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A fair and EMG‑validated comparison 
of recruitment criteria, musculotendon 
models and muscle coordination strategies, 
for the inverse‑dynamics based optimization 
of muscle forces during gait
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Abstract 

Experimental studies and EMG collections suggest that a specific strategy of muscle coordination is chosen by the 
central nervous system to perform a given motor task. A popular mathematical approach for solving the muscle 
recruitment problem is optimization. Optimization-based methods minimize or maximize some criterion (objective 
function or cost function) which reflects the mechanism used by the central nervous system to recruit muscles for 
the movement considered. The proper cost function is not known a priori, so the adequacy of the chosen function 
must be validated according to the obtained results. In addition of the many criteria proposed, several physiological 
representations of the musculotendon actuator dynamics (that prescribe constraints for the forces) along with differ-
ent musculoskeletal models can be found in the literature, which hinders the selection of the best neuromusculoten-
don model for each application. Seeking to provide a fair base for comparison, this study measures the efficiency and 
accuracy of: (i) four different criteria within the static optimization approach (where the physiological character of the 
muscle, which affects the constraints of the forces, is not considered); (ii) three physiological representations of the 
musculotendon actuator dynamics: activation dynamics with elastic tendon, simplified activation dynamics with rigid 
tendon and rigid tendon without activation dynamics; (iii) a synergy-based method; all of them within the framework 
of inverse-dynamics based optimization. Motion/force/EMG gait analyses were performed on ten healthy subjects. A 
musculoskeletal model of the right leg actuated by 43 Hill-type muscles was scaled to each subject and used to cal-
culate joint moments, musculotendon kinematics and moment arms. Muscle activations were then estimated using 
the different approaches, and these estimates were compared with EMG measurements. Although no significant 
differences were obtained with all the methods at statistical level, it must be pointed out that a higher complexity of 
the method does not guarantee better results, as the best correlations with experimental values were obtained with 
two simplified approaches: the static optimization and the physiological approach with simplified activation dynam-
ics and rigid tendon, both using the sum of the squares of muscle forces as objective function.
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Introduction
Determination of muscle forces during gait is of great 
interest to extract the principles of the central nerv-
ous system (CNS) control, to facilitate assessment of 
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pathological gait, or to estimate the loads on bones and 
joints (prevention of injuries in sports, surgical plan-
ning to reconstruct diseased joints) [1–3]. The invasive 
character of in  vivo experimental measurements, and 
the uncertain relation between muscle force and EMG, 
makes computer modeling and simulation a useful sub-
stitutive approach. Determination of muscle forces by 
computer modeling and simulation was extensively 
treated and numerous approaches can be found in the 
literature to solve the redundancy problem of the muscle 
recruitment, as well as to represent the musculotendon 
actuator dynamics [4–8], where each author highlights 
the advantages of his own approach. Ambrosio and Kec-
skemethy [4] suggested that the physiological criteria 
improve human motion prediction, Hardt [5] defended 
the linear constraint programming, Anderson and Pandy 
[6] showed that static and dynamic optimization solu-
tions for gait are practically equivalent, Millard et al. [7] 
offered a damped equilibrium musculotendon model to 
improve the physiological optimization, and Shourijeh 
et  al. [8] found that forward static optimization was a 
suitable method for solving forward dynamic musculo-
skeletal simulations. However, results do not depend only 
on the approach used, but also, on the experimental data 
collection and on the musculoskeletal model used, which 
makes more difficult for the readers to select objectively 
which approach to use for a certain application [9].

To objectively compare different approaches, it is nec-
essary to test them under the same conditions. When 
proposing a new approach, authors generally make a 
comparison with experimental measurements in order 
to validate it [10, 11], and, in some cases, they compare 
their results with those provided by a previous approach 
which gives confidence to readers [12, 13]. In some appli-
cations, a benchmark problem can be found that estab-
lishes some defined conditions, so that researchers can 
get a fair comparison [14]. In the case of the resolution 
of the muscle force-sharing problem, the authors only 
found a benchmark where the computational speed and 
biological accuracy of three musculotendon models was 
compared during simple muscle-driven simulations [7]. 
The physiological effect of static and dynamic optimiza-
tion during gait was compared by Pandy et  al. [10] and 
De Groote et al. [15], but none of the studies offered an 
experimental validation that allowed to conclude which 
method provided the most realistic results.

Few years ago, a grand challenge competition to pre-
dict in vivo knee loads was organized by some research-
ers who shared their experimental data collections for 
the analysis and its evaluation [16]. However, the muscu-
loskeletal modeling could differ between participants so 
that, by using a different multibody model (with differ-
ent degrees of freedom) and different muscle geometry 

(which implies different arm moments), the results could 
not dissociate the effect of neuromusculotendon models.

In this context, the aim of the present work is to com-
pare the efficiency and accuracy of: i) four different cost 
functions within the static optimization approach (where 
the physiological character of the muscle, which affects 
the constraints of the forces, is not considered); ii) one 
static and three physiological representations of the mus-
culotendon actuator dynamics: activation dynamics with 
elastic tendon, simplified activation dynamics with rigid 
tendon, and rigid tendon without activation dynam-
ics; iii) a synergy-based method; all of them within the 
framework of inverse-dynamics based optimization. The 
best cost function (criterion) obtained in (i) was used 
for (ii) and (iii). Motion/force/EMG gait analyses were 
performed on ten healthy subjects. A musculoskeletal 
model of the right leg actuated by 43 Hill-type muscles 
was scaled to each subject and used to calculate joint 
moments, musculotendon kinematics and moment arms. 
Therefore, the muscle force-sharing problem was solved 
under the same conditions and using the same inputs. 
Muscle activations were then estimated using the dif-
ferent approaches, and these estimates were compared 
with EMG measurements which served as experimental 
reference.

Methods
Experimental data collection
Ten subjects (seven males, three females, age 
42 ± 16 years, height 173 ± 16 cm, body mass 73 ± 26 kg) 
were recruited for this study. All subjects gave written 
informed consent for their participation. Subjects walked 
at their self-selected speed (1.1 ± 0.2 m/s) along a walk-
way with two embedded force plates (AccuGait, sampling 
at 100  Hz; AMTI, Watertown, MA, USA). The motion 
was captured using 12 optical infrared cameras (Opti-
Track FLEX 3, also sampling at 100  Hz; Natural Point, 
Corvallis, OR, USA) that computed the position of 36 
optical markers (Fig. 1). An extended Kalman filter (EKF) 
was used to filter the marker trajectories and reconstruct 
the motion with a process noise variance of 1 m/s2 and 
a cutoff frequency of 20 Hz [17]. Additionally, 9 surface 
EMG signals were recorded from the right leg at 1 kHz 
(BTS, FREEEMG, Quincy, MA, USA). The participants’ 
right leg was shaved, the skin was cleaned with alcohol, 
and the electrodes were placed according to the guideline 
presented in [18]. EMG signals were acquired from the 
following muscles: tibialis anterior, vastus medialis, vas-
tus lateralis, gastrocnemius medialis, gastrocnemius lat-
eralis, semitendinosus, biceps femoris, gluteus maximus 
and gluteus medius. Each EMG signal was rectified, fil-
tered by singular spectrum analysis (SSA) with a window 
length of 250 [19] (equivalent to the common forward 
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and reverse low-pass 5th order Butterworth filter with 
a cut-off frequency of 6 Hz), and, then, normalized with 
respect to its maximal value. This cut-off frequency value 
is consistent with the ranges reported in previous lower 
extremity studies using EMG data [20–24].

Musculoskeletal model
The human body was modeled as a three-dimensional 
multibody system formed by rigid bodies (Fig. 1, left and 
center). The model consisted of 18 anatomical segments 
[25]: two hindfeet, two forefeet, two shanks, two thighs, 
a pelvis, a torso, a neck, a head, two arms, two forearms, 
and two hands. The segments were linked by ideal spher-
ical joints, thus defining a model with 57 degrees of free-
dom (DOFs). The axes of the global reference frame were 
defined as follows: x-axis in the anterior–posterior direc-
tion, y-axis in the medial–lateral direction, and z-axis 
in the vertical direction. The computational model was 
defined with 228 mixed (natural + angular) coordinates. 
The subset of natural coordinates comprised the three 
Cartesian coordinates of 22 points and the three Carte-
sian components of 36 unit vectors, thus yielding a total 
of 174 variables.

Matrix-R formulation [26] was used to perform an 
inverse-dynamics analysis to obtain the joint torques 
along the motion by means of the in-house devel-
oped MBSLIM library [27] programmed in FOR-
TRAN, as described in [28]. Once the joint torques 

were computed, it was assumed that 43 right leg mus-
cles contributed to the following six right-leg inverse-
dynamics moments: the three rotational DOFs at the 
hip, the flexion/extension DOF at the knee, and the 
plantar/dorsi flexion and inversion/eversion at the 
ankle. Muscles were modeled as one or more straight-
line segments with via points. These points corre-
sponded to the attachments of muscle and tendon 
to bone and were defined as the origin (i.e., proximal 
attachment) and insertion (i.e., distal attachment). 
Muscle properties and local coordinates for these 
points were obtained from OpenSim (model Gait2392) 
[29] and scaled to each subject from the generic refer-
ence OpenSim model, as commented further in 2.4.

Optimization problem
As introduced before, the fundamental problem is that 
there are more muscles serving each degree of free-
dom of the system than those strictly necessary from 
the mechanical point of view. In this case, there are 43 
muscles at the leg to actuate 6 degrees of freedom (other 
degrees of freedom of the leg are controlled by joint 
structures as bones and ligaments, yielding a reaction 
moment instead a drive torque). Consequently, there is 
an infinite number of solutions for this problem and, in 
order to reproduce the specific strategy of muscle coordi-
nation adopted by the CNS, optimization is used.

Fig. 1  Gait of healthy subject: multibody model (left); acquired motion (middle); computational model (right)
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The inverse-dynamics based optimization problem 
that serves to determine the muscle forces at each 
time-point can be formulated in general form as:

where C is the cost function, QID is the vector of 
inverse-dynamics joint moments at the right leg 
(where the force-sharing problem is addressed), FMT 
is the vector of muscle forces, J is the Jacobian whose 
transpose projects the muscle forces into the joint 
drive torques space, FMin

i  and FMax
i  are the instantane-

ous minimum and maximum allowed forces in mus-
cle i, respectively, and m is the number of muscles. 
Expression of the objective function C depends on the 
muscle recruitment criterion used. In the literature, 
several muscle recruitment criteria have been sug-
gested to represent the CNS behavior. In this work, 
four of them have been considered in the context of 
static optimization.

Static optimization (SO)
Nonlinear polynomial criteria  The polynomial criterion 
can be written as

where ki denotes a positive weighting factor and w 
is the power of the polynomial. According to [30], the 
muscle force prediction obtained by minimizing the 
sum of muscle stresses raised to a power w whose value 
ranges between 1.4 and 5.1 is physiologically analogous 
to minimizing muscle fatigue. As Anderson and Pandy 
did in their study [10], a power of 2 was chosen.

Criterion I—minimization of  the  sum of  the  squares 
of muscle forces 

Criterion II—minimization of  the  sum of  the  squares 
of relative muscle forces 

with FM
0  the maximum isometric force from [29].

(1)

min C

subject to JTFMT = QID

FMin
i ≤ FMT

i ≤ FMax
i i = 1, 2, ...,m

(2)min

m
∑

i=1

(

FMT
i

ki

)w

(3)min

m
∑

i=1

(

FMT
i

)2
;

(4)min

m
∑

i=1

(

FMT
i

FM
0,i

)2

;

Criterion III—minimization of  the  sum of  the  squares 
of muscle stresses 

with PCSA the physiological cross sectional area from 
[31].

Min/max criterion  The min/max criterion distributes 
the collaborative muscle forces in such a way that the 
maximum relative muscle force is as small as possible. 
Therefore, the largest endurance for a task is attained 
when the maximum relative muscle force [32] or the max-
imum muscle stress [33] is as small as possible. The min/
max criterion takes the form:

For this study, the following criterion is used:

Criterion IV—minimization of the largest relative muscle 
force 

For SO, the physiological behavior of the musculoten-
don actuator dynamics is not considered, so, the limit val-
ues of the muscular forces are FMin

i = 0 and FMax
i = FM

0,i.

Physiological approach (PHY1)  At physiological level, 
musculotendon actuator dynamics introduces mus-
cle force constraints. Whereas the static optimization 
approach disregards these constraints in order to sim-
plify the problem, the so-called physiological approach 
[34] takes them into consideration. This approach applies 
optimization techniques at each time-point (Fig. 2, right), 
and prescribes minimal and maximal constraints for the 
forces by extrapolating the force values from the previous 
time-point through feasible muscle dynamics (Fig. 2, left).

The dynamics of musculotendon actuators can be 
divided into two parts. First, the activation dynam-
ics which corresponds to the transformation of a neural 
excitation sent by the brain into an activation of the con-
tractile apparatus. Activation dynamics is described by 
a first-order ordinary differential equation that contains 
the relationship among the muscle activation a , its deriv-
ative ȧ , and the neural excitation u as:

(5)min

m
∑

i=1

(

FMT
i

PCSAi

)2

;

(6)min

(

max

(

FMT
i

ki

))

, i = 1, ...,m;

(7)min

(

max

(

FMT
i

FM
0,i

))

, i = 1, ...,m;

(8)ȧ(t) =
u(t)− a(t)

τ
,
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with τ = τact when a(tk−1) ≤ u(tk) and τ = τdeact 
when a(tk−1) > u(tk) . The activation and deactivation 
time constants τact and τdeact are set to 15 ms and 50 ms, 
respectively [35, 36].

Second, this activation is transformed into a muscle 
force by the second phase, the contraction dynamics. 
The force generated by a muscle is constrained by its 
force–length-velocity properties, related to the Hill-
type musculotendon model used (Fig.  3), which is 
defined by this second differential equation:

The musculotendon length lMT and velocity vMT 
depend on the position and velocity of the body segments 
and, in turn, the generated tendon force FMT affects the 

(9)ḞMT (t) = f (a(t), FMT (t), lMT (t), vMT (t)).

motion of the body segments. Thus, there exists interac-
tion between muscles and body segments.

The complete musculotendon dynamics can be 
expressed as a system of two differential equations 
which can be written, in a simplified form, as.

This system is used to define the minimal and maxi-
mal constraints for the forces by extrapolating the force 
values from the previous time-point using feasible 
muscle dynamics, integrating (10) with u(t) = 0 to esti-
mate  FMin(t) and with u(t) = 1 to estimate FMax(t) (the 
muscular excitation is assumed to be constant between 
the two time frames). Using the physiological approach, 
the initial activations and muscles forces are needed. 
The determination of initial activations and muscu-
lar forces is based on the static condition which states 
that the initial fiber velocity of each muscle is set to 
zero and, FMin and FMax correspond to a = 0 and a = 1 , 
respectively.

Integration is carried out with Matlab Ode23t. Two 
integrations per muscle are required at each time step, 
which make the optimization and integration process 
heavy and slow. By programming the muscular functions 
of the Hill-type musculotendon model into a FORTRAN 
mex file, the computational time is reduced by a factor of 
10. However, the computational time is still long and, in 
addition, the high tendon stiffness makes really difficult 
to use this approach (a suitable scaling of muscle param-
eters is needed) [37]. Therefore, in order to simplify the 
problem while keeping some physiological characteris-
tics, most authors prefer to use a Hill-type musculoten-
don model with a rigid tendon [13, 15, 38].

(10)

ẋ(t) =

[

ȧ(t)

ḞMT (t)

]

= h(x(t),u(t), lMT (t), vMT (t)).

Fig. 2  Procedure using physiological inverse-dynamics approach to determine individual muscle forces at time instant tk (left); Minimal and 
maximal constraints for a muscle force by extrapolation of the force value from the previous time-point (right)

Fig. 3  Hill-type muscle model. The muscle fibers are modeled as 
an active contractile element (CE) in parallel with a passive elastic 
component (PE). These elements are in series with a nonlinear elastic 
tendon (SE). The pennation angle denotes the angle between the 
muscle fibers and the tendon. Superscripts MT, M, and T indicate 
musculotendon, muscle fiber, and tendon, respectively



Page 6 of 15Michaud et al. J NeuroEngineering Rehabil           (2021) 18:17 

Physiological approach with rigid tendon
In this way, the tendon length is constant and, conse-
quently, the muscle fiber length and velocity depend 
only on the musculoskeletal geometry as well as on body 
segment configurations (which affect lMT and vMT ) and 
not the musculotendon force. Consequently, the force–
length-velocity allowed is expressed as:

Use of the rigid tendon model avoids the two integra-
tions needed to calculate the limits of the muscle force at 
each instant. Then, in order to further reduce the com-
putational burden, the first-order ordinary differential 
Eq. (8) used to estimate the muscular activation, a , can be 
simplified as follows:

Time response considered (PHY2)
In order to keep the muscular time response relation 
given by (8), the first-order ordinary differential equation 
can be converted into:

with τ = τact when a(tk−1) ≤ u(tk) , τ = τdeact when 
a(tk−1) > u(tk) and �t is the time step.

Therefore, the minimal and maximal muscular force 
constraints of the optimization problem can be obtained 
through integration with any of the described approaches 
by extrapolating the force values from the previous time-
point using feasible muscle dynamics.

Time response ignored (PHY3)
However, authors who consider the tendon as a rigid 
element usually choose to ignore the muscular time 
response and assume that:

In this work, the minimization of the sum of the 
squares of muscle forces (Criterion I) was used as objec-
tive function for the three physiological models.

Synergy optimization (SynO)
The fact that synergies take a high dimensional control 
space and reduce it to a low dimensional space is poten-
tially useful for reducing the amount of indeterminacy 
when estimating muscle forces via optimization. For 

(11)FMT (t) = a(t)g
(

lMT (t), vMT (t)
)

.

(12)a(tk) = u(tk)+ (a(tk−1)− u(tk))e
(−�t/τ),

(13)a(t) = u(t).

this reason, some authors started to investigate how to 
include it to solve the muscle force-sharing problem.

The synergy optimization (SynO) approach used in [13] 
estimates muscle forces during human walking using syn-
ergy-constructed muscle activations, similar to the more 
complex approach proposed in [39]. SynO finds muscle 
forces that match the inverse-dynamics joint moments 
as closely as possible through the moment tracking error 
term in the cost function. In SynO, synergies couple muscle 
activations across time frames, requiring the optimization 
to be performed over all the time frames simultaneously as 
follows:

where Tf×nS (Tp) and VnS×m are the time-varying synergy 
activations defined by B-spline nodes, and the correspond-
ing time-invariant synergy vectors, respectively. Each mus-
cle activation synergy is composed of a single time-varying 
synergy activation defined by p = (f-1)/5 + 1 (nearest inte-
ger, f = number of frames) B-spline nodal points along with 
its corresponding time-invariant synergy vector defined 
by m = 43 weights specifying inter-muscle activation 
coupling. Thus, for nS synergies (nS = 3 in this study), the 
number of design variables is nS*(p + m). Muscle synergy 
quantities are used as the design variables for synergy opti-
mization. Each optimization problem is theoretically over-
determined. However, in practice, the problems remain 
under-determined since neighboring time frames are not 
completely independent from one another.

Using these design variables, the SynO cost function 
is formulated as follows:

where a∗ij are the synergy-based muscle activations, 

and �ij,pen =

{

00 ≤ a∗ij ≤ 1

105 otherwise
 are penalization factors 

for muscle i at the time frame j to ensure that muscle 
activations stay between 0 and 1. While previous 
approaches enforce the muscle forces to exactly repro-
duce the inverse-dynamics joint moments through its 
equality constraints, the SynO approach minimizes the 
error between QID and QMT  , being QMT  the joint 
moments produced by the muscle forces estimated by 
SynO. A scale factor β = 100 is applied to achieve the 
best compromise between joint moment tracking and 
activation minimization [40]. In his previous work [40], 
Michaud found that best correlations with experimen-
tal EMG patterns were obtained using three synergies 
for SynO, and that the resulting mean joint 

(14)a∗f×m = Tf×nS (Tp)VnS×m

(15)CSynO
Cp ,V

=

n
�

j=1



β

6
�

k=1

�

QMT
jk − QID

jk

max(|QID
k |)

�2

+

m
�

i=1

�

a∗2ij + �ij,pen(a
∗
ij − 1)2

�




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intersegmental moment matching between QID and 
QMT  across subjects was higher than 96%. For this rea-
son, the SynO approach will be used in this study with 
only three synergies.

The objective function is programmed as a FORTRAN 
mex file to reduce computation time (16 times faster than 
the original Matlab function). Linear equality constraints 
enforce that the sum of weights within each synergy 
vector is equal to 1, which makes the synergy construc-
tion unique, while lower bound constraints enforce the 
synergy activation B-spline nodes and synergy vector 
weights to be non-negative. The same musculotendon 
model used for the PHY3 approach is used here.

Subject‑specific scaling of musculotendon parameters
Due to the sensitivity of physiological approaches [37], a 
suitable scaling of musculotendon parameters is needed. 
In addition to the high tendon stiffness which makes 
implementation really difficult, some Hill-muscle equa-
tions become numerically stiff when numerical singu-
larities are approached [7]. Since these conditions are 
often encountered during a simulation, to prevent that 
the solver gets stuck at points that were numerically fea-
sible yet not physiologically sound [41] (which slows the 
process of numerical integration), a scaling correction 
was applied. Length parameters were scaled in two steps. 
First, for each muscle, the tendon slack length ( lTS  ) and 
the optimal muscle fiber length ( lM0  ) were scaled with a 
scale factor calculated as the relation between the sub-
ject’s musculotendon length in standing position and that 
of the generic model in the same position. As the penna-
tion angle of the reference, α0 , is kept, the scaled distance 
between the aponeuroses of muscle origin and insertion, 
w (which remains constant during the muscle contrac-
tion), is given by:

Then, because tendons are so stiff that their lengths do 
not change significantly during movement, the approxi-
mated muscle fiber length, lM∗ , can be calculated for each 
muscle during the complete gait cycle as follows:

with α(t) = arctan

(

w

lMT (t)−lTS

)

 . Finally, in order to 

keep the normalized muscle lengths ( lM = lM

lM0
 ) within the 

physiological optimal conditions ( 0.5 < lM ≤ 1.2 ) [42], 
the final scaled lM0  was set to the maximum approximated 
muscle fiber length along the motion.

(16)w = lM sin(α) = lM0 sin(α0).

(17)lM∗(t) =
(

lMT (t)− lTS

)/

cos(α(t))

Optimization protocol and EMG comparison
Optimization seeks to find the best solution from all 
the feasible ones by minimizing the objective function. 
Finding the global minima of a function is really diffi-
cult because of the many local minima. In order to get 
the best possible results, the following protocol is used in 
this work. Although each optimization problem is solved 
using the Matlab’s fmincon nonlinear constrained optimi-
zation algorithm, five global optimizations are run using 
Matlab’s ga genetic optimization algorithm with a popu-
lation size of 50 to provide random initial guesses for 
fmincon. The solution with the lowest objective function 
value is chosen as initial guess for the initial time point. 
Thereafter, as muscle activation is normally smooth and 
continuous during gait, the optimal solution from the 
previous time frame is used as the initial guess for the 
current time frame [43].

Matching between estimated muscle activations and 
EMG was quantified via cross-correlation using the Pear-
son correlation coefficient r (Matlab’s function corrcoef) 
with a maximum time delay of 150 ms [44]. The correla-
tion coefficient r was chosen to compare muscle activa-
tions and EMG data so as to focus on shape rather than 
on magnitude discrepancies, as there is no direct rela-
tionship between EMG and muscle force amplitude [45, 
46].

Results
The different approaches presented in this study were 
compared with EMG measurements for the ten healthy 
subjects. Normalized muscle activations during a gait 
cycle of one healthy subject estimated by SO using all the 
criteria are plotted in Fig. 4 along with the corresponding 
normalized EMG measurements. Comparison of muscle 
activations estimated with the different criteria are signif-
icantly different but show some similarities too.

Then, to observe the physiological effect of the muscu-
lotendon model, four approaches using criterion I were 
compared: normalized muscle activations during a gait 
cycle of one healthy subject estimated by static optimi-
zation (SO-I) and the three physiological approaches 
(PHY1, PHY2 and PHY3) are represented in Fig. 5. While 
PHY3 presented distinct results, muscle activations esti-
mated by SO-I, PHY1 and PHY2 were very similar. PHY1 
and PHY2 showed almost the same results.

Furthermore, the normalized muscle activations dur-
ing a gait cycle of one healthy subject estimated by PHY3 
and synergy optimization with 3 synergies (SynO3) are 
compared in Fig. 6 to highlight the effect of the synergy 
structure. Both used the same musculotendon model 
(physiological approach with rigid tendon and activation 
time response ignored). However, results are significantly 
different.
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Mean across subjects Pearson correlation coefficient 
r values between EMG vs. muscle activations of all the 
approaches of this study for the nine muscles are reported 
in Table 1. Mean correlations of the many approaches did 
not present as significant differences as those observed 
previously for one subject. Mean values of the different 
approaches are close, between 0.61 (SO-IV and SynO3) 
and 0.74 (SO-I and PHY2). Approaches SO-I, PHY1 and 
PHY2 show almost the same correlations (means of 0.73 
and 0.74). The paired sampled t-test realized (Table  2) 
showed no statistical differences (p < 0.05) between SO-I, 

SO-II, PHY1, PHY2 and PHY3, while differences were 
observed with the other approaches.

Mean across muscles Pearson correlation coefficient 
r for the ten subjects reported in Table 3 offered similar 
results as Table  1. Good correlations (r > 0.60, in italics) 
and close results were obtained for most approaches. In 
Table 4, the paired sampled t-test yielded the same con-
clusions as Table 2: SO-I, SO-II, PHY1, PHY2 and PHY3 
are statistically similar (p < 0.05).

Besides, the computational efficiency of the different 
approaches studied in this work is compared in Table 1. 
All calculations were performed on an Intel® Core™ 

Fig. 4  Normalized muscular activations obtained with static optimization (criteria I-IV) vs. normalized EMG for a healthy subject
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i7-6700 K processor running at 4.00 GHz with 16 GB of 
RAM. With a mean computational time of 2.5 s to simu-
late a gait cycle, SO-I is the fastest approach, while PHY1 
is the slowest one (225.2 s).

Finally, the resulting joint reaction forces at hip, 
knee and ankle for the different muscle recruitment 
approaches are compared (Fig.  7 and Table  4). Similar 
joint reaction forces are obtained with the non-synergy-
based approaches: SO-I, PHY1 and PHY2 offer almost 

the same results, while SO-II and PHY3 show joint reac-
tions slightly higher than their counterparts at hip and 
knee levels. However, the joint reaction forces at hip, 
knee and ankle calculated from the muscle forces esti-
mated with SynO3 are much higher than those obtained 
with the other approaches (Table 5).

Fig. 5  Normalized muscular activations obtained through static optimization with criterion I (SO-I) and physiological optimization with criterion 
I (original approach and two simplified alternatives) vs. normalized EMG for a healthy subject. PHY1: physiological approach; PHY2: physiological 
approach with rigid tendon and activation time response considered; PHY3: physiological approach with rigid tendon and activation time response 
ignored
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Discussion
This work offers a comparison of the efficiency and accu-
racy of: (i) four different criteria; (ii) three different physi-
ological representations of the musculotendon actuator 
dynamics; (iii) a synergy-based method; all of them in 
the framework of inverse-dynamics based optimization. 
All the approaches were used under the same condi-
tions by taking the same inputs from motion/force/EMG 
gait analyses performed on ten healthy subjects. Results 
obtained with the different methods do not present large 
discrepancies. Higher complexity of the method does 

not guarantee better results, as the best correlations with 
experimental values were obtained with two simplified 
approaches.

First, muscles activations obtained from SO and four 
different criteria exhibit visually different shapes along 
with some similarities. In addition, mean across subjects 
Pearson correlation coefficient r values between EMG vs. 
muscle activations of all the criteria do not present signif-
icant discrepancies. The best correlations were obtained 
with the simplest and fastest criterion (SO-I), which 

Fig. 6  Normalized muscular activations obtained from physiological optimization with rigid tendon and activation time response ignored (PHY2) 
and synergy optimization with 3 synergies (SynO3) vs. normalized EMG for a healthy subject
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Table 1  Mean across  subjects Pearson correlation coefficient r values between  EMG vs. muscle activations (r < 0.40 
underlined and r > 0.60 in italics) and computational time of the different approaches

Mean values

Pearson correlation coefficient r between across-subjects mean EMG vs. muscle activations

SO-I SO-II SO-III SO-IV PHY1 PHY2 PHY3 Syn03

R. Tibialis Anterior 0.61 0.65 0.52 0.23 0.62 0.65 0.67 0.37

R. Vastus Medialis 0.68 0.67 0.67 0.55 0.79 0.79 0.75 0.73

R. Vastus Lateralis 0.68 0.70 0.70 0.63 0.79 0.79 0.82 0.66

R. Gastrocnemius Medial 0.86 0.76 0.84 0.80 0.79 0.80 0.76 0.85

R. Gastrocnemius Lateral 0.75 0.67 0.73 0.65 0.69 0.70 0.67 0.74

R. Semitendinosus 0.68 0.65 0.49 0.59 0.61 0.64 0.58 0.56

R. Biceps Femoris Long Head 0.78 0.77 0.59 0.56 0.70 0.74 0.65 0.37

R. Gluteus Maximus Middle 0.89 0.82 0.87 0.81 0.89 0.88 0.86 0.66

R. Gluteus Medius Middle 0.71 0.63 0.61 0.62 0.69 0.69 0.56 0.58

Mean 0.74 0.71 0.67 0.61 0.73 0.74 0.70 0.61

Mean computational time 2.5 27.6 16.1 19.2 225.2 3.6 3.2 48.7

Table 2  p-value for paired sample t-test for the Pearson correlation coefficient r between across-subjects mean (p < 0.05 
underlined, NA: not applicable)

P-value for paired sample t-test for the Pearson correlation coefficient r between across-subjects mean

SO-I SO-II SO-III SO-IV PHY1 PHY2 PHY3 Syn03

SO-I NA 0.062 0.030 0.005 0.761 0.846 0.327 0.035

SO-II 0.062 NA 0.340 0.071 0.229 0.038 1.000 0.148

SO-III 0.030 0.340 NA 0.104 0.026 0.019 0.272 0.171

SO-IV 0.005 0.071 0.104 NA 0.017 0.013 0.101 0.836

PHY1 0.761 0.229 0.026 0.017 NA 0.065 0.139 0.031

PHY2 0.846 0.038 0.019 0.013 0.065 NA 0.043 0.025

PHY3 0.327 1.000 0.272 0.101 0.139 0.043 NA 0.111

Syn03 0.035 0.148 0.171 0.836 0.031 0.025 0.111 NA

Table 3  Mean across  muscles Pearson correlation coefficient r values between  EMG vs. muscle activations (r > 0.60 
in italics)

Subject Mean Values

Pearson correlation coefficient r between across-muscles mean EMG vs. muscle activations

SO-I SO-II SO-III SO-IV PHY1 PHY2 PHY3 Syn03

1 0.85 0.78 0.74 0.62 0.80 0.74 0.84 0.62

2 0.73 0.66 0.67 0.50 0.70 0.64 0.70 0.64

3 0.70 0.65 0.69 0.64 0.73 0.71 0.74 0.73

4 0.74 0.78 0.72 0.72 0.71 0.76 0.72 0.70

5 0.83 0.77 0.81 0.73 0.85 0.79 0.83 0.60

6 0.62 0.63 0.56 0.49 0.65 0.68 0.65 0.63

7 0.74 0.62 0.62 0.56 0.66 0.65 0.74 0.40

8 0.71 0.67 0.59 0.53 0.76 0.62 0.75 0.67

9 0.79 0.78 0.71 0.64 0.76 0.76 0.79 0.53

10 0.68 0.72 0.60 0.62 0.67 0.66 0.66 0.63

Mean 0.74 0.71 0.67 0.61 0.73 0.70 0.74 0.61
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yielded a correlation of 74%, while the worst correlations 
were obtained with the most involved criterion (SO-IV).

Second, it was observed that the physiological repre-
sentation of the musculotendon actuator dynamics does 
not affect the estimation of muscle forces during gait. 
Muscle activation shapes, experimental correlations 

and joint reaction forces are almost the same as those 
obtained through the non-physiological method (SO). 
The paired sampled t-tests demonstrated that SO-I, 
PHY1, PHY2 and PHY3 are statistically similar (p < 0.05). 
The same conclusion was drawn by De Groote et al. [15], 
Anderson and Pandy [6] and Millard et al. [7]. However, 

Table 4  p-value for paired sample t-test for the Pearson correlation coefficient r between across-muscles mean (p < 0.05 
underlined, NA: not applicable)

p-value for paired sample t-test for the Pearson correlation coefficient r between across-muscles mean

SO-I SO-II SO-III SO-IV PHY1 PHY2 PHY3 Syn03

SO-I NA 0.076 0.001 0.000 0.464 0.063 0.718 0.014

SO-II 0.076 NA 0.073 0.000 0.220 0.717 0.090 0.025

SO-III 0.001 0.073 NA 0.004 0.004 0.055 0.001 0.164

SO-IV 0.000 0.000 0.004 NA 0.000 0.000 0.000 0.791

PHY1 0.464 0.220 0.004 0.000 NA 0.138 0.201 0.007

PHY2 0.063 0.717 0.055 0.000 0.138 NA 0.044 0.031

PHY3 0.718 0.090 0.001 0.000 0.201 0.044 NA 0.010

Syn03 0.014 0.025 0.164 0.791 0.007 0.031 0.010 NA

Table 5  Mean across  subjects of  the  maximum joint reaction forces at  hip, knee and  ankle for  different muscle 
recruitment approaches

SO-I SO-II SO-III SO-IV PHY1 PHY2 PHY3 Syn03

Hip 7.1 9.0 6.6 8.9 7.4 7.3 9.2 11.9

Knee 4.4 5.6 3.7 5.5 4.5 4.5 5.7 7.1

Ankle 8.4 8.1 8.0 8.8 8.5 8.5 8.1 11.5

Fig. 7  Joint reaction forces at hip, knee and ankle obtained with different muscle recruitment approaches for a healthy subject
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for faster, higher-powered tasks, like running or jumping, 
a compliant tendon model could be preferable. Moreo-
ver, despite its disadvantages (harder to implement and 
higher computational time), the physiological approach 
served to implement some Hill-based energy expenditure 
methods [47, 48], since it provides the muscular variables 
required as inputs. Despite the physiological realism of 
these approaches, it must be pointed out that the Hill-
based muscle dynamics does not include the activation of 
gamma motor neurons and stretch receptors (i.e., propri-
oceptive receptors), which can induce minor activation 
in the stretched muscles during gait [49]. Consequently, 
some discrepancies can be explained by the EMG-linear 
envelope extraction procedure that may not properly 
demodulate neural excitations from the motor neurons 
action potentials, or because the noise contamination 
from cross-talk and movement artifacts, two intrinsic 
limitations in surface EMG measurements in addition of 
the inability to access deep muscles [23].

Third, as previously observed in [40], the synergy struc-
ture imposed within the SynO approach did not improve 
prediction of muscle activations during gait. This 
approach showed significant differences with the best 
approaches offered in this work (SO-I, PHY1, PHY2 and 
PHY3). The muscle synergy hypothesis has been notori-
ously difficult to prove or falsify [50], and results of this 
study do not allow to draw a conclusion in this regard. It 
can only be said that the SynO approach offers reason-
able prediction of muscle activations and that its reduced 
dimensional control space could be beneficial for appli-
cations such as epidural electrical stimulation [51] or 
motion control and prediction [38].

Finally, all the estimated joint reaction forces at the hip 
were higher than the direct experimental measurements 
reported in the literature [52–54]. Brand et  al. reported 
that hip contact-force predictions in the literature are 
higher than force measurements because of modeling 
assumptions [54]. In this work, and in the literature [9, 
54], it has been shown that, paradoxically, physiological 
representation of the musculotendon actuator dynam-
ics increases rather than reduces the discrepancies 
between force predictions and measurements, due to 
its constraints. Same conclusion can be drawn for the 
SynO approach, which disproportionately increases the 
joint forces due to its imposed synergy structure and 
reduced dimensional control space. Shourijeh and Fregly 
observed that the joint stiffness results were visibly dif-
ferent between the SynO and SO solutions, and that 
the stiffness decreased as the number of synergies was 
increased [13].

Conclusion
In conclusion, this study evaluated several approaches 
to predict muscle activations during gait by comparing 
them with EMG measurements obtained experimen-
tally, and found that higher complexity of the method 
does not guarantee better results. No significant differ-
ences among predicted EMG patterns within different 
physiological representations of the musculotendon were 
found. However, the simplified physiological approach 
with rigid tendon and activation time considered, pre-
sented the best accuracy and a very competitive compu-
tational time.
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