
For Peer Review

Received: 00 Month 0000 Revised: 00 Month 0000 Accepted: 00 Month 0000

DOI: xxx/xxxx

ARTICLE TYPE

Multimethod optimization in the Cloud: a case-study in
Systems Biologymodelling
Patricia González*1 | David R. Penas2 | Xoan C. Pardo1 | Julio R. Banga3 | RamónDoallo1

1Computer Architecture Group, Universidade
da Coruña, A Coruña, Spain
2MODESTYA research group, Department of
Statistics, Mathematical Analysis and
Optimization, and Institute ofMathematics,
IMAT, Universidade de Santiago de
Compostela, Santiago de Compostela, Spain
3BioProcess Engineering Group, IIM-CSIC,
Vigo, Spain
Correspondence
*Patricia González, Email:
patricia.gonzalez@udc.es

Summary
Optimization problems appear in many different applications in science and engineering. A large
number of different algorithms have been proposed for solving them, however, there is no unique
general optimization method that performs efficiently across a diverse set of problems. Thus,
multimethod optimization, in which different algorithms cooperate to outperform the results
obtained by any of them in isolation, is a very appealing alternative. Besides, as real-life opti-
mization problems are becoming more and more challenging, the use of HPC techniques to
implement these algorithms represents an effective strategy to speed up the time-to-solution. In
addition, a parallel multimethod approach can benefit from the effortless access to large number
of distributed resources facilitated by cloud computing.
In this paperwepropose a self-adaptive cooperative parallelmultimethod for global optimization.
This proposal aims to perform a thorough exploration of the solution space by means of multi-
ple concurrent executions of a broad range of search strategies. For its evaluation we consider
an extremely challenging case-study from the field of computational systems biology. We also
assess the performance of the proposal on a public cloud, demonstrating both the potential of the
multimethod approach and the opportunity that the cloud provides for these problems.
KEYWORDS:
Parallel Metaheuristics; Multimethod Optimization; Cloud Computing; Hybrid Programming;
Microsoft Azure

1 INTRODUCTION
Many optimization problems in diverse areas of science and engineering are highly constrained and based onmodels which exhibit complex nonlin-
ear dynamics. These properties often result in complexmulti-modal optimization problems that require for efficient and reliable global optimization
(GO) solvers. Since the computational effort required by deterministic GOmethods to ensure global optimality is extremely large for realistic appli-
cations, stochasticGOmethods (and, in particular,metaheuristics), have become the de-facto choice for complex problems. Althoughmetaheuristics
can usually locate the vicinity of global solutions in reasonable computation times for small problems, inmost realistic applications a large computa-
tional effort is still required in order to reach an acceptable result. Therefore, applying high performance computing (HPC) techniques to implement
parallel metaheuristics represents an effective strategy to speed up the time-to-solution.
Metaheuristics as algorithms may have limited parallelism. Nevertheless, metaheuristics as problem solving methods offer opportunities for

large-scale parallel computing. Ametaheuristic algorithm started from different initial solutions will explore different regions of the solution space
and return different solutions. Different configuration settings using the same metaheuristic algorithm will certainly give different results. More-
over, therewill also be large variations in performance over different instances of the sameproblem.On top of that, it is not easy to know in advance
which of the numerous existing metaheuristics will be the most suitable for solving a given problem. In this paper we explore the use of HPC

Page 23 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

2 P. González ET AL

techniques in the context of multimethod global optimization, in which multiple different global search algorithms are executed concurrently and
cooperate through information exchange. This work aims to be a proof-of-concept to show that, if we can devote a significant amount of resources
to the search, an adaptivemultimethodwould achieve amore effective exploration of the search space. It could be compared to a Swiss Army knife,
which contains different tools to solve different types of problems. Since we often do not know in advance the most suitable algorithm for a given
optimization problem, the adaptive multimethod is able to try a number of methods and select the appropriate one. Moreover, it would be able to
use different algorithms in different search spaces and dynamically adapt the search according to the results obtained during the execution.
Themultimethod approach could be applied to any global optimization problem dealing withmodels of arbitrary complexity, including nonlinear

dynamicmodels, which is a class of problems relevant tomany areas of science and engineering. In this paperwe focus on parameter estimation (i.e.
model calibration) problems in systems biology as a case-study. The aim of systems biology is to generate new knowledge about complex biolog-
ical systems by combining experimental data with mathematical modeling and advanced computational techniques. Dynamic modeling (typically
described by sets of non-linear ordinary differential equations) is the most common formalism in this area. Model calibration consists in finding
the parameters of a dynamic model that give the best fit to a set of time-series experimental data, which is formulated as minimizing a cost func-
tion that measures the goodness of this fit. This class of problems is a key research topic in current computational biology as they are extremely
challenging due to its ill-conditioned and multimodal nature (1). The mathematical statement is a non linear programming (NLP) problem with dif-
ferential algebraic constraints (DAEs). However, it should benoted that themultimethoddescribed in this paper is applicable to othermodel classes,
provided that the metaheuristics included are suitable for the problem at hand. To efficiently solve this calibration problem many research efforts
have focused on developing metaheuristic global optimization methods, which combine mechanisms for exploring the search space and exploiting
previous obtained knowledge to find good solutions in reasonable computation times (2).
Considering the demanding and dynamic nature of theHPC implementation of thesemethods, they are an important representative of themany

applications that can benefit from the ability of the cloud to rapidly provision virtual clusters for particular workloads. Cloud computing represents
a powerful approach to the provision and management of computing resources (3). Clouds are built on virtualized resources that public providers
offer to external users by way of on-demand self-service interfaces charging them using a pay-as-you-go model (4, 5, 6). Besides, they have some
additional features that are very appealing. The combination of scalability and elasticity provides a new capability that did not exist in traditional
HPC data centers. Multi-tenancy and isolation allow each user having their own virtualized resources such as compute, networking and storage,
while sharing the computing infrastructure. On-demand self-service interfaces provide users with zero queue time and system architectures con-
figured to their applications’ needs. And additionally, users have not only the ability to control software environments, but also to control access to
collaborators and/or to share environments through virtualmachine images,which is a critical challenge facedby the scientific community today (7).
So, cloud computing is nowadays one of themost interestingmeans to obtain massive computing resources for scientific applications.
In conclusion, in this paper we explore the use of multimethod optimization to parameter estimation problems in systems biology, which are

representative of a class of challenging global optimization problems that are common inmany areas of science and engineering.We also assess its
performance on the Azure public cloud and provide some guidance on how this type of applications could benefit from the use of cloud computing.
The structure of the paper is as follows. Section 2 discusses related work. Section 3 describes the proposed self-adaptive cooperative multi-

method. Section 4 describes the experiments carried out and discusses on the obtained results. Finally, Section 5 summarizes the conclusions of the
paper.

2 RELATEDWORK
The concept of multimethod algorithms has appeared in different fields, including parallel cooperative search methods (8), memetic algorithms (9),
algorithm ensembles (10), algorithm portfolios (11), and hyperheuristics (12). One of the first examples can be found in (13), where a self-adaptive
Differential Evolution (DE) algorithm makes use of DE learning strategies that are weighted based on the algorithm success. Also, the heteroge-
neous cooperative algorithm presented in (14) employs different evolutionary algorithms to update the subpopulations in a cooperative algorithm
framework. Another popular example is AMALGAM-SO (15), a population-based genetic adaptive method for single objective optimization that
updates the allocation of algorithms during the optimization run. A multimethod hyperheuristic algorithm that makes use of a number of common
metaheuristics was presented in (16), obtaining promising results in terms of solution quality and algorithm robustness.
With the recent developments in technology the use of parallel computing is becoming increasingly popular. Additionally, the cost/performance

ratio of HPC architectures is constantly decreasing, and, moreover, with the appearance of cloud computing attaining access to a large number
of distributed resources is now more feasible. The parallelization of metaheuristics has received much attention to reduce the time for solving
large-scale problems. Many parallel algorithms have been proposed in the literature. A nice review can be found in (17). Most of these propos-
als are parallel implementations based on traditional parallel programming interfaces, such as MPI or OpenMP, executed in traditional parallel
infrastructures, such as local clusters or supercomputers.

Page 24 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

P. González ET AL 3

Researchon cloud-orientedparallelmetaheuristics basedmainly on theuseofMapReduce (18) andSpark (19) has also received increasing atten-
tion in recent years (20, 21, 22, 23, 24, 25, 26). The experimental results reveal that the extra cost of the I/Ooperations and the systembookkeeping
overhead significantly reduces the performance of the parallelization usingMapReduce in iterative algorithms. This performance can be improved
by an order of magnitude when using Spark (19, 27).
In the last decade, several researchers have also paid attention to the performance of MPI applications in the cloud. Most of these studies use

classical MPI benchmarks to compare the performance of MPI on public cloud platforms (28, 29, 30). Besides, also real applications have been
assessed in the cloud, such as bioinformatics applications (31), high-energy and nuclear physics experiments (32), and different e-Science applica-
tions (33, 34). Also, an extensive analysis to detect the more critical issues and bottlenecks of HPC applications in the cloud has been carried out
in (35). These works conclude that clouds were not designed for running tightly-coupled HPC workloads, like MPI applications. Overall, the lack
of high-bandwidth, low-latency networks, as well as the virtualization overhead, has a large effect on the performance of such applications in the
cloud.
In a previous work (36) we have explored the use of MPI and Spark in the parallel implementation of the DE algorithm. This implementation

was based on the island model, that drastically reduces the inter-process communications leading to a loosely-coupled parallel application, thus,
more suitable for cloud environments. We discussed about the differences that arise from the inherent features of each programming model, and
we assessed the performance of both implementations in different computing platforms, including theMicrosoft Azure public cloud.We concluded
that from a computational point of view theMPI implementation outperforms the Spark one.
In this paper we propose a new self-adaptive cooperative multimethod algorithm, implemented using MPI and OpenMP, and assess its per-

formance in a public cloud provider. We believe that multimethods are a class of algorithms that can take benefit from the capabilities of cloud
computing.

3 SELF-ADAPTIVE COOPERATIVEMULTIMETHOD
In the majority of the most popular metaheuristics, the search of new solutions depends on previous iterations of the algorithm, which not only
complicates the parallelization itself but also limits the speedup and scalability of the solution. The time-consuming operations are located in inner
loopswhich can be easily performed in parallel. However, since the external loops of the algorithm usually present dependencies between different
iterations, afine-grainedparallelization in the inner loopswould limit the scalability of the solution indistributed systems.Amoreeffective approach
would be a coarse-grained parallelization thatwill implyfinding a parallel variant of the sequential algorithm.Using an island-model implementation
is a popular approach. The population is divided into subsets (islands) where the metaheuristic steps are run isolated and then sparse individual
exchanges are performed among islands. This solution drastically reduces the communications between distributed processes. But, its scalability
is again heavily restrained by the size of the population matrix. Reducing the population matrix by dividing it between different islands may have a
negative impact on the convergence of each individual island. Thus, based on the ideas outlined in (37), here we propose an island-based method
where each island performs a differentmetaheuristic algorithmwith different initial populations anddifferent configuration parameters,while they
cooperatemodifying the systemic properties of the individual searches.
Current HPC systems, that usually comprise clusters of multicore nodes, can benefit from the use of a hybrid programming model in which a

message passing library, such as MPI, is used for the inter-node communications while a shared memory programming model, such as OpenMP, is
used at intra-node level. The hybrid model provides several advantages such as reducing the communication needs and memory consumption, as
well as improving load balancing and numerical convergence (38). These features are particularly appealing for HPC applications running in the
cloud. However, due to the overhead of the network virtualization, loosely-coupled MPI processes, that is, where inter-node communications are
reduced to a minimum, are desirable. The solution proposed in this work pursues the development of an efficient cooperative multimethod, called
self-adaptive cooperativemultimethod (saCMM), focused on both, the acceleration of the computation through a fine-grained parallelization of the
cost function evaluations usingOpenMP, and the convergence improvement through a loosely-coupled coarse-grained parallelization of the search
diversification and the cooperation among islands usingMPI.

3.1 Fine-grained parallelization
The evaluation of the cost function values is the most time consuming task in the metaheuristics. Besides, this task uses to appear in several steps
of the algorithms. Algorithm 1 shows a basic pseudocode for performing the cost function evaluations in parallel using a shared memory paradigm.
Every time an evaluation step is needed, a parallel loop is defined based on the fork-join programming model. As it can be observed, the synchro-
nization at the end of the parallel loop may lead to a load imbalance that can cause significant delays when different evaluations have different
computational loads. A dynamic schedule clause is used to assign new evaluations to threads as they complete their previous assignments.

Page 25 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

4 P. González ET AL

Algorithm 1 Parallel evaluation of solutions
$$ parallel do (dynamic schedule, private(eval,newsol,i)
for i=1 to numSolutions do
newsol = solutions(:,i)
eval = f_eval(newsol)

end for
$$ end parallel do

3.2 Coarse-grained parallelization
The proposed coarse-grained parallelization follows a master-slave approach. However, the master does not play the role of a globally accessible
central memory, which would harm the performance in a distributed memory environment with low bandwidth or high-latency networks, such as
the cloud. The data is completely distributed among the slaves (islands) that perform a different sequential metaheuristic each. The saCMMmaster
is in charge of:

• cooperation among islands: the exchange of information is driven by the quality of the solutions rather than by elapsed time, thus, achieving a
more effective cooperation.

• asynchronous communication protocol: to avoid having idle islands waiting for information exchanged from others. The asynchronous com-
munication protocol has also a great impact in the performance of the proposal in the cloud, because nodes will not be affected by
communication delays in the virtual network.

• self-adaptive procedure: changing dynamically the settings of those islands that do not cooperate with those of themost promising searches.
Algorithm 2 shows a schematic, simple pseudocode of the proposed saCMMmethod. By now two metaheuristics are performed by the islands,

the Differential Evolution (DE) (39), implemented with the enhancements described in (40), and the enhanced Scatter Search (eSS) (41), using the
implementation outlined in (37). Nevertheless, as already pointed before, this paper aims to be a proof-of-concept, and the saCMM could be easily
extended includingmoremetaheuristics.

Cooperation among islands
Theproposed cooperative strategy accelerates the exploration of the search space by launching simultaneous searches, using differentmetaheuris-
tics with different configurations and independent initial points, and providing cooperationmechanisms to share information among them.When a
solution is considered to be promising in one search it is sent to the master process that is in charge of spreading it to the rest of the islands. How-
ever, the information exchange among islands should not be too frequent to avoid premature convergence to local optima (42, 43). Thus, exchanging
all current best solutions is avoided to prevent the cooperation entries from filling up the islands’ populations leading to a rapid decrease of the
diversity. Besides, reducing the number of inter-node communicationswould improve the performance in the cloud. Thus, a threshold is used in the
master to determine when a new best solution significantly outperforms the current best solution, deserving to be spread to the rest of islands.
The strategyused to select thosemembersof the islands’ population tobe replacedwith the incomingpromising solutions, shouldbealso carefully

considered. Themost popular selection/replacement policy in parallel metaheuristics is to replace theworst solution in the populationwith the new
solution when its value is better. However, after a few iterations receiving new promising solutions, the initial population in each island will be lost
andmost of theentries indifferent islandswouldbe the same, thus, losingdiversity andpotentially converging to suboptimal solutions. Toavoid that,
we propose to label one member of the population as a cooperative solution, so that a foreign solution can only enter the population by replacing
this member. The first time a shared solution is received, theworst solution in the populationwill be replaced and labeled as the cooperative solution
for the next iterations. The cooperative solutionwill be combined and improved like the rest of the entries in the population.With this replacement
policy every searchwill evolve over its initial population still taking advantage of those cooperative solutions from other islands thatmight improve
its own search.

Asynchronous communication protocol
An important aspect when designing the communication protocol is the interconnection topology of the different components of the parallel
algorithm. A widely used topology in master-slave models, the star topology, is used in this proposal. The master process is in the center of the star

Page 26 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

P. González ET AL 5

Algorithm 2 Pseudocode of the self-adaptive CooperativeMultimethod (saCMM).

Pseudocode for themaster:
! Best solution initialization
bestSol = DBL_MAX
! Threshold initialization
ε = 0.1
nRefuse = 0
! Scoreboard initialization
slaveComm(:) = 0
slaveScore(:) = 0
! Listen to requests from slaves
repeat
! Non-blocking asynchronous receptionmessage
MPI_IRecv(buffer,...,&req)
MPI_Wait(&req,&status)
if req is a promising solution then
! Cooperation among islands
if req < bestSol AND |(bestSol - req) / bestSol|< ε then

bestSol = req
MPI_ISend(bestSol,slaves)
! Score update
slaveComm(slave)++
slaveScore(slave) = slaveComm(slave) * Elapsed_Time()

else
nRefuse++
if too many refused solutions then
! Adapt threshold
ε = ε/2

nRefuse = 0
end if

end if
else if req is a reconfiguration request then
! Sendmost promising settings
bestSettings = Sort(slaveScore(:))
MPI_ISend(bestSettings,slave)

else if req is a termination request then
! Broadcast termination request
MPI_ISend(stop, slaves)

end if
until stopping criteria

Pseudocode for the slaves:
! Best solution initialization
bestSol = DBL_MAX
! Prepare to listen tomessages frommaster
MPI_IRecv(buffer,...,&req)
repeat
! Iterate the serial metaheuristic (DE/eSS/other) once
stepSol =Metaheuristic_Step()
! Check for promising solution to cooperate
if stepSol significantly improves bestSol then

bestSol = stepSol
MPI_ISend(bestSol,master)

end if
! Check progress before request for reconfiguration
if execution is not progressing then

MPI_ISend(reconfReq,master)
end if
! Check stopping criteria
if stopping criteria is fulfilled then

MPI_ISend(stop,master)
end if
! Check for pendingmessages frommaster
repeat

MPI_Test(&req,&pendingMsg,&status)
if pendingMsg then

if req is a promising solution then
! Cooperation from islands
if req <bestSol then

bestSol = req
Replace_Solution(bestSol,cooperativeEntry)

end if
else if req is a reconfiguration response then
! Changemetaheuristic configuration settings
Reconfigure_Metaheuristic(req)

else if req is a termination request then
Stop()

end if
! Continue listening
MPI_IRecv(buffer,...,&req)

end if
until NOT(pendingMsg)

until stopping criteria

and all the rest of the processes (slaves) exchange information through the master. The distance1 between any two slaves is always two, therefore
reducing communication delays that would harm the cooperation between processes. This topology is particularly appropriate for the execution in
cloud environments, since it enables to quickly spread the solutions despite the low-bandwith and high-latency of the virtualized network.

1The distance between two nodes in a topology is defined by theminimum number of nodes that must be traversed to join them.

Page 27 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

6 P. González ET AL

0 2000 4000 6000 8000 10000

1

2

3

4

5

6

7

8

9

10

11

Time(s)

P
ro

ce
ss

e
s

init stage
global search

local search
cooperation

0 2000 4000 6000 8000 10000

1

2

3

4

5

6

7

8

9

10

11

Time(s)

P
ro

ce
ss

es

eSS
DE

reconfiguration

FIGURE 1 Gantt diagrams representing the processes and cooperation among themduring the execution progress. Process 1 is the central master,
and processes 2-11 the islands. At the left diagram, red dots represent asynchronous cooperation communications between master and islands,
light blue areas represent global search steps and green areas represent local search steps. At the right diagram, red areas represent DE islands,
green areas represent eSS islands and dark blue dots represent reconfiguration requests.

The communicationprotocol is designed toavoidprocesses’ stallswhenmessagesdon’t arriveduring anexternal iteration, allowing theexecution
to keep progressing in every individual process. Both the emission and reception ofmessages are performed using non-blocking operations (see the
use of MPI_ISend, MPI_IRecv, MPI_Wait and MPI_Test in Algorithm 2) to allow the overlapping of communications and computation. This is crucial
in the success of themultimethod since thediversification introduced in thedifferent islandswould result in a computationally unbalanced scenario.
In addition, the proposed protocol minimizes the impact of communication delays on the performance when executing in cloud environments.

Self-adaptive procedure
Themaster process controls the long-term behavior of the parallel searches and their cooperation, and dynamically changes, during the execution,
several configuration parameters to improve the success of the parallel cooperative scheme.
First, the master is in charge of the threshold used to select, from the received cooperative solutions, which are qualified to be spread to the

islands.With a larger threshold value, cooperationwill only occur sporadically, reducing its efficiency. By the contrary, a smaller threshold valuewill
increase the number of similar solutions being spread, affecting negatively the parallel implementation efficiency. Moreover, toomuch cooperation
would often be counterproductive. On the one hand, it might decrease the diversity of the explored regions of the search space, leading to many
islands searching in the same region and early converging to a non-optimal solution. On the other hand, it could degenerate into a tightly-coupled
parallelization that would be inefficient for cloud environments. To overcome those drawbacks, an adaptive procedure is proposed that starts with
a large threshold value and decreases it as the search progresses.
Second, the master is used as a scoreboard to dynamically tune the settings of the search in the different islands. As commented before, each

island performs a different metaheuristic. The performance of ametaheuristic is still problem-dependent and, besides, the fine-tuning of themeta-
heuristic parameters have a great impact in both the search and the quality of the results. Since the exact nature of the problem at hand is unknown,
a range of metaheuristics and settings that yields conservative, aggressive, and intermediate islands should be selected at the time of starting the
search. Then, the proposed procedure will adaptively change the algorithm and settings in the islands during the execution, leaning toward those
that exhibit the highest success, further improving the efficiency of the search.
To decide the most promising islands, the master serves as a scoreboard, ranking them according to their potential. In rating the islands, two

facts have to be considered: (1) the number of total communications received by themaster from each island, to identify those that cooperatemore
intensively with new promising solutions; and (2) for each island, the moment when its last solution was received, to emphasize those islands that
havemore recently cooperated. Amore accurate scoreboard is obtainedwith a good balance of these two factors.
Identifying the worst islands is also complicated. Those islands at the bottom of the scoreboard can be there because they do not commu-

nicate sufficient solutions or because a considerable amount of time has passed since their last communication. However, they can be either
non-cooperating (less promising) islands or more aggressive ones. An aggressive island often performs longer iterations because it frequently calls
local solvers, and thus it is unable to communicate results as often as conservative islands do. Thus, each island decides by itself whether it is evolving
in a promisingmode or not. If an island detects that it is receiving cooperative solutions from themaster but it is not improving its own results, it will
send themaster a reconfiguration request. Themaster will send back to it the settings of the island on the top of the scoreboard.
Figure 1 shows, as an example, a Gantt diagram corresponding to a real execution for one of the benchmarks (B3) used in the experimental eval-

uation. Five of the ten islands initiate DEwith different configurations, from aggressive ones (that perform frequent local searches) to conservative

Page 28 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

P. González ET AL 7

ones (that do not perform local searches or perform themonly sporadically). Another five islands initiate eSS, alsowith different configurations. The
red dots representing the cooperation between islands show that DE outperforms eSS for this benchmark, and also that conservative configura-
tions, with few local searches, outperform aggressive islands. Thus, when the unsuccessful islands request for a reconfiguration, the master sends
them the configuration of the promising islands. In this example processes 2, 4 and 6, executing DE with a poor evolution (absence of cooperations
during a long time), request a reconfiguration to themaster, and change from an aggressive to a conservative configuration, clearly improving their
evolution (they cooperate again). Also processes 7, 8 and 9, executing eSSwith an unprofitable progress, request for a reconfiguration, and they end
up executing a conservative DE. Since the most promising configuration can change during the execution progress, not all the processes executing
a particular method are allowed to be reconfigured. In this example, two eSS islands are not reconfigured, one conservative (process 10) and the
other aggressive (process 11).

4 EXPERIMENTAL EVALUATION
The proposed saCMM method has been evaluated with a set of benchmarks from the BioPreDyn-bench suite (44), to assess its efficiency in
challenging parameter estimation problems in computational system biology:

• Problem B1: genome-wide kinetic model of S. cerevisiae. It contains 276 dynamic states, 44 observed states and 1759 parameters.
• Problem B2: dynamicmodel of the central carbonmetabolism of E. coli. It consists of 18 dynamic states, 9 observed states and 116 estimable
parameters.

• Problem B3: dynamic model of enzymatic and transcriptional regulation of the central carbon metabolism of E. coli. It contains 47 dynamic
states (fully observed) and 178 parameters to be estimated.

• ProblemB4: kineticmetabolicmodel ofChineseHamsterOvary (CHO) cells, with 34dynamic states, 13 observed states and117parameters.
• Problem B5: signal transduction logic model, with 26 dynamic states, 6 observed states and 86 parameters.
Experiments were deployed with default settings in the North Europe region of theMicrosoft Azure public cloud using a virtual cluster with A9

instances. The A9 instances are for compute-intensive workloads having 16 cores each, Intel Xeon E5-2670 @2.60GHz processors, and 112GB of
RAM.
The results shown in this section were analyzed both from a horizontal view (45), that is, assessing the performance by measuring the time

needed to reach a given target value, and from a vertical view, that is, assessing the performance for a predefined effort. To evaluate the efficiency
from a horizontal view, a stopping criteria based on a value-to-reach (VTR) is used. The VTR used was the optimal fitness value reported in (44).
To evaluate the efficiency from a vertical view, the stopping criteria used is a predefined execution time. Thus, the experiments combine the two
stopping criteria, a VTR and a maximum execution time. Due to the substantial dispersion of the results, because of the stochastic nature of these
methods, each experiment was performed 20 times and a statistical study was carried out.
Different experiments have been conducted to compare the proposed saCMM multimethod versus single method performance, to assess its

scalability when the number of available computational resources increases, and to determine the impact of diversification against intensification
in its hybridMPI+OpenMP implementation.

4.1 Assessing the performance of saCMM
In this first experiment the saCMMperformance has been comparedwith three different parallel strategies:

• an embarrassingly-parallel non-cooperative multimethod (np-MM). This algorithm consists of np independent runs (being np the number of
available cores) performed in parallel without cooperation between them and reporting the best execution time of the np runs. Diversity is
introduced alike in saCMM, that is, each run executes a separatemetaheuristic (DE and eSS aremixed half and half) with different strategies.

• a self-adaptive cooperative strategy using only DE (saCDE). Diversity is introduced alike in saCMM but using only DE, that is, each island
executes a separate DEwith different configuration parameters (i.e. mutation factor and/or crossover constant).

• a self-adaptive cooperative strategy using only eSS (saCeSS). Diversity is introduced alike in saCMM but using only eSS, that is, each island
executes a separate eSS with different configuration parameters (i.e. dimension of the reference set or balance parameter for the selection
of initial points for the local solvers).

Page 29 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

8 P. González ET AL

TABLE 1 Performance of the proposed self-adaptivemultimethod comparedwith other parallel approaches.

method VTR avg. fbest iter. max. time (s) avg. exec. time (s) %hits
10-MM 13753 14325,67 87,05 6000 5357,09 65%
saCDE 13753 43184,94 49,50 6000 VTR not reached 0%

B1 saCeSS 13753 13130,74 50,05 6000 3469,76 95%
saCMM 13753 13695,37 73,20 6000 3166,17 100%
10-MM 250 249,87 1178,85 6000 2278,40 100%
saCDE 250 249,95 3781,20 6000 3180,58 100%

B2 saCeSS 250 249,97 780,15 6000 1383,65 100%
saCMM 250 249,97 1534,65 6000 1908,27 100%
10-MM 0.37 149,36 435,90 10000 VTR not reached 0%
saCDE 0.37 37,69 545,05 10000 VTR not reached 0%

B3 saCeSS 0.37 184,88 222,95 10000 VTR not reached 0%
saCMM 0.37 13,50 770,50 10000 VTR not reached 0%
10-MM 55 49,03 211,00 6000 339,08 100%
saCDE 55 47,76 189,35 6000 255,71 100%

B4 saCeSS 55 49,48 210,60 6000 676,66 100%
saCMM 55 46,69 117,10 6000 228,62 100%
10-MM 4200 4155,46 40,50 6000 995,85 100%
saCDE 4200 4151,14 63,40 6000 1095,92 100%

B5 saCeSS 4200 4171,15 13,25 6000 735,03 100%
saCMM 4200 4152,31 38,60 6000 961,08 100%

Table 1 shows, for each benchmark and eachmethod, the VTR and the maximum time (max. time) used as stopping criteria, the average value of
the best value obtained (avg. fbest), the average number of iterations performed in each experiment (iter.), the final execution time when the VTR
is reached (avg. exec. time), and the percentage of executions that achieve the VTR before the maximum time allowed (%hits). For these experiment
10 single-threaded islands were used. Using different benchmarks allows for comprehensive comparison of the results. It can be observed that dif-
ferent methods perform different for different benchmarks. For instance, DE performs very poorly for B1 but very well for B4. The same happens
with eSS that performs very well for B2 but quite bad for B3 (note the best value achieved). As explained before, the self-adaptive cooperativemul-
timethod is a very attractive approach since it avoids the need of selecting themethod to use in advance. In general, results in Table1 demonstrate
that the proposed self-adaptive multimethod outperforms the rest of the approaches. For all the benchmarks, saCMM outperforms 10-MM and
either outperforms both saCDE and saCeSS or performs closely to the best suited for the benchmark at hand. For problem B1, saCMM is the only
method that achieves a 100% of successful executions, in opposite to saCDE that never achieves the VTR and 10-MM that achieves a 65%. For
benchmark B3, a very challenging problem, themaximumexecution time usedwas not enough to reach the VTR thus, taking a look at the best value
obtained (avg. fbest), saCMM clearly outperforms the rest of the approaches, obtaining a very promising result. For benchmark B5, the difference
between saCMMand the rest is not representative because the number of iterations needed to achieve convergence is too small. This has twomain
consequences. On the one hand, the cooperation among islands is done at the end of each iteration so, in this benchmark, islands have few opportu-
nities to cooperate. On the other hand, for an island to be reconfigured, it has to identify if it is evolving promisingly and this takes several iterations,
therefore in benchmark B5 there are less opportunities to reconfigure the islands. The saCeSS method beats the rest in B5, as well as in B2, simply
because all the islands perform eSS, which is the best suited for these problems, while saCMMperforms eSS in only half of the islands.
Since the results reported in Table 1 hide the underlying distribution, that in this kind of stochastic problems is very important, in Figure 2 the

distribution of the results is shown combining boxplotswith violinplots. Thefigure illustrates that saCMMreduces the variability of the results, both
when assessing the performance from an horizontal view and from a vertical view. The violin/boxplot for benchmark B3 shows the results for the
best value achieved from a vertical view, that is, when all the runs stop by a predefined maximum time. As it can be seen, DE performs better than
eSS for this problem, but still having a large variability. However, saCMM presents considerable less variability, being an important feature in the
performance of this solver. The violin/boxplot for benchmark B4 shows the results for the execution time from a horizontal view, that is, when all
the executions reach the VTR. Again saCMM achieves an important reduction in the variability of the results, most of them are placed in the lower
part of the violinplot. It must be noted that this problem presents, from its roots, a very large dispersion in the results (e.g. from 24s to 1800s in the
non cooperative 10-MMmultimethod).

Page 30 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

P. González ET AL 9

0

50

100

150

200

250
fb

es
t

B3 problem

10−MM saCDE saCeSS saCMM
0

500

1000

1500

2000

2500

3000

ex
ec

u
ti

o
n

 t
im

e
(s

)

B4 problem

10−MM saCDE saCeSS saCMM

FIGURE 2 Violin/boxplots for experiments B3 and B4 reported in Table 1 . The green asterisks correspond to the mean and light blue boxes show
the distribution of the results.

TABLE 2 Impact in saCMMof the diversification by increasing the number of islands.

#Islands VTR avg. fbest iter. max. time (s) avg. exec. time (s) %hits
10 13753 13695,37 73,20 6000 3166,17 100%

B1 20 13753 13657,58 36,40 6000 3154,23 100%
30 13753 13681,14 38,95 6000 2499,97 100%
40 13753 13644,21 30,65 6000 2302,63 100%
10 250 249,97 1534,65 6000 1908,27 100%

B2 20 250 249,97 753,00 6000 1750,82 100%
30 250 249,93 717,65 6000 1437,96 100%
40 250 249,92 593,65 6000 1422,67 100%
10 0.37 13,50 770,50 10000 VTR not reached 0%

B3 20 0.37 2,37 497,10 10000 8411.98 5%
30 0.37 1,03 427,20 10000 7360,29 20%
40 0.37 0,87 406,75 10000 6396,10 20%
10 55 46,69 117,10 6000 228,62 100%

B4 20 55 32,55 22.70 6000 68,41 100%
30 55 45,32 24,36 6000 48,36 100%
40 55 41,89 16,30 6000 38,87 100%
10 4200 4152,31 38,60 6000 961,08 100%

B5 20 4200 4157,22 34,05 6000 939,73 100%
30 4200 4167,34 26,50 6000 711,34 100%
40 4200 4136,84 29,20 6000 770,58 100%

4.2 Impact of island diversification
Table 2 shows for saCMM the impact in the search of increasing the diversity by increasing the number of islands. Different experiments were
performed using 10, 20, 30 and 40 islands to assess the scalability of the proposal. Initially, for all the experiments, half of the islands perform DE
and the other half eSS with different initial populations and configuration parameters. As can be seen, an increase in the number of islands impacts
positively the average execution time for all the experiments.Note also thepositive effect onbenchmarkB3, that reaches now20%of hits.However,
the scalability begins to stagnate whenwe go on increasing the number of islands (above 30 islands for most of these benchmarks).
Specially significant is the impact of the island diversification in benchmarks B3 and B4. Benchmark B3 is a very challenging problem that does

not converge in the maximum time allowed when using 10 islands. But when using 20 islands, 5% of the executions converge, and that percentage
rises to 20% for 30 and 40 islands. Note also the improvement in the average best function value and in the average execution time of runs that
converge. As already commented, benchmark B4 presents a very large dispersion of results in the sequential case. Thus, an increase in the diversity

Page 31 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

10 P. González ET AL

10
−1

10
0

10
1

10
2

#Islands

fb
es

t
B3 problem

10 20 30 40
0

200

400

600

#Islands

ex
ec

u
ti

o
n

 t
im

e
(s

)

B4 problem

10 20 30 40

FIGURE 3 Violin/boxplots for experiments B3 and B4 reported in Table 2 .

TABLE 3 Impact in saCMMof the fine-grained parallelization within each island.

#Islands x #threads VTR avg. fbest iter. max. time (s) avg. exec. time (s) %hits
10× 1 13753 13695,37 73,20 6000 3166,17 100%

B1 10× 2 13753 13675,55 66,30 6000 1607,18 100%
10× 4 13753 13714,55 76,35 6000 1132,28 100%
10× 1 250 249,97 1534,65 6000 1908,27 100%

B2 10× 2 250 249.97 1043,70 6000 826,41 100%
10× 4 250 249,93 873,40 6000 523,49 100%
10× 1 0.37 13,50 770,50 10000 VTR not reached 0%

B3 10× 2 0.37 0,60 1526,53 10000 8535,63 40%
10× 4 0.37 0,54 2344,36 10000 6194,94 40%
10× 1 55 46,69 117,10 6000 228,62 100%

B4 10× 2 55 48,02 188,50 6000 179,37 100%
10× 4 55 50,29 378,95 6000 208,82 100%
10× 1 4200 4152,31 38,60 6000 961,08 100%

B5 10× 2 4200 4167,57 33,75 6000 500,28 100%
10× 4 4200 3972,16 37,55 6000 350,32 100%

is particularly convenient for this problem. Figure 3 shows violin/boxplots for the results of B3 and B4 in Table 2 , illustrating how saCMMreduces
the variability of the results whenmore diversity is introduced by increasing the number of islands.

4.3 Impact of island intensification
We have also evaluated the impact in saCMM of intensifying the search within each island by modifying the fine-grained parallelization using
OpenMP, as explained in Section 3. Table 3 shows the results when 10 islands are used and the number of threads ranges from 1 to 4. As it can
be seen, for the same number of islands increasing the number of threads in each island improves the execution time, because more evaluations of
the benchmarking function are done in parallel without modifying the macroscopic behavior of the algorithm. However, as already commented in
Section 3, the scalability of the fine-grained parallelization is limited. For instance, the speed-up obtained in the average execution time of the 10×2

configuration versus the 10× 1 configuration is almost 2, while it hardly reaches 3when using 10× 4 configuration.
From the results of Table 2 and Table 3 we can conclude that, for a fixed number of resources, a compromise between diversification and inten-

sification is necessary to obtain the best results. The most suitable configuration will be dependent on the problem at hand. Table 4 shows results
for all the benchmarks using 40 cores in different configurations of islands and threads. In general, for these problems, only B1 benchmark benefits
fromusingmore than four threads, because these problemsprefer intensification to diversification. In contrast, B4 is strongly benefitedbydiversity,
obtaining better results if all the resources are used for running different islands instead of intensifying each individual search.

Page 32 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

P. González ET AL 11

TABLE 4 Impact in saCMMof the configuration with a fixed number of resources.

#Islands x #threads VTR avg. fbest iter. max. time (s) avg. exec. time (s) %hits
40× 1 13753 13644,21 30,65 6000 2302,63 100%

B1 20× 2 13753 13658,44 31,30 6000 1737,25 100%
10× 4 13753 13714,55 76,35 6000 1132,28 100%
5× 8 13753 13630,28 36,00 6000 1089,27 100%
40× 1 250 249,92 593,65 6000 1.422,67 100%

B2 20× 2 250 249,92 718,15 6000 887,43 100%
10× 4 250 249,93 873,40 6000 523,49 100%
5× 8 250 249,90 1357,35 6000 981,78 100%
40× 1 0.37 0,87 406,75 10000 6396,10 20%

B3 20× 2 0.37 0,90 785,05 10000 7609,36 30%
10× 4 0.37 0,54 1209,00 10000 6194,94 40%
5× 8 0.37 0,50 2844,35 10000 6909,07 45%
40× 1 55 41,89 38,87 6000 38,87 100%

B4 20× 2 55 45,17 57,75 6000 70,71 100%
10× 4 55 50,29 378,95 6000 208,82 100%
5× 8 55 50,61 1053,80 6000 555,45 100%
40× 1 4200 4.136,84 29,20 6000 770,58 100%

B5 20× 2 4200 4128,06 32,10 6000 531,62 100%
10× 4 4200 3972,16 37,55 6000 350,32 100%
5× 8 4200 4143,15 38,05 6000 369,91 100%

Azure 40x1 Pluton 40x1 Azure 20x2 Pluton 20x2 Azure 10x4 Pluton 10x4 Azure 5x8 Pluton 5x8

Island x # thread

200

400

600

800

1000

1200

1400

ex
ec

ut
io

n
tim

e
(s

)

FIGURE 4 Violin/boxplots for experiment B5 in the local cluster Pluton and in the Azure virtual cluster.

4.4 Impact of executing using public cloud resources
Finally, to assess the impact that the use of virtualized resources (virtual machines, network and storage) in the cloud have on the performance of
saCMM, the same previous experiments were performed in an HPC local cluster, named Pluton. Pluton consists of 16 nodes powered by two octa-
core Intel Xeon E5-2660 @2.20GHz with 64GB of RAM and interconnected with an InfiniBand FDR network. The distribution of the results for
benchmark B5 are shown in the violin/bloxplots of Figure 4 . It can be seen that execution times in the Azure cluster not only are competitive with
those obtained in Pluton, but also outperforms them. It is important to note that the dispersion of the results is also smaller in the Azure cluster,
because computation is faster in the A9 instances due to their hardware features. As a consequence, the dissemination of promising results among
islands and the reconfiguration mechanism further improve the behavior of the method. These results probe that the proposed loosely-coupled
implementation is suitable to be used in cloud environments.

Page 33 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

12 P. González ET AL

5 CONCLUSIONSANDFUTUREWORK
In this paper, we propose a self-adaptive cooperative multimethod (saCMM) for global optimization.We evaluate its performance in a public cloud
using challenging problems from computational systems biology. Our results reveal that saCMM is a competitive solution approach, outperforming
other competitive methods based on traditional single-method and non-cooperative schemes. Our results also show that the class of problems
considered would benefit from the scalable provision of computational resources, giving support to multiple concurrent searches looking for a
compromise between diversification and intensification.
In the light of these results, we think that extending the proposal to allow for dynamic balancing during the search between diversity (number of

islands) and intensity (number of threads per island) taking into account changes in the available resources would be of special interest. However,
this is something that cannot be done using the hybrid MPI+OpenMP approach. Therefore, as future work, we will focus on the implementation of
an enhanced saCMMusing a cloud framework like Spark.With this new approachwe expect saCMMto take further advantage of cloud capabilities
like elasticity and scalability.
The source code of saCMM is publicly available at https://bitbucket.org/DavidPenas/sacmm-library.

ACKNOWLEDGMENTS
This research received financial support from the Spanish Government through the projects DPI2014-55276-C5-2-R and TIN2016-75845-P
(AEI/FEDER, UE), and from the Galician Government under the Consolidation Program of Competitive Research Units (Network Ref. R2016/045
and Project Ref. ED431C 2017/04), all of them co-funded by FEDER funds of the EU.We also acknowledgeMicrosoft Research for being awarded
with a sponsored Azure account.

References
[1] Villaverde A.F., Banga J.R.. Reverse engineering and identification in systems biology: Strategies, perspectives and challenges. Journal of the

Royal Society Interface. 2014;11(91):art. no. 20130505.
[2] Banga Julio R. Optimization in computational systems biology. BMC systems biology. 2008;2(1):47.
[3] ReedDaniel A, Dongarra Jack. Exascale computing and big data. Communications of the ACM. 2015;58(7):56–68.
[4] ArmbrustMichael, Fox Armando, Griffith Rean, et al. A view of cloud computing. Communications of the ACM. 2010;53(4):50–58.
[5] Buyya Rajkumar, Broberg James, Goscinski AndrzejM. Cloud computing: Principles and paradigms. JohnWiley & Sons; 2010.
[6] Rodero I, Parashar M, Quiroz A, Guim F, Poole S W. Energy-efficient Online Provisioning for HPC Workloads. In: Ahmad I, Ranka S, eds.

Handbook of Energy-Aware and Green Computing-Two Volume Set, Chapman andHall/CRC 2012 (pp. 795–816).
[7] Jackson Keith R, Ramakrishnan Lavanya,Muriki Krishna, et al. Performance analysis of high performance computing applications on the ama-

zon web services cloud. In: The 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom):159–
168IEEE; 2010.

[8] Crainic Teodor Gabriel. Parallel Meta-Heuristic and Cooperative Search. technical report: CIRRELT-2017-58, Universite du Quebec a Montreal;
2017.

[9] ChenXianshun,OngYew-Soon, LimMeng-Hiot, TanKayChen. Amulti-facet survey onmemetic computation. IEEE Transactions on Evolutionary
Computation. 2011;15(5):591–607.

[10] Yang Pengyi, Hwa Yang Yee, B Zhou Bing, Y Zomaya Albert. A review of ensemble methods in bioinformatics. Current Bioinformatics.
2010;5(4):296–308.

[11] Peng Fei, Tang Ke, ChenGuoliang, Yao Xin. Population-based algorithm portfolios for numerical optimization. IEEE Transactions on Evolutionary
Computation. 2010;14(5):782–800.

[12] Burke Edmund K, GendreauMichel, HydeMatthew, et al. Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research
Society. 2013;64(12):1695–1724.

[13] Qin A Kai, Suganthan Ponnuthurai N. Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE Congress
on Evolutionary Computation (CEC), vol. 2: :1785–1791IEEE; 2005.

Page 34 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

P. González ET AL 13

[14] Olorunda Olusegun, Engelbrecht Andries Petrus. An analysis of heterogeneous cooperative algorithms. In: The 2009 IEEE Congress on
Evolutionary Computation (CEC):1562–1569IEEE; 2009.

[15] Vrugt Jasper A, Robinson Bruce A, Hyman JamesM. Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE
Transactions on Evolutionary Computation. 2009;13(2):243–259.

[16] Grobler Jacomine, Engelbrecht Andries P, Kendall Graham, Yadavalli VSS. Alternative hyper-heuristic strategies for multi-method global
optimization. In: The 2010 IEEE Congress on Evolutionary Computation (CEC):1–8IEEE; 2010.

[17] Alba E., Luque G., Nesmachnow S. Parallel metaheuristics: Recent advances and new trends. International Transactions in Operational Research.
2013;20(1):1-48.

[18] Dean Jeffrey, Ghemawat Sanjay. MapReduce: simplified data processing on large clusters. In: The 6th USENIX Symposium on Operating
SystemsDesign and Implementation; 2004.

[19] ZahariaMatei, ChowdhuryMosharaf, Das Tathagata, et al. ResilientDistributedDatasets: a Fault-Tolerant Abstraction for In-MemoryCluster
Computing. In: The 9th USENIX Symposium onNetworked SystemsDesign and Implementation, NSDI; 2012.

[20] McNabb Andrew W, Monson Christopher K, Seppi Kevin D. Parallel PSO using MapReduce. In: The 2007 IEEE Congress on Evolutionary
Computation (CEC):7–14IEEE; 2007.

[21] Jin Chao, Vecchiola Christian, Buyya Rajkumar. MRPGA: an extension of MapReduce for parallelizing genetic algorithms. In: The 2008 IEEE
Fourth International Conference on eScience:214–221IEEE; 2008.

[22] Verma Abhishek, Llora Xavier, Goldberg David E, Campbell Roy H. Scaling genetic algorithms using MapReduce. In: The Ninth International
Conference on Intelligent SystemsDesign and Applications, ISDA’09:13–18IEEE; 2009.

[23] Radenski Atanas. Distributed simulated annealing with MapReduce. In: Applications of Evolutionary Computation. Springer 2012 (pp. 466–
476).

[24] LeeWei-Po, Hsiao Yu-Ting, HwangWei-Che. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing
environment. BMC systems biology. 2014;8(1):5.

[25] Teijeiro Diego, Pardo Xoán C, González Patricia, Banga Julio R, Doallo Ramón. Implementing Parallel Differential Evolution on Spark. In:
Applications of Evolutionary Computation. Lecture Notes in Computer Science, Vol. 9598:75–90Springer; 2016.

[26] Teijeiro Diego, Pardo Xoán C, González Patricia, Banga Julio R, Doallo Ramón. Towards cloud-based parallel metaheuristics: A case study in
computational biology with Differential Evolution and Spark. International Journal of High Performance Computing Applications. 2016;.

[27] Teijeiro Diego, Pardo Xoán C, Penas David R, González Patricia, Banga Julio R, Doallo Ramón. Evaluation of Parallel Differential Evolution
Implementations onMapReduce and Spark. In: Euro-Par 2016: Parallel ProcessingWorkshops:397–408Springer; 2017.

[28] Evangelinos C, Hill C. Cloud computing for parallel scientific HPC applications: Feasibility of running coupled atmosphere-ocean climate
models on Amazon’s EC2. In: 1stWorkshop on Cloud Computing and its Applications (CCA’08):1–6; 2008.

[29] Napper Jeffrey, Bientinesi Paolo. Can cloud computing reach the top500?. In: Proceedings of the combined workshops on UnConventional
high performance computing workshop plus memory access workshop:17–20ACM; 2009.

[30] Ostermann Simon, Iosup Alexandru, Yigitbasi Nezih, Prodan Radu, Fahringer Thomas, Epema Dick. An early performance analysis of cloud
computing services for scientific computing.Delft University of Technology, Tech. Rep. 2008;.

[31] Hazelhurst Scott. Scientific computing using virtual high-performance computing: a case study using the Amazon elastic computing cloud. In:
Proceedings of the 2008 annual research conference of the South African Institute of Computer Scientists and Information Technologists on
IT research in developing countries: riding the wave of technology:94–103ACM; 2008.

[32] Keahey Kate, Freeman Tim, Lauret Jerome, Olson Doug. Virtual workspaces for scientific applications. Journal of Physics: Conference Series.
2007;78(1):012038.

[33] RamakrishnanLavanya, JacksonKeithR,CanonShane,Cholia Shreyas, Shalf John.Defining futureplatformrequirements for e-Science clouds.
In: Proceedings of the 1st ACM symposium on Cloud computing:101–106ACM; 2010.

[34] Li Jie, Humphrey Marty, Van Ingen Catharine, Agarwal Deb, Jackson Keith, Ryu Youngryel. e-Science in the cloud: A modis satellite data
reprojection and reduction pipeline in the Windows Azure platform. In: The 2010 IEEE International Symposium on Parallel & Distributed
Processing:1–10IEEE; 2010.

[35] Expósito Roberto R, Taboada Guillermo L, Ramos Sabela, Touriño Juan, Doallo Ramón. Performance analysis of HPC applications in the cloud.
Future Generation Computer Systems. 2013;29(1):218–229.

Page 35 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

14 P. González ET AL

[36] González P., Pardo X. C., PenasD. R., TeijeiroD., Banga J. R., Doallo R.. Using the Cloud for parameter estimation problems: comparing Spark vs
MPI with a case-study. In: The 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing; 2017.

[37] Penas David R, González Patricia, Egea Jose A, Doallo Ramón, Banga Julio R. Parameter estimation in large-scale systems biology models: a
parallel and self-adaptive cooperative strategy. BMC bioinformatics. 2017;18(1):52.

[38] Jin Haoqiang, Jespersen Dennis, Mehrotra Piyush, Biswas Rupak, Huang Lei, Chapman Barbara. High performance computing using MPI and
OpenMP onmulti-core parallel systems. Parallel Computing. 2011;37(9):562–575.

[39] Storn R., Price K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global
Optimization. 1997;11(4):341-359.

[40] Penas David R, Banga Julio R, González Patricia, Doallo Ramón. Enhanced parallel Differential Evolution algorithm for problems in computa-
tional systems biology. Applied Soft Computing. 2015;33:86–99.

[41] Egea Jose A, Balsa-Canto Eva, GarcíaMaría S G, Banga Julio R. Dynamic optimization of nonlinear processes with an enhanced scatter search
method. Industrial & Engineering Chemistry Research. 2009;48(9):4388–4401.

[42] ToulouseMichel, Crainic Teodor Gabriel, ThulasiramanKrishnaiyan. Global optimization properties of parallel cooperative search algorithms:
a simulation study. Parallel Computing. 2000;26(1):91–112.

[43] Toulouse Michel, Crainic Teodor Gabriel, Sansó Brunilde. Systemic behavior of cooperative search algorithms. Parallel Computing.
2004;30(1):57–79.

[44] Villaverde Alejandro F, Henriques David, Smallbone Kieran, et al. BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in
systems biology. BMC Systems Biology. 2015;. In press.

[45] HansenN., Auger A., Finck S., Ros R. Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup. RR-6828: INRIA; 2009.

Page 36 of 36

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

