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Abstract
Many key problems in science and engineering can be formulated and solved using global optimization techniques. In the
particular case of computational biology, the development of dynamic (kinetic) models is one of the current key issues.
In this context, the problem of parameter estimation (model calibration) remains as a very challenging task. The com-
plexity of the underlying models requires the use of efficient solvers to achieve adequate results in reasonable computa-
tion times. Metaheuristics have been the focus of great consideration as an efficient way of solving hard global
optimization problems. Even so, in most realistic applications, metaheuristics require a very large computation time to
obtain an acceptable result. Therefore, several parallel schemes have been proposed, most of them focused on tradi-
tional parallel programming interfaces and infrastructures. However, with the emergence of cloud computing, new pro-
gramming models have been proposed to deal with large-scale data processing on clouds. In this paper we explore the
applicability of these new models for global optimization problems using as a case study a set of challenging parameter
estimation problems in systems biology. We have developed, using Spark, an island-based parallel version of Differential
Evolution. Differential Evolution is a simple population-based metaheuristic that, at the same time, is very popular for
being very efficient in real function global optimization. Several experiments were conducted both on a cluster and on
the Microsoft Azure public cloud to evaluate the speedup and efficiency of the proposal, concluding that the Spark imple-
mentation achieves not only competitive speedup against the serial implementation, but also good scalability when the
number of nodes grows. The results can be useful for those interested in using parallel metaheuristics for global optimi-
zation problems benefiting from the potential of new cloud programming models.
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1 Introduction

Global optimization problems arise in many areas of
science and engineering (Banga, 2008; Floudas and
Pardalos, 2013; Grossmann, 2013). In the particular
case of biology, global optimization methods are play-
ing an increasingly important role in key areas like
computational biology (Greenberg et al., 2004), bioin-
formatics (Larrañaga et al., 2006) and systems biology
(Banga, 2008).

Building the mathematical models that allow under-
standing complex biological systems is an iterative pro-
cess that proposes a mathematical structure with a set
of non-measurable parameters that have to be esti-
mated in order to obtain quantitative predictions. The

model is then (in)validated with new experiments,
obtaining feedback which can be subsequently used in
a refinement process. The parameter estimation step is
key in this iterative process and can be formulated as a
mathematical optimization problem subject to the
dynamic constraints which describe the time-dependent
behavior of the system.
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Most biological models are highly non-linear dyna-
mical systems, resulting in challenging multi-modal
problems which are very difficult to solve (Villaverde
and Banga, 2014). The computation effort when using
deterministic global optimization methods might be
extremely large, making them impractical. Thus, many
research efforts have focused on developing metaheur-
istic methods which are able to locate the vicinity of the
global solution in reasonable computation times.
Moreover, in order to reduce the computational cost of
these methods, a number of researchers have studied
parallel strategies for metaheuristics (Crainic and
Toulouse, 2003; Alba, 2005). In the area of computa-
tional biology, parallel methods have already shown
promising results (Perkins et al., 2006; Jostins and
Jaeger, 2010; Penas et al., 2015). However, all these
efforts are focused on traditional parallel programming
interfaces and traditional parallel infrastructures.

With the advent of cloud computing effortless access
to a large number of distributed resources has become
more feasible. But developing applications that execute
at such a big scale is hard. New programming models
are being proposed to deal with large scale computa-
tions on commodity clusters and cloud resources.
Distributed frameworks like MapReduce (Dean and
Ghemawat, 2008) or Spark (Zaharia et al., 2012) pro-
vide high-level programming abstractions that simplify
the development of distributed applications including
implicit support for deployment, data distribution, par-
allel processing and run-time features like fault toler-
ance or load balancing. We wonder how much benefit
can we expect from implementing parallel metaheuris-
tics using these new programming models because,
besides the many advantages, they also have some
shortcomings. Cloud-based distributed frameworks
prefer availability to efficiency, so that the speedup and
distributed efficiency are frequently lower than in tradi-
tional parallel frameworks due to the underlying multi-
tenancy of virtualized resources.

The aim of this paper is to explore this direction fur-
ther considering a parallel implementation of
Differential Evolution (DE) (Storn and Price, 1997),
probably one of the most popular heuristics for global
optimization, to be executed in the cloud. In order to
illustrate its performance we considered here a set of
challenging parameter estimation problems in systems
biology. A thorough evaluation has been carried out
both in a local cluster and in the Microsoft Azure pub-
lic cloud.

The organization of this paper is as follows. Some
new programming models in the cloud are described in
Section 2. Section 3 presents a brief overview of the DE
algorithm. Section 4 describes the proposed implemen-
tation of the DE using Spark. The performance of the
proposal is evaluated in Section 5, demonstrating its
good efficiency and scalability. Section 6 covers the

related work. Finally, Section 7 summarizes the main
conclusions of this work.

2 New programming models in the cloud

From the new programming models that have been
proposed to deal with large scale computations on
cloud systems, MapReduce (Dean and Ghemawat,
2008) is the one that has attracted more attention since
its appearance in 2004. In short, MapReduce executes
in parallel several instances of a pair of user-provided
map and reduce functions over a distributed network of
worker processes driven by a single master. Executions
in MapReduce are made in batches, using a distributed
filesystem (typically HDFS) to take the input and store
the output. MapReduce has been applied to a wide
range of applications, including distributed pattern-
based searching, distributed sorting, graph processing,
document clustering and statistical machine transla-
tion, among others.

When it comes to iterative algorithms MapReduce
has shown serious performance bottlenecks (Ekanayake
et al., 2010), mainly because there is no way of reusing
data or computation from previous iterations efficiently.
New proposals, not based on MapReduce, like Spark
(Zaharia et al., 2012) or Flink, which has its roots in
Stratosphere (Alexandrov et al., 2014), are designed
from the very beginning to provide efficient support for
iterative algorithms.

Spark provides a language-integrated programming
interface to resilient distributed datasets (RDDs), a dis-
tributed memory abstraction for supporting fault-
tolerant and efficient in-memory computations.
According to Zaharia et al. (2012) the performance of
iterative algorithms can be improved by an order of
magnitude when compared to MapReduce (using
Hadoop). Formally, an RDD is a read–only fault–tol-
erant partitioned collection of records. Users can
manipulate them using a rich set of operators, control
their partitioning to optimize data placement and expli-
citly persist intermediate results (in memory by default
but also to disk). RDDs are created from other RDDs
or from data in stable storage by applying coarse-
grained transformations (e.g. map, filter or join) that
apply the same operation to many data items. Once
created, RDDs are used in actions (e.g. count, collect
or save) which are operations that return a value to the
application or export data to a storage system.

3 Differential Evolution

DE is an iterative mutation algorithm where vector dif-
ferences are used to create new candidate solutions.
Starting from an initial population matrix composed of
NP D-dimensional solution vectors (individuals), DE
attempts to achieve the optimal solution iteratively
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through changes in its vectors. From now on we will
describe and use the DE basic algorithm reported in
Storn and Price (1997), specifically the DE/rand/1/bin
scheme, however, the parallel implementation proposed
in the next section can be applied to other DE schemes.
Algorithm 1 shows the basic pseudocode for the specific
version of the DE algorithm used in this paper. For
each iteration, individuals are generated in a new popu-
lation matrix through operations performed among
individuals of the current population (mutation (F)),
with old solutions replaced (crossover (CR)) only when
the fitness value of the objective function is better than
the current one. A population matrix with optimized
individuals is obtained as the output of the algorithm.
The best of these individuals is selected as solution close
to optimal for the objective function of the model.

In some real applications, such as parameter estima-
tion in dynamic models, the performance of the classi-
cal sequential DE is not acceptable due to the large
number of objective function evaluations needed. As a
result, typical runtimes for realistic problems are in the
range of hours to days. The parallelization of meta-
heuristics pursues one or more of the following goals:
increase the size of the problems that can be solved,
speed-up the computations or attempt a more thorough
exploration of the solution space. The solution explored
in this work pursues the development of an efficient
parallel variant of the serial DE, focused on both the
acceleration of the computation by performing separate
evaluations in parallel, and the convergence improve-
ment through the stimulation of the diversification in
the search and the cooperation between the parallel
threads.

In the literature, different parallel models can be
found (Alba et al., 2013) aiming to improve both com-
putational time and number of iterations for conver-
gence. The master–slave and the island-based models
are the most popular. In the master–slave model, the
behavior of the sequential DE is preserved by paralle-
lizing the inner-loop of the algorithm. A master proces-
sor distributes computation operations between the
slave processors. Therefore, the parallel algorithm has
the same behavior as the sequential one. In the island-
based model the population matrix is divided in subpo-
pulations, (islands), where the algorithm is executed in
isolation. Sparse individual exchanges are performed
among islands to introduce diversity into the subpopu-
lations, preventing search from getting stuck in local
optima.

4 Implementing Differential Evolution on
Spark

To understand the Spark-based parallel implementa-
tion of the DE algorithm, some previous insight into
the way data is distributed and processed by Spark is
needed. Spark uses the RDD abstraction to represent
fault-tolerant distributed data. RDDs are immutable
sets of records that optionally can be in the form of
key–value pairs. Spark programs are run by a driver
(the master in Spark terminology) which partitions
RDDs and distributes the partitions to workers (the
slaves in Spark terminology), that persist and trans-
form them and return results to the driver. There is no
communication among workers. Shuffle operations
(i.e. join, groupBy) that need data movement among
workers through the network are expensive and should
be avoided.

With the aim of better understanding Spark intrica-
cies and assessing the performance of different alterna-
tives when implementing DE, in Teijeiro et al. (2016)
we have presented a preliminary evaluation of (a) three
different variants of the master–slave parallel imple-
mentation (SmsPDE), and (b) an island-based parallel
implementation (SiPDE). The main conclusion of that
work is that the island-based parallel implementation is
the best suited to the distributed nature of Spark and
obtains the best performance results. The main issue
found in the DE master–slave model was the implemen-
tation of the mutation strategy because the population
is partitioned and distributed among workers. For the
mutation of each individual, random different individu-
als have to be selected from the whole population. How
to access to individuals of other partitions from a given
worker, having the constraint that only the driver has
access to the complete population, was the main diffi-
culty to be tackled, and all the solutions proposed to
deal with this problem introduced an unfeasible com-
munications overhead.

Algorithm 1: Differential Evolution algorithm ( seqDE).

input: A population matrix P with size D x NP
output: A matrix P whose individuals were optimized
repeat

for each element i of the P matrix do
choose randomly different r1, r2, r3 2 ½1,NP�
choose randomly an integer jr 2 ½1,D�
for j 1 to D do

choose a randomly real r 2 ½0, 1�
if r<CR or j= jr then
uG+ 1
i (j) xGr1(j)+ F � (xGr2(j)� xGr3(j))

else
uG+ 1
i (j) xGi (j)

end
end
evaluate (uG+ 1

i )
if f (uG+ 1

i )\f (xGi ) then
xG+ 1
i  uG+ 1

i
else

xG+ 1
i  xGi

end
end

until Stop conditions;
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The Spark island-based parallel DE implementation
(SiPDE) proposed follows the scheme shown in
Figure 1. In the figure, boxes with solid outlines are
RDDs. Partitions are shaded rectangles, darker if they
are persistent in memory. A key–value pair RDD has
been used to represent the population where each indi-
vidual is uniquely identified by its key. Some steps in
the main flow of the algorithm are executed in a dis-
tributed fashion.

� The random generation and initial evaluation of
individuals that form the population, implemented
as a Spark map transformation.

� The evolution of the population. Every partition of
the population RDD is considered to be an island,
all with the same number of individuals. Islands
evolve in isolation during a number of evolutions.
This number can be configured and is the same for
all islands. During these evolutions every worker
calculates mutations picking random individuals
from its local partition only.

� The migration strategy, which introduces diversity
by exchanging selected individuals among islands
every time the evolution of the islands ends.

� The checking of the termination criterion, imple-
mented as a Spark reduce action (a distributed OR
operation).

The evolution–migration loop is repeated until the ter-
mination criterion is met, after which the best individ-
ual is selected by means of a Spark reduce action (a
distributed MIN operation).

For implementing the migration strategy a Spark
feature known as partitioner has been used. In Spark
the partitioner is responsible for assigning key–value
pair RDD elements to partitions based on their keys.
By default partitioner implements a hash-based parti-
tioning using the key hash. For this work we have
implemented a custom partitioner that randomly and

evenly shuffles elements among partitions. It must be
noted that this partitioner leads to a migration strategy
that randomly shuffles individuals among subpopula-
tions without replacement. This partitioner proposal is
intended to evaluate the migration communications
overhead and not to improve the searching quality of
the algorithm. Adding migration strategies with that
purpose in mind is left for future work.

Although the implementation of the island-based
model in Spark drastically reduces the communications
between different islands, the scalability is heavily
restrained by the small size of the population matrix in
the DE method. Having taken into account that in
Storn and Price (1997) a guideline is given where the
setting of the DE population size to about 10 times the
dimensionality of the problem is proposed, reducing
the already small population matrix by dividing it
between the different islands will negatively impact the
convergence of the DE. Thus, founded on the ideas
outlined in Penas et al. (2015), the proposed implemen-
tation is extended to allow for the execution of a differ-
ent DE in each island, using a different population
matrix and different combinations of CR and F values
to enhance diversity, while they cooperate through
sparse migrations modifying the systemic properties of
the individual searches. Thus, we have extended the
SiPDE implementation to allow users to launch either
homogeneous or heterogeneous islands, that is, having
different combinations of CR and F values to enhance
diversity.

5 Experimental results

In order to evaluate the efficiency of the Spark-based
parallel implementation of the island DE algorithm
(SiPDE), different experiments have been carried out.
Its behavior, in terms of convergence and total execu-
tion time, has been first compared with the sequential
implementation (seqDE). Then, we have also compared

Figure 1. Spark-based island implementation of the DE algorithm ( SiPDE).
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the proposed Spark implementation with a MapReduce
implementation.

For the experimental testbed two different platforms
have been used. First, experiments were conducted in
our local cluster Pluton, that consists of 16 nodes pow-
ered by two octa-core Intel Xeon E5-2660 CPUs with
64 GB of RAM, and connected through an InfiniBand
FDR network. Second, experiments were deployed
with default settings in the Microsoft Azure public
cloud using a standard HDInsight Spark cluster with
A3 standard instances (four cores, 7 GB) for head and
worker nodes. It must be noted that, since Spark runs
on the Java Virtual Machine (JVM), usual precautions
(i.e. warm-up phase, effect of garbage collection) have
been taken into account to avoid distortions on the
measures. Also, because of the stochastic properties
inherent to these algorithms, each experiment was exe-
cuted over a number of 20 independent runs, and the
average and standard deviation of the execution times
are reported.

The performed experiments used two sets of bench-
mark problems: a set of problems out of an algebraic
black-box optimization testbed, the Black-Box
Optimization Benchmarking (BBOB) data set (Hansen
et al., 2009); and three challenging parameter estima-
tion problems in systems biology (Locke et al., 2005).
On the one hand, the experiments over the BBOB data
set were carried out to evaluate the efficiency of the
proposed parallelization in a popular and accessible
benchmarking testbed. On the other hand, the aim of
the experiments with the parameter estimation prob-
lems in systems biology is to demonstrate the potential
of the proposed techniques for improving the conver-
gence and execution time of very hard problems. In
these benchmarks, the execution of seqDE can take
hours or even days to complete one only test.

5.1 Performance evaluation in general optimization
problems

Three well known benchmark problems from the
BBOB data set were evaluated: the Rastrigin function
(f15), the Schaffer function (f17) and the Schwefel func-
tion (f20). There are many configurable parameters in
the classical DE algorithm, such as F (the mutation
scaling factor) and CR (the crossover constant), or the
mutation strategy and crossover type, whose selection
may have significant impact on the algorithm perfor-
mance. For the selection of the settings in these experi-
ments, the suggestions in Storn and Price (1997) have
been followed. Tests have been performed using DE/
rand/1/bin scheme with CR= 0:8 and F= 0:9. Besides
the problem dimension was set to D= 50 and the pop-
ulation size to NP= 512. As stopping criterion, a maxi-
mum number of evaluations of 500,000 has been used
in these experiments.

Results obtained in the local cluster Pluton and in
the Microsoft Azure public cloud are shown in
Figure 2. In the primary axis of the figure the bars
report the mean execution time of the 20 independent
runs for each experiment, while in the secondary axis
the speedup against the sequential implementation is
shown. Comparing the sequential and the parallel
metaheuristics is not an easy task; therefore, the gui-
dance of Hansen et al. (2009) and Alba and Luque
(2006) has been followed when analyzing the results of
these experiments. The behavior of the proposed solu-
tion was compared with the sequential classic version
of DE (seqDE); therefore, speedups calculated as
TseqDE=TSiPDE are reported in this section. This figure
shows that the proposed SiPDE method accelerates the
computation of seqDE by performing the same number
of evaluations in parallel. As it can be seen, although
the speedups achieved are similar in Azure and Pluton,

Figure 2. Execution time and speedup results in local cluster Pluton and Microsoft Azure public cloud. D= 50, NP= 512,
CR= 0:8, F= 0:9, Nevalsmax = 500,000.
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the execution times are longer in Azure, being between
23 and 2:53 the times obtained in Pluton.
Virtualization overhead, use of non-dedicated resources
in a multitenant platform and differences in node char-
acteristics can explain these results. Even so, the Spark
implementation achieves good results in terms of
speedup versus the sequential implementation in Azure.

The speedup achieved in previous experiments deviates
from the ideal one because of the overhead introduced by
the communications in the parallel strategy and the over-
head introduced by Spark. To evaluate this overhead we
have used a modified version of our implementation in
which the evolution of the population was removed. This
modified implementation was executed for a total of eight
evolution–migration iterations and the overhead of each
iteration was measured separately in order to assess differ-
ences between them. Figure 3 shows the results obtained
both in the local cluster and the Azure public cloud. As
can be seen, the overhead in Azure is larger than in the
local cluster (note that different scales are used in the fig-
ures). The first iteration in the Spark implementation is
always the most time consuming (it corresponds to the
outliers in the box plots). However, the rest of the itera-
tions present even lower overhead and lower dispersion in
the results, being the mean overhead of each iteration of
0:02760:006 s in Pluton and 0:09260:050 s in Azure.
The overhead of the communications would barely affect
the performance when the execution time between two
migrations is significant.

5.2 Results for parameter estimation problems in
systems biology

In order to evaluate the Spark implementation in real
challenging problems, three difficult parameter

estimation problems from the domain of computa-
tional biology were considered.

� Circadian model: Parameter estimation in a
dynamic model of the circadian clock in the plant
Arabidopsis thaliana, as presented in Locke et al.
(2005). The model consists of seven ordinary differ-
ential equations with 27 parameters (13 of them
were estimated) with data sets from two
experiments.

� NFKB model: This problem is based on the model
in Lipniacki et al. (2004) and consists of 15 ordinary
differential equations with 29 parameters and data
sets from two experiments.

� 3-step pathway model: problem considering a 3-step
generic and highly non-linear pathway with eight
differential equations and 36 parameters, and data
sets from 16 experiments, as presented in Moles
et al. (2003).

These problems are known to be particularly hard due
to their ill-conditioning and non-convexity (Moles
et al., 2003; Villaverde and Banga, 2014); thus, they are
particularly appealing in assessing the performance of
the homogeneous versus the heterogeneous configura-
tion in the proposed implementation. The homoge-
neous configuration launches islands with the same CR
and F values, while the heterogeneous configuration
allows different combination of CR and F values to
enhance diversity. For testing the homogeneous config-
uration of SiPDE F= 0:9 and CR= 0:8 were used,
while for the heterogeneous configuration different
combination of CR= f0:7, 0:8, 0:9g and F= f0:8, 0:9g
values were randomly selected for each island.
Nevertheless, the proposal can be applied to any other
configuration parameters. Also, it is worth noting that
further performance improvements can be achieved by
further fine-tuning settings.

Since the aim is to decrease the execution time
required for convergence in complex parameter estima-
tion problems, the best way to fairly assess the perfor-
mance of the proposal is to use as stopping criterion a
value-to-reach (VTR). However, in the 3-step pathway
and the NFKB benchmarks the execution of only one
test could take several days to complete. Thus, we
decided to use as stopping criterion: (a) a
VTR= 1e� 5 for the Circadian benchmark, evaluat-
ing its performance from a horizontal view; and (b) a
predefined effort of maximum execution time
Tmax= 1000s for the Three-step pathway and the
NFKB benchmarks, assessing their performance from
a vertical view.

Results for the Circadian benchmark are shown in
Table 1, and results for 3-step pathway and NFKB
benchmarks are shown in Table 2. Table 1 displays, for
each experiment, the number of cores (#Np) used, the

Figure 3. Box plot of the overhead times per evolution–
migration iteration both in Pluton and Azure.
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mean number of migrations in the island-model algo-
rithm (#Mig.), the mean execution times (Time (s)), and
the speedup achieved versus the seqDE (Sp). Results
show that the parallelization improves the execution time
required for convergence by performing the evaluations
in parallel, but also the cooperation between islands
modifies the systemic properties of the algorithm improv-
ing the convergence rate. For complex problems, like the
Circadian benchmark, the number of migrations clearly
decreases with the number of nodes, demonstrating the
potential of the parallel algorithm for improving the con-
vergence of the DE method. The harder the problem is,
the more improvement is achieved by the parallel algo-
rithm, since the diversity introduced by the migration
phase, although using a naive strategy as explained in
Section 4, actually improves the effectiveness of the DE
algorithm. Thus, for the Circadian benchmark superlinear
speedups are obtained. Moreover, the diversification
introduced in the heterogeneous approach outperforms
the homogeneous approach, specially when the number
of islands grows.

Table 2 displays, for each experiment, the number of
cores (#Np) used, the mean number of migrations in
the island-model algorithm (#Mig.), the average of the
evaluations needed (#Evals), and the average of the best
value for each run (fbest). Results show that the paralle-
lization improves the convergence rate, since, in the
same amount of time, more evaluations are executed in
parallel and more migrations between islands are per-
formed, thus, achieving better quality solutions. To bet-
ter illustrate the improvement in convergence time,
Figure 4 shows the convergence curves for the three
benchmarks using the sequential algorithm and the par-
allel implementations with 16 islands. The convergence
curves depicted are those that fall in the median values
of the results distribution. It can be observed that at the
beginning of the execution the performance of the
homogeneous configuration is comparable with the het-
erogeneous one, since it is not until several migrations
have passed that the effects of the heterogeneous search
are noticeable. However, in the long-term behavior
the heterogeneous configuration exhibits better

Table 1. Performance evaluation of the Circadian benchmark in Pluton. Stopping criterion: quality of the solution. Parameters:
D= 13, NP= 256, VTR= 1e� 5.

Method #Np #Mig. Time (s) Sp

seqDE 1 - 40,883.3963,712.56 -
SiPDE (homo) 2 116 19,275.6561,281.63 2.12

4 112 9,305.3061,038.59 4.39
8 74 3,319.336296.88 12.32
16 36 790.97690.50 51.69

SiPDE (hetero) 2 55 9,082.6264,716.09 4.50
4 37 3,179.4761,339.96 12.86
8 20 819.596174.91 49.88
16 19 403.39684.66 101.35

Table 2. Performance evaluation of the 3-step pathway and NFKB benchmarks in Pluton. Stopping criterion: predefined effort,
Tmax = 1000s. Parameters for 3-step pathway: D= 36, NP= 512. Parameters for NFKB: D= 29, NP= 512.

Method #Np #Mig. #Evals fbest

3-step pathway seqDE 1 - 90,624 820.54
SiPDE (homo) 2 8 191,232 753.52

4 15 358,912 711.55
8 27 653,312 690.06
16 47 1,179,392 632.65

SiPDE (hetero) 2 8 187,392 745,08
4 15 352,512 698.28
8 26 634,112 658.04
16 44 1,094,912 530.00

NFKB seqDE 1 - 21,274 0.06868
SiPDE (homo) 2 10 44,032 0.06051

4 17 81,408 0.05472
8 30 143,104 0.05208
16 47 239,104 0.04980

SiPDE (hetero) 2 10 44,800 0.05959
4 17 84,736 0.05419
8 30 146,176 0.05220
16 46 231,936 0.04732
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performance than the homogeneous one (note the loga-
rithmic scale in y-axis).

Finally, in order to evaluate the performance of the
proposal with these challenging problems in a public
cloud, some experiments were conducted in the Azure
public cloud. As can be seen in Table 3, the proposal
achieves similar results in Azure as the ones obtained in
the local cluster in terms of convergence and scalability;
however, the overheads introduced in Azure due to vir-
tualization and use of non-dedicated resources in a
multitenant platform are not negligible. Since the val-
ues in the table hide the underlying distribution, which
in these kind of stochastic problems is very important,
Figure 5 shows the bean plots to compare the distribu-
tion of the heterogeneous configuration in both the
local cluster and Azure. The mean of each distribution
is also shown in each bean. This figure clearly shows,
not only the larger execution time but also the larger
dispersion in the results obtained in Azure (note the
logarithmic scale in the y-axis).

Table 3. Performance evaluation of the Circadian benchmark in Azure. Stopping criterion: quality of the solution. Parameters:
D= 13, NP= 256, VTR= 1e� 5.

Method #Np #Mig. Time (s) Sp

seqDE 1 - 9,529,47065,623.22 -
SiPDE (homo) 2 121 47,895.8065,091.57 1.99

4 110 21,206.1261,549.87 4.52
8 77 11,449.7961,951.18 8.32
16 37 3,246.466376.03 29.35

SiPDE (hetero) 2 40 16,026.5668,858.46 4.72
4 32 6,595.6163,121.84 11.46
8 21 3,065.936663.73 24.66
16 19 1,652.056377.73 45.76

Figure 4. Convergence curves. Parameters: Dcircadian = 13,
NPcircadian = 256, D3�step = 36, NP3�step = 512, DNFKB = 29 and
NPNFKB = 512, Circadian using as stopping criterion a
VTR= 1e� 5, while 3-step pathway and NFKB using as stopping
criterion a predefined effort of Tmax = 1000s.

Figure 5. Bean plots comparing the results in Pluton and
Azure for the heterogeneous configuration reported in Tables 1
and 3. The speedup achieved in Pluton vs Azure is displayed on
top of each bean.
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5.3 Comparison with a MapReduce implementation

Finally, we have performed several tests to assess how
competitive the Spark parallel implementation can be
with respect to a MapReduce implementation, since
MapReduce is still the de-facto standard for large-scale
data-intensive applications.

For the comparison we have developed a
MapReduce implementation of the homogeneous
island-based parallel DE and we have repeated the
same previous experiments with the Circadian bench-
mark in Pluton but this time using Hadoop (v2.7.1).
Figure 6 shows a bean plot that allows for an easy com-
parison of the execution times obtained using the
MapReduce and the Spark implementations in the
local cluster. Note that not only is the execution time
larger for the MapReduce implementation but also the
dispersion of the results obtained is bigger.

The experimental results show that MapReduce has
significantly higher overhead per iteration than Spark,
mainly caused by longer task initialization times and
HDFS access. Figure 7 shows the overhead of
MapReduce per evolution–migration iteration. In
opposition to Spark, in the case of MapReduce there is
no significant difference between the first and the sub-
sequent iterations, and the figures clearly indicate a
higher overhead and large dispersion in the results,
being the mean overhead of each iteration 17:9562:50s
versus the 0:02760:006s in Spark (see Figure 3).

6 Related work

The parallelization of metaheuristics methods has
received much attention with regards to reducing the

run time for solving large-scale problems (Alba et al.,
2013). Many parallel algorithms have been proposed in
the literature, most of them being parallel implementa-
tions based on traditional parallel programming inter-
faces. Some of these proposals are focused on the
parallelization of DE. A parallel synchronous approach
was proposed in Tasoulis et al. (2004), based on the dis-
tribution of the population data among different pro-
cessors (slaves), which communicate through data
migrations, all of them managed by a central processor
(master). A simple approach to asynchronous paralleli-
zation was proposed in Ntipteni et al. (2006), consisting
of a master–slave architecture with several independent
processes, where the communications were not estab-
lished directly but through the filesystem. Another
asynchronous proposal based on a master–slave
approach is the parallel metaheuristic based on DE and
simulated annealing proposed in Olenšek et al. (2011).
In Apolloni et al. (2014) another distributed DE was
presented, in this case exploiting an island-model with
asynchronous communication.

Several other works studied improvements to island-
model schemes. Migration strategy plays an important
role in the performance of distributed DE schemes. In
Rucinski et al. (2010), a complete study about the
impact on the performance of different communication
topologies of the islands was presented. These authors
used a synchronous parallel DE on a set of standard
benchmarks with different topologies, concluding that
ring topology was the best option. The influence of syn-
chronous and asynchronous migration on the perfor-
mance of adaptive DE algorithms has been also
investigated in Bujok (2013). In De Falco et al. (2014) a
novel migration model is implemented through a multi-
stage process that involves invading subpopulations
and their competition with native individuals. Recently,
in Kozlov et al. (2016), a parallel technique called
DEEP (Differential Evolution Entirely Parallel) has
been implemented and publicly released. They propose
a new migration scheme in which the best member of
one population substitutes for the oldest member of a
target population, organized in a ring.

Several studies suggest that randomization of the
control parameters can be a propitious mechanism for

Figure 6. Bean plots comparing Spark vs MapReduce
implementation in cluster Pluton for the Circadian benchmark.
Parameters: D= 13, NP= 640, VTR= 1e� 5.

Figure 7. Box plot of the MapReduce overhead times per
evolution–migration iteration in Pluton.
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enhancing the DE performance (Brest et al., 2006).
Different randomization schemes have been proposed
to develop self-adaptive DE frameworks and investigate
the effect of changing control parameters in distributed
DE (Weber et al., 2011b, 2013). Two mechanisms to
avoid the loss of diversity when the size of the popula-
tion is small are described in Weber et al. (2011a). The
first one was based on shuffling: the individuals from a
specific subpopulation were randomly reorganized. The
second one, an update mechanism, changed and
adapted scaling factors for each subpopulation. The
results indicated that these techniques obtained a very
significant performance improvement when the dimen-
sionality of the functions grew. In Dorronsoro and
Bouvry (2011) several DE variants using different
decentralized population schemes were proposed and
evaluated, demonstrating that the population scheme
has a marked influence on the behavior of DE
algorithms.

Since there is an extensive bibliography on parallel
schemes and improvements for the DE algorithm, those
readers interested in further information can find a
detailed review in Das and Suganthan (2011) and more
recently in Das et al. (2016). Note that most of these
different island-based DE schemes can be easily sup-
ported by the Spark-based implementation proposed in
this work.

Research on cloud-oriented parallel metaheuristics
based mainly on the use of MapReduce has also
received increasing attention in recent years. MRPSO
(McNabb et al., 2007) uses the MapReduce model to
parallelize Particle Swarm Optimization (PSO).
MRPGA (Jin et al., 2008) attempts to combine
MapReduce and genetic algorithms (GA). They prop-
erly claim that GAs cannot be directly expressed in
MapReduce due to their specific characteristics, so they
extend the model featuring a hierarchical reduction
phase. However, they only perform in parallel the fit-
ness evaluation, so this approach shows poor scalabil-
ity. A different approach is followed in Verma et al.
(2009), which tries to hammer the GAs into the
MapReduce model. In Radenski (2012) the applicabil-
ity of MapReduce to distributed simulated annealing
(SA) was also investigated. They design different algo-
rithmic patterns of distributed SA with MapReduce
and evaluate their proposal on the Azure public cloud.
Recently, in Lee et al. (2014), a practical framework to
infer large gene networks through a parallel hybrid
GA–PSO optimization method using MapReduce has
also been proposed.

Some proposals are more specific in studying how to
apply MapReduce to parallelize the DE algorithm to
be used in the cloud. In Zhou (2010) the fitness evalua-
tion in the DE algorithm is performed in parallel using
Hadoop (the well-known open-source MapReduce
framework). However, the experimental results reveal

that the extra cost of Hadoop DFS I/O operations and
the system bookkeeping overhead significantly reduces
the benefits of the parallelization. In Tagawa and
Ishimizu (2010), a concurrent implementation of the
DE based on MapReduce is proposed; however, it is a
parallelized version of a neoteric DE based on the
steady-state model instead of the generation alternation
model. While the generational model holds two popula-
tions and generates all individuals for the second popu-
lation from those of the current population, the steady-
state model holds only one population and each indi-
vidual of the population is updated one by one.
Compared with the generational model, the paralleliza-
tion of the steady-state model is simpler because it does
not require synchronization for replacing the current
population by newborn individuals simultaneously. On
the other hand, the experiments reported in that paper
were conducted on a multi-core CPU; thus, their imple-
mentation takes advantage of the shared-memory
architecture, sharing the population among the differ-
ent threads, which is not possible in a distributed cloud
environment. In Daoudi et al. (2014) a parallel imple-
mentation of DE based clustering using MapReduce is
also proposed. This algorithm was implemented in
three levels, each of which consists of different DE
operations.

An attempt to parallelize the DE algorithm based
on RDDs is presented in Deng et al. (2015). However,
in that work only the computation of the fitness values
of the individuals was performed in parallel following a
master–slave approach. An entire Spark-based paralle-
lization of the DE algorithm was explored in Teijeiro
et al. (2016). In that paper Spark-based implementa-
tions of two different parallel schemes of the DE algo-
rithm, the master–slave and the island-based, are
proposed and evaluated. Results showed that the
island-based solution is by far the best suited to the dis-
tributed nature of Spark.

7 Conclusions

In order to explore how parallel metaheuristics could
take advantage of the recent advances in cloud pro-
gramming models, in this paper an island-based Spark
implementation (SiPDE) of the DE algorithm is pro-
posed and evaluated. A thorough evaluation of this
implementation was conducted both on a local cluster
and on the Microsoft Azure public cloud, using both
synthetic and real biology-inspired benchmarks. The
experimental results show that the proposal achieves
not only competitive speedup against the serial imple-
mentation, but also good scalability when the number
of nodes grows. Results using the Azure cloud resources
show similar behavior in terms of convergence and scal-
ability as using resources from a local cluster, but at the
expense of a not negligible overhead.
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Due to the complexity of the problems being considered
in this work, SiPDE implementation was extended to allow
users to launch either homogeneous or heterogeneous
islands to enhance diversity and improve the convergence
rate. The results obtained show that the heterogeneous
configuration achieves an adequate balance between explo-
ration and exploitation, thus, it outperforms the homoge-
neous one for the class of problems considered.

A comparison with a MapReduce implementation
has been also carried out. The experimental results
show that MapReduce has significantly higher over-
head per iteration than Spark, mainly caused by longer
task initialization times and HDFS access, and that
Spark has the best support for iterative algorithms, as
it reduces the overhead between the first and subse-
quent iterations.

Although this cloud-based implementation was
designed and tested with focus on the field of parameter
estimation problems in computational biology, it can
also be directly applied to solve arbitrary global optimi-
zation problems. In particular, we believe that both the
description of the Spark implementation and the results
obtained in this work can be useful for those researchers
interested in the potential of new cloud programming
models for developing parallel metaheuristic methods.

The source code is made publicly available at https://
bitbucket.org/xcpardo/sipde.
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