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Abstract: Artificial neural networks (ANNs) have recently also been applied to solve partial differen-
tial equations (PDEs). The classical problem of pricing European and American financial options,
based on the corresponding PDE formulations, is studied here. Instead of using numerical techniques
based on finite element or difference methods, we address the problem using ANNs in the context of
unsupervised learning. As a result, the ANN learns the option values for all possible underlying
stock values at future time points, based on the minimization of a suitable loss function. For the
European option, we solve the linear Black–Scholes equation, whereas for the American option
we solve the linear complementarity problem formulation. Two-asset exotic option values are also
computed, since ANNs enable the accurate valuation of high-dimensional options. The resulting
errors of the ANN approach are assessed by comparing to the analytic option values or to numerical
reference solutions (for American options, computed by finite elements). In the short note, previously
published, a brief introduction to this work was given, where some ideas to price vanilla options
by ANNs were presented, and only European options were addressed. In the current work, the
methodology is introduced in much more detail.

Keywords: (non)linear PDEs; Black–Scholes model; artificial neural network; loss function; multi-
asset options

1. Introduction

The interest in machine learning techniques, due to the remarkable successes in differ-
ent application areas, is growing exponentially. Impressive results have been achieved in
image recognition or natural language processing problems, among others. The availability
of large data sets and powerful compute units has brought the broad field of data science
to a next level. ANNs are learning systems based on a collection of artificial neurons
that constitute a connected network [1]. Such systems “learn” to perform tasks, generally
without being programmed with task-specific rules. The neurons are organized in multiple
layers; The input layer receives external data, the output layer produces the final result.
The layers in between input and output are the so-called hidden layers [2]. Many different
financial problems have also been addressed with machine learning, like stock price pre-
diction, where ANNs are trained to detect patterns in historical data sets to predict future
trends [3,4], or bond rating predictions, see [5–7].

Motivated by the universal approximation theorems [8,9], nowadays ANNs are also
being used to approximate solutions to ordinary differential equations (ODEs) or partial
differential equations (PDEs) [5,10–12]. Our contribution to this field consists of solving
some PDEs that appear in computational finance applications with ANNs, following the
unsupervised learning methodology introduced by [13] and refined in [14].

In particular, the focus will be on pricing European and American options. Different
well-known methodologies have been proposed in the literature to compute these option

Mathematics 2021, 9, 46. https://dx.doi.org/10.3390/math9010046 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1443-6799
https://orcid.org/0000-0002-7322-4094
https://www.mdpi.com/2227-7390/9/1/46?type=check_update&version=1
https://dx.doi.org/10.3390/math9010046
https://dx.doi.org/10.3390/math9010046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/math9010046
https://www.mdpi.com/journal/mathematics


Mathematics 2021, 9, 46 2 of 20

prices. The best known numerical methods for such convection-diffusion-type problems
are the finite difference methods (FDM) and the finite element methods (FEM). A recent
methodology for financial problems is found in collocation methods. An example of this
methodology, used to solve the Black–Scholes equation, is based on quintic B-splines for
the spatial derivative with a finite difference approximation for the time derivative [15].
In comparison with the existing well-known methods, this method has better numerical
stability and lower computational costs. These methods work particularly well for low-
dimensional problems, of, at most four dimensions.

A common approach to solve particularly high-dimensional option pricing prob-
lems is Monte Carlo simulation, and, for early-exercise options, the Longstaff-Schwartz
regression-based Monte Carlo algorithm [16]. These simulation-based methods are based
on the stochastic formulation of the pricing problem, on discretization on the corresponding
stochastic differential equations (SDEs), and the approximation of (conditional) expecta-
tions. Another method to compute high-dimensional option values is given by radial basis
function (RBF) approximation [17], which is a fast method with low memory requirements.
With infinitely smooth RBFs the method has spectral accuracy, meaning that the required
number of unknowns for a desired accuracy is relatively small. The results in [18], for
American options, confirm that this scheme is promising compared to existing numerical
methods. Comparing with the classical numerical methodologies, the ANN-based method
is not based on a discretization of the differential equation, neither of the PDE nor the
underlying SDE, and mesh generation is not required.

The financial application on which this work is focused is the valuation of financial
derivatives with PDEs. Generally, we can distinguish between supervised and unsuper-
vised machine learning techniques. Research so far has mainly focused on supervised
machine learning, i.e., given input variables x and labeled output variables y, the ANN
is employed to learn the mapping function from the input to the output. The goal is
then to approximate the mapping function accurately, so that for new input data x′, the
corresponding output y′ is well approximated. Such ANN methodology usually consists
of two phases. During the training phase, the ANN should learn the PDE solver with input
parameters and output. This (off-line) phase usually takes substantial computing time. In
the testing phase, the trained model is used to very rapidly approximate solutions for other
parameter sets. In [11], the authors showed that ANNs efficiently approximate the solution
to the Black–Scholes equation. In [19], option values as well as the corresponding implied
volatilities were directly computed with one neural network in a supervised learning
approach. The authors in [10] examined whether an ANN could derive option pricing
formulas based on market prices. ANN studies for American options are also found, like
in [20], and in [21], where the option was formulated as a free boundary problem. In [22]
the American option implied volatility and implied dividend were assessed with the help
of ANNs.

The goal of the current work is to solve the financial PDEs by applying unsupervised
machine learning techniques. In such a case, only the inputs of the network are known, and
based on a suitable loss function that needs to be minimized, the ANN should “converge”
to the solution of the PDE problem. The ANN should learn solutions that satisfy constraints
that are imposed by the PDE and the boundary conditions, without using any information
about the true solution. These constraints are typically formulated as soft constraints,
that are satisfied by minimizing some loss function. The potential advantage of applying
ANNs to address PDE problems, instead of using classical numerical methods, is found
in the problem’s dimensionality. An ANN-based methodology does not suffer much
from the curse of dimensionality. The authors of [13,21] provide evidence that for the well-
known Poisson and Burgers equations, these unsupervised learning methods yield accurate
results. The authors in [14] extended the class of PDE solutions that may be approximated
by these unsupervised learning methods, by translating the PDEs to a suitably weighted
minimization problem for the ANNs to solve. Moreover, in [8,9] American options were
formulated as optimal stopping problems, where optimal stopping decisions were learned
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and so-called ANN regression was used to estimate the continuation values. This is an
example of the unsupervised learning approach to solve a specific formulation of options
with early-exercise features.

European and American options modeled by the Black–Scholes PDE will be priced
and solutions for all future time points and stock values will be determined. So, linear and
nonlinear partial differential equations need to be solved. We will solve European and
American option problems based on one and two underlying assets, as the methodology is
easily extended to solving multi-asset options. For the European problems, the accuracy
of the network can be measured as the analytic Black–Scholes solution will serve as a
reference. American options will be formulated as linear complementarity problems. Since
an analytic solution is not known in this case, the reference solutions are obtained by finite
element computations on fine meshes.

This paper is organized as follows. In Section 2, the methodology to train the neural
network is introduced. Moreover, the financial PDE problems are formulated, for the linear
and the nonlinear case. Numerical results, ANN convergence and solution accuracy, are
presented in Section 3. Finally, Section 4 concludes.

2. Methodology

In this section, in the first part, the methodology for solving linear and nonlinear
time-dependent PDEs by means of unsupervised learning with artificial neural networks is
introduced. Then, in the second subsection, the pricing models for European and American
options are presented and the methodology to solve the PDEs by the ANNs introduced
will be applied.

2.1. Artificial Neural Networks Solving PDEs

Here, the methodology is introduced, following [14], to solve linear and nonlinear
time-dependent PDEs by ANNs. With this aim, the general PDE problem can be written,
as follows:

NI(v(t, x)) = 0, x ∈ Ω̃, t ∈ [0, T],

NB(v(t, x)) = 0, x ∈ ∂Ω̃, t ∈ [0, T], (1)

N0(v(t∗, x)) = 0, x ∈ Ω̃ and t∗ = 0 or t∗ = T,

where v(t, x) denotes the solution of the PDE,NI(·) is a linear or nonlinear time-dependent
differential operator, NB(·) is a boundary operator, N0(·) is an initial or final time operator,
Ω̃ is a subset of RD and ∂Ω̃ denotes the boundary on the domain Ω̃.

As mentioned in the introduction, European and American option values will be
computed for one and two underlying assets by unsupervised learning. The goal is
to obtain v̂(t, x) by minimizing a suitable loss function L(v) over the space of k-times
differentiable functions, where k depends on the order of the derivatives in the PDE, i.e.,

arg min
v∈Ck

L(v) = v̂ , (2)

where v̂(t, x) denotes the true solution of the PDE.
Results are available that establish a relation between the value of the loss function

and the accuracy of the approximated solution. The solution of the PDEs is approximated
with a deep neural network. The deep neural network consists of an input layer with d
neurons and the output layer consists of a single neuron, representing the entire solution of
the PDE. The ANN should approximate the solution, satisfying the restrictions imposed by
the PDE and the boundary conditions. A general expression for the loss function, defined
in terms of the Lp norm, including a weighting, is defined as follows [13,14]:
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L(v) = λ
∫

Ω
| NI(v(t, x)) |p dxdt

+ (1− λ)
∫

∂Ω
(| NB(v(t, x)) |p + | N0(v(t, x)) |p)dxdt, (3)

where Ω = Ω̃× [0, T], ∂Ω the boundary of Ω and

NI(v(t, x)) ≡ N(v(t, x))− F(t, x) in Ω ,

NB(v(t, x)) ≡ B(v(t, x))− G(t, x) on ∂Ω̃ , (4)

N0(v(t∗, x)) ≡ H(x)− v(t∗, x) in Ω̃× t∗, with t∗ = 0 or t∗ = T.

The integrals of the loss function are labeled as:

LI(v) ≡
∫

Ω
| NI(v(t, x)) |p dxdt, (5)

and
LB(v) ≡

∫
∂Ω

(| NB(v(t, x)) |p + | N0(v(t, x)) |p)dxdt, (6)

which are denoted as the interior and the boundary loss functions, respectively.
Financial options with early-exercise features give rise to free boundary PDE problems.

Free boundary problems are well-known and often appearing in a variety of engineering
problems. Next, some classical formulations of free boundary problems are recalled:

• an optimal stopping time problem,
• a linear complementarity problem (LCP),
• a parabolic variational inequality,
• a penalty problem.

Our goal here is the reformulation of the free boundary problem as a LCP, with the
aim to solve this formulation by ANNs and unsupervised learning. The generic LCP
formulation reads,

NI(v(t, x)) ≤ 0, x ∈ Ω̃, t ∈ [0, T],

N0(v(t, x)) ≥ 0, x ∈ Ω̃, t ∈ [0, T],

NI(v(t, x)) · N0(v(t, x)) = 0, x ∈ Ω̃, t ∈ [0, T], (7)

NB(v(t, x)) = 0, on ∂Ω̃,

N0(v(t∗, x)) = 0, x ∈ Ω̃ and t∗ = 0 or t∗ = T.

or, equivalently,

max(N0(v(t, x)),NI(v(t, x))) = 0, x ∈ Ω̃, t ∈ [0, T],

NB(v(t, x)) = 0, on ∂Ω̃, (8)

N0(v(t∗, x)) = 0, x ∈ Ω̃ and t∗ = 0 or t∗ = T.

Our expression for the loss function, to solve the linear complementarity problem, is
as follows:

L(v) = λ
∫

Ω
| max(N0(v(t, x)),NI(v(t, x))) |p dxdt

+ (1− λ)
∫

∂Ω
(| NB(v(t, x)) |p + | N0(v(t, x)) |p)dxdt . (9)
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As an alternative loss function for the LCP, a variance normalization loss function has
also been considered [14], which is defined as:

L(v) =

∫
Ω | max(N0(v(t, x)),NI(v(t, x))) |p dx∫
Ω(max(| N0(v(t, x)) |, N̂I(v(t, x))))pdx

+

∫
∂Ω(| NB(v(t, x)) |p + | N0(v(t, x)) |p)dxdt∫

∂Ω | v(t, x)− v̄ |p dxdt
, (10)

where N̂I is defined as NI but considering each term in absolute value and v̄ is the mean
of v over the corresponding domain.

The parameter λ ∈ (0, 1) in the loss functions represents the relative importance of
the interior and boundary functions in the minimization process. The choice of such value
can be addressed in different ways, see [13,14]. In this work, the loss weight is, in most
of the tests, set equal to λ = 0.5. It was found in [14] that this choice works very well for
PDE problems with smooth, non-oscillatory solutions (as we also encounter them in the
option valuation problems under consideration). The results with the basic loss function
formulation will be compared to the variance normalization loss function, for some linear
complementarity problems. In addition, for some other cases, a loss function based on
so-called optimal loss weights (as in [14]) will be considered.

Based on the loss function, the ANN has been trained with the Broyden-Fletcher-
Goldfarb-Shanno optimization (BFGS). This is a quasi-Newton method which employs
an approximate Hessian matrix. Particularly, the L-BFGS algorithm is used to optimize
the vector θ, which contains all parameters defining the neural network. The activation
function used in the ANN is the hyperbolic tangent function tanh(x), however, other
choices of the activation function can also be used, like the sigmoid function (resulting
in very similar results in this work). In this work, relatively small neural networks are
considered, which are formed by four hidden layers with 20 neurons each for the European
and American options. Increasing the number of layers did not improve the accuracy of
the solution significantly for these particular problems. Finally, the integral terms in the
loss function are approximated by Monte Carlo techniques.

2.2. Financial Derivative Pricing Partial Differential Equations

Below, the option pricing partial differential equation problems are presented and the
models are briefly introduced.

2.2.1. European Options, One Underlying Asset

The reference option pricing PDE for the valuation of a plain vanilla European, put
or call, option is the Black–Scholes equation. The underlying asset St is assumed to pay a
constant dividend yield δ, and follows the geometric Brownian motion:

dSt = (µ− δ)Stdt + σStdWP
t , (11)

where WP
t is a Brownian motion. The drift term µ, the risk-free interest rate, r, and the

asset volatility, σ, are known functions. Assuming there are no arbitrage opportunities, the
European option value follows from the Black–Scholes equation,{

L(v) = ∂tv +Av− rv = 0 , S ∈ Ω̃ , t ∈ [0, T) ,
v(T, S) = H(S) ,

(12)

where operator A is defined as,

Av ≡ 1
2

σ2S2 ∂2v
∂S2 + (r− δ)S

∂v
∂S

(13)
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and function H denotes the option’s payoff, which is given by:{
(K− S)+ for a put option
(S− K)+ for a call option ,

(14)

with K the strike price in the option contract.
In order to apply numerical methods to solve the PDE, a bounded domain should

be considered and a proper set of boundary conditions should be imposed. A large
enough computational domain is considered, being [0, S∞], with S∞ four times the strike
K. Depending on the kind of option, call vc or put vp, the problem (12) is subject to the
conditions: {

vc(t, 0) = 0
vc(t, Smax) = Smax − Ke−r(T−t) ,

{
vp(t, 0) = Ke−r(T−t)

vp(t, Smax) = 0 .
(15)

The analytic solution for (12) is known:

vc(t, S) = S exp(−δ(T − t))N0,1(d1)− K exp(−r(T − t))N0,1(d2), (16)

vp(t, S) = K exp(−r(T − t))N0,1(−d2)− S exp(−δ(T − t))N0,1(−d1), (17)

with,

d1 =
log(S/K) + (r− δ + σ2/2)(T − t)

σ
√

T − t
, d2 =

log(S/K) + (r− δ− σ2/2)(T − t)
σ
√

T − t
(18)

and N0,1(x) the distribution function of a standardN (0, 1) random variable. Regarding the
numerical solution with ANNs, the methodology introduced in the previous section will
be employed. The operator NI(·) corresponds to the operator L(·), the operator defining
the boundary conditions, NB(·), can be deduced from (15) and is equal to v(t, x)− G(t, x).
Similarly, the operator for the initial condition, NB(·), is given by v(t, x) − H(x). In
particular, the loss function is defined as:

L(v) = λ
∫

Ω
| L(v(t, x)) |p dxdt

+ (1− λ)
∫

∂Ω
(| v(t, x)− G(t, x) |p + | v(t, x)− H(x) |p)dxdt, (19)

where functions G and H denote the values of the spatial boundary conditions and final
condition, respectively. The integral terms in the loss function are approximated by Monte
Carlo techniques, as a result, we obtain the following interior and boundary loss function
for the parameter vector θ:

L̂(θ) =λ
1
nI

nI

∑
i=1
| L(v(yI

i , θ))) |p +

(1− λ)

(
1

nB

nB

∑
i=1
| v(yB

i , θ)− G(yB
i ) |p +

1
n0

n0

∑
i=1
| v(y0

i , θ)− H(x0
i ) |

p

)
. (20)

The collocation points {yI
i }

nI
i=1 and {yB

i }
nB
i=1 are uniformly distributed over the domain

Ω and the boundary ∂Ω̃ and {y0
i }

n0
i=1 are uniformly distributed over the domain T × Ω̃ ,

respectively, and y = (t, x).
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2.2.2. European Options, Two Underlying Assets

The model for one underlying asset is extended to valuing basket options with two
underlying assets. The two-asset prices follow the following dynamics,

dS1t = (µ1 − δ1)S1t dt + σ1S1t dW1
t , (21)

dS2t = (µ2 − δ2)S2t dt + σ2S2t dW2
t , (22)

where µ1, µ2 are drift terms, δ1, δ2 dividend yields, the Brownian increments, dWi for
i = 1, 2, satisfy E(dWi) = 0, and the underlying assets are correlated:

corr(W1, W2) = ρt or E(dW1, dW2) = ρdt . (23)

In the Black–Scholes framework, the two-asset European option price, v(t, S1, S2),
satisfies the following PDE:{

L2(v) = ∂tv + Bv− rv = 0 (S1, S2) ∈ Ω̃ , t ∈ [0, T),
v(T, S1, S2) = H2(S1, S2) ,

(24)

where the operator B is defined as follows:

Bv ≡ 1
2

σ2
1 S2

1
∂2v
∂S2

1
+

1
2

σ2
2 S2

2
∂2v
∂S2

2
+ ρσ1σ2S1S2

∂2v
∂S1∂S2

+ (r− δ1)S1
∂v
∂S1

+ (r− δ2)S2
∂v
∂S2

, (25)

and function H2(S1, S2) denotes the payoff function. By prescribing different payoff func-
tions, different options can be defined, like an exchange option, rainbow option or an
average put option. In this work, the exchange option is addressed, for which an analytic
solution is given by the Margrabe’s formula [23] and the max-on-call rainbow option, for
which a closed-form expression was introduced in [24,25]. These particular options are
defined by their payoff functions:

H2(S1, S2) = (S1 − S2)
+ exchange option, (26)

H2(S1, S2) = (max(S1, S2)− K)+ max-on-call rainbow option. (27)

According to the Margrabe’s formula, the fair value of a European exchange option at
time t is given by:

v(t, S1, S2) = e−δ1(T−t)S1(t)N0,1(d1)− e−δ2(T−t)S2(t)N0,1(d2) (28)

where N0,1 again denotes the cumulative distribution function for the standard normal,

σ =
√

σ2
1 + σ2

2 − 2σ1σ2ρ (29)

and

d1 = (log(S1(t)/S2(t))+ (δ2− δ1 + σ2/2)(T− t)/σ
√

T − t , d2 = d1− σ
√

T − t . (30)

With the following parameters:

di =
log(Si/k) + (r− δi +

σ2
i
2 )(T − t)

σi
√

T − t
, (31)

ρ1 =
σ1 − ρσ2

σ
and ρ2 =

σ2 − ρσ1

σ
, i = 1, 2, (32)
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the closed-form formula for a call on the maximum is given by:

vmax
c (t, S1, S2) = S1e−δ1(T−t)M(d1, d; ρ1) + S2e−δ2(T−t)M(d2,−d + σ

√
T − t; ρ2)

− Ke−r(T−t)(1−M(−d1 + σ1
√

T − t,−d2 + σ2
√

T − t; ρ)), (33)

where M is the cumulative bivariate normal distribution

M(a, b; ρ) =
1

2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
e−

x2−2ρxy+y2

2(1−ρ) dxdy . (34)

To obtain a numerical solution of the PDE (24), the domain is bounded and appropriate
boundary conditions are imposed. The computational domain should be sufficiently large,
[0, S1∞]× [0, S2∞], where S1∞ = S2∞ = 4K (K the option strike). In the particular case of
the exchange and rainbow max-on-call options, where the analytic solutions are known,
the analytic option value is imposed as boundary conditions on each boundary.

As in the one-dimensional problem, the European exchange option problem is ad-
dressed building the loss function as a sum of the interior and boundary loss functions,
using λ = 0.5.

2.2.3. American Options, One Underlying Asset

As introduced in Section 2.1, the problem for an American option depending on one
underlying asset price is studied, particularly by means of the linear complementarity
formulation.

Here, the linear complementarity problem (LCP) American option valuation formula-
tion will be considered, see, for example, [26,27], as follows,

L(v) = ∂tv +Av− rv ≤ 0 , S ∈ Ω̃ , t ∈ [0, T) ,
v(t, S) ≥ H(S),
L(v)(v− H) = 0,
v(T, S) = H(S) .

(35)

This LCP can be rewritten as a nonlinear PDE as follows{
max{H(S)− v(t, S),L(v)} = 0 , S ∈ Ω̃ , t ∈ [0, T) ,
v(T, S) = H(S) .

(36)

Essentially, using the same methodology for solving the European option PDEs,
we address the linear complementarity formulation and its equivalent formulation as a
nonlinear PDE given by (36).

Following Section 2.1, the loss function can be formulated using variance normaliza-
tion. Moreover, in case of the American option, λ will be also computed as the optimal loss
weight.

Similar to the European case, the operators that define the linear complementarity
problem in (7) can be directly identified. In particular, NI(·) = L(·), the operator equation
defining the boundary condition,NB(v(t, x)) = v(t, x)−G(t, x), and the operator equation
for the initial condition is given by NB(v(t, x)) = v(t, x)− H(x).

The loss function based on variance normalization depends on the variance of the
network output. For the Black–Scholes American option problem, with the expressions
for the operators involved in (10), the loss function following variance normalization is
given by
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L(v) =

∫
Ω | max(H(x)− v(t, x),L(v(t, x))) |p dx∫
Ω(max(| H(x)− v(t, x) |, L̃(v(t, x))))pdx

+

∫
∂Ω(| v(t, x)− G(t, x) |p + | v(t, x)− H(x) |p)dxdt∫

∂Ω | v(t, x)− v̄ |p dxdt
, (37)

where L̃(v(t, x)) is defined as follows

L̃(v̂) =| ∂tv̂ | + |
1
2

σ2S2∂2
SSv̂ | + | (r− δ)S∂Sv̂ | + | rv̂ | , (38)

function G refers to the boundary conditions imposed in a bounded domain which are
defined as in (15) and function H denotes the final condition. Moreover, v̄ is the mean of v
over the corresponding domain, which is given as

v̄ =
1
‖∂Ω‖

∫
∂Ω

v(t, x)dxdt . (39)

Then, approximating each integral term by Monte Carlo techniques the resulting
function is defined as follows

L̂(θ) =
∑nI

i=1 | max(H(xI
i )− v(yI

i , θ),L(v(yI
i , θ))) |p

∑nI
i=1 max(| H(xI

i )− v(yI
i , θ) |, L̃(v(yI

i , θ)))p +

1
nB

∑nB
i=1 | v(yB

i , θ)− G(yB
i ) |p + 1

n0
∑n0

i=1 | v(y0
i , θ)− H(x0

i ) |
p

1
n∗ ∑n∗

i=1 | v(y∗i , θ)− 1
n∗ ∑n∗

j=1 v(y∗j ) |p
, (40)

with θ containing all parameters of the neural network, vector y = (t, x), and the collocation
points {y∗i }

n∗
i=1 are uniformly distributed over the boundary ∂Ω.

An alternative is to build the loss function based on an optimal loss weight. However,
optimizing λ can be nontrivial.

In order to find the optimal loss weight, a so-called ε-close solution to the true solution
v̂ is aimed at, see [14], ∣∣∣∣∂nv

∂yn
i
− ∂nv̂

∂yn
i

∣∣∣∣ ≤ ε
∂nv̂
∂yn

i
, (41)

for all n ≥ 0 and i ∈ 1, . . . , d, where d is the dimension of the problem. Satisfying such
condition, the value of the optimal loss weight λ∗ should be:

λ∗ =

∫
∂Ω | v̂(t, x) |p dγ∫

Ω(N̂I(t, x, v̂))pdxdt +
∫

∂Ω | v̂(t, x) |p dxdt
, (42)

where function N̂I(x, v̂) is defined as the functionNI(x, v̂) with each term in absolute value.
This expression of λ∗ is constant when the analytical solution is known. However, for the
American options where the analytical solution is not known, the optimal loss weight can
be computed by approximating the value of v̂ in (42) by the trained solution. Note that in
this case, the loss weight is a function instead of a constant value and is optimized by the
neural network.

As a result, the loss function is built in the following way:

L(v) =λ∗LI(v) + (1− λ∗)LB(v)

=λ∗
∫

Ω
| max(H(x)− v(t, x),L(v(t, x))) |p dxdt+ (43)

(1− λ∗)
∫

∂Ω
(| v(t, x)− G(t, x) |p + | v(t, x)− H(x) |p)dxdt,
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and the optimal loss weight is given in terms of the trained solution v, as follows:

λ∗ =

∫
∂Ω | v(t, x) |p dγ∫

Ω(L̃1(v))pdΩ +
∫

∂Ω | v(t, x) |p dγ
, (44)

with
L̃1(v) = max(| H(x)− v(t, x) |, L̃(v)), (45)

where L̃(v) is defined as in (38).
Comparing the loss functions for the European and American options, notice that for

the American options, the loss functions are defined in terms of the nonlinear operator,
which is more complicated to minimize.

2.2.4. Two-Asset American Option

The one underlying asset American option pricing problem is extended to also price
multi-asset American options. The focus is, on two underlying assets, again formulating
the problem as a linear complementarity problem. Based on two asset prices following
correlated geometric Brownian motion, the American option value can be modeled by the
following linear complementarity problem:

L2(v) = ∂tv + Bv− rv ≤ 0 , (S1, S2) ∈ Ω̃ , t ∈ [0, T),
v(t, S1, S2) ≥ H2(S1, S2),
L2(v)(v− H2) = 0,
v(T, S1, S2) = H2(S1, S2) .

(46)

Operator B is defined as in (25) and function H2(S1, S2) denotes the payoff function.
In order to compare with the European option problem, an American call on the maximum
is also priced, moreover, a two-asset spread option and a put arithmetic average option are
addressed. The corresponding payoff functions are defined as:

H2(S1, S2) = (max(S1, S2)− K)+, max-on-call rainbow option, (47)

H2(S1, S2) = (S1 − S2 − K)+, asset spread option, (48)

H2(S1, S2) = (K− (S1 + S2)/2)+, arithmetic average put. (49)

In order to solve the linear complementarity formulation by numerical methods,
a bounded domain should be considered and appropriate boundary conditions should
be imposed. In particular, a sufficiently large domain will be considered to avoid that
the solution is affected by the conditions, in the interested regions of the asset prices.
Whereas for the European option problem the analytical solution is known and imposed as
a boundary condition, for the American options problem, where the analytical solution
is not known, the appropriate boundary conditions should be defined. Following [28],
based on the theory of Fichera [29], the following notation is introduced, x0 = τ, x1 = S1,
x2 = S2, and the domain Ω∗ = (0, x∞

0 )× (0, x∞
1 )× (0, x∞

2 ), where x∞
0 = T, x∞

1 = S1∞ and
x∞

2 = S2∞. The boundary of Ω∗ is,

∂Ω∗ =
2⋃

i=0

(Γ∗,−i ∪ Γ∗,+i ), (50)

with the notation:

Γ∗,−i = {(x0, x1, x2) ∈ ∂Ω∗ , xi = 0}, (51)

Γ∗,+i = {(x0, x1, x2) ∈ ∂Ω∗ , xi = x∞
i } . (52)
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Then, the PDE in (46) can be written in the form:

2

∑
i,j=0

bi,j
∂2v

∂xi∂xj
+

2

∑
j=0

pj
∂v
∂xj

+ c0v ≤ g0, (53)

where the involved data are defined as follows:

B(x0, x1, x2) = (bij) =

0 0 0
0 1

2 σ2
1 x2

1
ρσ1σ2x1x2

2
0 ρσ1σ2x1x2

2
1
2 σ2

2 x2
2

 , c0 = r , (54)

p(x0, x1, x2) = (pj) =

 −1
(r− δ1)x1
(r− δ2)x2

 , g(x0, x1, x2) = 0 . (55)

Next, the following subset of Γ∗ is introduced in terms of the normal vector to the
boundary pointing inwards Ω∗, −→m = (m0, m1, m2)

Σ0 =

{
x ∈ ∂Ω∗/

2

∑
i,j=0

bijmimj = 0

}
, Σ1 = ∂Ω0 − Σ0 , (56)

Σ2 =

{
x ∈ Σ0/

2

∑
i=0

(
pi −

2

∑
j=0

∂bij

∂xj

)
mi ≤ 0

}
. (57)

In this particular problem, the subsets are: Σ0 = Γ∗,−0 ∪ Γ∗,+0 ∪ Γ∗,−1 ∪ Γ∗,−2 , Σ1 =

Γ∗,+1 ∪ Γ∗,+2 and Σ2 = Γ∗,+0 . Thus, following [28], the boundary conditions must be imposed
over the subset Σ1 ∪ Σ2 which matches with the set Γ∗,−0 ∪ Γ∗,+1 ∪ Γ∗,+2 . Then, it is not
necessary to impose boundary conditions above the boundary where the asset prices S1
and S2 are equal to zero. Moreover, for simplicity, the option value is assumed equal to the
payoff when the asset prices S1 and S2 take the maximum values.

Next, taking into account the methodologies proposed to solve the one-dimensional
American problem and the two-dimensional European problem, the loss function to solve
the multi-asset American option by artificial neural network is defined. First of all, the
linear complementarity problem (46) is rewritten as the equivalent nonlinear PDE:{

max{H2(S1, S2)− v(t, S1, S2),L2(v)} = 0,
v(T, S1, S2) = H2(S1, S2) .

(58)

Similar to the previous problems, the loss function is built as the sum of the interior
and boundary loss functions as follows:

L(v) =λLI(v) + (1− λ)LB(v)

=λ
∫

Ω
| max(H2(x)− v,L(v)) |p dΩ+ (59)

(1− λ)
∫

∂Ω
(| v(t, x)− G(t, x) |p + | v(t, x)− H(x) |p)dγ,

where function G refers to the boundary conditions and function H denotes the final
condition imposed for the problems. Note that the loss function is a generalization of
the loss function introduced for the one asset problem and the integral terms are also
approximated by Monte Carlo techniques.
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3. ANN Option Pricing Results

After introducing the PDE model and the methodology, the European and American
options values are computed with the ANNs based on the loss functions introduced. The
unsupervised learning methodology from the previous section is adopted to compute the
solutions and show some results. For the following tests, we have considered the parameter
p = 2 in the loss functions.

3.1. European Options

First of all, a discussion is made about the European option single asset results obtained
solving the PDE problem (12) by ANNs.

The results are presented with the loss function introduced in (19) and here the basic
choice λ = 0.5 is used. Recall that optimal loss weight-based loss function or the variance
normalization technique are especially useful in the case of nontrivial solutions.

The first example is a European put option, with the following parameters values:
σ = 0.25, r = 0.04, T = 1, K = 15, S∞ = 4K, δ = 0.0. In Figure 1, the ANN-based, trained
and the analytical solution are plotted for two time instances.

Figure 1. European put option for different time instances, t = 0, t = 0.5, with λ = 0.5.

The accuracy of the solution generated by the ANN is measured by comparing the
relative error of the trained solution vANN with the analytic solution vBS, as follows:

error =
‖vBS − vANN‖L2

‖vBS‖L2
. (60)

In Figure 2 the error throughout the domain is plotted. Clearly, the biggest error in the
ANN solution is found close to the strike price at maturity time t = T, where the payoff is
non-smooth. The relative error according to (60) with λ = 0.5 is equal to 2.23× 10−4.

Figure 2. Error surface for the artificial neural network (ANN) solution.

Next, some results for a European option depending on two underlying assets are
shown.

The corresponding loss function has been optimized by means of the L-BFGS algorithm
and choosing the tanh as the activation function. In the last layer a linear activation function



Mathematics 2021, 9, 46 13 of 20

is considered. In Figure 3 the ANN solution for the European exchange option has been
plotted. The error, comparing the approximated ANN solution with the analytical solution
given by (28) is also plotted. Note that the maximum error is obtained for the minimum
value of both asset prices, which is related to S1/S2 in the expression of d1 in (28).

Figure 3. European exchange option (left), with parameters: σ1 = σ2 = 0.25, ρ = 0.1, r = 0.05,
δi = 0.1, S1∞ = S2∞ = 60 and loss weight λ = 0.5. The error surface, comparing with the analytical
solution (right).

Due to the relatively big differences in the asset prices S1, S2 and the time t-values,
we have scaled the inputs of the artificial neural network, i.e., the original domain Ω̃ =
[0, S1∞]× [0, S2∞], is scaled to a dimensionless computational domain, i.e., Ω̃∗ = [0, 1]×
[0, 1]. Note that the size of the domain changes with the strike value, however the compu-
tational domain is always scaled, so that the solution is the option price in (S1, S2) ∈ Ω̃.
By pricing the option with the parameters, S1∞ = S2∞ = 4K, σ1 = σ2 = 0.25, ρ = 0.1,
rR = 0.04, r = 0.3 and T = 1, for several values of K, modifying the original domain, it is
found that scaling the input parameters is not sufficient to obtain highly accurate results
for large domain sizes. In Table 1, the error for a European max-call option is presented,
based on different unscaled domain sizes. It can be observed that as the domain increases
the accuracy of the neural network solution decreases.

Table 1. Relative error for different domains.

(S1,∞, S2,∞) Relative Error

(10, 10) 2.58× 10−4

(60, 60) 3.17× 10−4

(120, 120) 8.08× 10−4

(180, 180) 1.71× 10−2

(240, 240) 2.75× 10−1

(300, 300) 3.96× 10−1

(360, 360) 4.30× 10−1

In order to understand the reasons for the degraded accuracy with an increasing
domain size, the gradients of the interior and boundary loss functions have been computed.
In Table 2, these values are presented for the European max-call. The gradient of the interior
loss remains constant, note that the domain is always [0, 1]× [0, 1], however, the gradient
of the boundary loss increases with the size domain. Clearly, the interior and boundary
loss functions do not have the same dependency on the domain size.
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Table 2. Gradient values for different domain sizes with standard weights.

(S1,∞, S2,∞) ‖∂LI /∂ω‖L2 ‖∂LB/∂ω‖L2 ‖∂LI /∂ω‖L2 /‖∂LB/∂ω‖L2

(10, 10) 0.4325 8.8515 0.04886

(60, 60) 0.4325 52.6274 0.00821

(120, 120) 0.4325 105.1598 0.00411

(180, 180) 0.4325 157.6923 0.00274

(240, 240) 0.4325 210.2249 0.00205

(300, 300) 0.4325 262.7574 0.00164

(360, 360) 0.4325 315.2899 0.00137

The goal is to compute accurate approximations of the solution independent the
domain size, and therefore the ANN needs to be modified. The initialization of the weights
is adapted by using a variation of the Xavier initialization. In particular, the initial values
of the weight values in the last layer of the ANN will be scaled, by multiplying them
by the maximum option value. As a result, a solution which is accurate independent of
the size of the domain is obtained, see Table 3. This adaptation, i.e., the weights having
similar magnitude as the expected largest option value in the output, forms a robust
weight initialization. Moreover, such initialization helps for the interior and boundary loss
functions to have similar sensitivity to the domain size. In Table 4, such behaviour can be
observed, where the rate between both gradients remains close to 1/3 when the size of the
domain increases. Our results show that the BFGS optimization doesn’t seem to pick up
the gradient if the initial weights are not sufficiently large. Moreover, similar results can be
observed when the inputs are not scaled.

Table 3. Relative error with scaled weights.

(S1,∞, S2,∞) Relative Error

(10, 10) 3.60× 10−4

(60, 60) 3.19× 10−4

(120, 120) 3.56× 10−4

(180, 180) 4.00× 10−4

(240, 240) 2.65× 10−4

(300, 300) 3.14× 10−4

(360, 360) 4.29× 10−4

Table 4. Gradient value for different domains with scaled weights.

(S1,∞, S2,∞) ‖∂LI /∂ω‖L2 ‖∂LB/∂ω‖L2 ‖∂LI /∂ω‖L2 /‖∂LB/∂ω‖L2

(10, 10) 26.372 74.790 0.35261

(60, 60) 949.424 2692.448 0.35262

(120, 120) 3797.696 10,769.792 0.35262

(180, 180) 8544.816 24,232.031 0.35262

(240, 240) 15,190.74 43,079.168 0.35262

(300, 300) 23,735.602 67,311.2 0.35262

(360, 360) 34,179.266 96,928.125 0.35262
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Based on the adapted weights initialization, in Table 5, the results for the European
max-call option are presented, and the solution computed by the ANN is compared with
the analytical solution given by (33) for some specific asset prices and different strike
values, based on the corresponding loss function and λ = 0.5. The parameters considered
are, σ1 = σ2 = 0.2, ρ = 0.1, δi = 0.1, r = 0.05 and T = 1. Moreover, the maximum value of
the asset prices is S1∞ = S2∞ = 4K. Note that the accuracy of the trained solution is not
affected by the size of the domain, in addition, similar to the one-dimensional case, the
maximum error is obtained when the underlying value is close to the strike price.

Table 5. European max-call option value.

Strike (S1, S2) ANN Analytical

(15, 15) −3.16× 10−2 8.90× 10−5

15 (10, 20) 4.58× 10−2 1.16× 10−2

(25, 5) 2.02× 10−1 2.11× 10−1

(30, 30) −4.23× 10−2 1.78× 10−4

30 (20, 40) 4.75× 10−2 2.32× 10−2

(50, 10) 4.10× 10−1 4.21× 10−1

(60, 60) 1.035× 10−1 3.56× 10−4

60 (40, 80) 1.79× 10−1 4.63× 10−2

(100, 20) 7.79× 10−1 8.42× 10−1

In Table 6, the error for the two-asset European options is presented. The values
are computed based on the expression in (60) and very fine accuracy for the problems is
observed.

Table 6. Error according to the loss weight values.

Option λ Error

Asset exchange 0.5 4.16× 10−4

Max-call K = 15 0.5 4.55× 10−4

Max-call K = 30 0.5 3.51× 10−4

Max-call K = 60 0.5 3.83× 10−4

3.2. American Options

The goal of this section is to address the American option problem by using unsu-
pervised learning with the ANN. As for the European option, the values for one and two
underlying assets are computed. However, whereas for the European option an analytical
solution is known, for the American case, the reference values will be the option values
computed by finite elements (FEM) using the numerical methods in [30,31] to solve the
linear complementarity problem for the American options.

Similar to the European options problem, the loss function has been optimized using
the L-BFGS algorithm, moreover, the ANN is based on the activation function tanh(x).
With the aim of comparing both methodologies, an American option is priced with the
same parameter data set as in the previous example, considering now, for one underlying
asset the optimal loss weight, which equals λ ≈ 0.90. First of all, American options are
determined with the following parameter data: σ = 0.25, δ = 0.26, r = 0.3, T = 1, K = 15,
S∞ = 4K. Figure 4 shows the trained solution and the error related to a reference FEM
solution, for all time points. As for the European options, the maximum error is reached
when the asset price is equal to the strike price, close to the maturity time, where the payoff
function is not smooth. In Figure 5, a comparison of the American option value computed
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by ANNs or FEM is presented for different time points. Moreover, the payoff is plotted to
demonstrate that the obstacle condition is satisfied.

Figure 4. American option price with dividends (top). Error surface comparing with the solution
obtained by finite element method (bottom). Solution obtained by variance normalization method.

Figure 5. American price and the payoff function. Finite element method (green line) and Neural
networks (red line) for different time points. Solution obtained by variance normalization method.

The accuracy of two loss functions for the LCP, one based on optimal loss weight and
another based on variance normalization, is compared by means of the relative error of the
solution, computed in terms of the L2-norm, similar to (60), i.e.,

error =
‖vFEM − vANN‖L2

‖vFEM‖L2
. (61)

Very similar accuracy is obtained with both loss functions, 5.38× 10−4 (for optimal loss
weight) versus 5.82× 10−4 (variance normalization). However, comparing the convergence
of both methodologies, which is presented in Figure 6, it can be clearly observed that by
defining the loss function with a variance normalization (top) the neural network converges
faster than using the optimal loss weight (bottom). In this figure, the relative error is plotted
for different numbers of iterations of the L-BFGS algorithm.
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Figure 6. Error value (represented in log scale) obtained for different iterations with the variance
normalization method (top) and using the optimal loss weight (bottom). The reference solution has
been obtained solving the PDE by the finite element method.

Next, the American options depending on two underlying assets are valued. Optimiz-
ing the loss function with the L-BFGS algorithm, with the tanh(x) as the activation function,
and equal weighting of boundary and interior losses, with λ = 0.5, the following results
have been obtained for the three types of options.

In Table 7, a comparison between the ANN and FEM solutions is shown. An American
max-call option has been studied with several strike values and the following parameter
data, ρ = 0.1, σ1 = σ2 = 0.25, r = 0.04, δ = 0.01 and T = 0.5. Moreover, for the FEM, 75
time steps have been considered for the time discretization and the spatial discretization is
based on a 101× 101 mesh.

Table 7. Comparison of American max-call option values.

Strike (S1, S2) ANN FEM

(15, 15) 2.021 2.066
15 (10, 20) 5.703 5.643

(25, 5) 10.996 10.969

(30, 30) 4.102 4.133
30 (20, 40) 11.405 11.29

(50, 10) 21.998 21.938

(60, 60) 7.916 8.266
60 (40, 80) 22.753 22.573

(100, 20) 43.994 43.877

Figure 7 shows the trained solution for the spread American option with the following
parameter values, K = 15, S1∞ = S2∞ = 4K, σ1 = σ2 = 0.25, ρ = 0.0, rR = 0.04, r = 0.3
and T = 1, and the error surface using the FEM solution following [31] as a reference.
In Figure 8, the option value and the difference with the payoff function are shown.

Finally, in order to show the accuracy of the method applied to train the ANN to price
American options depending on two asset prices, the relative error is presented in Table 8.

Note that the accuracy of the neural network for the American options depending
on two stochastic factors is lower than for the European options. However, this may be
because here a numerical solution is our reference and not a closed-form expression.
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Figure 7. Two-asset spread American option value in the whole domain (left). Error surface between
the FEM and the ANN solution (right).

Figure 8. Two-Asset spread American option value in a reduced domain (left). Difference between
the ANN solution and the payoff function (right).

Table 8. Error for different multi-asset American options.

λ Error

Max-call 0.5 1.73× 10−3

Spread 0.5 2.45× 10−3

Arithmetic average put 0.5 6.42× 10−3

4. Conclusions

In this work, classical problems in financial option pricing have been addressed
with artificial neural networks. In particular, following the classical Black–Scholes model,
European and American options depending on one and two underlying assets have been
valued. A new unsupervised learning methodology is introduced to solve the option
value problems based on the PDE formulation. With this aim, we proposed appropriate
loss functions. The classical Black–Scholes American option pricing problem has been
formulated as a linear complementarity problem.

For the European option problem, the accuracy of the methods was compared to
the analytical solution, whereas, for American options, solutions computed by the finite
element method were used as reference values. For all problems considered, the final error
in the ANN solution was highly satisfactory. So, in this work a new, different methodology
to price financial options has been proposed, based on unsupervised learning with ANNs.
As a result, highly satisfactory, accurate PDE solutions are obtained. Needless to mention
that ANNs can be easily extended to solving higher-dimensional problems, as they are not
drastically affected by the curse of dimensionality. When solving PDEs by unsupervised



Mathematics 2021, 9, 46 19 of 20

learning, boundary conditions need to be incorporated and weighted by means of a suitable
loss function.

For future work, different asset price models can be chosen, like the Heston stochastic
volatility model instead of the Black–Scholes model. Moreover, this methodology can be
applied to price other financial derivatives, such as barrier or Asian options. In addition,
the PDE problem formulation can be easily generalized by introducing counterparty risk
which gives rise to nonlinear option valuation PDEs.
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