adaptive

method CR F popul. size mutation Strategy
DE Configuration 1 0.9 0.8 nvars×5 best/2/bin
DE Configuration 2 0.9 0.8 nvars×5 current-to-rand/1/bin
DE Configuration 3 0.9 0.8 nvars×5 current-to-best/1/bin
DE Configuration 4 0.9 0.8 nvars×5 rand-to-best/1/bin
JDE adaptive adaptive nvars×5 rand/1/bin
SaDE adaptive adaptive nvars×5 adaptive
PMA DE adaptive adaptive adaptive rand-to-pbest/1/bin

1 reducing ω along the nvars×3

6.1. Comparison with other PSO and DE configurations525

There are many configurable parameters in DE and PSO whose selection526

may have a great impact in the speed of convergence. In order to evaluate527

the performance of the functionalities proposed by the PMA template, this528

has been compared sequentially, i.e. using a single core, with a set of versions529

of these methods configured with different typical values, which are shown530

in Table 3.531

The results obtained appear in Table 4. Each experiment consisted of532

30 independent runs, the stopping criterion being the execution time. The533

table shows for each optimization problem, the mean value and the standard534

deviation of the best cost function obtained by each optimization method535

executed during 1 hour. Let us remember that the lower the value, the536

better, because the goal is minimize the objective function. Moreover, the537

mean number of evaluations of the cost function performed is also reported.538

According to the results obtained, both PMA PSO, and particularly PMA539

DE, achieve higher quality solutions than the rest of the configurations in the540
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Table 4: Comparison of the proposals with other typical implementations of
PSO and DE. Stopping criterion: 1 hour.

Hake model Tusk model Haddock model
mean mean mean mean mean mean

method fbest±std evals fbest±std evals fbest±std evals
PMA PSO 1029.48±39.5 190364 6566.46±106.1 187249 0.88±0.00 293133
PSO Configuration 1 1376.95±122.1 181046 8978.73±516.5 180926 1.49±0.3 303156
PSO Configuration 2 1339.96±135.9 182474 9339.37±529.6 183661 1.75±0.6 322347
PSO Configuration 3 1527.93±99.3 179642 11195.56±601.1 179865 2.24±0.4 290082
PSO Configuration 4 1339.89±135.9 185952 9336.06±530.0 197323 2.26±0.5 292838
APSO 1124.80±66.5 197658 7631.23±346.0 190132 1.34±0.1 300127
LCPSO 1267.25±25.0 190131 8024.11±72.5 193422 1.17±0.0 299717
PMA DE 1004.05±9.2 180160 6540.71±65.3 191108 0.85±0.0 300568
DE Configuration 1 1461.42±40.2 180874 10529.41±171.5 181545 2.28±0.6 299459
DE Configuration 2 1445.37±33.2 180957 9470.96±156.3 181357 1.30±0.0 288971
DE Configuration 3 1453.17±35.3 171688 9516.29±157.7 172701 1.32±0.03 279515
DE Configuration 4 1128.02±82.7 178167 6984.08±218.6 185274 1.20±0.7 298623
JDE 1157.71±8.7 184160 7026.47±34.4 185540 0.86±0.0 290131
SaDE 1180.29±33.3 167286 7361.59±285.0 170141 0.88±0.0 280061

same threshold of time. Regarding the number of evaluations carried out,541

they were quite similar across all the cases for each model considered.542

Figure 3 presents the same results, but emphasizing the distribution of543

the best fitness of the cost function obtained for each run and parameter544

configuration through violin plots. It can be observed that our proposal545

improves the quality of the achieved solution, being the median lower than546

for the other methods. Besides, the dispersion in the results is smaller, thus547

increasing the reliability of the method.548

Due to the stochasticity existing in metaheuristics, it is good practice549

to validate the results using some type of statistical test [64]. Thus, the550

Wilcoxon Rank-sum test has been applied to check the statistical difference551

among the results set of our proposals versus the others the adaptive methods552

used.553

These non-parametric test were carried on by pairs obtaining a p-value,554

which should be smaller than the significance level (α=0.05) to probe that555

the two results set are different. Table 5 shown this comparative, proving556

there are not a statistically similar results than our proposals PMA DE and557

PMA PSO. Other parameters in the table are R+ and R−, being the sum of558

the positive/negative ranks of the comparison of the sets. If R+ is greater,559

the first method has better results than the second one, and if R− is lower,560

it means the opposite case. Thus, the ranges in the table show: (1) our561

proposals are superior to the rest of the methods, (2) PMA DE has worked562
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Figure 3: Violin plots corresponding with the results shown in Table 4.

better in Hake and Haddock models, and (3) PMA PSO has won in Tusk563

model.564

Altogether, it can be concluded that our proposals have explored the565

search space better than the classic versions of DE and PSO, and also than566

other adaptive implementations, obtaining excellent results without spending567

time on tuning the configuration parameters.568

6.2. Performance evaluation of the parallelization569

The parallelization implemented in our proposal follows a shared memory570

scheme that relies on the OpenMP standard in which the work is distributed571

among the available processors (cores) when the search algorithm evaluates572

new generated solutions.573

This subsection evaluates the scalability of the PMA template with the574

two search methods (DE and PSO) on the three Gadget models described.575

Since the PMA template introduces variations in the population size of the576

method through its adaptation mechanism, in order to make a fair study, 30577

runs have been performed per test, using the mean value of the measured578
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Table 5: Wilcoxon signed ranks test with a significance level α = 0.05.

Hake model
Comparison R+ R− p-value Comparison R+ R− p-value
PMA PSO vs APSO 450 15 1.25E-9 PMA DE vs APSO 465 0 1.69E-17
PMA PSO vs CLPSO 465 0 1.69E-17 PMA DE vs CLPSO 465 0 1.69E-17
PMA PSO vs jDE 465 0 1.69E-17 PMA DE vs jDE 465 0 1.69E-17
PMA PSO vs SaDE 465 0 3.21E-16 PMA DE vs SaDE 465 0 1.69E-17
PMA PSO vs PMA DE 97 368 0.017 PMA DE vs PMA PSO 368 97 0.017

Tusk model
Comparison R+ R− p-value Comparison R+ R− p-value
PMA PSO vs APSO 465 0 1.69E-17 PMA DE vs APSO 465 0 1.69E-17
PMA PSO vs LCPSO 465 0 1.69E-17 PMA DE vs LCPSO 465 0 1.69E-17
PMA PSO vs jDE 465 0 1.69E-17 PMA DE vs jDE 465 0 1.69E-17
PMA PSO vs SaDE 465 0 1.69E-17 PMA DE vs SaDE 465 0 1.69E-17
PMA PSO vs PMA DE 250 215 0.022 PMA DE vs PMA PSO 215 250 0.022

Haddock model
Comparison R+ R− p-value Comparison R+ R− p-value
PMA PSO vs APSO 464 1 1.20E-10 PMA DE vs APSO 465 0 2.99E-11
PMA PSO vs LCPSO 459 6 5.06E-10 PMA DE vs LCPSO 465 0 2.99E-11
PMA PSO vs jDE 145 320 0.025 PMA DE vs jDE 373 92 0.045
PMA PSO vs SaDE 366 99 1.67E-3 PMA DE vs SaDE 454 11 9.20E-9
PMA PSO vs PMA DE 22 443 4.42E-7 PMA DE vs PMA PSO 443 22 4.42E-07

execution time to compute the speedup. The stopping criterion was based579

on a maximum number of evaluations.580

Figure 4 shows the speedup obtained when using from 1 to 24 threads,581

as this is the number of cores in the experimental environment. A good582

scalability is observed in the case of the Hake model, being a bit worse583

for the Tusk model, and finally limited for the Haddock model, which only584

evolves positively up to 8 threads. This behavior is strongly associated to585

the problem size: larger problems naturally scale better than smaller ones.586

Indeed, the larger the population, the size of the problem and its resolution587

complexity, the more noticeable the effect of the parallelization, since there588

will be more effort to be distributed among the processors in each iteration.589

6.3. Comparison with other methods590

The PMA template is compared now with other enhanced optimization591

methods implemented in Gadget, namely the speculative parallelization of592

Simulated Annealing and Hooke & Jeeves [23], and with a naive parallelisa-593

tion of SaDE and APSO methods implemented for us. We develop a parallel594

version of these methods using openMP, following the same strategy than Al-595

gorithm 3, with the aim to make a fair comparison. It must be noticed that596

comparing different stochastic optimization methods is not a trivial task in597
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Figure 4: Speedup curves from PMA PSO and PMA DE. Stopping criteria: maximum
number of evaluations reached = 10e5.

global optimization, particularly in real problems where the global solution598

is not known. For example, a solver can converge very fast to the vicinity599

of a good solution, but it can get stuck there for a long time. Another one600

may have a slower convergence at the beginning, but achieve more precise601

solutions without losing time in local optima. This way, deciding when the602

algorithm is stopped can determine whether one method is better than other.603

Therefore, in this subsection we use two complementary points of view [63]604

to compare the different methods, which helps better understand the im-605

provements obtained in our proposal: (1) a vertical view approach, where606

all the experimental runs are carried on during a predefined time, using to607

compare them the quality of the solutions obtained, and (2) a horizontal view608

approach, where the experiments use a stopping criterion based in reaching a609

target value, the comparison between them being based on the time needed610

to achieve it.611

Vertical approach612

In this subsection the PMA template has been compared with the sequen-613

tial and the speculative parallel implementation of SA and HJ algorithms614

using the vertical approach. Moreover, results of openMP parallelisation of615

SaDE and APSO were included. 30 runs were performed for each method,616

with a stopping criterion based on a predefined runtime equal to 1 hour.617

Hence, all the experiments had the same computational effort, and we can618

make a fair analysis of the quality of the solutions. Table 6 shows the ob-619

tained results. The mean and the standard deviation was reported for each620

experiment, and also the mean number of evaluations of the cost function621
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Table 6: Analysis of solution quality in the proposed PMA PSO and PMA DE,
with respect to the current methods used in Gadget, and popular versions of
DE and PSO. Stopping criteria: 1 hour of convergence time. SA settings: temperature
= 1000, reduction factor = 0.85, step length = 1 and bound ratio = [0.3-0.7]. HJ settings:
ρ = 0.5 and λ = 0.

Hake model Tusk model Haddock model
num mean mean mean mean mean mean

method #thr fbest±std evals fbest±std evals fbest±std evals
SA 1 6.66E13±3.6E14 182595 6518.27±6.0 186960 1.27±0.1 295505

2 1609.44±1604.2 358721 6519.40±13.1 367975 1.13±0.2 537013
SA 4 1170.68±429.0 495993 2.73E4±3.1E4 604012 1.14±0.1 683630
specul. 8 1346.19±815.0 766663 3.54E4±3.3E4 980148 1.00±0.1 781493

16 1116.23±253.3 1380884 3.77E4±3.8E4 1321137 1.12±0.2 711627
24 1027.80±48.2 2098514 3.11E4±3.5E4 1308580 0.89±0.1 610720

HJ 1 1416.00±286.1 168992 1.73E4±1.9E4 176677 1.76±0.6 264419
2 1413.97±287.1 326258 1.73E4±1.9E4 362748 1.75±0.6 505295

HJ 4 1141.36±133.9 637125 1.56E4±1.6E4 687852 1.73±0.7 962520
specul. 8 1102.55±92.3 1230323 1.42E4±1.6E4 1201591 1.80±0.9 1510076

16 1070.85±100.1 2447248 1.47E4±1.6E4 1877228 1.82±0.9 1789527
24 1061.54±101.2 3033093 1.48E4±1.6E4 2219249 1.56±0.8 1769972
1 1029.48±39.5 190364 6581.89±111.9 187249 0.88±0.0 293133
2 1016.12±31.5 357711 6542.49±83.8 396037 0.86±0.0 600122

PMA 4 1007.34±29.5 713655 6533.78±78.5 778649 0.86±0.0 1153273
PSO 8 996.60±23.2 1416943 6532.92±78.7 1477452 0.86±0.0 1941454

16 988.71±20.2 2804966 6532.85±78.8 2546702 0.86±0.0 2016558
24 984.81±19.0 4141767 6532.85±78.8 2759196 0.86±0.0 2012913
1 1004.05±9.2 180160 6540.71±65.3 191108 0.85±0.0 300568
2 994.43±7.2 357697 6519.38±36.2 373525 0.85±0.0 576810

PMA 4 986.16±6.4 719796 6507.47±0.8 735574 0.85±0.0 1154378
DE 8 979.84±4.9 1400523 6507.02±0.0 1787486 0.84±0.0 1991550

16 974.69±3.7 2828591 6507.02±0.0 2488887 0.84±0.0 2085913
24 972.06±14.0 4222821 6507.02±0.0 2787086 0.84±0.0 2129764
1 1124.80±66.5 197658 7631.23±346.0 190132 1.34±0.1 300127
2 1110.91±70.6 353988 7500.41±336.9 391014 1.34±0.1 585067

parallel 4 1090.52±72.5 747078 7294.21±289.1 775245 1.33±0.1 1021268
APSO 8 1073.77±71.2 1521684 7034.01±206.5 1467456 1.32±0.1 1874011

16 1067.06±69.7 2584057 6906.29±218.0 2307418 1.32±0.1 2020037
24 1065.17±68.0 4398336 6916.99±160.8 2801132 1.31±0.1 2230029
1 1180.29±33.3 167286 7361.59±285.0 170141 0.88±0.0 280061
2 1045.43±23.8 348371 6615.73±15.7 366621 0.86±0.0 510081

parallel 4 987.02±15.7 701042 6521.90±50.9 700566 0.85±0.0 1005161
SaDE 8 969.37±3.2 1201394 6515.63±47.1 1301221 0.84±0.0 1750125

16 966.94±3.5 2644281 6507.02±0.0 2158616 0.84±0.0 2076131
24 965.49±1.3 4035211 6507.02±0.00 2523166 0.84±0.0 2011131

performed during the execution time.622

Analyzing the results, both in the sequential case and using different num-623

bers of threads, PMA DE and PMA PSO obtain higher quality solutions than624

SA and HJ in the Hake and Haddock models. Moreover, our proposals al-625

ways manage to improve the solution when more threads are added. This,626
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however, does not always happen in the speculative parallelization versions627

of SA and HJ. In the Tusk model, SA has obtained very good results, sequen-628

tially and with its speculative version, using 2 threads, improving slightly the629

PMA implementations with the same resources. In contrast, the speculative630

parallelization in SA has a very poor performance when more threads are631

added. This type of parallelization tries to predict and compute in parallel632

the paths where the search could go, obtaining good results in Haddock and633

Hake models. However, it seems to have a very irregular behavior especially634

for the Tusk model, where a lot of runs get stuck in local optima. For more635

details of this parallel version of SA and HJ have been shown in [23].636

On the other hand, our proposals obtained a far superior results than637

the adaptive method APSO. PMA DE also reaches faster to the vicinity of638

the global optimum than SaDE in the cases of Tusk and Haddock models.639

In Hake model, in spite of PMA DE returned the best solution values with640

less computational resources, SaDE achieved a excelent result with more641

than 4 parallel processors. These results are due to the efficiency of the642

SaDE adaptation, which is based on learning memory, so that once many643

evaluations of the objective function have been carried out, the metaheuristic644

has been well tuned. However, a long numbers of iterations of the algorithm645

have had consumed to achieve this situation.646

While Table 6 shows a summary of the final solution obtained in the647

different experiments, it is also interesting to analyze how the evolution of the648

search has been along the different runs carried out. Figures 5(a), 5(b), 5(c)649

and 5(d) show the convergence curves for the sequential and the parallel650

methods with 4, 8 or 24 threads, respectively. In both cases, each line of the651

graph represents the convergence curves for those experiments that fall in the652

median values of the results distribution for each instant of time. The results653

show that the PMA proposal has always a better convergence time, that is,654

a good quality solution is found in less time, except for the Tusk model using655

the sequential method, where the SA algorithm converges faster.656

Horizontal approach657

In this subsection an additional point of view, the horizontal approach,658

is included to complete the understanding of the benefits provided by our659

proposal. Thus, new experiments have been performed with a stopping cri-660

terion based on reaching a solution with an acceptable quality, so that the661

analysis focuses on the computational time needed to reach that point.662

The selected target solutions, or VTR (value to reach), are related to the663
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Figure 5: Convergence curves for those experiments that fall in the median values of the
results distribution [ESTOUNAS XENERANDO]

best points obtained in the results using the vertical approach: 963.90 in the664

Hake model, 6507.02 in the Tusk model, and 0.849 in the Haddock model.665
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The aim in the experiments using the horizontal view is to reach values,666

valued by the developers of the models as with quality enough, that are at667

a distance of approximately 5% with respect to the best solutions previously668

obtained. Thus, the VTRs of these tests are the following: 1016.36 in the669

Hake model, 6832.37 in the Tusk model, and 0.891 in the Haddock model.670

Furthermore, since not all tests are able to reach these VTRs in a reasonable671

time, a new condition is added to the stop criterion: a maximum execution672

time equal to 3 hours.673

Table 7 shows the mean and standard deviation of the runtime needed to674

reach the VTR for each model, using the different methods with a different675

number of threads. Besides, the column named ”%hits” reports the percent-676

age of the 30 runs that managed to reach the target value before the time677

threshold (3 hours).678

For the Hake and Haddock models, it is observed that the PMA proposals679

need shorter times to reach acceptable solutions. In addition, the percentage680

of success of the different runs is higher, particularly when using the DE681

method, where all the runs achieve the VTR before the maximum time.682

Although in the Tusk model the SA algorithm has a better performance in683

the sequential version and with a reduced number of threads, it behaves badly684

when the number of threads grows, being overtaken by our proposals when685

the number of processors used is more than four. This is because, although686

PMA DE and PMA PSO have a slow behavior with few processors, they687

scale very well when more cores are added, thus reducing considerably the688

execution time in the parallel versions.689

Figure 6 shows, using Violin plots, the distribution of the runtime of690

the different optimization methods for 24 threads. It can be observed that691

the proposed PMA methods obtain a better median than HJ and SA in all692

the models mainly because in these two latter methods many executions get693

stuck in local minima.694

6.4. Application to other optimization problems695

Finally, as PMA template can be applied to other types of bound-constrained696

optimization problems, we compared the performance of our proposals versus697

other adaptive version of DE and PSO as SaDE and APSO, using the pop-698

ular benchmarks CEC 2013 [65], where there are implemented classical and699

hard to solve synthetic functions, presenting many of them multimodality as700

in the Gadget problems.701
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Table 7: Dispersion of execution times to reach a minimum quality solution.
Stopping criteria: (1) a predefined value to reach (VTR): hake=1016.364258,
tusk=6832.373331) and haddock=0.891534, and (2) maximum time 3 hours.

Hake model Tusk model Haddock model
num mean mean mean

method #thr time(s)±std %hits time(s)±std %hits time(s)±std %hits
SA 1 9128±3684 20.0% 298±30 100.0% 10800±0 0.0%

2 7036±5048 36.6% 129±11 100.0% 8767±3914 20.0%
SA 4 5503±5264 56.6% 6513±5341 40.0% 8784±3908 20.0%
specul. 8 5495±5339 53.3% 7885±4775 26.6% 5669±4895 56.6%

16 5416±5335 53.3% 5198±5377 50.0% 8223±4444 30.0%
24 4105±5106 66.6% 5068±5454 53.3% 1226±2609 93.3%

HJ 1 10444±1954 3.3% 9079±3603 20.0% 10800±0 0.0%
2 10443±1959 3.3% 8942±3820 20.0% 10721±434 3.3%

HJ 4 9940±2797 10.0% 7763±4757 30.0% 10800±0 0.0%
specul. 8 8965±3726 23.3% 6466±5180 46.6% 10545±1244 10.0%

16 7695±4634 33.3% 6381±5202 43.3% 10444±1952 3.3%
24 7410±4763 36.6% 6195±5119 46.6% 10109±2635 6.6%
1 5696±4362 63.3% 1027±1125 100% 1288±1090 100%
2 4420±4268 76.7% 513±559 100% 680±587 100%

PMA 4 3313±4034 83.3% 263±286 100% 356±307 100%
PSO 8 2464±3722 86.7% 138±147 100% 211±177 100%

16 1818±3346 90.0% 84±87 100% 190±162 100%
24 1488±3006 93.3% 73±75 100% 189±164 100%
1 1264.10±755.8 100% 659.18±479.8 100% 602.95±242.4 100%
2 714±610 100% 328±238 100% 299±120 100%

PMA 4 354±300 100% 166±120 100% 154±61 100%
DE 8 194±164 100% 93±67 100% 92±36 100%

16 102±86 100% 53±37 100% 74±29 100%
24 71±58 100% 41±28 100% 74±29 100%
1 9070±2924 26.6% 8931±2706 36.6% 10115±2089 10.0%
2 6917±3278 60.0% 6925±3150 63.3% 9878±2812 10.0%

parallel 4 6840±3225 63.3% 6620±3131 66.6% 9656±2993 13.3%
APSO 8 6403±3410 63.3% 3779±124 100% 8776±3145 30.0%

16 5845±3315 70% 3629±185 100% 8752±3182 30.0%
24 5753±3237 73.3% 3622±306 100% 8286±3366 36.6%
1 7214.94±1669.5 93.3% 3675.32±871.0 100% 2102.79±391.4 100%
2 3924.66±1732.3 100% 3804.20±1491.0 100% 1008.05±204.9 100%

parallel 4 1801.60±574.6 100% 907.33±187.8 100% 546.990±136.3 100%
SaDE 8 1114.14±367.9 100% 546.75±144.1 100% 317.25±65.2 100%

16 485.51±128.9 100% 293.91±73.2 100% 294.22±76.9 100%
24 355.24±85.0 100% 213.01±46.8 100% 274.21±71.2 100%

The experiments carried out follow the typical procedure for CEC2013702

benchmarks: a number of different executions is performed for each function,703

using a stopping criterion based on reach to predefined number of evaluation704

of the objective function (being in this case equal to dimension of the problem705

× 1E4). Thus, once the experiments completed, a comparison can be made706

with the quality of results that has been reached in each method.707

Regarding to the size of problems selected, we choose a dimension equal708
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Figure 6: Violin plots corresponding with the execution time needed to obtain the target
value for each method, using 24 threads.

to 50, because is the higher for this suite of benchmarks. It can be shown in709

previous sections, Gadget problems are complex problem to solve. For this710

reason, we are interested in evaluating the performance of our methods in711

the most difficult cases of CEC2013.712

Table 8 shown the results for PMA DE and PMA PSO versus APSO and713

SaDE. For each function, the mean best quality solution obtained and their714

standard deviation is reported. The entries marked in bold show the method715

with the best performance for a specific benchmark. Therefore, the proposed716
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Table 8: Best solution found in CEC2013 [65] benchmarks using dimension
problem equal to 50 and a stopping criterion based on achieve to 500000
(dim×10000) evaluations of objective function.

PMA DE PMA PSO SaDE APSO
Fun. fbest ±std fbest ±std fbest ±std fbest ±std
f-1 4.7E-6 9.8E-6 1.E-19 5E-19 2.2E-2 6.5E-2 1.03 1.3
f-2 7.3E+6 2.4E+6 7.89E+7 2.3E+7 2.23E+7 7.5E+7 7.89E+7 2.3E+7
f-3 4.96E+6 9.0E+6 6.03E+8 7.8E+8 5.33E+8 1.7E+9 6.03E+8 7.8E+8
f-4 3.09E+4 5.0E+3 2.72E+3 9.7E+2 1.17E+5 1.4E+4 2.72E+3 9.7E+2
f-5 5.28E-6 1.6E-5 4.18E-7 1.5E-6 5.01E-2 1.21E-1 4.18E-7 1.5E-6
f-6 45.6 1.7 60.5 2.4E+1 46.6 1.0 1.28E+2 6.9E+1
f-7 13.1 1.1E+1 1.40E+02 2.8E+1 44.0 2.6E+1 2.92E+2 2.4E+2
f-8 2.11E+1 4.1E-2 2.11E+1 3.2E-2 2.11E+1 3.0E-2 21.1 3.1E-2
f-9 67.7 1.7 55.6 6.8 72.7 1.4 6.30E+1 3.8
f-10 1.28E-1 1.0E-1 1.03E-1 5.5E-2 1.62 2.2 2.15E+2 6.5E+1
f-11 1.07E+2 9.0 15.7 6.9 3.04E+2 2.5E+1 3.53 1.4
f-12 3.08E+2 5.0E+1 4.23E+2 1.2E+2 4.14E+2 2.6E+1 7.49E+2 2.4E+2
f-13 3.23E+2 1.3E+1 5.24E+2 9.7E+1 3.87E+2 1.8E+1 8.64E+2 1.5E+2
f-14 4.56E+3 2.9E+2 1.78E+3 4.7E+2 1.00E+4 6.2E+2 7.86E+1 4.7
f-15 1.36E+4 4.2E+2 7.96E+3 1.0E+3 1.42E+4 3.1E+2 8.90E+3 1.4E+3
f-16 3.41 2.2E-1 1.80 5.0E-1 3.38 2.2E-1 2.23 4.0E-1
f-17 1.74E+2 8.7 94.7 1.5E+1 3.75E+2 3.1E+1 58.8 2.6
f-18 3.73E+2 1.6E+1 4.62E+2 1.6E+2 4.40E+2 1.4E+1 1.20E+03 2.8E+2
f-19 18.0 2.5 9.7 3.3 30.6 2.2 13.8 5.3
f-20 21.9 2.4E-1 22.0 1.26 22.9 2.1E-1 23.0 1.11
f-21 3.52E+2 3.0E+2 9.04E+2 3.1E+02 9.49E+2 2.0 8.07E+2 3.95E+2
f-22 4.46E+3 4.4E+2 1.82E+3 5.5E+2 1.06E+4 6.5E+2 1.32E+2 8.2E+1
f-23 1.34E+4 3.9E+2 9.15E+3 1.5E+3 1.43E+4 3.8E+2 1.05E+4 1.58E+3
f-24 2.34E+2 1.8E+1 3.70E+2 2.1E+1 3.76E+2 1.7E+1 4.01E+2 1.3E+1
f-25 2.92E+2 1.2E+1 4.08E+2 1.6E+1 4.00E+2 1.8E+1 4.36E+2 1.7E+1
f-26 2.66E+2 8.6E+1 2.85E+2 1.1E+2 4.02E+2 1.0E+2 4.49E+2 4.7E+1
f-27 7.98E+2 3.0E+2 1.82E+3 1.4E+2 2.14E+3 3.7E+1 2.01E+3 1.2E+2
f-28 7.08E+2 9.3E+2 1.54E+3 1.8E+3 9.27E+2 1.2E+3 2.70E+3 2.6E+3

methods obtain the best results in most of the benchmarks, highlighting that717

in these experiments PMA PSO results are similar to PMA DE, something718

that did not happen in Gadget problems.719

7. Conclusions and Future Work720

The aim of this work was to propose enhanced optimization methods to721

improve the fit between the models generated by Gadget and the observed722

real data in a reasonable time.723

Population-based metaheuristics such as DE and PSO were considered,724

and the PMA (Parallel Multi-restart Adaptive) template was proposed to725

improve the behavior of this kind of methods. The PMA template comprises726

three functionalities: a self-tuning mechanism that dynamically adjusts the727
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configuration parameters of the population method; a parallel scheme that728

allows the parallel computation of the most compute intensive part of the op-729

timization methods, which is the evaluation of the cost function; and a restart730

mechanism that avoids the stagnation of the algorithms on local minima.731

The experimental results obtained using three different models generated732

by Gadget proved that the PMA DE and PSO methods: 1) enhance the733

behavior of the original DE and PSO algorithms thanks to the auto-tuning734

and restart mechanisms, reducing the dispersion of the results and improving735

the quality of the solutions; 2) provide a scalable solution when increasing the736

number of threads; and 3) obtain better solutions than the parallel methods737

already included in Gadget, the SA and the HJ algorithms. The PMA DE738

and PSO methods managed to reduce the execution times required to achieve739

a good solution, reducing the number of times the algorithm becomes stuck740

in a local minimum, and getting high quality solutions with less time-solution741

dispersion in the three models analyzed.742

Therefore, the proposed PMA DE and PMA PSO methods have proven743

to be a good option to adjust the parameters of the Gadget models, not744

only because of their good performance, but also thanks to the absence of745

configuration parameters to be calibrated, which facilitates their use by non-746

experts users.747

Although in this work the PMA template was only applied to the DE748

and the PSO methods, it can be easily adapted to other population-based749

heuristics such as genetic algorithms or scatter search methods.750

Moreover, PMA template have been tested in a set of synthetic bound-751

constrained benchmark, obtaining a very promising results. However, mul-752

tirestart mechanism implemented in our proposal is very aggressive, obtain-753

ing slow down the convergence in some optimization problems.754

The self-adaptation proposed in this work is based on trying to know the755

situation of the global search, unlike others methods where the goal is learning756

which are the best configuration parameters through a memory during the757

runtime. Both points of view have their advantages and disadvantages: the758

learning phases can be slow, but they can achieve very good solutions, as in759

the case of the SaDE in the hake model or the good performance of APSO760

in some benchamrks of the CEC2013. On the other hand, in our proposal the761

adaptation is more aggressive and immediate, reaching to very good solutions762

in a short time in the most case studied.763

As future work, the population-based methods could be combined with764

exact methods from mathematical programming with the purpose of creating765
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matheuristics to further improve the quality of the solutions and reduce the766

execution times in these complex fisheries stock assessment models.767

Other open issue can be expand the adaptive scheme proposed to ad-768

dresses constrained optimization problem, trying to improve the handle of769

the infeasibilities from the knowledge of the state of the search proposed by770

our algorithm.771

The new optimization methods developed in this work are publicly avail-772

able under GPLv2 license at www.github.com/hafro/gadget (branch OpenMP).773
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