
Noname manuscript No.
(will be inserted by the editor)

Hybrid parallel multimethod hyperheuristic for
mixed-integer dynamic optimization problems in
computational systems biology

Patricia González · Pablo
Argüeso-Alejandro · David R. Penas ·
Xoan C. Pardo · Julio Saez-Rodriguez ·
Julio R. Banga · Ramón Doallo

Received: date / Accepted: date

Abstract This paper describes and assesses a parallel multimethod hyper-
heuristic for the solution of complex global optimization problems. In a mul-
timethod hyperheuristic, different metaheuristics cooperate to outperform the
results obtained by any of them isolated. The results obtained show that the
cooperation of individual parallel searches modifies the systemic properties
of the hyperheuristic, achieving significant performance improvements versus
the sequential and the non-cooperative parallel solutions. Here we present and
evaluate a hybrid parallel scheme of the multimethod, using both message-
passing (MPI) and shared memory (OpenMP) models. The hybrid paralleliza-
tion allows to achieve a better trade-off between performance and computa-
tional resources, through a compromise between diversity (number of islands)
and intensity (number of threads per island). For the performance evaluation
we considered the general problem of reverse engineering nonlinear dynamic
models in systems biology, which yields very large mixed-integer dynamic op-
timization (MIDO) problems. In particular, three very challenging problems
from the domain of dynamic modelling of cell signaling were used as case stud-
ies. In addition, experiments have been carried out in a local cluster, a large
supercomputer and a public cloud, to show the suitability of the proposed
solution in different execution platforms.

P. González, P. Argüeso-Alejandro, X.C. Pardo and R. Doallo
Computer Architecture Group, CITIC, University of A Coruña (Spain)
E-mail: patricia.gonzalez@udc.es

David R. Penas
MODESTYA research group, IMAT, University of Santiago de Compostela (Spain)

Julio Saez-Rodriguez
Heidelberg University, Faculty of Medicine, Institute for Computational Biomedicine, Bio-
quant (Germany)

Julio R. Banga
BioProcess Engineering Group, IIM-CSIC, Spanish National Research Council (Spain)



2 Patricia González et al.

Keywords reverse engineering · computational systems biology · mixed-
integer optimization problems · parallel metaheuristics · global optimization ·
multimethod optimization

1 Introduction

Global optimization methods can be used to solve complex problems in many
domains of science and engineering. They are attaining increasing popularity
in many key areas of the life sciences, including bioinformatics and compu-
tational systems biology [7]. In the particular case of computational systems
biology, there is a great interest in reverse engineering, i.e. modeling biosystems
by means of dynamic models which are able to capture well their time-varying
nature [49]. Many research efforts are focused in building and exploiting these
dynamic models through mathematical optimization techniques. Here we con-
sider one of the most general and difficult classes, mixed-integer dynamic op-
timization (MIDO), where part of the decision variables are discrete (binary
or integer) [10].

Though there is a fair amount of different global optimization methods,
metaheuristics have stood out as a competitive alternative for complex prob-
lems. Metaheuristics employ learning strategies to build the solution progress
and find, in an efficient way, near-optimal solutions [28]. They consist of an
iterative generation process that guides a heuristic through the connection of
different ideas for exploration (global search) and exploitation (local search)
of the search spaces.

Though it is granted that the use of metaheuristics often allows a significant
reduction of the computational complexity of the search process, select and
apply an appropriate metaheuristic for a given problem in an efficient way is a
challenging exercise. First, it is difficult to know in advance which metaheuris-
tic will be the most suitable for solving the problem at hand. Once selected,
a metaheuristic algorithm started from different initial solutions will explore
different regions of the solution space and return different optimized solutions.
Moreover, using the same metaheuristic algorithm with different configuration
settings will give different results, and there will even be large variations in
performance between different instances of the same problem. Furthermore,
metaheuristics remain time consuming for very hard complex problems. High
performance computing (HPC) may stand for an effective means to overcome
these issues.

In this work we propose a multimethod hyperheuristic that is suitable for
the solution of very complex mixed-integer nonlinear programming (MINLP)
problems. In our proposal, multiple different global search algorithms are exe-
cuted concurrently and cooperate through the exchange of information. In [21]
we have explored this idea in nonlinear programming (NLP) problems, demon-
strating that, if we can devote a significant amount of resources to the search,
an adaptive multimethod would achieve a more effective exploration of the
search space. In [20] we have preliminary extended this idea to deal with



Title Suppressed Due to Excessive Length 3

MINLP problems through the inclusion of an efficient local solver for this
class of problems, changes to the self-adaptation mechanism to avoid prema-
ture stagnation of the convergence in this kind of problems, and the addition of
new mechanisms to ensure diversity while keeping parallel cooperation. How-
ever, the preliminary evaluation performed in [20] already pointed out several
further directions to be explored, that have been considered in this extended
work, whose main contributions are:

– (1) a shared memory parallelization of the cost function evaluations using
OpenMP, maintaining a loosely-coupled coarse-grained parallelization of
the search diversification and the cooperation among the different meth-
ods using MPI. This release of the multimethod hyperheuristic for MINLP
problems was pointed out as future work in [20]. The hybrid MPI+OpenMP
implementation improves the scalability of the approach allowing to bal-
ance the computational resources between diversity and intensity in the
search.

– (2) new adjustments in the specific mechanisms used to avoid premature
convergence in the case of MINLP problems, in order to fix some of the
problems that arose in the preliminary evaluation. The main one is the
setting of the parameters used to trigger reconfiguration requests when a
metaheuristic stagnates, which are now defined by the user. The values
of these parameters were hard-coded in previous implementations of the
method, preventing them from adapting to different metaheuristics and
problems.

– (3) an exhaustive assess of the proposed implementation, comparing it
with other single-method and non-cooperative parallel approaches. We are
interested in applying this framework to the reverse engineering problem
in computational systems biology, which yields very large MIDO-MINLP
problems. Thus, in this work we have exhaustively evaluated the proposed
multimethod using very challenging benchmarks in the field of cell sig-
naling, that plays a key role in many application domains, such as the
development of novel therapies in complex diseases such as cancer.

– (4) an evaluation in different infrastructures, from local clusters to super-
computers and public clouds. We believe that the results obtained could be
particularly appealing for those interested in the potential of HPC infras-
tructures in general, and cloud-based platforms in particular, for developing
metaheuristic methods in global optimization problems.

The organization of the paper is as follows. Section 2 presents a brief re-
view of related work. Section 3 describes in depth the proposed multimethod
approach. Section 4 covers an introduction to the reverse engineering of cell
signaling phenomena, an explanation of the framework used in this work, and
the description of the three challenging case studies used as benchmarks. An
exhaustive performance evaluation of the multimethod proposed, attaining di-
versity in the different islands by means of two different metaheuristics and
different configuration parameters, is reported in Section 5. Finally, conclu-
sions and future work are detailed in Section 6.



4 Patricia González et al.

2 Related Work

This section covers related work in the areas where this paper attempts to
make contributions: on the one hand, in the development of multimethod
hyperheuristics and, on the other hand, in the parallelization itself and its
assessment in different HPC infrastructures, in particular, comparing the cloud
with traditional architectures.

A large number of metaheuristics has been developed to address many dif-
ferent types of global optimization problems. However, it is difficult to predict
which of the existing algorithms will be the most appropriate for a specific
problem. The use of more than one algorithm becomes an attractive option
in this context. A multimethod hyperheuristic consists of multiple algorithms
that run and cooperate to achieve a better solution than the solution any
of them could find separately. This has been shown up in different fields,
including parallel cooperative search methods [12], memetic algorithms [11],
algorithm ensembles [53], algorithm portfolios [37], and hyperheuristics [8].
A self-adaptive Differential Evolution (DE) algorithm presented in [39], that
makes use of DE learning strategies that are weighted based on the algorithm
success, can be considered one of the first attempts in this direction. An-
other example is the heterogeneous cooperative algorithm presented in [32],
that employs different evolutionary algorithms to update the subpopulations
in a cooperative algorithm framework. In [5] the use of a parameterized meta-
heuristic facilitates experimentation with different metaheuristics and hybri-
dation/combinations to adapt them to the particular problem at hand. Also,
the multimethod hyperheuristic algorithm that makes use of a number of com-
mon metaheuristics presented in [22] has obtained promising results in terms
of solution quality and algorithm robustness. Finally, among all the examples
found in the literature, AMALGAM-SO [50] is probably the most recognized
one. It consists of a population-based genetic adaptive method that updates
the allocation of algorithms during the optimization run. In this paper we de-
scribe and exhaustively evaluate a multimethod approach that incorporates a
self-adaptive mechanism, so that the cooperation between different methods
guides the behavior of the algorithm, dynamically changing the configuration
parameters during the execution.

Current trends in computer architecture, with the proliferation of multicore
systems and the incursion of the accelerators (mainly GPUs, but also others
such as FPGAs), make the use of parallel computing increasingly common.
Additionally, the cost/performance ratio of HPC architectures is continuously
decreasing and, with the advent of cloud computing, it is now more feasible to
access a large amount of distributed resources. Thus, it is not surprising that
the parallelization of very time-consuming methods, such as metaheuristics,
has received much attention. Many different parallel solutions have been pro-
posed in the literature. Most of them are parallel implementations based on
traditional parallel programming interfaces, such as MPI or OpenMP, executed
in traditional parallel infrastructures, such as local clusters or supercomputers.
A nice review can be found in [1] and, more recently, in [2]. In this paper we



Title Suppressed Due to Excessive Length 5

propose a parallel implementation using an hybrid approach with MPI and
OpenMP. This parallelization allows to achieve a better trade-off between di-
versity and intensity in the searches, which is specially effective in very hard
problems, like those that are the objective of this work.

Recently, some attention has also been focused on cloud-based parallel
metaheuristics [30,26,48,40,27,45,46] using MapReduce [13] and Spark [54].
The performance of MPI applications in the cloud has also received attention
lately, though only few studies have been carried out in the specific field of
parallel metaheuristics [19,43]. Most of the studies found in the literature
use classical MPI benchmarks to compare the performance of MPI on public
cloud platforms [15,31,33]. More recently, an extensive analysis to detect the
more critical issues and bottlenecks of HPC applications in the cloud has
been carried out in [18]. These works conclude that clouds were not designed
for running tightly-coupled HPC workloads, such as MPI applications. The
virtualization overhead, together with the lack of high-bandwidth and low-
latency networks, degrade the performance of such applications in the cloud.
However, the parallel implementation presented in this work is based on an
island model, which drastically reduces the inter-process communications. This
fact, together with the asynchronous communication protocol proposed and
the star topology used in the cooperation stage, lead to a loosely-coupled
parallel application, more suitable for the cloud, as it will be demonstrated in
Section 5.

3 Self-adaptive cooperative multimethod

Metaheuristic algorithms are extraordinarily multifaceted. By varying the rep-
resentation, the operators, the population size, the initialization, the selection
mechanism, and other parameters, they lead to a varied collection of search
procedures. Thus, it is not easy to know in advance which of the numerous
existing choices will be the most suitable for solving a given problem. The
self-adaptive cooperative multimethod (saCMM) aims to help overcome this
issue by serving much like a swiss army knife: a handy set of tools that can
be used to address a variety of problems. However, this versatility comes at a
cost. For each application there may be probably a better metaheuristic de-
vised specifically for it. Still, if you don’t know exactly which metaheuristic
will face your problem, the flexible nature of the multimethod provides with
the ability to address effectively a wide variety of problems.

The multimethod strategy pursues the convergence improvement boost-
ing the diversification in the search by means of an island-model approach.
The global execution is divided into processes (islands) where single methods
(different metaheuristics) are executed isolated, while sparse information ex-
changes are performed to link different islands, thus modifying the systemic
properties of individual searches.

The proposed saCMM method is graphically illustrated in Figure 1. A
loosely-coupled coarse-grained parallelization of the search diversification is



6 Patricia González et al.

Fig. 1: Representation of the saCMM method: a master-slave approach with
star topology and asynchronous communication protocol, that is implemented
using MPI+OpenMP.

proposed, following a master-slave approach in which each slave is an island
executing a different metaheuristic. The interconnection topology used is a
star, in which the master process is in the center of the star and the islands
exchange information through the master. The master process plays a key
role in the saCMM method. First, it is in charge of the cooperation between
islands. In order to achieve a more effective cooperation, in this proposal the
exchange of information is driven by the quality of the solutions obtained, and
not by the elapsed time as in most of the traditional implementations of island
models. Second, it monitors the long-term behavior of the islands and adapts
the configuration parameters during the execution to improve the search of
the parallel hyperheuristic.

To efficiently handle MINLP problems, the Mixed-Integer Sequential Qua-
dratic Programming (MISQP) [17,16] solver is used in each metaheuristic as a
local solver. A different frequency is used to trigger it on each island in order
to further increase diversity in the search. Also, to further improve the perfor-
mance of the method, a hybrid MPI+OpenMP implementation is provided.
The message passing paradigm, using MPI, is applied to implement an asyn-
chronous communication protocol between the islands and the master process.
The OpenMP framework is used to achieve a shared memory parallelization
of the cost function evaluations within each island.

A flowchart of the steps followed by the master can be seen in Figure 2.
In essence, the master is a loop waiting to receive communications from the
islands. Note that the communication protocol implemented uses MPI asyn-
chronous non-blocking operations in order to avoid stalling processes unneces-
sarily. The received communications at the master can be of three types: (1) a
promising solution, (2) a reconfiguration request, or (3) a termination request.



Title Suppressed Due to Excessive Length 7

Fig. 2: Flowchart of the master process of saCMM.

Each island sends the solution that locally improve the best known solu-
tion at that moment to the master. However, it is well known that an excess
of cooperation between the islands can have a counterproductive effect in the
parallel search, since it could harm the diversity and lead to what is called
premature convergence to local optima, from which it could be hard to get
out. This effect, common in many problems, has already arisen in the evalua-
tion of the previous version of saCMM for MINLP problems [20]: a promising
incoming solution in an island acts as an attractor for the members of the
population, bringing them fast to the vicinity of this new value. To avoid this
effect several new mechanisms have been added to this version of saCMM, both
in the master and in the islands. For instance, the master includes a threshold
to decide which of the solutions coming from the islands deserves to be con-
sidered as a cooperative solution and be distributed to the rest. In the case
of MINLP problems, the threshold starts with a cautiously chosen high value,
so that most of the solutions that arrive are discarded and only those that
significantly improve the global best known solution so far are propagated.
However, as the search progresses, the ratio of improvement of the new solu-
tions also decreases, especially as they approach the global optimum. Thus,
the threshold is adapted dynamically during the search, decreasing according
to the ratio of improvement of the solutions.

The master uses a scoreboard to keep up-to-date information on the punc-
tuation of each island based on the success of its search, thus, the scoreboard
is updated when an island cooperates with a promising solution. The infor-
mation maintained in the scoreboard is used when a reconfiguration request
arrives from an island. An island requests a reconfiguration when it is not able
to improve its local best known solution but it frequently receives promising
cooperative solutions from other searches. That is, each island decides whether



8 Patricia González et al.

Fig. 3: Flowchart of the islands of saCMM.

it is stagnated in the search, and requests the master to send new configura-
tion parameters to start a different metaheuristic. The master will send the
parameters of one of the searches in the upper part of the scoreboard ordered
by punctuation.

Finally, when the master receives a termination request from an island is
because the stopping criterion was met, so the master sends a termination
message to the rest of the islands to finish the execution.

Figure 3 summarizes the steps followed by the islands. First and foremost,
the islands execute a sequential metaheuristic (single method) using certain
configuration parameters that are different for each of them to improve diversi-
fication in the search. Additionally, since the evaluation of the cost function is
one of the most time-consuming tasks in this kind of problems, an intra-node
parallelization is used in each island to perform the evaluations of the cost
function in parallel. Algorithm 1 shows the pseudocode of the evaluation step
that has been implemented as an OMP parallel loop. Note that a dynamic
schedule is used so that the evaluations are handed out to threads as they
complete their previously assigned evaluation.

Since the communication protocol implemented is asynchronous, during
the progress of the search in each island, a reception memory buffer keeps
the messages that arrive from the master to process them afterwards. Once



Title Suppressed Due to Excessive Length 9

Algorithm 1: Parallel evaluation of the cost function

neval = 0;
$$ parallel do (dynamic schedule, private(eval,newsol,i)
reduction(+:neval));

for i=1 to numSolutions do
newsol = solutions(:,i);
eval = f eval(newsol);
neval ++;

end
$$ end parallel do;

one iteration of the metaheuristic is finished, it is followed by a reception
step where each island inspects its reception buffer. There are three types of
messages that can be received from the master: (1) a promising solution, (2)
a reconfiguration message, and (3) a termination request.

First, when an island receives a new promising solution that improves the
local best known solution, it replaces the so-called cooperative entry of the
island population. Note that only one entry in the population is labeled as
the cooperative entry, so that promising solutions from other islands can not
overwhelm the island population. This allows to preserve the diversity in the
islands, to try to avoid the premature convergence in MINLP problems. Sec-
ond, the island may also receive a message with the new configuration settings
it had previously requested. Note that the request for a reconfiguration is also
an asynchronous non-blocking operation, thus, the execution proceeds until
the message with the new configuration settings arrives. Again, in the case
of difficult problems, and in particular in the case of MINLP problems, is-
lands easily stagnate due to a quick loss of diversity when the members of the
population start to converge to the same local optimum. Thus, an additional
mechanism is used to inject diversity into those situations, besides changing
the configuration settings. Most of the members of the population (all of them
except the best known solution and another random entry) are reinitialized
randomly to inject more randomness into the reconfigured islands. Third, a
termination message may also arrive to request that the execution on the
island be stopped.

Once the reception step is over, each island sends its best known solution to
the master as a promising solution, only if it improves the global best known
solution. Then, an adaptive step is executed to decide if the island search
is progressing or not in order to request new configuration settings from the
master. The reconfiguration request is based on both the number of evalua-
tions performed since the last time the island sent a promising solution to the
master (i.e. whether the island is performing an unproductive effort), and the
trade-off between received and sent solutions (i.e. whether the other islands are
being more successful). The parameters used by the islands to decide if they
are progressing were hard-coded in the previous implementations of saCMM.
However, preliminary results showed that, based on the behavior of differ-



10 Patricia González et al.

Fig. 4: Gantt diagram showing the execution of different islands and the co-
operation between them. Light blue areas represent global search steps, green
areas represent local search steps, red dots represent asynchronous cooperation
and yellow dots represent reconfiguration steps.

ent searches (i.e. different metaheuristics, different configurations of the same
metaheuristic, or even the same configuration applied to different problems),
the trigger of a reconfiguration request is problem-dependent. Thus, in the
new version of the saCMM implementation, the trigger of the reconfiguration
request can be defined by the user. Finally, the stopping criterion is checked,
starting a new iteration of the metaheuristic if it is not fulfilled.

In order to illustrate how the saCMM works, Figure 4 shows a Gantt dia-
gram of an execution using 10 islands. Each island starts a metaheuristic with
a different trade-off between global and local searches, ranging from aggres-
sive ones, which perform frequent local searches, to conservative ones, which
perform local searches only sporadically. It can be observed that conservative
configurations, with few local searches, outperform aggressive configurations.
During the execution, unsuccessful islands detect stagnation and request a
reconfiguration from the master. Then, the master sends the configuration
settings of the most promising islands to those that made the request. That is
the case of islands 0, 2, 4, 5, 6 and 7 that, at a certain point during their execu-
tion, request a reconfiguration and change from an aggressive to a conservative
configuration. It can be seen in the figure that, after the reconfiguration, they
begin to cooperate again. Note that, since the most promising configuration
can change during the progress of the search, not all the islands are allowed to
be reconfigured. In the example, the islands 8 (a conservative one) and 9 (an
aggressive one) are not reconfigured. This prevents the loss of diversity in the
group of metaheuristics being explored, and avoids that all the islands end up
executing the same metaheuristic in the long term.



Title Suppressed Due to Excessive Length 11

4 Cell signaling: framework and case studies

Reverse engineering combines mathematical modeling with experimental data
in order to infer, analyze and understand the functional and regulatory proce-
dures that control the behavior of biological systems. Reverse engineering of
cell signaling constitutes a major area in systems biology [3]. In this work, we
have considered three case studies involved in cell signaling processes.

Most of these models have to cope with many trials, such as dealing with
dynamic behavior [49]. The logic-based ordinary differential equations (ODE)
framework has been found particularly useful in this kind of problems [52].
In particular, we have applied the mixed-integer global optimization approach
proposed in [24]. In this approach, the problem of identifying the logic gates
is formulated as a simultaneous model selection and parameter identification
problem, which corresponds to a mixed-integer dynamic optimization (MIDO)
problem.

The general MIDO problem is usually formulated as finding the set of dis-
crete, time-dependent (stimuli or controls) and time-independent parameters,
to optimize a predefined cost function, while satisfying a set of dynamic and
algebraic constraints. The MIDO problem is commonly formulated in mathe-
matical form as:

Find u(t), i(t), p and tf so as to minimize (or maximize):

J = Gtf (x,u, i,p, tf ) +

∫ tf

t0

F (x(t),u(t), i(t),p, t)dt (1)

subject to:

f(ẋ(t),x(t),u(t), i(t),p, t) = 0, x(t0) = x0 (2)

g(x(t),u(t), i(t),p, t) ≤ 0, l = 1,me +mi (3)

uL ≤ u(t) ≤ uU , (4)

iL ≤ i(t) ≤ iU , (5)

pL ≤ p ≤ pU , (6)

where x(t) ∈ X ⊆ Rnx is the vector of state variables, ẋ(t) is its time
derivative, u(t) ∈ U ⊆ Rnu is the vector of real valued control variables,
i(t) ∈ I ∈ Zni is the vector of integer control variables, p ∈ P ⊆ Rnp is the
vector of time-independent parameters, tf is the final time of the process, me,
mi represent the number of equality and inequality constraints, f is the set of
ordinary differential equations describing the dynamics of the system (plus the
corresponding initial conditions), g is the set of state constraints (path, point-
wise and final time constraints), and uL, iL, pL, uU , iU , pU correspond to the
lower and upper bounds for the control variables and the time-independent
parameters.

In this work, the above formulation is used to identify at the same time
the underlying network topology, its regulatory structure, the time-dependent
controls and the time-invariant model parameters, compatible with existing



12 Patricia González et al.

experimental data. From the variety of methods for the numerical solution
of dynamic optimization problems, we have followed the direct approach de-
scribed in [24] that consists of two steps. First, the original MIDO problem
is translated into a mixed-integer nonlinear programming (MINLP) problem.
Then, a numerical solution step is applied, in which the solution of the MINLP
problem is actually obtained by means of the multimethod proposed.

The next subsections briefly describe the three case studies used in this
work as benchmarks to assess the performance of the saCMM multimethod
for solving complex MINLP problems.

4.1 Synthetic signaling pathway (SSP)

The first case study considered in this work is a synthetic signaling pathway de-
scribed in [29]. This benchmark, from now on SSP, considers a dynamic model
composed of 26 ordinary differential equations and 86 continuous parameters.
Despite being a synthetic problem, it is considered a reasonable representation
of a signaling pathway. In fact, it was originally used to illustrate the capabil-
ities and limitations of different formalisms related to logic-based models.

An expanded version of this model, containing every possible AND/OR
logic gate given the initial graph structure, is obtained using the methodology
described in [41]. The final optimization problem contains 120 parameters,
being 86 continuous and 34 binaries. The model and experimental setup were
implemented using AMIGO [6], and then exported to C code in order to apply
the saCMM method presented here.

4.2 Signaling pathway applied to liver cancer (HepG2)

The reverse engineering of a logic-based ODE model using liver cancer data
(a subset of the data generated by [4]) is used as the second case study, called
HepG2 for short. The dataset consists of phosphorylation measurements of
proteins (used as proxy of their activation), from a hepatocellular carcinoma
cell line (HepG2) at 0, 30 and 180 minutes after perturbation.

The R version of CellNOpt [47] is used to preprocess the network. It is
compressed to remove as many non-observable/non-controllable species as pos-
sible. All gates that are consistent with the network are generated, adding
hyperedges (AND gates) from all pair of inputs (the OR gates are implicit).
The expanded network has 109 hyperedges and 135 continuous parameters. A
parser that generates a C model file and Matlab scripts compatible with the
AMIGO toolbox [6] is used to obtain the logic-based ODE model.

Finally, the optimization problem to solve contains a total of 244 param-
eters, being 135 continuous and 109 binaries. The time-series dataset is quite
rich from the point of view of information content: it includes 64 perturbations
comprising 7 ligands and 7 small-molecule inhibitors. The ligands were cho-
sen to activate inflammation and proliferation pathways, and the inhibitors to



Title Suppressed Due to Excessive Length 13

block the activity of specific proteins. Data are normalized by rescaling so that
they are between 0 and 1. The model has a total of 25 states, 16 of them cor-
responding to observed species. The initial conditions for the other 9 species
have to be estimated. To avoid increasing the problem size and multi-modality
unnecessarily, the estimated initial conditions were assumed the same for each
experiment reported in Section 5.

4.3 Breast cancer network inference challenge (HPN-DREAM)

As the third case study we consider an extremely difficult problem which has
been made publicly available in the context of the DREAM challenges 1. Pre-
sented as collaborative competitions, the DREAM challenges brings forth a fo-
rum to crowdsource fundamental problems in systems biology and medicine[42].
The inference of signaling networks [38,25] is an example.

The problem used here as a benchmark is obtained from the HPN-DREAM
breast cancer challenge. The data-set incorporates time-series acquired under
eight extracellular stimuli, under four different protein inhibitors and a control,
in four breast cancer cell lines [25]. Overall, the problem contains a total of
828 decision variables (690 continuous and 138 binaries). Furthermore, the
HPN-DREAM is an extraordinary defiant problem even from a computational
perspective, with a vast execution time and an unknown final target value.

5 Experimental results

The aim of this section is to evaluate, as a proof of concept, the proposed self-
adaptive cooperative multimethod (saCMM) to solve complex MINLP prob-
lems. Currently, two metaheuristics are implemented in the saCMM method
proposed, the Differential Evolution (DE) [44], with the enhancements de-
scribed in [34], and the enhanced Scatter Search (eSS) [14], using the imple-
mentation outlined in [35]. However, in saCMM each island performs one of
these metaheuristics with different configuration parameters, which leads to
completely different searches. At the start of every execution of saCMM, half
of the islands perform DE and the other half eSS with different initial pop-
ulations and configuration parameters. For the experiments reported in this
section, Table 1 shows the initial configuration of the different islands. Some
parameters are common to both metaheuristics: the factor used to calculate
the reference set size or population size (size factor) for each island, the pa-
rameter to balance the weight between quality and diversity when choosing a
candidate as the initial point for the local search (balance), and the parame-
ter that sets how often (in number of iterations) a local solver is performed
(local.n). Other parameters are specific of the DE method: the mutation fac-
tor (F ), the crossover constant (CR), and the mutation strategy (MSt.). As

1 www.dreamchallenges.org



14 Patricia González et al.

Table 1: Initial configuration of the different islands for the experiments in this
section. Note that the islands could be reconfigured during runtime.

DE islands
#Island size factor (*) balance local.n F CR MSt.

1 1 0.0 1 0.9 0.8 best/2
2 3 0.0 1000 0.7 0.9 best/1
3 5 0.25 10 0.5 0.9 best/2
4 10 0.5 20 0.9 0.9 best/1
5 15 0.25 100 0.7 0.7 best/2
6 1 0.25 1000 - - -
7 3 0.25 15 - - -
8 5 0.25 7 - - -
9 10 0.0 1000 - - -
10 15 0.0 1 - - -

(*) For DE islands the population size is computed as 50 ∗ factor, while for eSS islands the

reference set size is calculated by means of the polinomial: x2 − x − factor ∗ Nparameters

the execution proceeds, the islands reconfigurate themselves according to the
execution progress and the successful configurations.

Using the three different case studies described in Section 4, different ex-
periments have been orchestrated to assess: (1) the impact of the cooperation
and self-adaptive mechanisms included in saCMM versus a single-method and
other parallel non-cooperative approaches, (2) the impact of the diversifica-
tion comparing the performance of the proposal with other parallel cooper-
ative approaches, (3) the scalability of the coarse-grained parallelization, (4)
the performance of the hybrid approach and its impact in the scalability, (5)
the performance obtained in different infrastructures and its significance, and
(6) the impact of the proposal on the solution of very complex MIDO/MINLP
problems.

It should be noted that, for a given model structure in a reverse engineering
problem, datasets of different sizes may result in global optimization problems
of different difficulty due to the different associated ill-conditionings. In this
respect, note that more important than the size of the dataset is the informa-
tion it contains. Further, how flexible the dynamics are also can play a major
role in the resulting multimodality of the problem. For instance, systems ex-
hibiting oscillatory dynamics can result in extremely hard problems even for
small number of parameters. For an in-depth discussion about the impact of
these issues in reverse engineering problems in system biology the reader is
referred to [49,24].

Most of the experiments in this section were carried out in a local cluster
named Pluton. Each compute node in Pluton consists of 2x8 cores Intel Xeon
E5-2660 @2.60 GHz processors and 64 GB of RAM.

Assessing the performance of metaheuristics in general, and their parallel
implementations in particular, is not an easy task mainly due to their variabil-
ity and stochastic nature. Comparing the performance of different proposals is



Title Suppressed Due to Excessive Length 15

therefore even more complex. Experiments were designed to perform analyses
from both a horizontal view [23], that is, assessing the performance by mea-
suring the time needed to reach a given target value (value-to-reach, or VTR
from now on), and from a vertical view, that is, evaluating the performance
for a predefined effort that for these experiments is the maximum execution
time. There are also some experiments that combine the two stopping criteria,
a VTR and a maximum execution time. Due to the substantial dispersion of
the results, 20 executions have been performed for each experiment.

5.1 Performance of the coarse-grained parallelization

5.1.1 Impact of the cooperation and self-adaptive mechanisms

In these experiments, the saCMM method presented has been compared with
the following different methods in order to illustrate the impact of the coop-
eration and self-adaptive mechanisms in the proposal success:

– Single metaheuristics (Mx): the same different metaheuristics that are used
in each island of the saCMM method were executed in isolation and se-
quentially. This experiment allows to compare the performance of the single
sequential methods with the impact of the parallelization, in which multiple
executions can be done concurrently.

– An embarrassingly parallel non-cooperative multimethod (MM): that con-
sists of the same different metaheuristics that are used in the saCMM
method being executed in parallel without cooperation between them. The
reported result would be the best value achieved by any of them. This ex-
periment measures the impact of the cooperation and self-adaptation with
respect to a parallel solution without such mechanisms.

– A sequential saCMM (seq saCMM): that is, a saCMM execution with
multiple searches in different islands but using only one core. Note that
seq saCMM is not a serial implementation of the saCMM method, but the
saCMM method executed on a single core. The purpose of this experiment
is to show that the multimethod is also suitable in a sequential environ-
ment to improve the solution of a problem when it is not known a priori
which of the different metaheuristics is the most appropriate.

Figure 5 shows the results of the best value obtained (fbest) in these ex-
periments for both the SSP and HepG2 minimization problems. For SSP, a
maximum execution time of 1 hour was used and for HepG2, due to its larger
computational complexity, the maximum execution time was set to 3 hours. In
both cases a configuration with 10 islands was used. For each experiment, the
best value achieved is plotted and violin plots are used to also show the statis-
tical distribution of the results. Every single metaheuristic (that is, any of the
islands of the saCMM isolately) is represented by the letter ’M’ followed by
a number from 1 to 10 (Mx ). It can be seen in the figure that the dispersion
is much larger in any of these methods than in the last three. The sequen-
tial saCMM (seq saCMM ) improves the results of the single metaheuristics in



16 Patricia González et al.

terms of dispersion; however, as expected, the parallel versions are the ones
that obtain the best results: the non-cooperative multimethod (MM ) obtains
encouraging results using an embarrassingly parallel solution, and the saCMM
outperforms them by including cooperation and adaptation. In these experi-
ments seq saCMM achieves an average best value of 50±16 for SSP in 1 hour
and 88±7 for HepG2 in 3 hours, while saCMM shows a speedup of 7.6x and
12.1x respectively to reach the same values. Likewise, MM achieves an average
best value of 25±9 for SSP in 1 hour and 73±12 for HepG2 in 3 hours, and
saCMM, compared to MM, achieves a speedup of 2.9x and 3.9x respectively.
Thus, saCMM demonstrates its performance impact when compared to the
same parallel islands running isolated without cooperation between them or
with self-adaptation during run-time.

5.1.2 Impact of the diversification

Previous results illustrate the improvement achieved through the cooperation
between different islands. It should be noted that different metaheuristics can
have different performance as the execution progresses, that is, a method can
be very promising at the beginning of execution and stagnate before reaching
the global optimum, and conversely, it can start slowly and end up being the
most promising. This fact is illustrated in figure 6 that represents the progres-
sion of the search at different times for saCMM using the SSP benchmark. As
it can be seen, after one hour of execution, most of the best values obtained
in different runs of the experiment were obtained by eSS islands, while after
3 hours, and specially after 6 hours, most of the best values were achieved by
DE islands.

In order to evaluate the impact of diversification on the islands, a series
of experiments have been carried out to compare the saCMM method with
other cooperative and adaptive parallel methods. These methods include the
same enhancements as saCMM but don’t perform different metaheuristics on
each island. Two parallel methods were considered: (1) saCDE, that only uses
the DE metaheuristic, and (2) saCeSS, that only uses the eSS metaheuristic.
Table 2 summarises the results obtained for the SSP and HepG2 benchmarks
both for a horizontal view, using as stopping criterion a specific VTR, and for
a vertical view, using as a stopping criterion a maximum time. In the table the
average and median execution time for the horizontal view and the average
and median best value for the vertical view, are reported. Since the dispersion
of the results is also significant to assess the robustness of the method, Fig-
ure 7 also shows the violin plots of the results of the horizontal view. These
results show that, for the SSP benchmark, the saCeSS method outperforms
saCDE. However, for the HepG2 benchmark, saCDE outperforms saCeSS. For
both benchmarks, either saCMM performs close to the best of the other two
methods or outperforms them both thanks to the cooperation between the
single-method metaheuristics.

To test the statistical significance of the results, the Wilcoxon Rank-Sum
test [51] was used, which verifies the null hypothesis that two populations



Title Suppressed Due to Excessive Length 17

(a) Results for SSP using as stopping criterion a predefined effort of 1 hour.

(b) Results for HepG2 using as stopping criterion a predefined effort of 3 hours.

Fig. 5: Violin plots comparing the dispersion of the best values obtained
by 10 single metaheuristics (Mx ), the saCMM method executed in 1 core
(seq saCMM ), and the parallel embarrassingly non-cooperative method (MM)
and saCMM, both executed in 10 cores.

have the same continuous distribution. Table 3 shows the results of the test
for the best values of the vertical view reported in Table 2 with a confidence
level of 0.95. As it can be seen, for the SSP benchmark the p-value is smaller
than the significance (0.05) when comparing the saCeSS and saCDE methods.
Thus, saCeSS clearly outperforms saCDE for this benchmark. As expected,
saCMM also achieves a smaller p-value than the significance when compared
to saCDE. But when compared to saCeSS, the p-value obtained is greater than
the significance, because for this benchmark the saCMM and saCeSS methods



18 Patricia González et al.

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●● ●●
●

●

●
●

●
●

●

●

●

●
●

●

●

0

20

40

60

1H 2H 3H 6H

Execution Time

fb
es

t

Type
●

●

DE

eSS

SSP benchmark

Fig. 6: Violin plots comparing the dispersion of the best values obtained by
the saCMM method during the progression of the search. The dots represent
the best value for each experiment out of a total of 20, colored according to
the metaheuristic used on the island that obtained the best solution

Table 2: Performance of the proposed self-adaptive multimethod compared
with other parallel but single-method approaches. Results were obtained using
10 islands for both horizontal and vertical views.

Horizontal view
method VTR avg. time (s) median time (s)

SSP
saCDE 15 4138±2466 3355
saCeSS 15 3384±1765 3362
saCMM 15 3143±2072 2679

HepG2
saCDE 45 24844±21233 15172
saCeSS 45 27336±19483 18526
saCMM 45 14216±7507 12260

Vertical view
method effort (s) avg. fbest median fbest

SSP
saCDE 1500 38.27±12.44 35.58
saCeSS 1500 20.42±3.50 20.77
saCMM 1500 19.92±5.38 18.47

HepG2
saCDE 10800 57.81±9.85 56.11
saCeSS 10800 56.51±9.06 57.92
saCMM 10800 49.87±8.81 47.64

have similar performances. The same could be said about the saCDE and
saCeSS performances with the HepG2 benchmark, the p-value is greater than
the significance and the null hypothesis is accepted. However, the p-value is less
than the significance when comparing saCMM with the saCDE and saCeSS
methods, because saCMM outperforms both in this benchmark.



Title Suppressed Due to Excessive Length 19

saCDE saCeSS saCMM

0

5000

10000

15000

Ex
ec
ut
io
n 
tim

e 
(s
)

(a) SSP benchmark

saCDE saCeSS saCMM

0

50000

100000

Ex
ec
ut
io
n 
tim

e 
(s
)

(b) HepG2 benchmark

Fig. 7: Violin plots of the execution times of the horizontal view reported in
Table 2.

Table 3: Wilcoxon rank-sum test with a significance level α=0.05.

benchmark tests W p-value

SSP
saCeSS vs saCDE 391 2.563E-07
saCMM vs saCDE 385 6.015E-07
saCMM vs saCeSS 231 0.409

HepG2
saCeSS vs saCDE 215 0.6949
saCMM vs saCDE 293 0.01234
saCMM vs saCeSS 283 0.02564

In light of these results, we can conclude that when a single-method meta-
heuristic performs better than others for a problem, saCMM will perform sim-
ilarly to that metaheuristic, because the adaptive procedure will shove most
of the islands to the most successful configuration. Besides, if several single-
method metaheuristics show similar performances or are successful at different
times of the search, the multimethod will have a better performance than them
due to cooperation.

5.1.3 Scalability of the coarse-grained parallelization

All previous experiments were performed using 10 islands plus the master
process. To evaluate the scalability of the saCMM method, new experiments
were conducted with 10, 20 and 40 islands. Increasing the number of islands
increases diversification in the search and, therefore, allows us to study scal-
ability. Table 4 summarizes the results of these experiments for the SSP and
HepG2 benchmarks for both horizontal and vertical views.



20 Patricia González et al.

Table 4: Performance of the proposed self-adaptive multimethod with respect
to the number of islands.

Horizontal view
#Islands VTR avg. time(s) median(s) sp(%eff)

SSP
10 15 3143±2072 2679 -
20 15 2611±2337 1821 1.20 (60%)
40 15 1897±1253 1518 1.66 (42%)

HepG2
10 45 14216±7507 12260 -
20 45 13803±9764 11087 1.03 (51%)
40 45 8911±3099 9243 1.60 (40%)

Vertical view
#Islands effort(s) avg. fbest median fbest #hits

SSP
10 1500 19.92±5.38 18.47 3
20 1500 18.81±4.71 18.32 7
40 1500 17.46±3.67 16.03 9

HepG2
10 10800 49.87±8.81 47.64 8
20 10800 48.78±8.63 46.78 8
40 10800 44.82±7.81 43.20 13

For the horizontal view, the table includes the speedup (sp) for 20 and
40 islands calculated based on the execution on 10 islands. It can be seen
that, for both benchmarks, the performance of the method improves with the
number of islands. Note that the original workload is not distributed among
the islands, since the population is not distributed among them. Therefore,
the speedup achieved is due to the impact of diversification in the search. The
more islands, the more regions of the solution space are explored using different
metaheuristics. However, the efficiency (%eff ) achieved, also reported in this
table, shows a moderate outcome when the number of islands increases. Hence,
a new proposal enters in discussion: the implementation of hybrid paralleliza-
tion using MPI and OpenMP. This will help balancing resources between the
cost function evaluation and the diversification in the search, as shown in next
section.

For the vertical view, the table includes the number of executions that
achieve the VTR before the maximum allowed time expires (#hits). Note
that, although the best value achieved does not improve substantially with
the number of islands, the number of hits improves significantly.

5.2 Performance of the hybrid implementation

The performance of the hybrid implementation has been evaluated by means
of two set of experiments. First, the impact of the shared memory paralleliza-
tion was evaluated using 10 islands (MPI processes) and 1, 2 and 4 OpenMP
threads on each island. The results of these experiments for the SSP and
HepG2 benchmarks are reported in Table 5 for both horizontal and vertical
views. As expected, for the same number of islands, increasing the number of
threads in each island improves the execution time. However, the efficiency is



Title Suppressed Due to Excessive Length 21

Table 5: Performance of the shared memory parallelization in the proposed
self-adaptive multimethod.

Horizontal view
config. VTR avg. time(s) median time(s) sp(%eff)

SSP
10x1 15 3143±2072 2679 -
10x2 15 1959±1007 1772 1.60 (80%)
10x4 15 1349±889 963 2.33 (58%)

HepG2
10x1 45 14216±7507 12260 -
10x2 45 10932±4744 9811 1.30 (65%)
10x4 45 10326±5909 8429 1.38 (35%)

Vertical view
conf. effort(s) avg. fbest median fbest #hits

SSP
10x1 1500 19.92±5.38 18.47 3
10x2 1500 18.54±5.09 18.93 6
10x4 1500 13.30±5.11 12.03 14

HepG2
10x1 10800 49.87±8.81 47.63 8
10x2 10800 49.09±10.35 44.51 10
10x4 10800 43.74±7.01 43.79 12

below ideal. For instance, for the horizontal view of the SSP benchmark, the
speedup of the 10x2 configuration with respect to the 10x1 configuration is
1.60, while the ideal would be 2. This is because in the shared memory par-
allelization, only the cost function is evaluated in parallel, and although it is
the most time-consuming operation, it is not the only one. Nevertheless, for
the same number of islands, the results of the shared memory parallelization
outperform those of the coarse-grained parallelization in Table 4.

Then, the impact of the balance between diversification (number of is-
lands) and intensification (number of threads) in the hybrid approach was
evaluated using different configurations of number of islands and threads per
island (40x1, 20x2 and 10x4) in a fixed number of 40 cores. The results of
these experiments for the SSP and HepG2 benchmarks are summarized in
Table 6 for both horizontal and vertical views. For the horizontal view, the
speedup was calculated with respect to the 40x1 configuration and efficiency
is not provided, since the number of cores is the same for all experiments and
there is no ideal speedup with which to compare. As expected, a good trade-
off between diversification and intensification is essential to efficiently exploit
the hybrid implementation, however, it is difficult to know in advance which
configuration benefits the problem at hand. For instance, Table 6 shows that
intensification benefits the SSP benchmark while diversification benefits the
HepG2 benchmark.

5.3 Performance in different infrastructures

Traditionally, HPC applications are executed on special-purpose hardware, of-
ten located in specific facilities, such as supercomputing centers, and managed
by staff with specialized skills. With Cloud Computing gaining popularity, ef-



22 Patricia González et al.

Table 6: Performance of saCMM with different configurations of islands and
threads per island using a fixed number of 40 cores.

Horizontal view
config. VTR avg. time (s) median time (s) speedup

SSP
40x1 15 1897±1253 1518 -
20x2 15 1716±742 1760 1.11
10x4 15 1349±889 963 1.41

HepG2
40x1 45 8911±3099 9243 -
20x2 45 9764±5181 7960 0.91
10x4 45 10326±5909 8429 0.86

Vertical view
config. effort (s) avg. fbest median fbest #hits

SSP
40x1 1500 17.46±3.67 16.03 9
20x2 1500 16.82±5.51 18.12 6
10x4 1500 13.30±5.11 12.03 14

HepG2
40x1 10800 44.82±7.81 43.20 13
20x2 10800 45.39±9.84 42.95 12
10x4 10800 43.74±7.01 43.79 12

fortless access to a large amount of distributed resources has become more
feasible. However, its adoption by the HPC community is still limited. Firstly,
because traditional parallel programming models and tools in the HPC com-
munity are not easily applicable to cloud platforms, and the learning curve
to understand the different available architectures and run-time environments
dampens from adopting it as an alternative. Secondly, because clouds also
pose important challenges regarding performance aspects. As pointed out in
section 2, there have been many research works evaluating the promise of cloud
platforms for HPC computing, most of them concluding that cloud-based clus-
ters need significant improvement in performance to be competitive for HPC
applications. Thus, we were interested in assessing the performance of the
saCMM method in different infrastructures, including the Cloud, to shed light
on their potential for this kind of problems.

Two other platforms, besides our local cluster, have been used for these
experiments: (1) the FinisTerrae-II supercomputer, located at the Galician Su-
percomputing Center (CESGA) [9], composed of 306 nodes interconnected via
InfiniBand FDR 56Gb/s. Each node has two Intel Xeon E5-2680 v3 @2.5GHz
processors with 12 cores and 128GB of RAM per processor; and (2) the Mi-
crosoft Azure public cloud, in which two different virtual clusters have been
used, one with low-cost instances and the other with HPC instances, to com-
pare their performance and performance/cost ratio. The same virtual clusters
were used for all the experiments to avoid differences in the results due to dif-
ferences in the underlying hardware or the variability in the latency between
the nodes. Both clusters were deployed in the North Europe region, using A3
instances (4 cores with 7GB of RAM on Intel Xeon E5-2673 @2.40GHz) with
canonical Ubuntu Server for the low-cost cluster, and A9 compute-intensive
instances (16 cores with 112GB of RAM on Intel Xeon E5-2670 @2.6GHz)
with HPC-CentOS for the HPC cluster.



Title Suppressed Due to Excessive Length 23

Table 7: Horizontal analysis of the SSP benchmark with VTR=15 on different
platforms.

Infrastructure mean time(s) median(s) price/hour avg. cost/exp.

Pluton 3143±2072 2679 – –
FinisTerrae-II 1727±658 1539 0,100 e/core 0,53 e
Azure low-cost 18322±7582 18308 0,155 e/inst. 2,37 e
Azure HPC 3543±1830 3383 1,742 e/inst. 1,72 e

A series of experiments were carried out on the platforms described above
using the SSP benchmark. The results for the horizontal analysis with a stop-
ping criterion of VTR=15 are reported in Table 7. It also includes the price
per hour on each platform and the average cost per experiment. As expected,
the FinisTerrae-II supercomputer outperforms the other platforms, obtaining
execution times between 1.8 and 2.0 times better than the local cluster Pluton
or the Azure HPC virtual cluster. Also, it’s not surprising that the results of
the Azure low-cost virtual cluster are the worst of all. Both the underlying
processor and network explain these results. Besides, it can be seen that the
execution times of the Azure HPC virtual cluster are competitive with those
of the local cluster.

It would be of notable interest to accomplish a cost analysis comparing
the cost of using resources in the cloud with the cost of using resources in a
local cluster, however, this is a very difficult task [55]. The actual cost of a
local cluster is related to its utilization level. For a local cluster maintained
over several years, such as Pluton, the higher the utilization level, the lower
the effective cost rate. Moreover, when estimating the cost of a local cluster,
not only the acquisition but also the operational expenses have to be taken
into account. Therefore, an accurate estimate of the price per hour of our local
cluster was unfeasible. The price per hour of the FinisTerrae-II supercomputer
was obtained from the CESGA website [9], which states that this cost should be
taken as a guideline and may vary if other services, beyond the computational
nodes, are needed or technical support is required. Note also that, although
the cost of these experiments in FinisTerrae-II is very low, it is not always easy
to obtain access to this kind of infrastructures. In Azure, in November 2018 in
the North Europe region, the price of an A3 instance was 0.155e/hour and the
price of an A9 instance was 1.742e/hour. We needed three A3 instances and
only one A9 instance to run the experiments. The average cost per experiment
is shown in Table 7, in which it can be seen that A9 instances are cost-effective
for this kind of experiments.

To further assess the scalability of the proposed multimethod on the Azure
cloud, additional experiments were performed increasing the number of islands
(cores) used. A vertical analysis was carried out using a maximum execution
time of 1500s as stopping criterion. Figure 8 shows the bean plots of the dis-
tribution of the best solutions obtained in the local and virtual clusters. The
results of the local cluster are only slightly better than those of the virtual clus-



24 Patricia González et al.

10 20 40
Number of islands

10

20

30

40
fb

es
t

SSP benchmark
Pluton
A9

Fig. 8: Bean plots of the best solutions achieved in a vertical analysis of the
SSP benchmark made by increasing the number of islands with a maximum
execution time of 1500s

ter. As pointed out in section 2, the lack of high-bandwidth, low-latency net-
works and the virtualization overhead have a large effect on the performance
of HPC applications in the cloud, especially MPI applications. However, in
our experience, the use of HPC instances currently provided by leading cloud
providers, together with the development of suitable parallel implementations
such as the island model of the proposed multimethod, drastically reduce in-
terprocess communications leading to competitive solutions. In fact, in our
opinion, the cloud pay-as-you-go model can potentially be a cost-effective and
timely solution for the needs of many HPC users.

5.4 Performance with the HPN-DREAM case study

The last experiments carried out in this work were devoted to evaluate the
performance of the proposed multimethod approach in the solution of very
difficult and complex problems. For this purpose, the HPN-DREAM bench-
mark described in Section 4, was used. It is an extremely challenging problem
from the computational point of view, which has an unknown target value.

As the usage policy of our local cluster limits the duration of each job to
3 days, that was the maximum time used as stopping criterion for the experi-
ments. Figure 9 shows the convergence curves for experiments using 10 and 40



Title Suppressed Due to Excessive Length 25

0 25000 50000 75000 100000 125000 150000 175000
Execution time (s)

40800

41000

41200

41400

41600

41800

fb
es

t
Convergence for HPN-DREAM

10 islands
40 islands

Fig. 9: Convergence curves for the HPN-DREAM benchmark, using 10 and 40
islands.

islands. As it can be seen, the performance of the proposed saCMM method
to solve this challenging problem improves with the number of islands. More-
over, the performance of saCeSS, one of the cooperative single-method meta-
heuristics used in Section 5.1.2 to compare the performance of the proposed
multimethod, was also evaluated in [36] using the HPN-DREAM benchmark.
The results of saCMM are much better than those obtained in [36] for saCeSS.
For instance, when using 40 islands, saCMM obtains in 2 days a solution of
the same quality for which saCeSS needs more that 5 days.

6 Conclusions

In this paper, we propose and evaluate a hybrid implementation (using MPI
+ OpenMP) of the self-adaptive cooperative multimethod (saCMM) extended
with some additional mechanisms to handle MINLP problems. The extensive
evaluation carried out includes experiments to assess both the coarse-grained
parallelization (MPI) and the shared memory parallelization (OpenMP), as
well as the impact on the performance of the balance between diversification
and intensification. The proposal shows a good performance in comparison
with sequential single methods and self-adaptive parallel single methods in
cell signaling case studies from the computational systems biology domain.
These results demonstrate that the proposed multimethod can be successfully
used to reverse engineer dynamic models of biological pathways.

Additionally, the proposal has been evaluated using different infrastruc-
tures: a supercomputer, a local cluster, and two different virtual clusters on



26 Patricia González et al.

the Microsoft Azure cloud. We believe that these results can be specially useful
for those interested in the potential of the cloud computing model for their
HPC applications.

The code of the multimethod proposed, that includes the extension to
handle MINLP problems, is publicly available at: https://bitbucket.org/
pabloarguale/sacmm-library-minlp

Acknowledgements This research received financial support from the Spanish Govern-
ment through the projects DPI2017-82896-C2-2-R and TIN2016-75845-P (AEI/FEDER,
UE), and from the Galician Government under the Consolidation Program of Competitive
Research Units (Network Ref. R2016/045 and Project Ref. ED431C 2017/04), all of them
co-funded by FEDER funds of the EU. We also acknowledge Microsoft Research for being
awarded with a sponsored Azure account, and CESGA for the access to their facilities.

References

1. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, NJ,
USA (2005)

2. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: Recent advances and new
trends. International Transactions in Operational Research 20(1), 1–48 (2013)

3. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical mod-
elling of cell signalling pathways. Nature cell biology 8(11), 1195–1203 (2006)

4. Alexopoulos, L.G., Saez-Rodriguez, J., Cosgrove, B.D., Lauffenburger, D.A., Sorger,
P.K.: Networks inferred from biochemical data reveal profound differences in toll-like
receptor and inflammatory signaling between normal and transformed hepatocytes.
Molecular & Cell Proteomics 9(9), 1849–1865 (2010)

5. Almeida, F., Giménez, D., López-Esṕın, J.J.: A parameterized shared-memory scheme
for parameterized metaheuristics. The Journal of Supercomputing 58(3), 292–301
(2011)

6. Balsa-Canto, E., Banga, J.R.: AMIGO, a toolbox for advanced model identification in
systems biology using global optimization. Bioinformatics 27(16), 2311–2313 (2011)

7. Banga, J.R.: Optimization in computational systems biology. BMC Systems Biology
2(1), 47 (2008)

8. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.:
Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research
Society 64(12), 1695–1724 (2013)

9. CESGA: Centro de supercomputacin de galicia. URL http://www.cesga.es
10. Chachuat, B., Singer, A., Barton, P.: Global methods for dynamic optimization and

mixed-integer dynamic optimization. Industrial & Engineering Chemistry Research
45(25), 8373–8392 (2006)

11. Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic compu-
tation. IEEE Transactions on Evolutionary Computation 15(5), 591–607 (2011)

12. Crainic, T.G.: Parallel meta-heuristic and cooperative search. Technical report,
CIRRELT-2017-58, Universite du Quebec a Montreal (2017)

13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. The
6th USENIX Symposium on Operating Systems Design and Implementation (2004)

14. Egea, J.A., Balsa-Canto, E., Garćıa, M.S.G., Banga, J.R.: Dynamic optimization of
nonlinear processes with an enhanced scatter search method. Industrial & Engineering
Chemistry Research 48(9), 4388–4401 (2009)

15. Evangelinos, C., Hill, C.: Cloud computing for parallel scientific HPC applications:
Feasibility of running coupled atmosphere-ocean climate models on amazon’s EC2. In:
1st Workshop on Cloud Computing and its Applications (CCA’08), pp. 1–6 (2008)

16. Exler, O., Lehmann, T., Schittkowski, K.: A comparative study of sqp-type algorithms
for nonlinear and nonconvex mixed-integer optimization. Mathematical Programming
Computation 4(4), 383–412 (2012)



Title Suppressed Due to Excessive Length 27

17. Exler, O., Schittkowski, K.: A trust region sqp algorithm for mixed-integer nonlinear
programming. Optimization Letters 1(3), 269–280 (2007)

18. Expósito, R.R., Taboada, G.L., Ramos, S., Touriño, J., Doallo, R.: Performance analysis
of HPC applications in the cloud. Future Generation Computer Systems 29(1), 218–229
(2013)

19. González, P., Pardo, X.C., Penas, D.R., Teijeiro, D., Banga, J.R., Doallo, R.: Using the
cloud for parameter estimation problems: comparing spark vs mpi with a case-study.
The 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(2017)

20. González, P., Penas, D.R., Pardo, X.C., Banga, J.R., Doallo, R.: Multimethod optimiza-
tion for reverse engineering of complex biological networks. In: Proceedings of the 6th
International Workshop on Parallelism in Bioinformatics, PBio 2018, pp. 11–18 (2018)

21. González, P., Penas, D.R., Pardo, X.C., Banga, J.R., Doallo, R.: Multimethod opti-
mization in the cloud: A case study in systems biology modelling. Concurrency and
Computation: Practice and Experience 30(12) (2018)

22. Grobler, J., Engelbrecht, A.P., Kendall, G., Yadavalli, V.: Alternative hyper-heuristic
strategies for multi-method global optimization. The 2010 IEEE Congress on Evolu-
tionary Computation (CEC), pp. 1–8. IEEE (2010)

23. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization bench-
marking 2009: Experimental setup. Tech. Rep. RR-6828, INRIA (2009)

24. Henriques, D., Rocha, M., Saez-Rodriguez, J., Banga, J.R.: Reverse engineering of
logic-based differential equation models using a mixed-integer dynamic optimization
approach. Bioinformatics 31(18), 2999–3007 (2015)

25. Hill, S.M., Heiser, L.M., Cokelaer, T., Unger, M., Nesser, N.K., Carlin, D.E., Zhang,
Y., Sokolov, A., Paull, E.O., Wong, C.K., et al.: Inferring causal molecular networks:
empirical assessment through a community-based effort. Nature methods 13(4), 310–
318 (2016)

26. Jin, C., Vecchiola, C., Buyya, R.: MRPGA: an extension of MapReduce for parallelizing
genetic algorithms. The 2008 IEEE Fourth International Conference on eScience, pp.
214–221. IEEE (2008)

27. Lee, W.P., Hsiao, Y.T., Hwang, W.C.: Designing a parallel evolutionary algorithm for
inferring gene networks on the cloud computing environment. BMC systems biology
8(1), 5 (2014)

28. Luke, S.: Essentials of metaheuristics, vol. 113. Lulu Raleigh (2009)
29. MacNamara, A., Terfve, C., Henriques, D., Bernabé, B.P., Saez-Rodriguez, J.: State–

time spectrum of signal transduction logic models. Physical Biology 9(4), 045003 (2012)
30. McNabb, A.W., Monson, C.K., Seppi, K.D.: Parallel PSO using MapReduce. The 2007

IEEE Congress on Evolutionary Computation (CEC), pp. 7–14. IEEE (2007)
31. Napper, J., Bientinesi, P.: Can cloud computing reach the top500? In: Proceedings

of the combined workshops on UnConventional high performance computing workshop
plus memory access workshop, pp. 17–20. ACM (2009)

32. Olorunda, O., Engelbrecht, A.P.: An analysis of heterogeneous cooperative algorithms.
The 2009 IEEE Congress on Evolutionary Computation (CEC), pp. 1562–1569. IEEE
(2009)

33. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: An
early performance analysis of cloud computing services for scientific computing. Delft
University of Technology, Tech. Rep (2008)

34. Penas, D., Banga, J., González, P., Doallo, R.: Enhanced parallel differential evolution
algorithm for problems in computational systems biology. Applied Soft Computing 33,
86–99 (2015)

35. Penas, D., González, P., Egea, J.A., Doallo, R., Banga, J.: Parameter estimation in
large-scale systems biology models: a parallel and self-adaptive cooperative strategy.
BMC Bioinformatics 18(1), 52 (2017)

36. Penas, D.R., Henriques, D., González, P., Doallo, R., Saez-Rodriguez, J., Banga, J.R.:
A parallel metaheuristic for large mixed-integer dynamic optimization problems, with
applications in computational biology. Plos One 12(8) (2017)

37. Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for nu-
merical optimization. IEEE Transactions on Evolutionary Computation 14(5), 782–800
(2010)



28 Patricia González et al.

38. Prill, R.J., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Stolovitzky, G.: Crowd-
sourcing network inference: The dream predictive signaling network challenge. Science
Signaling 4(189), mr7 (2011)

39. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical
optimization. pp. 1785–1791. IEEE (2005)

40. Radenski, A.: Distributed simulated annealing with MapReduce. Applications of Evo-
lutionary Computation, pp. 466–476. Springer (2012)

41. Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger, D.A.,
Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein signalling
networks with functional analysis of mammalian signal transduction. Molecular Systems
Biology 5, 331 (2009)

42. Saez-Rodriguez, J., Costello, J.C., Friend, S.H., Kellen, M.R., Mangravite, L., Meyer,
P., Norman, T., Stolovitzky, G.: Crowdsourcing biomedical research: leveraging com-
munities as innovation engines. Nature Reviews Genetics 17(8), 470–486 (2016)

43. Salto, C., Minetti, G., Alba, E., Luque, G.: Developing genetic algorithms using different
mapreduce frameworks: Mpi vs. hadoop. In: Conference of the Spanish Association for
Artificial Intelligence, pp. 262–272. Springer (2018)

44. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359
(1997)

45. Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.: Implementing parallel
differential evolution on Spark. Applications of Evolutionary Computation. Lecture
Notes in Computer Science, Vol. 9598, pp. 75–90. Springer (2016)

46. Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.: Towards cloud-based
parallel metaheuristics: A case study in computational biology with differential evolution
and spark. International Journal of High Performance Computing Applications (2016).
DOI 10.1177/1094342016679011

47. Terfve, C., Cokelaer, T., Henriques, D., MacNamara, A., Goncalves, E., Morris, M.K.,
van Iersel, M., Lauffenburger, D.A., Saez-Rodriguez, J.: CellNOptR: a flexible toolkit to
train protein signaling networks to data using multiple logic formalisms. BMC Systems
Biology 6(1), 133 (2012)

48. Verma, A., Llora, X., Goldberg, D.E., Campbell, R.H.: Scaling genetic algorithms using
MapReduce. The Ninth International Conference on Intelligent Systems Design and
Applications, ISDA’09, pp. 13–18. IEEE (2009)

49. Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology:
strategies, perspectives and challenges. Journal of the Royal Society Interface 11(91),
20130505 (2014)

50. Vrugt, J.A., Robinson, B.A., Hyman, J.M.: Self-adaptive multimethod search for global
optimization in real-parameter spaces. IEEE Transactions on Evolutionary Computa-
tion 13(2), 243–259 (2009)

51. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics bulletin 1(6),
80–83 (1945)

52. Wittmann, D.M., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D.A., Klamt, S.,
Theis, F.J.: Transforming boolean models to continuous models: methodology and ap-
plication to t-cell receptor signaling. BMC Systems Biology 3(1), 98 (2009)

53. Yang, P., Hwa Yang, Y., B Zhou, B., Y Zomaya, A.: A review of ensemble methods in
bioinformatics. Current Bioinformatics 5(4), 296–308 (2010)

54. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J.,
Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. The 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI (2012)

55. Zhai, Y., Liu, M., Zhai, J., Ma, X., Chen, W.: Cloud versus in-house cluster: evaluating
amazon cluster compute instances for running mpi applications. In: SC’11: State of the
Practice Reports, p. 11. ACM (2011)


