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ABSTRACT
Optimization problems appears in different areas of science and
engineering. This paper considers the general problem of reverse
engineering in computational biology by means of mixed-integer
nonlinear dynamic optimization (MIDO). Although this kind of
problems are typically hard, solutions can be achieved for rather
complex networks by applying global optimization metaheuristics.
The main objective of this work is to handle them by means of
multimethod optimization, in which different metaheuristics coop-
erate to outperform the results obtained by any of them isolated.
For its preliminary evaluation we consider a synthetic signaling
pathway case study and we assess the performance of the pro-
posal on a public cloud. These results open up new possibilities
for other MIDO-based large-scale applications in computational
systems biology.

CCS CONCEPTS
• Theory of computation → Parallel algorithms; • Applied
computing → Bioinformatics;
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1 INTRODUCTION
Optimization problems arises in many areas of life science, such
as bioinformatics or computational systems biology [3]. The opti-
mization process consists in locating the best solution or optimum
inside of a topology or search space described by one or more math-
ematical functions. Optimization problems can be categorized in
different models, such as combinatorial optimization models, con-
straint satisfaction models, non-analytic models, or mathematical
programming models.

Models based on mathematical programming are the most popu-
lar ones, and can be further classified in linear and nonlinear models,
depending if the objective function and the constraints were linear
or not with respect to the decision variables. Mathematical pro-
gramming problems can be classified according to the properties
described by their functions, such as the existence of nonlinear-
ities, the domain of the variables, or the presence of differential
equations as constraints and time dependent decision variables.
In models based on nonlinear programming (NLP), the complexity
increases due to the nonlinearity of the objective function and con-
straints. When an optimization problem presents nonlinearity and
the domain of the variables can be discrete or continuous, we talk
about mixed integer nonlinear programming (MINLP) problems [6].
Besides, MINLP can be convex when all the functions are convex,
or non-convex otherwise. Non-convex MINLPs are extremely hard
to solve compared to NLP and convex MINLP problems.

Global optimization (GO) methods are robust alternatives to
solve complex optimization problems. Thesemethods can be roughly
classified into deterministic GO methods, that explore the entire
search space and find the global optimum, and stochastic GO meth-
ods, that do not guarantee convergence to the global optimum
but provide near-global solutions in reasonable computation times.
Recently, also hybrid GO methods have been proposed [3]. These
methods arise from a combination of two or more methodologies:
a couple formed by a global method and a local search, the union
of global optimization solver with a deterministic method, or a set
of GO methods combined among them.

Among the different GO methods, metaheuristics have become
the de-facto choice for complex problems. A metaheuristic [14] is
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an iterative generation process that guides a subordinate heuris-
tic by combining different concepts for exploration (global search)
and exploitation (local search) of the search spaces. It uses learn-
ing strategies to structure information in order to find efficiently
near-optimal solutions. Metaheuristics allow handling NP-hard
optimization problems by providing good enough solutions in a
reasonable computation time, because they do not need to explore
the entire address space. Moreover, modern metaheuristics often
use hybrid approaches where the global search includes also lo-
cal searches to obtain a compromise between the diversification
provided by the global optimization method, and the intensifica-
tion obtained by the inclusion of a local method. However, there
is no guarantee to find global optimal solutions or even bounded
solutions.

Although the use of metaheuristics allows a significant reduc-
tion of the computational complexity of the search process, it still
remains time consuming for many problems in multiple domains
of application. High performance computing (HPC) represents an
effective strategy to speed up the time-to-solution. Metaheuristics
as algorithms may have limited parallelism, however, as problem
solving methods they offer opportunities for large-scale parallel
computing. Since it is not easy to know in advance which of the nu-
merous existing metaheuristics will be the most suitable for solving
a given problem, a multimethod solution, where multiple different
global search algorithms are executed concurrently and cooperate
through information exchange, could perform a more effective ex-
ploration of the search space. In [10] we have further explored this
idea in NLP problems, demonstrating that, if we can devote a signif-
icant amount of resources to the search, an adaptive multimethod
would achieve a more effective exploration of the search space.

The aim of this paper is to explore the multimethod approach
further considering extensions of the previous multimethod algo-
rithm [10] so that it can handle general MINLP problems. The key
differences and novel aspects with respect to the previous work
are: (1) the addition of an efficient local solver for MINLP problems,
(2) changes to the self-adaptation mechanism to avoid premature
stagnation of the convergence in this kind of problems, and (3)
the addition of new mechanisms to ensure diversity while keeping
parallel cooperation.

As a case study to evaluate the performance of the proposal in
challenging hard problems, we select the reverse engineering of cell
signaling, which is of particular importance in systems biology [1].
Signaling pathways play, for instance, a key role in the development
of novel therapies in complex diseases such as cancer. To describe
all the possible regulatory structures for a given dynamic model of
a pathway, a logic-based formalism with mixed-integer dynamic
optimization (MIDO) can be used [12]. This framework aims to
simultaneously identify the regulatory structure (represented by
binary parameters) and the real-valued parameters that are consis-
tent with the available experimental data, resulting in a logic-based
differential equation model. Although this kind of problems are
usually hard to solve, solutions can be achieved considering the use
of mixed-integer nonlinear programming [12].

The organization of the paper is as follows. Section 2 presents
the extensions carried out in the previous multimethod approach
to handle MINLP problems. Section 3 describes, as a case study, the
reverse engineering of cell signalling phenomena and the approach

followed in this work for its solution. The performance evaluation
is discussed in Section 4. Finally, conclusions and future work are
detailed in Section 5.

2 SELF-ADAPTIVE COOPERATIVE
MULTIMETHOD

Metaheuristics are popular methods to solve hard optimization
problems. However, select and apply in an efficient and effective
way a metaheuristic for a given problem is a difficult task, given
that: a metaheuristic algorithm started from different initial so-
lutions will explore different regions of the solution space and
return different solutions; different configuration settings using
the same metaheuristic algorithm will give different results; there
will be large variations in performance over different instances of
the same problem; and it is difficult to know in advance which
metaheuristic will be the most suitable for solving the problem
at hand. Thus, a multimethod global approach, in which multiple
different global search algorithms are executed concurrently and
cooperate among them, turns on a very appealing solution. Since
we often do not know in advance the most suitable algorithm for
a given optimization problem, an adaptive multimethod would be
able to try a number of methods and select the appropriate one.
Moreover, it would be able to use different algorithms in different
search spaces and dynamically adapt the search according to the
results obtained during the execution.

In a previous work [10] we have explored this direction propos-
ing a self-adaptive cooperative multimethod, called saCMM. The
main features of the saCMM implementation are:

• a loosely-coupled coarse-grained parallelization of the search
diversification, following a master-slave approach, where the
master is in charge of the control of the cooperation between
the slaves (islands), that perform a different metaheuristic
each

• a fine-grained parallelization of the cost function evaluations
within each island

• an asynchronous communication protocol to avoid having
idle islands waiting for information exchanged from others

• a self-adaptive procedure that changes dynamically the set-
tings of those islands that do not progress with those of the
most promising searches

The saCMM method has been extensively evaluated both in
local clusters and in the Microsoft Azure cloud, demonstrating its
potential for solving very challenging NLP problems. Therefore,
we are interested in extending this method so it can be applied to
large MINLP problems. As a result, we present here modifications
and extensions of the original saCMM method.

First, an efficient local solver for MINLP problems has been
added. A sequential quadratic programming solver, called Mixed-
Integer Sequential Quadratic Programming (MISQP) [8, 9] has been
included in saCMM. It assumes that the model functions are smooth:
an increment of a binary or an integer variable can produce a small
change of function values, though it does not require the mixed-
integer function to be convex or relaxable, i.e. the cost function
is evaluated only with discrete values in the integer or boolean
parameters.
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Figure 1: Schematic representation of saCMMmethod.

Second, changes to avoid a problem of premature convergence
due to a quick lose of diversity in the islands have been performed.
In mixed-integer problems a promising incoming solution in an
island acted as an attractor for the members of the population,
bringing them fast to the vicinity of this new value. Thus, two new
strategies where introduced in the saCMM method to allow for a
dynamic breakout from local optima, and to further preserve the
diversity in the search for these problems, avoiding prematurely
stagnation:

• On the one hand, cooperation between islands decreases too
fast as the algorithm converges, since many of them stagnate.
Thus, the criteria used in the original saCMM method to
trigger the tuning of those islands that are not progressing
in the search should be accommodated for MINLP problems,
relaxing the adaptive conditions to allow for an earlier escape
from the stagnated regions.

• On the other hand, in mixed-integer problems, when an is-
land stagnates, most of the times is due to the lost of diversity
in the population. Thus, diversity is promoted by a modified
strategy: once an island requests a reconfiguration, most of
the members of the population, except for two solutions (the
best known solution and an arbitrary one), are randomly
initialized again.

Figure 1 graphically illustrates the saCMM method. It follows a
master-slave approach. Each slave executes a different metaheuris-
tic. At present, twometaheuristics are implemented, the Differential
Evolution (DE) [20], implemented with the enhancements described
in [16], and the enhanced Scatter Search (eSS) [7], using the imple-
mentation outlined in [17]. However, each slave perform one of
these metaheuristics also with different configuration parameters,
which leads to different searches. The master process controls the
long-term behavior of the parallel searches and their cooperation,
and dynamically changes, in execution time, configuration parame-
ters to improve the success of the parallel cooperative scheme.

Figure 2 summarizes the new saCMM method for MINLP prob-
lems. A local variable BestKnownSol is set to monitor the best solu-
tion shared in the cooperation among slaves. The master process
also sets the initial communication threshold ϵ and initiates a score-
board to monitor the progress of each slave. Then, a loop is carried
out until a stopping criteria is reached, where the master waits
for the messages coming from the slaves. In the cooperation stage
the master manages the promising solutions received from slaves.

Since an excess of cooperation may have a great impact in diver-
sity in these kind of problems, a incoming candidate solution is
broadcasted only when it significantly improves the current Best-
KnownSol. The master process is able to self-tuning the cooperation
threshold based on the number of incoming solutions that are re-
fused with the current threshold. When a new incoming solution
promotes to a cooperative solution spread to the rest of the slaves,
there is an increment on the score of the slave that achieved that
solution.

The master process also manages the slaves adaptation requests.
Each island identifies if it is not progressing in the search. An island
will ask the master for a reconfiguration when promising coopera-
tive solutions are arriving from the master but it cannot improve its
local best known solution. Then, the master uses the information
of the scoreboard to communicate the new configuration settings
to that island. Finally, if the master receives a termination message
from one of the slaves, it broadcast the termination request to the
rest.

In the slaves, some steps are included to implement cooperation
and self-tuning. First, a reception memory buffer keeps the mes-
sages arriving from the master that have not been processed yet,
thus, the communications are all done in a non-blocking asynchro-
nous way. The slave inspects its reception memory buffer looking
for new best solutions from the master. When new solutions have
arrived, the slave checks whether the new solutions improve the
local BestKnownSol or not. If a new solution improves the local
one, this new solution upgrades to BestKnownSol and it replaces a
cooperation entry in the process population. The loop to check the
reception of new solutions must be repeated until there are no more
shared solutions to attend. This is because the execution time of one
external iteration may be very different from one process to another.
Thus, while a process has completed only one external iteration,
their neighbors may have completed more, and several messages
from the master may be waiting in the reception buffer. Then, the
slave also checks the reception of new reconfiguration settings.
Note that, the request for a reconfiguration is also a non-blocking
operation. This means that the slave goes on with its execution until
the message with the reconfiguration settings arrive. Besides, in
the reception step, the slave also checks the arrival of termination
messages from the master. If a termination message arrives, the
slave finishes its execution.

After the reception step, the slave checks if its best local solution
improves in, at least, an ϵ the BestKnownSol. If so, BestKnownSol
is updated with the best local solution and the slave sends the
promising result to the master.

To conclude the iteration, an adaptive step is accomplished. Each
slave decides if it is progressing in the search based on:

• Number of evaluations performed since its last cooperation:

Neval > Npar × 500

where Neval is the number of evaluations performed by this
process since its last cooperation with the master and Npar
is the number of parameters of the problem.

• Balance between the received and sent solutions:

recvSolutions > (4 × sendSolutions) + 10
13
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Figure 2: Summary of saCMM algorithm.

adaptation is requested when the number of received solu-
tions is significantly greater than the number of solutions
sent (with a minimum value of 10, to avoid requests at the be-
ginning of the process), that is, if other slaves are cooperating
much more than itself.

In summary, if a process recognizes that it has stagnated, it sends
a request for reconfiguration to the master process. In response to
these requests, the master sends to those slaves the most encourag-
ing settings, i.e., those that are on the top of the scoreboard. In order
to inject further diversity into those reconfigured islands, most of

the members of their population (all of them except the two most
promising solutions) are randomly re-initialized.

The saCMM algorithm repeats the external loop until the stop-
ping criterion is met. Three different stopping criteria (or any com-
bination of them) may be used: maximum number of evaluations,
maximum execution time and a value-to-reach (VTR).

To better illustrate how the self-adaptive mechanism works, Fig-
ure 3 shows, as an example, a Gantt diagram of a given execution
of the saCMM method, using 10 islands. Five islands initiate DE
with different configurations, from aggressive ones (that perform
frequent local searches) to conservative ones (that do not perform
local searches or perform them only sporadically). Another five
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Figure 3: Gantt diagrams representing the processes and cooperation among them during the execution progress. Process 1
is the central master, and processes 2-11 the islands. At the left diagram, red dots represent asynchronous cooperation com-
munications between master and islands, light blue areas represent global search steps and green areas represent local search
steps. At the right diagram, red areas represent DE islands, green areas represent eSS islands and dark blue dots represent
reconfiguration requests.

islands initiate eSS, also with different aggressive and conservative
configurations. The red dots represent the cooperation between is-
lands. It can be observed that DE outperforms eSS for this problem,
and also that conservative configurations, with few local searches,
outperform aggressive islands. Thus, when the unsuccessful islands
request for a reconfiguration, the master sends them the config-
uration of the promising islands. In this example processes 2, 4
and 6, executing DE with absence of cooperations during a long
time, request a reconfiguration and change from an aggressive to a
conservative one, improving their results and begining to cooperate
again. Also processes 7, 8 and 9, executing eSS without progress,
request for a reconfiguration, and they end up executing a con-
servative DE. Since the most promising configuration can change
during the execution progress, not all the processes executing a
particular method are allowed to be reconfigured. In this example,
two eSS islands are not reconfigured, one conservative (process 10)
and one aggressive (process 11).

3 REVERSE ENGINEERING OF BIOLOGICAL
NETWORKS

Reverse engineering aims to infer, analyze and understand the
functional and regulatory mechanisms that govern the behavior
of biological systems. This is addressed combining mathematical
modeling with experiments. Most of this models need to explain
dynamic behavior, and they are usually composed of different types
of differential equations [22].

The logic-based ordinary differential equations (ODE) framework
has been found particularly useful in modeling cell signalling [12,
23]. Here, we follow a mixed-integer global optimization approach
for the problem of reverse engineering signaling [12, 18]. The prob-
lem of identifying the logic gates is formulated as a simultaneous
model selection and parameter identification problem. From the
optimization point of view, this corresponds to a mixed integer
dynamic optimization (MIDO) problem.

The generalmixed-integer dynamic optimization problem (MIDO),
also called mixed-integer optimal control (MIOC) problem, is usu-
ally formulated as finding the set of discrete (integer or binary),

time-dependent (stimuli or controls) and time-independent parame-
ters, to optimize (minimize or maximize) a pre-defined cost function
(which in optimal control is generally called performance index),
while satisfying a set of dynamic and algebraic constraints. In math-
ematical form, it is usually formulated as follows:

Find u(t), i(t), p and tf so as to minimize (or maximize):

J = Gtf (x,u, i, p, tf ) +
∫ tf

t0
F (x(t),u(t), i(t), p, t)dt (1)

subject to:

f( Ûx(t), x(t),u(t), i(t), p, t) = 0, x(t0) = x0 (2)
g(x(t),u(t), i(t), p, t) ≤ 0, l = 1,me +mi (3)

uL ≤ u(t) ≤ uU , (4)
iL ≤ i(t) ≤ iU , (5)
pL ≤ p ≤ pU , (6)

where x(t) ∈ X ⊆ Rnx is the vector of state variables, u(t) ∈ U ⊆

Rnu is the vector of real valued control variables, i(t) ∈ I ∈ Zni is
the vector of integer control variables, p ∈ P ⊆ Rnp is the vector
of time-independent parameters, tf is the final time of the process,
me ,mi represent the number of equality and inequality constraints,
f is the set ordinary differential equations describing the dynamics
of the system (plus the corresponding initial conditions), g is the set
of state constraints (path, pointwise and final time constraints), and
uL , iL , pL , uU , iU , pU correspond to the lower and upper bounds
for the control variables and the time-independent parameters.

Methods for the numerical solution of DO problems can be
broadly classified under three categories: dynamic programming,
indirect and direct approaches. Indirect and direct approaches are
the most promising strategies for realistic problems, due to the
curse of dimensionality that suffer the dynamic programming [4]
methods. Indirect approaches are based on the transformation of
the original problem into a multi-point boundary value problem
using Pontryagin’s necessary conditions [13]. Direct methods are
based on discretization of the control (sequential strategy [21]), or
both the control and the states (simultaneous strategy [5]).
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In our solution we use the direct approach described in [12], that
consists of a transformation step, transcribing the original MIDO
problem into a mixed-integer nonlinear programming (MINLP)
problem, and a numerical solution step, where the actual solution
of the MINLP problem is obtained by means of the multimethod
proposed.

4 EXPERIMENTAL RESULTS
The new saCMMmethod described in Section 2 has been applied to
the synthetic signaling pathway (SSP) [15] case study. This bench-
mark considers a dynamic model composed of 26 ordinary differen-
tial equations and 86 continuous parameters. It was initially used
to illustrate the capabilities and limitations of different formalisms
related with logic-based models. Although this is a synthetic prob-
lem, it was designed to be a plausible representation of a signaling
transduction pathway. The model was used to generate pseudo-
experimental data for 10 combinations of perturbations with two
extracellular ligands (TNF and EGF) and two kinase inhibitors (for
PI3K and RAF1). From a total of 26 dynamic states, 6 were observed
(NFKB, P38, AP1, GSK3, RAF1 and ERK) and 5% of Gaussian noise
was added to the data.

Following the methodology described in [19], we obtained an
expanded version of this model containing every possible AND/OR
logic gate given the initial graph structure. This so-called expan-
sion procedure generated a nested model comprising 34 additional
variables, one for each hyperedge. Thus, the obtained optimization
problem contains 120 parameters, being 86 continuous and 34 bina-
ries. The model and experimental setup were implemented using
AMIGO [2] and exporting C code which could be used with the
saCMM method presented here.

Experiments were deployed with default settings in the North Eu-
rope region of the Microsoft Azure public cloud using a virtual clus-
ter with A9 instances. The A9 instances are for compute-intensive
workloads having 16 cores each, Intel Xeon E5-2670 @2.60GHz
processors, and 112GB of RAM.

The results shown in this section were analyzed both from a hor-
izontal view [11], that is, assessing the performance by measuring
the time needed to reach a given target value, and from a vertical
view, that is, assessing the performance for a predefined effort. To
evaluate the efficiency from a horizontal view, a stopping criteria
based on a value-to-reach (VTR) is used. The VTR used was set to a
low (challenging) value of 10. To evaluate the efficiency from a ver-
tical view, the stopping criteria used is a predefined execution time.
Thus, the experiments combine the two stopping criteria, a VTR
and a maximum execution time. Due to the substantial dispersion
of the results, because of the stochastic nature of these methods,
each experiment was performed 20 times and a statistical study was
carried out. Different experiments have been conducted to compare
the proposed saCMM multimethod versus single method perfor-
mance and to assess its scalability when the number of available
computational resources increases.

First, the saCMM performance has been compared with two
different single method parallel strategies:

• a self-adaptive cooperative strategy using only DE (saCDE).
Diversity is introduced alike in saCMM but using only DE,

Table 1: Performance of the proposed self-adaptive mul-
timethod compared with other parallel single method ap-
proaches. Stopping criteria using VTR=10.

method #iter. #evals avg. exec. time (s)
saCDE 207 457708,10 5861±1256
saCeSS 67 607193,80 7819±5864
saCMM 104 339786,42 4429±1166
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Figure 4: Beanplots of the execution time results in the ex-
periments reported in Table 1.

that is, each island executes a separate DE with different con-
figuration parameters (i.e. mutation factor and/or crossover
constant).

• a self-adaptive cooperative strategy using only eSS (saCeSS).
Diversity is introduced alike in saCMM but using only eSS,
that is, each island executes a separate eSS with different
configuration parameters (i.e. dimension of the reference set
or balance parameter for the selection of initial points for
the local solvers).

Table 1 shows results for an horizontal evaluation, that is, using
as stopping criterium only a challenging VTR. The table includes
results of the average number of iterations performed in each exper-
iment (#iter.), the average number of evaluations performed (#evals),
and the final execution time when the VTR is reached (avg. exec.
time). As it can be observed, the saCMM outperforms the other
two methods in average execution time, but it is also noticiable the
reduction in the dispersion of the results.

Since the results reported in Table 1 hide the underlying distri-
bution, that in this kind of stochastic problems is very important,
in Figure 4 the distribution of the results is shown using beanplots.
The figure illustrates that saCMM reduces the variability of the
results. As it can be seen, saCeSS presents a large variability for
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Figure 5: Beanplots of the best value achieved in the experi-
ments reported in Table 2.

this problem. It is the method that achieves the minimum execution
time among all the experiments, but also the one that achieves the
worst execution times in some experiments. On its turn, saCDE
seem to be more robust than saCeSS for this problem with less vari-
ability. Finally, saCMM presents the best results, both for average
execution time and low disperion of the results.

Table 2 shows results for a vertical view, that is a maximum
time (max. time) allowed is used as stopping criteria. The table
shows results for the average value of the best value obtained
(avg. fbest), the average number of iterations performed in each
experiment (iter.), the average number of evaluations performed
(#evals), the final execution time if the VTR is reached (avg. exec.
time), and the percentage of executions that achieve the VTR before
the maximum time allowed (%hits). The VTR for these experiments
was relaxed to a VTR=15. It can be observed that, in these vertical
evaluation, saCeSS outperforms saCDE, since this method obtains
a lower average best value in the maximum effort (time) allowed.
Figure 5 shows the beanplots for the distribution of the best value
achieved in the different instances of this experiments. Although
this results may seem inconsistent with the conclusion obtained
from the horizontal view above, Figure 6 explains the situation. As
it can be seen, saCDE and saCeSS perform different in different
moments of the search. For instance, saCeSS outperforms saCDE
at the begining of the search, while saCDE outperforms saCeSS
later on. The objective of the multimethod algorithm is to follow
(and sometimes even improve) the most sucessful approach at each
time step, thanks to the cooperation among the islands and the
reconfiguration on execution time.

Table 3 and Table 4 show for saCMM the impact in the search
of increasing the diversity by increasing the number of islands,
both from a vertical view and from a horizontal one, respectively.

Figure 6: Vertical and horizontal views illustrated in a con-
vergence graph.

Different experiments were performed using 10, 20 and 40 islands
to assess the scalability of the proposal. Initially, for all the experi-
ments, half of the islands perform DE and the other half eSS with
different initial populations and configuration parameters. As can
be seen, an increase in the number of islands, for these experiments,
does not really impact neither the average best value achieved
when the stopping criteria used is a predefined time effort, nor the
average execution time when the stopping criteria is a challenge
VTR. This is not surprising because, at the moment, we are ass-
esing the performance of the multimethod with only two different
metaheuristics. Note that the goal of the method is the injection
of diversity in the search, and, thus, the inclusion of more meta-
heuristics in a near future is a must. However, these results also
point to another future direction, which is the implementation of
a fine-grain parallelization for each metaheuristic executed in the
islands. This way, resources could be balanced between those dedi-
cated to accelerate the cost function evaluation (which is the most
time consuming part of metaheuristics, and can be done in parallel),
and those dedicated to improve results through diversification in
the search.

5 CONCLUSIONS
In this paper, we propose an extension of the self-adaptive coopera-
tive multimethod (saCMM), a parallel cooperative strategy for NLP
problems, with new mechanisms and extensions to handle MINLP
problems. To this end, the following features have been included in
the new implementation: (1) an efficient mixed-integer local solver
(MISQP), (2) a novel self-adaption mechanism to avoid convergence
stagnation, and (3) the injection of extra diversity during the adap-
tation steps, restarting most of reference set of the reconfigured
processes.

The evaluation has been carried out in a virtual cluster built in
the Microsoft Azure cloud. The proposal shows good performance
results, compared to other self-adaptive parallel single methods,
when applied to a signaling pathway case study from the domain
of computational systems biology. The computational results show
that the proposal reduces the execution time needed to obtain a
reasonable quality solution. These results confirm that the method
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Table 2: Performance of the proposed self-adaptive multimethod compared with other parallel single method approaches.
Stopping criteria using VTR and maximum time allowed.

method VTR avg. fbest #iter. #evals max. time (s) avg. exec. time (s) %hits
saCDE 15 35,63±9,91 47 121717,30 1500 1500 0%
saCeSS 15 22,12±4,08 12 122571,00 1500 1500 0%
saCMM 15 23,99±6.06 34 120749,60 1500 1479 10%

Table 3: Impact in saCMM of the diversification by increasing the number of islands. Vertical evaluation, using a maximum
time effort as stopping criteria.

#Islands VTR avg. fbest iter. #evals max. time (s) avg. exec. time (s) %hits
10 15 23,99±6.06 34 120749,60 1500 1479 10%
20 15 25,99±2,06 29 241733,00 1500 1500 0%
40 15 22,41±5,08 26 482820,83 1500 1374 10 %

Table 4: Impact in saCMM of the diversification by increas-
ing the number of islands. Horizontal evaluation, using
VTR=10 as stopping criteria.

method #iter. #evals avg. exec. time (s)
10 104 339786,42 4429±1166
20 88 708206,57 4895±1664
30 91 1368397,00 4164±3358

can be used to reverse engineer dynamic models of biological path-
ways. Future work will focus on improving the current implemen-
tation by means of an hybrid scheme that combines the current
coarse-grained parallelization with a fine grain parallelization in
each island. This will improve the scalability of the approach allow-
ing to balance the computational resources between diversity and
intensity in the search.
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