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from the University of A Coruña.

Departamento de Matemáticas
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realizó el d́ıa 19 de febrero de 2021, en la Facultad de Informática de la
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Secretaria: Maŕıa Luisa Carpente Rodŕıguez
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Resumen

En esta memoria se abordan diversos problemas de decisión que surgen
en la gestión de proyectos, en la teoŕıa de juegos cooperativos y en la optimi-
zación de rutas de veh́ıculos.

Empezamos estudiando el problema del reparto de los costes de demora
en un proyecto. En un contexto estocástico en el que suponemos que las
duraciones de las actividades son variables aleatorias, proponemos y estu-
diamos una regla de reparto basada en el valor de Shapley. Además, presenta-
mos un paquete de R que permite un control integral del proyecto, incluyendo
la nueva regla de reparto.

A continuación, proponemos y caracterizamos axiomáticamente nuevas
soluciones igualitarias en el contexto de los juegos cooperativos con una es-
tructura coalicional. E introducimos un nuevo valor, utilizando una propiedad
de jugadores necesarios, para juegos cooperativos, que posteriormente exten-
demos y caracterizamos dentro del marco de los juegos cooperativos con una
estructura coalicional.

Por último, presentamos un algoritmo en dos pasos para resolver pro-
blemas de rutas de veh́ıculos con multi-compartimentos y demandas es-
tocásticas. Este algoritmo obtiene una solución inicial mediante una heuŕısti-
ca constructiva y, a continuación, utiliza una búsqueda tabú para mejorar
la solución. Utilizando datos reales, llevamos a cabo un análisis del com-
portamiento del algoritmo.
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Resumo

Nesta memoria abórdanse diversos problemas de decisión que xorden na
xestión de proxectos, na teoŕıa de xogos cooperativos e na optimización de
rutas de veh́ıculos.

Empezamos estudando o problema da repartición dos custos de demora
nun proxecto. Nun contexto estocástico no que supoñemos que as duracións
das actividades son variables aleatorias, propoñemos e estudamos unha re-
gra de repartición baseada no valor de Shapley. Ademais, presentamos un
paquete de R que permite un control integral do proxecto, inclúındo a nova
regra de repartición.

A continuación, propoñemos e caracterizamos axiomaticamente novas
solucións igualitarias no contexto dos xogos cooperativos cunha estrutura
coalicional. E introducimos un novo valor, utilizando unha propiedade de
xogadores necesarios, para xogos cooperativos, que posteriormente esten-
demos e caracterizamos dentro do marco dos xogos cooperativos cunha es-
trutura coalicional.

Por último, presentamos un algoritmo en dous pasos para resolver pro-
blemas de rutas de veh́ıculos con multi-compartimentos e demandas estocásti-
cas. Este algoritmo obtén unha solución inicial mediante unha heuŕıstica
construtiva e, a continuación, utiliza unha búsqueda tabú para mellorar a
solución. Utilizando datos reais, levamos a cabo unha análise do comporta-
mento do algoritmo.
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Abstract

This dissertation addresses some decision problems that arise in project
management, cooperative game theory and vehicle route optimization.

We start with the problem of allocating the delay costs of a project. In
a stochastic context in which we assume that activity durations are random
variables, we propose and study an allocation rule based on the Shapley
value. In addition, we present an R package that allows a comprehensive
control of the project, including the new rule.

We propose and characterize new egalitarian solutions in the context of
cooperative games with a coalitional structure. Also, using a necessary player
property we introduce a new value for cooperative games, which we later
extend and characterize within the framework of cooperative games with a
coalitional structure.

Finally, we present a two-step algorithm for solving multi-compartment
vehicle route problems with stochastic demands. This algorithm obtains an
initial solution through a constructive heuristic and then uses a tabu search
to improve the solution. Using real data, we evaluate the performance of the
algorithm.
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Preface

Precedents

When a problem is detected, decision making is essential in order to deal
with it correctly. Here is where Operations research (OR) appears, which
allows to maximise the effectiveness of the decision making. Operations re-
search is as old as humanity, but it is not until the Second World War when
it acquires scientific autonomy. Given the scarcity of resources, it became
necessary to allocate them, as best as possible, to the various military activ-
ities that made up each operation. Therefore, within the allied armies, it
was decided to bring together groups of scientists to advise on the optimiz-
ation of military operations; in this process, operations research was born.
Given the great success of OR in the different operations, after the war, it is
introduced in industrial problems of business or govern as a way to obtain a
better relation cost/profit.

Investigate about operations, as its name suggest, deals with a large and
diverse combination of topics. However, we can stand out a series of classical
problems and models all of them of special relevance and, at the same time,
general. Among them, the linear programming (see, for instance Hillier and
Lieberman, 2002) is, maybe, the most used tool in OR given its great versatil-
ity. This tool is used in problems that seek to assign, in the most efficient way,
a group of limited resources to different tasks that compete between them.
The assignment is done by taking into account a combination of restrictions
and to maximizing the profit. Associated to the linear programming the sim-
plex method proposed by Dantzig in 19471 is an algorithm to solve this kind
of problems, effective and fast, even to big size problems. Two particular
problems of linear programming are the problems of transportation and as-
signment. The transportation problem, first formalized in Monge (1781) and
being solved mathematically in Tolstoi (1930), consists of optimizing the way

1Dantzig (1963) is the first book written by George Dantzig where this methodology
appears.

7



8 Preface

of transporting the goods from the origins to the different destinations at the
minimum cost. On the other hand, the assignment problem (Kuhn, 1955),
consists of assigning different tasks to people (it is important to stand out
that the assignment problem is a special case of the transportation problem).
Although both of them are modulable as linear programming problems, the
elevated number of restrictions and variables makes that the resolution with
the simplex method requires a high computational effort; therefore, some
specific algorithms to these kind of problems were arise. These two partic-
ular problems enter in the subcategory of OR called network optimization
models, due to their connections with graphs and networks. Other network
optimization problems are the shortest path (Dijkstra, 1959), the minimum
spanning tree (Kruskal, 1956) or the maximum flow problem (Ford y Fulk-
erson, 1956). We also emphasize a problem of network modelling of great
relevance throughout this work, the PERT (Program Evaluation and Re-
view Techniques) problem, or also known as CPM (Critical Path Method);
see Malcolm et al. (1959) and, for a more complete revision, Punmia and
Khandelwal (2002). In this type of problems it is formulated and studied a
project as a directed network, with only one initial and final nodes, formed
by a group of activities with relationships of precedence among them.

All the problems introduced until now are deterministic, but OR also
deals with stochastic problems. For instance, in the problems of queueing
theory presented by Erlang (1909), (see a more complete revision in Gross,
2008), queuing lines are studied to analyze characteristics like the time that
each client spends at the queue, the time that each server is occupied, the
length of the queue, etc. It is also analyzed how a system has to be designed
in order to reduce the time the users spend in it, without increasing the cost
of maintenance of the system.

Previously we have mentioned linear programming models. These type
of models are characterized by linear functions. This restricts the range of
problems that we can analyze. For this reason, the nonlinear mathematical
programming (for a complete reference see Bazaraa et al., 2013) considers
more general models. However, even though some of those models can be
resolved in an efficient way, as the convex models, for the most part of the
cases it is not possible to solve them in an exact way. This is why the
approximation algorithms and the heuristic algorithms are used to obtain
good solutions.

OR does not just contemplate problems in which one agent make decisions
about a problem to optimize the corresponding benefits. There are situations
in which we find a conflict between various agents, or players, and for each
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decision vector, a different scenery and result is obtained. Game theory
(Von Neumann and Morgenstern, 1947) studies this kind of situations from
a mathematical point of view and contains two sub-theories: the cooperative
and the non-cooperative. In the non-cooperative game theory the players
make decisions based on their sets of available strategies and, given the nat-
ural competition between the players, the final result of each one depends
on the decision made by all of them. In a different way, in the cooperative
game theory the players look for setting up coalitions in order to maximize
the earnings obtained, and a “fair” distribution among the different players
is one of the main objectives of the problem; the Shapley value (Shapley
1953) is one of the best known and used allocation rules in cooperative game
theory.

In addition, it has to be highlighted that a big part of the advance that
operations research experimented throughout its (short) history has been
thanks to the computer programming. The advance of computers has been
essential to solve large problems. In addition, the creation of specific free
software libraries allows all operations researchers to program the resolution
of the problems they face in a relatively simple way. This causes an advance
even faster in the development of OR. Because of its great benefits for re-
search and its importance in this thesis, we must particular mention the free
software R (R Core Team, 2020). R is a statistical software formed by a set
of very flexible tools that allow the users adequate them in every moment for
its personal use. Additionally, it is formed by packages, or libraries: a group
of functions designed by the users and accessible for the whole community
by a simple download. This causes a daily increase in its functionality.

The general objectives of this thesis are to develop diverse tools to tackle
new variants of some operations research problems, both deterministic and
stochastic. In addition, it also aims to study the good behaviour of the tools
already mentioned, in a practical and theoretical way, and to create libraries
in the statistic software R with these tools and other already existing in the
literature in order to make them available to the scientist community.

General summary of the thesis

The present thesis is developed in six chapters. The first one focuses
on the distribution of delay costs in stochastic projects already finished
(Gonçalves-Dosantos et al., 2020c). Project management is a field which
develops techniques in order to select, plan, execute and supervise projects.
One of the first topics of interest regarding the planning of projects is time
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management, with the main objective of completing the project and the vari-
ous activities that are part of it on the delivery date. However, sometimes
the projects can be delayed so the cost associated to them has to be defrayed
among the different agents responsible for the project execution. In the lit-
erature there are diverse ways of addressing the problem: from proportional
rules based on bankruptcy problems (Brânzei et al., 2002) to rules based on
game theory (for instance, Bergantiños et al., 2018, and Castro et al., 2007).
All of them suppose that the duration of each activity is deterministic. Nev-
ertheless, it is natural to consider this duration as a stochastic variable,
following some distribution model which enriches it and approaches it more
to reality. Additionally, considering the advantages of using rules based on
cooperative game theory instead of rules based on bankruptcy problems, we
have chosen to extend the game suggested by Bergantiños et al. (2018) to the
stochastic context and use the Shapley value as an allocation rule. Finally,
we characterize the rule introduced in the context of these project games
and we propose an approximation algorithm based on Castro et al. (2009)
in order to get it by simulation in projects with a high number of activities.

Chapter 2 develops a package of project management for R: ProjectMan-
agement (Gonçalves-Dosantos et al., 2020a). It is a tool that enables free and
computationally efficient management of projects. Given the scarcity of soft-
ware relative to project management and the high cost of licenses for most
existing software, we believe that an R package will be a great help to any
user with special needs in project management. ProjectManagement allows
the user to handle a project in order to get a calendar of it; this means: the
expiration date of the project, the starting and ending times of each activity,
as well as the slack that each activity has without delaying the project. As for
the cost of delayed projects, the package has a catalog of possible probability
distributions for activity durations and of allocation rules for cost sharing,
including both proportional rules and the Shapley value. All of this is also
analyzed by a stochastic point of view, using the suggested methodology from
Chapter 1. Finally, ProjectManagement includes the resources management
which permits the reduction of the project’s expiration time by increasing
the resources and, therefore, the cost. Additionally, it also contains a redis-
tribution of the timetable to a more uniform level of resources consumption,
and a new management of the project, taking into account a maximum limit
of resources per time unit.

We have seen how game theory and the Shapley value can be used to
solve problems that appear in project management when the delay costs are
allocated. Now, from a more theoretical point of view, in Chapter 3 we
study and characterize some new values for cooperative games. We extend
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the egalitarian values to the context of cooperative games with a priori uni-
ons (Alonso-Meijide et al., 2020). The egalitarian values are based on an
equal distribution of the benefits obtained among the cooperating players.
A large amount of theoretical literature proposes different variants of egalit-
arian solutions. For instance van den Brink (2007) or Casajus and Hüttner
(2014) compare some egalitarian values with the Shapley value. Moreover, in
van den Brink and Funaki (2009) and in van den Brink et al. (2016) we can
see a few characterizations of the equal division value and also of the equal
surplus division value. However, these values have never been introduced
and studied in cooperative games with a priori unions. A game with a priori
unions (Owen, 1977) is a cooperative game to which a partition of the group
of players is added, i.e. an a priori coalition structure that conditions the ne-
gotiation between them and consequently produces a change in the outcome
of the negotiation. It is in Owen (1977) where the Shapley value is extended
to these type of games giving rise to the Owen value. Once it is extended
the equal division value and three possible variants of the equal surplus divi-
sion value for cooperative games with a priori unions, we characterize these
new values with similar properties as the ones used on the original values.
Eventually, in order to check the good behaviour of these values, these are
applied to an example that arises in the allocation of costs corresponding to
the installation of an elevator in an apartment building.

In Chapter 4 we study new characterizations for the values proposed in
the previous chapter (Gonçalves-Dosantos and Alonso-Meijide, 2020), in a
similar way to how the Owen value is characterized on Vázquez-Brage et al.
(1997). In addition, two new values and its respective characterizations are
introduced in order to extend the equal surplus division value. One of them
is the value obtained by applying the procedure proposed by Owen (1977)
to obtain the Owen value from the Shapley value but, in this new situation,
starting from the equal surplus division value. The second extension arises
looking for a coalitional value for the equal surplus division that satisfies the
property of balanced contributions. In order to compare these new values,
between them and with those already introduced on Chapter 3, we propose
a similar example to the one used in the former chapter.

In previous chapters, we have obtained extensions of different values
already existing in a specific framework of cooperative games. In Chapter
5, considering a special kind of players, the necessary player, and their
corresponding allocations we propose a new value for cooperative games
(Gonçalves-Dosantos et al., 2020d). A necessary player is a player without
whom the worth for any coalition is zero. In Alonso-Meijide et al. (2019a)
and Béal and Navarro (2020) these players are used to characterize the Shap-
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ley value, the Banzhaf value (Banzhaf III, 1964) and the equal surplus divi-
sion value. In order to be able to theoretically compare this new value with
others already existing in the literature a characterization of it is provided.
In addition, its behaviour is compared with that of other values in a prac-
tical example. Finally, this value is extended to the context of cooperative
games with a priori unions and characterized using properties of necessary
players. We end with two characterizations of the Owen and Banzhaf-Owen
values (Owen, 1982) using, again, the necessary players in a similar way as
Alonso-Mejide et al. (2019a) characterize the Shapley and Banzhaf values.

In Chapter 6 we solve a real problem of networks with stochastic ele-
ments from a more practical point of view than on chapter 1 (Gonçalves-
Dosantos and Casas-Mendez, 2020). The vehicle routing problems, intro-
duced in Dantzig and Ramser (1959), study the design of a group of routes
of minimum cost for a fleet of vehicles that should attend the demand of
a group of clients scattered in different locations. Many other models arise
from this basic model when we consider different restrictions such as the
vehicles fleet with diverse capacities, time windows in which the clients must
be attended, various collection and delivery points, etc. In this chapter we
analyze the multi-compartment vehicle routing problems. These problems
are characterized by the existence of various incompatible products to be
delivered so the vehicle fleet has various independent multi-compartments to
avoid mixing between them. In the existing literature for these models it
is not taken into account important aspects of real life that are often ran-
dom. In this sense, we are going to consider that the demands of the clients
are stochastic variables. The motivation of these models comes from a real
problem that appears in an agricultural cooperative in Galicia. In this co-
operative four different types of feed are produced for farm animals. It has a
fleet of vehicles of various compartments with different capacities and in each
compartment only one type of feed can be transported. Given the high com-
plexity of this type of models an algorithm in two steps is suggested. First, it
is used a constructive heuristic based on the algorithm of Clarke and Wright
(1964), and then we improve this initial solution by a tabu search (Glover,
1989 and Glover, 1990). Some results are shown through real data, to finally
carry out a study of simulation to test the behaviour of this algorithm.

Conclusions

The first chapter looks at the problem of sharing the costs of delays in
projects when activity durations are stochastic. A cooperative game has been
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devised to determine the influence of activities on project delay. On the basis
of this game, a rule of fair allocation of delay costs using the Shapley value
is proposed. The comparison with the deterministic approach is satisfactory,
obtaining different costs for activities with equal average durations but dif-
ferent distributions. An estimation algorithm of the allocation rule has been
proposed, obtaining good results in admissible times and with acceptable
errors. The second chapter proposes a project management software of free
use, with an online manual to support it.

In Chapters 3 and 4 the egalitarian values are extended to the context
of cooperative games with a priori unions. With an acceptable number of
coherent properties, the different values have been characterized and the
independence of the properties that characterize each value has been proved.

Chapter 5 introduces a new value for cooperative games using a property
for necessary players that corrects the properties for necessary players satis-
fied by the Shapley and Banzhaf values. Additionally, the chapter provides
new characterizations for the Owen and Banzhaf-Owen values using only
three properties.

Finally, Chapter 6 solves a real problem of vehicle routing with multi-
compartment and stochastic demands. Given the high computational com-
plexity of these problems, a two-step algorithm has been proposed. The con-
structive algorithm takes into account the fact that demands are stochastic
variables when selecting customers and, if necessary, the return to the de-
pot to reload necessary goods. In the second step a tabu search improves
the initial solution, selecting routes at random and exchanging one or two
customers between the routes. In an example with real data, the solutions
obtained have been compared with those of the deterministic case. The dis-
tance made by the vehicles coincides with the distance in the deterministic
case when all the demands (in our case they are stochastic) can be satisfied
without returning to the deposit. In any case, the distance traveled in the
stochastic scenario increases, on average, approximately a 6% because of the
randomness. Finally, in the simulation carried out, the solutions obtained
in the first and second steps of the algorithm are compared. The initial
solutions are achieved in less than one second and with good results. In the
second step, in reasonable times, the initial solution is improved up to 10%.

Future research lines

To finish, we indicate some open tasks that we have intention of deal
with in the future. In relation to the allocation of delay costs in stochastic
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projects, new allocation rules can be suggested in order to be compared,
both theoretically and in practice, with the rule used in Gonçalves-Dosantos
et al. (2020d). In addition, we aim to analyze projects with a priori unions,
considering that there may be groups of activities managed by the same
player; in this context, an allocation rule based on the Owen value can be
proposed, both for the case of deterministic durations and for the case of
stochastic durations. With respect to the ProjectManagement package we
plan to implement new functions, ranging from the methodology proposed
above to the creation of a graphical interface for a more intuitive use of the
package.

A new topic of interest in project management where various players in-
tervene is to analyze various issues in relation to the effort they make. It can
be considered situations in where each one of the players has the control over
the time it takes to complete their activities, for instance by allocating more
or less resources to carry them out. In this type of situation, the players can
generate income by allocating part of the initial resources to other projects,
but this may involve additional costs due to penalties for delay. In this con-
text a non-cooperative game appears between the players who choose delays
for their individual activities. We plan to look for equilibria of this game, in
which players choose to delay their activities either simultaneously or sequen-
tially, depending on the location of their activities within the project. We
have started working on this topic during a visit to the Duke University on
the autumn of 2019 and we are preparing an article with Fernando Bernstein
(Duke University) and Greg DeCroix (University of Wisconsin-Madison) that
we expect to complete in a near future.

In egalitarian values for cooperative games with a priori unions, we are
willing to obtain new characterizations taking into account the ones proposed
by Ferrières (2017) for standard cooperative games. In addition, egalitarian
values can be extended to and characterize for graph-restricted cooperative
games in the sense of Borm et al. (1992).

When the property for necessary players of Chapter 5 is combined with
the properties of additivity, symmetry and null player, a non-efficient value
arises. This value can be compared to the Shapley and Banzhaf values in
the class of microarray games (Lucchetti et al., 2010), which allows, among
other things, to identify the genes which are responsible for a certain disease
by using a gene expression data matrix.

Finally, in the vehicle routing problem with multi-compartment and sto-
chastic demands new metaheuristics can be developed in order to improve
the solutions obtained and/or the calculation times, based on ant colonies
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(Rajappa et al., 2016), simulated annealing (Xiao et al., 2014) or genetic
algorithms (Vidal et al., 2013), among others.
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Béal S, Rémila E, Solal P (2019). Coalitional desirability and the equal
division value. Theory and Decision 86, 95-106.
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Castro J, Gómez D, Tejada J (2007). A project game for PERT networks.
Operations Research Letters 35, 791-798.



18 Preface
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Gendreau M, Laporte G, Séguin R (1996). Stochastic vehicle routing.
European Journal of Operational Research 88, 3-12.

Glover F (1989). Tabu search-part I. ORSA Journal on Computing 1,
190-206.

Glover F (1990). Tabu search-part II. ORSA Journal on Computing 2,
4-32.
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Gonçalves-Dosantos JC, Casas-Méndez BV (2020). A two-stage heur-
istic algorithm for a class of multi-compartmentvehicle routing problems with
stochastic demands. Preprint.
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Gonçalves-Dosantos JC, Garćıa-Jurado I, Costa J, Alonso-Meijide JM
(2020d). Necessary players and values. Preprint.

Goodson JC (2015). A priori policy evaluation and cyclic-order-based
simulated annealing for the multicompartment vehicle routing problem with
stochastic demands. European Journal of Operational Research 241, 361-
369.

Grabisch M, Kojadinovic I, Meyer P (2015). kappalab: Non-Additive



Preface 21

Measure and Integral Manipulation Functions. URL https://CRAN.R-project
.org/package=kappalab. R package version 0.4-7.

Gregoriou G, Kirytopoulos K, Kiriklidis C (2013). Project management
educational software (promes). Computer Applications in Engineering Edu-
cation 21, 46-59.

Gross D (2008). Fundamentals of queueing theory. John Wiley and Sons.

Guitián de Frutos RM, Casas-Méndez, BV To appear. Routing problems
in agricultural cooperatives: A model for optimization of transport vehicle
logistics. IMA Journal of Management Mathematics. DOI: 10.1093/ima-
man/dpy010.

Gurram P, Kwon H, Davidson C (2016). Coalition game theory-based
feature subspace selection for hyperspectral classification. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 9, 2354-
2364.

Hall NG (2012). Project management: Recent developments and research
opportunities. Journal of Systems Science and Systems Engineering 21, 129-
143.

Hegazy T (1999). Optimization of resource allocation and leveling using
genetic algorithms. Journal of construction engineering and management
125, 167-175.
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1.1 Introduction

Project management is a field within operations research that provides
managers with techniques to select, plan, execute, and monitor projects. An
important issue in project management is time management, which generally
call for careful planning of project activities to meet various project delivery
dates, especially the final delivery date. Normally, a delay in the final delivery
date incurs a cost that is often specified by contract. Sometimes, projects
are not developed by one agent but a group of agents. When there is a delay
in one of such joint projects, the manner of allocating the delay cost amongst
the several participating agents may not be clear. This paper deals with the
problem of sharing delay costs in a joint project by using cooperative game
theory. We consider that the study of this problem from the point of view
of game theory is very pertinent, since the legal systems of many countries
contemplate the need for those responsible for the delay in the execution
of a contract to compensate those harmed by the damage resulting from
such delay. For example, article 1101 of the Civil Code currently in force in

27
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Spain states that “those who, in the performance of their obligations, incur
in malice, negligence or arrears are subject to compensation for damages
caused”. However, the regulation of how such damages are compensated,
especially in the case of concurrent fault, is generally not very developed,
so that legal agents may require external assistance from the academic and
scientific world to support their arguments.

In the last few years, several papers have been written proposing and
studying allocation rules for delay costs. Bergantiños and Sánchez (2002) pro-
posed a rule based on the serial cost-sharing problem. Brânzei et al. (2002)
provided two rules using, respectively, a game theoretical and bankruptcy-
based approach. In Castro et al. (2007), the core of a class of transferable
utility cooperative game (in short, a TU-game) arising from a delay cost-
sharing problem was studied. In Bergantiños et al. (2018), a consistent rule
based on the Shapley value was introduced and analysed. Estévez-Fernández
et al. (2007) and Estévez-Fernández (2012) dealt with some classes of TU-
games associated with projects whose activities might have been delayed or
advanced by generating delay costs or acceleration benefits of the corres-
ponding projects. Curiel (2011) studied situations in which companies can
cooperate in order to decrease the earliest completion time of a project that
consists of several tasks. Cooperative game theory is used to model those
situation, and conditions for the core of the corresponding games are non-
empty are derived. In San Cristóbal (2014) a practical example is given
of the use of cooperative games to allocate delay costs between the differ-
ent activities in a project. Finally, Briand and Billaut (2011), Briand et
al. (2017) and Bergantiños and Lorenzo (2019) adopted a non-cooperative
approach and addressed some strategic aspects in project scheduling where
players responsible for activities can choose strategies that affect their dura-
tions. All these papers tackle deterministic scheduling problems with delays.
One such problem is that of a delayed deterministic project. By deterministic
project, we mean a set of activities to be performed with respect to an order
of precedence and a description of their estimated durations; by delayed de-
terministic project, we mean a project that has been performed, description
of the observed durations of the activities according to which the project has
lasted longer than expected, and cost function that indicates the delay cost
associated with the durations of the activities.

A natural extension of deterministic problems with delays can be found in
stochastic scheduling problems with delays, which we introduce and analyse in
this study. In our extension we deal with stochastic projects, in which activ-
ity durations are described by giving their probability distributions rather
than their estimates (as is done in the deterministic case). To the best of
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our knowledge, these problems have not been treated in literature, although
Castro et al. (2014) considered the problem of allocating slacks in a stochastic
PERT network,1 which is a related but different problem. Tanimoto et al.
(2000) introduced a variation of the Shapley value for stochastic cost games,
their model being an alternative to the stochastic cooperative games in Suijs
et al. (1999). These two papers deal with general TU-games (not with the
particular class we are considering in this paper) and, though they might
have some connections with our approach, they are concerned with the dif-
ferent problem of how to allocate the risk according to the risk acceptance
level for each player in a general cooperative game whose characteristic func-
tion is stochastic. Herroelen and Leus (2005) surveyed literature on project
management under uncertainty. In a stochastic scheduling problem with
delays, the manager has a description of the probability distributions of the
random variables modelling the durations of the activities instead of simply
their estimated durations. In most cases, managers have information about
random variables—for instance, their empirical distributions—based on the
durations of similar activities in past projects of the same type.

The remainder of this paper is organised as follows. In Section 2, we
motivate the interest of the stochastic scheduling problems with delays and
introduce them formally; we also discuss the main differences between the de-
terministic approach, usually adopted in literature, and our novel stochastic
approach. In Section 3, we propose an allocation rule based on the Shapley
value in this context and characterize it using the property of balancedness;
basically, this property states that, for every pair of activities i and j, the
effect of the elimination of i on the allocation to j is equal to the effect of
the elimination of j on the allocation to i. We also show that the Shapley
rule in this context satisfies a list of interesting properties and illustrate its
performance by using two examples and a simulation experiment. Finally,
Section 4 addresses some computational issues related to our rule. In partic-
ular, we illustrate the implementation of the estimation of the Shapley rule
through its pseudocode, from which it is easy to check that its computational
complexity is O(n4) and, moreover, we show by examples that it is possible
to estimate the Shapley rule for stochastic scheduling problems with delays
in an acceptable time, even if there are hundreds of activities, by using a
desktop computer and free software.

1PERT is the acronym of Program Evaluation and Review Technique, a tool used in
project management, first developed by the United States Navy in the 1950s.
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1.2 The problem

In this section, we describe the problem with which we deal. We first
formally introduce a deterministic scheduling problem with delays mainly
following Bergantiños et al. (2018):

Definition 1.1. A deterministic scheduling problem with delays P is a tuple
(N,≺, x0, x, C) where:

• N is the finite non-empty set of activities.

• ≺ is a binary relation over N satisfying asymmetry and transitivity.
For every i, j ∈ N , we interpret i ≺ j as “activity j cannot start until
activity i has finished”.

• x0 ∈ RN is the vector of planned durations. For every i ∈ N , x0
i is a

non-negative real number indicating the planned duration of activity i.

• x ∈ RN is the vector of actual durations. For every i ∈ N , xi is the
non-negative duration of activity i.2

• C : RN → R is the delay cost function. We assume that C is non-
decreasing (i.e., yi ≤ zi ∀i ∈ N ⇒ C(y) ≤ C(z)),3 and that C(x0) = 0.

We denote by PN the set of deterministic scheduling problems with delays
with player set N , and by P , the set of deterministic scheduling problems
with delays.

Note that the first three items of a deterministic scheduling problem with
delays characterise a project. Operational researchers have developed several
methodologies for project management. In particular, the minimum duration
of a project (N,≺, x0), provided that all restrictions imposed by ≺ are satis-
fied, can be obtained as the solution of a linear programming problem, and
thus, can be easily computed. We denote the minimum duration of (N,≺, x0)
by d(N,≺, x0). Alternatively, d(N,≺, x0) can be calculated using a project
planning methodology like PERT (see, for instance, Hillier and Lieberman
(2001) for details on project planning). The delay cost function C in Defini-
tion 1.1 is rendered in a general way but typically depends on the minimum
duration of the project, i.e., C(y) = c(d(N,≺, y)) for a non-decreasing func-
tion c : R→ R with c(d(N,≺, x0)) = 0.

2In Bergantiños et al. (2018) it is assumed that xi ≥ x0i for all i ∈ N .
3Bergantiños et al. (2018) does not assume that C is non-decreasing.
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In a deterministic scheduling problem with delays P , the main question
to be answered is how to allocate C(x) amongst the activities in a fair way.
This issue has been taken up, for instance, in Bergantiños et al. (2018); they
introduce the Shapley rule in this context.

Definition 1.2. A rule for deterministic scheduling problems with delays
is a map ϕ on P that assigns to each P = (N,≺, x0, x, C) ∈ PN a vector
ϕ(P ) ∈ RN satisfying:

1. Efficiency (EFF).
∑

i∈N ϕi(P ) = C(x).

2. Null Delay (ND). ϕi(P ) = 0 when xi = x0
i .

Take a deterministic scheduling problem with delays P ∈ PN . We denote
by vP the TU-game with set of players N given by

vP (S) = C(xS, x
0
N\S)

for all S ⊆ N (where xS, x
0
N\S denotes the vector in RN whose i-th component

is xi if i ∈ S or x0
i if i ∈ N \ S).

Definition 1.3. The Shapley rule for deterministic scheduling problems with
delays Sh is defined by Sh(P ) = Φ(vP ), where Φ(vP ) denotes the proposal
of the Shapley value for vP .

For those unfamiliar with cooperative game theory, a TU-game is a pair
(N, v) where N is a non-empty finite set, and v is a map from 2N to R
with v(∅) = 0. We say that N is the player set of the game and v is the
characteristic function of the game, and we usually identify (N, v) with its
characteristic function v. We denote by GN the set of all TU-games with
player set N , and by G the set of all TU-games. The Shapley value is a map
Φ that associates with every TU-game (N, v) a vector Φ(v) ∈ RN satisfying∑

i∈N Φi(v) = v(N) and providing a fair allocation of v(N) to the players in
N . The explicit formula of the Shapley value for every TU-game (N, v) and
every i ∈ N is given by:

Φi(v) =
∑
S⊆N\i

(|N | − |S| − 1)! |S|!
|N |!

(v(S ∪ i)− v(S)).

Since its introduction by Shapley (1953), the Shapley value has proved to be
one of the most important rules in cooperative game theory and has applic-
ations in many practical problems (see, for instance, Flores et al. (2007)).
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Bergantiños et al. (2018) showed that the Shapley value has good prop-
erties in this context and provided an axiomatic characterisation of their
Shapley rule by using a consistency property. In this paper, we introduce a
generalization of the model and the Shapley rule described above by assum-
ing that the durations of the activities are stochastic. Let us first introduce
and motivate interest in our model.

Definition 1.4. A stochastic scheduling problem with delays SP is a tuple
(N,≺, X0, x, C) where:

• N is the finite non-empty set of activities.

• ≺ is a binary relation over N satisfying asymmetry and transitivity.

• X0 ∈ RN is a vector of independent random variables. For every i ∈ N ,
X0
i is a non-negative random variable describing the duration of activity

i.

• x ∈ RN is the vector of actual non-negative durations.

• C : RN → R is the delay cost function. We assume that C is non-
negative and non-decreasing.

We denote by SPN the set of stochastic scheduling problems with delays
with player set N , and by SP the set of all stochastic scheduling problems
with delays.

Like in the deterministic case, the first three items of a stochastic schedul-
ing problem with delays characterize a stochastic project. The minimum dur-
ation of a stochastic project (N,≺, X0) is a random variable whose distribu-
tion is, in general, difficult to obtain from a theoretic point of view, but easy
to estimate using simulation techniques. Note that in a stochastic schedul-
ing problem with delays, the durations are non-negative random variables
instead of non-negative numbers. In general, the duration of an activity can
now take any non-negative real value, and a condition generalising C(x0) = 0
as in Definition 1.1 cannot be stated. In the stochastic setting, a delay in an
activity is unclear. If the actual duration of an activity is longer than the
upper bound of its distribution support, it has thus been delayed. Moreover,
if its duration is in the 99th percentile of the distribution of its duration,
one may think that it has been delayed somewhat. However, what should we
think when its actual duration is in the 56th percentile? In the deterministic
setting, we can clearly observe when an activity has been delayed. Another
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novelty in the stochastic setting is that an activity may somehow be delayed,
but it may also somehow be ahead of schedule (for instance, when its dura-
tion is in the first percentile). In the deterministic setting, by contrast, the
case xi < x0

i is generally discarded. In any case, although we propose our
model in general, our objective is to distribute delay costs when they occur
(because P (xi ≥ X0

i ) is large, at least for some i ∈ N), and in situations in
which there should not be delays a priori, in the sense that P (C(X0) = 0) is
large.

In Definitions 1.1 and 1.4 we assume that C is a non-negative function.
As it was remarked in Section 1, some papers consider that activities can be
delayed or advanced and, consequently, there may be delay costs or acceler-
ation benefits. We do not take such an approach in this article but, if we
do (for instance dropping the non-negativeness of C), the analytical results
should not change significantly.

We give next the definition of a rule in this setting. As the meaning
of a delay is not clear, this definition does not contain a kind of null delay
property, as in Definition 1.2.

Definition 1.5. A rule for stochastic scheduling problems with delays is a
map ψ on SP that assigns to each SP = (N,≺, X0, x, C) ∈ SPN a vector
ψ(SP ) ∈ RN satisfying

∑
i∈N ψi(SP ) = C(x).

A first approach to deal with a stochastic scheduling problem with delays
is to build from it an associated deterministic problem. More precisely, for
a given SP = (N,≺, X0, x, C) ∈ SPN , it is natural to associate with it
the problem SP = (N,≺, E(X0), x, C), where E(X0) = (E(X0

i ))i∈N , E(X0
i )

denotes the mathematical expectation of random variable X0
i . This approach

encounters a technical obstacle: SP is not always a deterministic scheduling
problem with delays in the sense of Definition 1.1 because C(E(X0)) may be
different from zero. This obstacle can be overcome with small adjustments
in the definition of an associated deterministic problem. Besides, in many
particular examples, we do not encounter this obstacle. In any case, this
approach is not the most appropriate because it does not use all the relevant
information given in the original problem. Let us illustrate this shortcoming
in the following example:

Example 1.1. Consider the stochastic scheduling problem with delays SP =
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(N,≺, X0, x, C) given by:

N 1 2
≺ - -
X0 U(0, 10) U(2, 8)
x 7 7

and, for every y ∈ RN ,

C(y) =

{
0 if d(N,≺, y) ≤ 6,
d(N,≺, y)− 6 otherwise.

Note that for all i ∈ N the i-th column displays:

• Activities that precede activity i. In this example, ≺= ∅, i.e., the
two activities can be carried out simultaneously. In general, the row
corresponding to ≺ only shows the immediate precedences, i.e., some
elements of ≺, but the entire ≺ can be easily obtained as the smallest
transitive binary relation over N that contains the given elements of
≺. An illustration of this can be found in Example 1.2.

• The distribution of X0
i . In this case, X0

1 and X0
2 are random variables

with a uniform distribution of U(0, 10) and U(2, 8), respectively.

• xi, the duration of i; in this case, x = (7, 7).

Note that in this example, E(X0
1 ) = E(X0

2 ) = 5, and activities 1 and 2
are indistinguishable in SP . Hence, the anonymity property satisfied by
the Shapley rule for deterministic scheduling problems with delays (see Ber-
gantiños et al. (2018)) implies that Sh(SP ) = (1

2
, 1

2
). However, activities 1

and 2 are actually distinguishable in SP because the expected duration of the
project conditioned to x1 = 7 is E(C(7, X0

2 )) = 13/12 and the expected dur-
ation of the project conditioned to x2 = 7 is E(C(X0

1 , 7)) = 29/20 > 13/12.
It seems that a fair rule should take this into account and allocate to activity
2 a larger part of the delay cost.

In the next section, we provide a rule for stochastic scheduling problems
with delays that overcomes the technical obstacle described above and, more
importantly, the drawback described in Example 1.1.
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1.3 Shapley rule for stochastic scheduling

problems with delays

In this section, we define and study the Shapley rule for stochastic schedul-
ing problems with delays. Take a stochastic scheduling problem with delays
SP ∈ SPN . We denote by vSP the TU-game with set of players N given by

vSP (S) = E(C(xS, X
0
N\S))

for all non-empty S ⊆ N ,4

Definition 1.6. The Shapley rule for stochastic scheduling problems with
delays SSh is defined by SSh(SP ) = Φ(vSP ), where Φ(vSP ) denotes the
proposal of the Shapley value for vSP .

This rule inherits many properties of the Shapley value. For instance,
it is easy to check that it satisfies the correspondingly modified versions of
the properties proved in Bergantiños et al. (2018) for the Shapley rule for
deterministic scheduling problems with delays. Let us remember some of
those properties.

We start with some notation. Take a finite set N . A permutation of N
is a bijective map π : N → N . Denote by ΠN the set of permutations of N .

Anonimity. A rule for stochastic scheduling problems with delays ψ satis-
fies anonimity if for all SP = (N,≺, X0, x, C), all π ∈ ΠN and all i ∈ N , it
holds that

ψi (SP ) = ψπ(i) (SP π)

where SP π denotes the problem (N,≺π, π(X0), π(x), Cπ) given by:

• For all i, j ∈ N , i ≺π j if and only if π(i) ≺ π(j),

• π(X0) is the vector of random variables whose i-th component isX0
π−1(i),

• π(x) is the vector in RN whose i-th component is xπ−1(i),

• Cπ(π(y)) = C(y) for all y ∈ RN .

Cost additivity. A rule for stochastic scheduling problems with delays ψ
satisfies cost additivity if for all SP = (N,≺, X0, x, C) and all SP ′ = (N,≺

4As in all TU-games, we define vSP (∅) = 0.
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, X0, x, C ′), then

ψi (SP + SP ′) = ψi (SP ) + ψi (SP
′)

for all i ∈ N , where SP + SP ′ = (N,≺, X0, x, C + C ′) and (C + C ′)(y) =
C(y) + C ′(y) for all y ∈ RN .

Monotonicity A rule for stochastic scheduling problems with delays ψ sat-
isfies monotonicity if for all SP = (N,≺, X0, x, C) and all SP ′ = (N,≺
, X0, x′, C) such that xi ≤ x′i and xj = x′j for some i ∈ N and for all j ∈ N \i,
then

ψi (SP ) ≤ ψi (SP
′)

Equal responsability for two. A rule for stochastic scheduling problems
with delays ψ satisfies equal responsability for two if for all SP = ({1, 2},≺
, X0, x, C), then

ψi (SP ) = E(C(xi, X
0
j )) +

1

2

(
C(xi, xj)− E(C(xi, X

0
j ))− E(C(xj, X

0
i ))
)

for all i, j ∈ {1, 2} with i 6= j.

Scale Invariance. A rule for stochastic scheduling problems with delays ψ
satisfies scale invariance if for all SP = (N,≺, X0, x, C) and all λ ∈ (0,∞)N ,
we have

ψ
(
N,≺, X0, x, C

)
= ψ

(
N,≺, λX0, λx, Cλ

)
where Cλ : RN → R is given by Cλ(λy) = C(y) for all y ∈ RN , λX0 =
(λiX

0
i )i∈N and λy = (λiyi)i∈N .

Independence of Irrelevant Delays. A rule for stochastic scheduling
problems with delays ψ satisfies independence of irrelevant delays if, for all
SP = (N,≺, X0, x, C) such that

E(C(xS∪i, X
0
N\(S∪i))) = E(C(xS, X

0
N\S)

for i ∈ N and for all S ⊆ N\i, then ψi (SP ) = 0.

Note that the ”independence of irrelevant delays” above is a kind of null
agent property, in the sense that an activity i that satisfies the condition
of the property can be seen as a null agent and therefore, according to the
property, should receive a zero allocation.

The next result states that the Shapley rule for stochastic scheduling
problems with delays satisfies all the properties above. Its proof is very
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similar to that of Theorem 2 of Bergantiños et al. (2018) and, therefore, is
omitted.5

Theorem 1.1. The Shapley rule for stochastic scheduling problems with
delays satisfies anonimity, cost additivity, monotonicity, equal responsabil-
ity for two, scale invariance and independence of irrelevant delays.

Next we focus on a different property of the Shapley value and how to
adapt it to our context: the balancedness property.

A rule for stochastic scheduling problems with delays satisfies the bal-
ancedness property if it treats all pairs of activities in a balanced way,
which more precisely means that for every pair of activities i and j, the
effect of the elimination of i on the allocation to j (according to the rule) is
equal to the effect of the elimination of j on the allocation to i. To write
this property formally, consider a stochastic scheduling problem with delays
SP = (N,≺, X0, x, C) ∈ SPN , with |N | ≥ 2, and i ∈ N . Now, we define the
resulting problem if activity i is eliminated SP−i ∈ SPN\i by

SP−i = (N \ i,≺−i, X0
−i, x−i, C−i)

where:

• ≺−i is the restriction of ≺ to N \ i,

• X0
−i is the vector equal to X0 after deleting its i-th component,

• x−i is the vector equal to x after deleting its i-th component, and

• C−i : RN\i → R is given by C−i(y) = E(C(y,X0
i )), for all y ∈ RN\i.

We now formally write the balancedness property.

Balancedness. A rule for stochastic scheduling problems with delays ψ
satisfies the balancedness property when

ψi(SP )− ψi(SP−j) = ψj(SP )− ψj(SP−i)

for all SP ∈ SPN , all finite N , and all i, j ∈ N with i 6= j.

The following theorem shows that the balancedness property characterises
the Shapley rule.

5The proof of Theorem 1.1 is available to readers upon request to the authors.
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Theorem 1.2. The Shapley rule is the unique rule for stochastic scheduling
problems with delays that satisfies the balancedness property.

Proof. Let us first check that the Shapley rule satisfies the balancedness
property. Take SP = (N,≺, X0, x, C) ∈ SPN and i, j ∈ N with i 6= j.
Then,

SShi(SP )− SShi(SP−j) = Φi(v
SP )− Φi(v

SP−j), (1.1)

SShj(SP )− SShj(SP−i) = Φj(v
SP )− Φj(v

SP−i). (1.2)

Now, for every k ∈ N , vSP−k is a TU-game with set of players N \ k. For
every non-empty S ⊆ N \ k, 6

vSP−k(S) = EN\(S∪k)(C−k(xS, X
0
N\(S∪k)))

= EN\(S∪k)(Ek(C(xS, X
0
N\(S∪k), X

0
k)))

Now, the independence of the components of X0 implies that

vSP−k(S) = EN\S(C(xS, X
0
N\S)) = vSP (S).

Note that for every S ⊆ N \ k, vSP (S) = vSP−k (S), where vSP−k ∈ GN\k denotes
the restriction of the TU-game vSP ∈ GN to N \ k. Hence,

vSP−k = vSP−k for all k ∈ N. (1.3)

Considering (1.3) and that Myerson (1980) proved that the Shapley value
of a TU-game satisfies a balancedness property, the equations in (1.1) and
(1.2) are equal. This implies that the Shapley rule satisfies the balancedness
property.

Suppose now that there exists another rule R 6= SSh for stochastic
scheduling problems with delays that satisfies the balancedness property.
As R 6= SSh, there must exist SP = (N,≺, X0, x, C) ∈ SP with R(SP ) 6=
SSh(SP ). Assume that SP is minimal, in the sense that: (a) |N | = 1, or (b)
|N | ≥ 2 and R(SP−i) = SSh(SP−i) for every i ∈ N .7 Note that |N | 6= 1 be-
cause otherwise, R(SP ) = C(x) = SSh(SP ); hence, |N | ≥ 2. Take i, j ∈ N
with i 6= j. As R and SSh satisfy the balancedness property, then

Ri(SP )−Rj(SP ) = Ri(SP−j)−Rj(SP−i),

6To facilitate the reading of this proof, when dealing with the mathematical expectation
of a random vector, we explicitly indicate the components of the vector to which the
mathematical expectation refers.

7This assumption is without loss of generality because if SP ∈ SPN is not minimal, we
can eliminate one by one the elements of N until we have a minimal SP ′ with R(SP ′) 6=
SSh(SP ′).
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SShi(SP )− SShj(SP ) = SShi(SP−j)− SShj(SP−i).

Now, considering the minimality of SP ,

Ri(SP )−Rj(SP ) = SShi(SP )− SShj(SP )

or, equivalently, Ri(SP ) − SShi(SP ) = A ∈ R, i.e. it does not depend on
i. But then, A = 0 because

∑
j∈N Rj(SP ) = C(x) =

∑
j∈N SSj(SP ). This

implies that R(SP ) = SSh(SP ), and the proof is concluded.

Next we illustrate the performance of the Shapley rule in two examples.
Note first that the Shapley rule behaves in Example 1.1 as desired. For the
stochastic scheduling problem with delays SP , we can easily check that:

• vSP (1) = E(C(7, X0
2 )) = 13/12,

• vSP (2) = E(C(X0
1 , 7)) = 29/20,

• vSP (N) = C(7, 7) = 1,

and then, SSh(SP ) = (0.31666, 0.68333). Thus, activity 2 receives a larger
part of the delay cost, as it should. Note that in this example, SSh(SP )
can be easily exactly calculated. In general, SSh cannot be exactly calcu-
lated, but can be estimated using simulation techniques. Consider now a
new example that is slightly more complex.

Example 1.2. Consider the stochastic scheduling problem with delays SP =
(N,≺, X0, x, C) given by:

N 1 2 3 4 5
≺ - 1 - 1,3 2
X0 t(1,2,3) t(1/2,1,3/2) t(1/4,1/2,9/4) t(3,4,5) exp(1/2)
x 2.5 1.25 2 4.5 3

and, for every y ∈ RN ,

C(y) =

{
0 if d(N,≺, y) ≤ 6.5,
d(N,≺, y)− 6.5 otherwise,

where t(a, b, c) denotes the triangular distribution with parameters a (min-
imum), b (mode), and c (maximum), and exp(α) denotes the exponential
distribution with parameter α (i.e., with mean 1/α). As we remarked in
Example 1.1, the table does not give the entire binary relation ≺ but only
the immediate precedences. For instance, because 1 precedes 2, 2 precedes 5
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Figure 1.1: PERT graph of the project in Example 1.2.

and ≺ is transitive, then 1 must precede 5; however, the table only indicates
that 2 precedes 5. The entire ≺ is easily obtained as the smallest transitive
binary relation over N that contains the given elements of ≺. In this case,
the table displays

(1, 2), (1, 4), (3, 4), (2, 5)

and then
≺= {(1, 2), (1, 4), (1, 5), (3, 4), (2, 5)}.

In some cases, it is more instructive to give the PERT graph representing
the precedences instead of the precedences and ≺. The PERT graph in
this example is given in Figure 1.1, where, for each arc, we indicate the
activity that it represents and the duration of this activity according to x;
the dotted arc corresponds to a fictitious activity, that is needed to build
a graph representing the precedences in this project. Fictitious activities
always have zero duration. It is easy to check that d(N,≺, x) = 7 (remember
that the duration of a project is equal the duration of its longest path in
the PERT graph), and then C(x) = 0.5. To allocate this cost amongst the
activities in a fair way, note first that E(X0) = (2, 1, 1, 4, 2), and thus, all
activities have a delay with respect to their expected durations. If we take a
naive approach, i.e., if we allocate the delay cost by using the Shapley rule
for SP = (N,≺, E(X0), x, C), we have

Sh(SP ) = (0.27083, 0.02083, 0, 0.18750, 0.02083).

At first sight, this is a reasonable allocation of the delay cost. Activities
1 and 4 belong to the longest path in project (N,≺, x), and thus, receive
most of the delay cost. The cost allocated to activity 1 is greater than
that allocated to activity 4 because activity 1 also belongs to a path with a
duration greater than 6.5 (the path 1-2-5 has duration 6.75). Activity 3 only
belongs to one path with duration 6.5, and produces no delay cost. Therefore,
it pays 0. However, note that this allocation does not consider the probability
distributions of the durations of the activities but only their averages. For
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instance, the duration of activity 5 follows an exponential distribution, the
support for which is [0,∞). This means that its duration can be very long,
and therefore, can produce a longer delay. However, its duration is not very
long; so, in a sense, activity 5 contributes to a lack of delay in the project.
This is captured by the Shapley rule for stochastic scheduling problems with
delays. Using elementary simulation techniques, vSP can be estimated in a
good way and then SSh(SP ) can be calculated; the result is

SSh(SP ) = (0.28960, 0.09834, 0.07641, 0.20659,−0.17095).

It should be noted that this allocation differs from Sh(SP ) primarily in that
activity 5 receives a kind of reward for not being too late, where this reward
is paid by activities 1, 2, and 4, which last longer than expected and belong
to paths whose durations entail a delay cost.

We now use a small simulation experiment indicating that, on the average,
when x is drawn from X0, the cost allocation provided by SSh causes activity
5 to pay the largest part of the delay cost. We then realise that SSh tends to
allocate the delay cost to activities 1, 4, and 5, but that it is very sensitive
to the durations of the activities. We simulated 1,000 times the durations
of the activities such that the 1,000 corresponding durations of the projects
were greater than 6.5, i.e. we simulated (xi)i∈{1,...,1000}, each xij being an
observation of X0

j , all drawn independently and in such a way that C(xi) > 0.
Thus, we obtained 1,000 stochastic scheduling problems with delays SP i =
(N,≺, X0, xi, C) as well as their 1,000 associated proposals of the Shapley
rule SSh(SP i). We then calculated

∑
i∈{1,...,1000}

SSh(SP i)

1000
= (0.12857, 0.06844, 0.06686, 0.10757, 0.93790), (1.4)

where the average observed cost was 1.30935. Note that (1.4) showed that,
in effect, when there are positive delay costs in an implementation of the
stochastic project SP = (N,≺, X0) the delay cost function being C, the
cost allocation provided by SSh primarily burdens activity 5. This suggests
that the vector of actual durations x that we handle in this example could
be considered atypical because SSh5(SP ) < 0. Figure 1.2 confirms it. It
displays the density estimations of the variables Z1

i (solid line) and Z2
i (dotted

line), i ∈ {1, . . . 5}, such that

• Z1
i is the i-th component of Sh((N,≺, E(X0), X, C)), where X denotes

the random variable corresponding to an observation of X0; and
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• Z2
i is the i-th component of SSh((N,≺, X0, X, C)), where X denotes

the random variable corresponding to an observation of X0.

Note that the scales of the five graphics in Figure 1.2 are different, which is
a relevant feature to interpret them. It is not possible to adjust the scales
while maintaining the informative graphics. It is interesting to note that the
variables Z1

i and Z2
i are significantly different for each i, which strengthens

the interest of the rule SSh. Finally, Table 1.1 displays the percentage of
times that each of the activities (in columns) received non-negative or negat-
ive allocations (in rows) according to Sh and SSh. Again, activity 5 shows
the largest discrepancies between the deterministic and the stochastic scen-
ario, because if its planned duration equals its mean duration (as we assume
occurs in the deterministic scenario) the marginal contribution of activity
5 to each possible coalition in the corresponding game cannot be negative,
and thus Sh5((N,≺, E(X0), x, C)) ≥ 0 for all x; this does not happen in
the stochastic scenario in which its duration is described by X0

5 and not by
E(X0

5 ).

Sh 1 2 3 4 5
≥ 0 70.5 74.9 100 91.1 100
< 0 29.5 25.1 0.0 8.9 0

SSh 1 2 3 4 5
≥ 0 75.0 85.5 100 95.5 48.3
< 0 25 14.5 0.0 4.5 51.7

Table 1.1: Positive and negative payments for the Sh rule (left) and SSh
rule (right).

Example 1.2 raises one controversial property of Sh and SSh: they can
propose negative allocations to some activities. This can be seen as a counter-
intuitive feature, mainly because we are dealing with the issue of how to
allocate delay costs when these occur. However, it must be borne in mind
that in the context we are studying, even if we are only interested in ”delay
costs”, there will inevitably be activities whose observed durations contribute
positively to the occurrence of such costs and others whose observed durations
contribute negatively and, then, it is not so counter-intuitive for a rule to
propose negative allocations to some activities. In any case, it is clear that
in some scenarios it will be inadmissible to allocate negative values to some
activities even though their participation has contributed to reducing the
final delay of the project and, therefore, its delay cost.

Let us see now what condition concerning non-negativity can we prove
for Sh and how can it be extended to SSh.
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Figure 1.2: Density estimations of the variables Z1
i (solid line) and Z2

i (dotted
line).
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Theorem 1.3. (a) Let P = (N,≺, x0, x, C) be a deterministic scheduling
problem with delays. Then, for every i ∈ N ,

xi ≥ x0
i ⇒ Shi(N,≺, x0, x, C) ≥ 0.

(b) Let SP = (N,≺, X0, x, C) be a stochastic scheduling problem with delays.
Then, for every i ∈ N ,

C(xi, yN\i) ≥ E(C(X0
i , yN\i)) ∀ yN\i ∈ RN\i ⇒ SShi(N,≺, x0, x, C) ≥ 0.

Proof. (a) Take i ∈ N such that xi ≥ x0
i . Since C is non-decreasing then, for

all S ⊆ N\i,

vP (S ∪ i) = C(xi, xS, x
0
N\(S∪i)) ≥ C(x0

i , xS, x
0
N\(S∪i)) = vP (S).

Hence Shi(P ) = Φi(v
P ) ≥ 0.

(b) Take i ∈ N such that C(xi, yN\i) ≥ E(C(X0
i , yN\i)) for all yN\i ∈

RN\i. The independence of the components of X0 implies that, for all S ⊆
N\i,

vSP (S ∪ i) = E(C(xi, xS, X
0
N\(S∪i))) ≥ EN\(S∪i)(Ei(C(X0

i , xS, X
0
N\(S∪i))))

= E(C(X0
i , xS, X

0
N\(S∪i))) = vSP (S).

Hence SShi(SP ) = Φi(v
SP ) ≥ 0.

It may be worth noting that the sufficient condition in subparagraph (b)
extends, in some way, the condition in subparagraph (a). We cannot transfer
directly to the stochastic case condition xi ≥ x0

i because it is not clear how
to compare a real number (xi) with a random variable (X0

i ); on the other
hand, xi ≥ E(X0

i ) is not a sufficient condition for the non-negativity of
SSh. However, since C is non-decreasing, xi ≥ x0

i implies that C(xi, yN\i) ≥
C(x0

i , yN\i). Now, if we replace x0
i with X0

i and we take the mathematical
expectation, we do obtain a sufficient condition (in view of Theorem 1.3). It
is not difficult to check that an alternative sufficient condition is that xi ≥ z
for all real number z in the support of the random variable X0

i . In words,
every condition of the type ”xi is sufficiently large in view of the distribution
of X0

i ” guarantees the non-negativity of SSh.

1.4 Computational Analysis

The calculation of the Shapley value has, in general, an exponential com-
plexity. Although equivalent expressions with polynomial complexity can be
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used in some game classes, this is not the case for the class of games with
which we are dealing. Calculating the Shapley value in our context is im-
possible in practise, even for a moderate number of activities. For example,
if the number of activities is 100, there are 2100 coalitions in which the char-
acteristic function must be evaluated. However, in spite of these difficulties,
we are still strongly interested in the Shapley value for its good properties
in our particular context as it was discussed in the previous sections. As an
alternative to exact calculation, Castro et al. (2009) proposed an estimate
of the Shapley value in polynomial time using a sampling process.

In addition, to estimate the Shapley rule for stochastic scheduling prob-
lems with delays we also need to calculate vSP (S) = E(C(xS, X

0
N\S)), with

S ⊆ N . In some simple cases, these mathematical expectations can be calcu-
lated in a simple way using the properties of order statistics; but in general,
we need to use simulations to approximate vSP .

The aims of this section are twofold: First, to illustrate the implementa-
tion of the estimation of the Shapley rule for stochastic scheduling problems
with delays through its pseudocode, from which it is easy to check that the
computational complexity of our rule is O(n4); and second, to show by ex-
amples that it is possible to estimate the Shapley rule for stochastic schedul-
ing problems with delays in an acceptable time, even if there are hundreds
of activities, by using a desktop computer and free software. The error in
the two phases of estimation is tracked a posteriori through the estimation
of variance and central limit theorem.

Next we are going to show the pseudocode of our implementation; we do
it routine to routine. The first routine aims to reorder the precedence matrix.
If there are n activities 1, 2, . . . , n, the binary relation ≺ can be written as
an n× n matrix named precedence in which precedenceij = 1 means that i
precedes j. We want to permute the set of activities in order that if i ≺ j
then i < j. Note that this task can always be carried out and allows for
faster calculation. Given a matrix P , we denote its i-th row by Pi,· and its
i-th column by P·,i.

Organise precedence matrix

• Begin

P = precedence, index = NULL

While number of P’s columns > 0

Take all i ∈ n such that
∑n

j=1 Pij = 0

index = (index, i)
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P = P\Pi,· and P = P\P·,i
end

precedence = precedenceindex,index

• end

The next routine computes the early times for a deterministic scheduling
problem when the duration of the activities is given by x0. The early time
of an activity is the earliest that this activity can begin.

Early times

• Begin

early.timesi = 0 ∀i ∈ N
Organise precedence matrix

I = {i ∈ n, such that
∑n

j=1 precedenceji 6= 0}
For i ∈ I
prec = {j ∈ n/precedenceji = 1}
early.timesi = max{x0

prec + early.timesprec}
end

• end

Let us consider a deterministic scheduling problem with delays with delay
cost function, for every y ∈ RN , given by:

C(y) =

{
0 if d(N,≺, y) ≤ δ,
d(N,≺, y)− δ otherwise.

We obtain an estimation of the Shapley rule in polynomial time. The al-
gorithm consists of taking m ∈ N permutations of the set of players N with
equal probability (Castro et al., 2009). We denote by ΠN the set of permuta-
tions of N . We then calculate |N | real numbers as follows:

πj ∈ ΠN where πj = (πj1, ..., π
j
|N |) and j ∈ {1, ...,m}

x(πj)i = v(Prei(πj) ∪ i)− v(Prei(πj))
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where Prei(πj) denotes the set of activities that precede activity i in the
permutation πj, i.e., Prei(πj) = {πj1, . . . , π

j
k−1 | i = πjk}. So, x(πj) ∈ R|N |

is the corresponding marginal contributions vector. Finally, the estimated
value of the Shapley value is:

Ŝhi =
1

m

m∑
j∈1

x(πj)i

for all i ∈ N .

When we address the stochastic version of the problem, we can use nearly
the identical procedure to that in the deterministic case; but in this new
situation, we also need to estimate the TU-game. For this, we simulate the
TU-game m1 ∈ N times and take the average of these values.

The key part of the next routine is the computation of v(S ∪ i), where
S = Prei(π), given by

E(C(xPrei(π)∪i, X
0
N\(Prei(π)∪i))).

We compute d(N,≺, y) as the maximum of the sums of the early times of
the activities and their durations.

Estimation of Shapley rule in the stochastic case

• Begin

Determine m and m1

Cont = 0, Ŝhi = 0, timei = 0 ∀i ∈ N and vj = 0 ∀j ∈ m1

For j ∈ m1

X̂0
j,· = sample(X0)

end

Organise precedence matrix

While cont < m

Take π ∈ ΠN with probability 1
n!

For i ∈ n
For j ∈ m1

Early times of (xPrei(π)∪i, X̂
0
j,N\(Prei(π)∪i))

vj = max{max{early.times + (xPrei(π)∪i, X̂
0
j,N\(Prei(π)∪i))} −

δ, 0}
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end

timei = mean(v)

end

Ŝhπ1 = Ŝhπ1 + time1

Ŝhπi = Ŝhπi + timei − timei−1 ∀i ∈ N\1

cont = cont+ 1

end

Ŝh = Ŝh
m

• end

To gain insight into the computation time needed to obtain a solution,
we selected five problems8 with a number of activities ranging from 10 to
1,000. We ran the problems on a PC with a 3.70 GHz Core i7-8700K, and
64 GB of RAM on an Ubuntu 64-bits. The programming language used was
R x64 3.4.4. It is freely available under the GNU General Public License.
To improve performance in terms of time, we used the packages Rcpp and
parallel. The package Rcpp was used to write in C the function early times
and parallel was used to parallelise the estimation of the Shapley value by
using six cores of our computer.

Table 1.2 shows the computation times, in seconds, of the five problems,
with 10, 30, 100, 300, and 1,000 activities, respectively (in columns). The
TU-game was approximated using m1 = 1000 simulations, while m = 1000
and 10000 estimates (in rows) were used for the Shapley rule.

10 30 100 300 1000
1000 18 120 1033 7801 118770
10000 211 1329 11941 80521 1277377

Table 1.2: Computation times in seconds.

Table 1.2 illustrates that it is possible to estimate the Shapley rule for
stochastic scheduling problems with delays in an acceptable time, even if

8These problems were too large to be included in this paper. They can be downloaded
from http://dm.udc.es/profesores/ignacio/stochasticprojects
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there are hundreds of activities, by using a desktop computer and free soft-
ware.

Table 1.3 shows an estimation of errors, both in the approximation of the
characteristic function and Shapley rule by using m = 1000 and 10000 (in
rows). As above, the columns display the number of activities of the cor-
responding problems. All errors are relative and in percent.9 A significance
level of α = 0.05 was used in these estimates. The error in vSP (S) is different
for every S ⊆ N , and therefore, we display the average of 1,000 coalitions
chosen in a random way. In the Shapley rule, each activity has an error, and
the table shows the average of all activities.

10 30 100 300 1000
vSP 2.18 2.96 4.64 2.28 0.83
1000 12.92 13.49 19.37 27.88 12.92
10000 4.17 4.27 6.13 8.82 4.09

Table 1.3: Errors for vSP and the Shapley rule.

Table 1.3 illustrates that the estimations of the games vSP are rather
good, whereas the estimations of the Shapley rule are acceptable and improve
significantly with the size of m. In conclusion, we can affirm that a real
problem of great dimension can be solved in a satisfactory way in a reasonable
time using our methodology.
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2.1 Introduction

Project management is an important body of knowledge and practices
that comprises the planning, organisation and control of resources to achieve
one or more pre-determined objectives. The most commonly used methods
for project planning are PERT (Program Evaluation and Review Technique
model) and CPM (Critical Path Method). PERT/CPM analyses the tasks
involved in completing a project, especially the time needed to complete each
task, and computes the minimum time needed to complete the total project.
Through the data obtained in the analysis of the project, PERT/CPM iden-
tifies the critical activities, which are those for which any disturbance in its
duration modifies the minimum time of execution of the project. Also, it ob-
tains the times that can be assigned to non-critical activities, called slacks,
in addition to their fixed durations, to give them flexibility. Project manage-
ment often deals with the problem of redistribution of resources. Sometimes
it is convenient to reduce the time of an activity by increasing the assigned
costs. Other times, when the availability of resources is limited in a period of
time, it may be necessary to level the use of those resources. These situations
require a re-planning of the project.

53
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Even with good project management, once the project has been carried
out and the actual durations of the activities are known, there can be a
delay in the completion time of the project. When the delay generates an
additional cost, ways are needed to distribute the cost of the delay among
the different tasks involved. To solve this problem we can use cooperative
game theory and rules based on bankruptcy problems.

The essential elements related to project management can be found in
Castro et al. (2007) or in Hillier and Lieberman (2001). Project manage-
ment techniques have been widely used in all fields of engineering. Hall
(2012) reviews the impact that such techniques have in various fields and
their broad business opportunities. Their fields of application vary from
classical construction and engineering to information technology and soft-
ware development, including modern agile methods. Schmitz et al. (2019)
also argue the usefulness of traditional project management techniques in
the context of agile methodology. Evdokimov et al. (2018) include a case
study that shows the current relevance of project management techniques in
software development. Özdamar and Ulusoy (1995) present a survey of the
problem of resource constraints. To distribute the delay cost of the project
among the activities, Brânzei et al. (2002) provide two rules using, respect-
ively, a game theoretical and a bankruptcy-based approach, and Bergantiños
et al. (2018) introduce and analyse a consistent rule based on the Shapley
value.

A well-known project management software is Microsoft Project. This
tool is designed to create and control a project, through the allocation of
resources to tasks, the management of budget and workloads, as well as
monitoring developments. Microsoft Project is not open source and its license
is fee-based. Other project management applications have been created as
free software, such as OpenProj, PpcProject or ProMes (Gregoriou et al.,
2013). In Salas-Morera et al. (2013) we can see a useful comparison of these
applications.

The aforementioned tools are written in Java or Phyton. To the best of
our knowledge, there are only two packages in R available for project manage-
ment. PlotPrjNetworks (Muñoz, 2015) and plan (Kelley, 2018) are packages
that offer the user the creation of a Gantt diagram for the visualization of
the project structure. In our opinion, a tool was missing to manage a project
from its development to its control. We believe that such a tool would be
useful for the user community because it could be integrated with other tools
developed in R, it could be easily modified to suit the specific needs of each
user, and it could be wrapped into a graphical interface.
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In this paper, we introduce ProjectManagement1 (Gonçalves-Dosantos et
al., 2020b), a new R package that provides the necessary tools to manage
projects in a broad sense. It calculates the critical activities, the slack of each
activity, the minimum duration of the project and the early and last times of
each activity. It plots a graph of the project and the schedule. The package
also allows cost management to reduce the minimum project time, as well as
resource management. Once the actual durations of the activities are known,
it is possible to distribute the delay generated in the project among the
different activities. When activity durations are considered random variables,
the package provides additional functionality. In particular, it calculates the
average duration of the project and the criticality index of each activity. It
plots a representation of the project duration distribution and the early and
last times of the activities. And it calculates several allocation proposals of
the delay cost when the project has been completed and the actual duration
of the activities is known.

The paper is organized as follows. First, we recall the basic definitions
of project management and present different ways to distribute the delay
cost when durations are assumed to be known and when they are random
variables. Then, we provide a description of ProjectManagement. Finally,
we illustrate the use of the package by way of examples.

2.2 Project management

In this section we discuss the basic concepts of deterministic and stochastic
projects with a special focus on allocating the delay cost among the project
activities. The aim of this section is to provide a brief (and quick) survey of
the methodologies implemented in the R package ProjectManagement that
we introduce later, as well as to indicate the main bibliographical sources in
which interested readers can deepen their knowledge of each of these meth-
odologies.

Let X be a finite non-empty set and N be a set of ordered pairs (x1, x2),
with x1, x2 ∈ X and |N | = n. A directed graph is a pair G = (X,N),
where X is the set of nodes and N is the set of arcs. We say that an arc
i = (xi,1, xi,2) ∈ N starts at node xi,1 ∈ X and ends at xi,2 ∈ X. A node
xs ∈ X is a source node if there is no arc i ∈ N such that xi,2 = xs. A node
xe ∈ X is a sink node if there is no arc i ∈ N such that xi,1 = xe. A cycle is
a set of arcs i0, i1, ..., im ∈ N such that xij ,2 = xij+1,1, with j ∈ {0, ...,m− 1},

1https://github.com/Juan-Goncalves-Dosantos/ProjectManagement.git
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and xim,2 = xi0,1. To illustrate the concept of directed graph consider the
following example. Take graph G = (X,N) given by X = {a, b, c, d} and
N = {1 = (a, b) , 2 = (a, c) , 3 = (b, d) , 4 = (c, d)}. The diagram representing
this graph is depicted in Figure 2.1. This graph has one source (a) and one
sink (d). Arc 3, for instance, starts at node b and ends at node d. This graph
has no cycles. However, if we add an arc 5 = (d, a), the resulting graph has
two cycles: 1, 3, 5 and 2, 4, 5.

Figure 2.1: Diagram of the directed graph G = (X,N). The circles represent
the nodes and the arrows represent the arcs. This is the standard way of
depicting a graph.

A deterministic project P is a tuple P = (G, x0), where G = (X,N) is a
directed graph without cycles, with one source node and one sink node, and
x0 ∈ Rn

+ is the vector of non-negative planned durations. In this context, N
represents the set of activities in the project. We denote by PN the family
of all deterministic projects with set of activities N , and by P the family of
all deterministic projects.

In a deterministic project P = (G, x0) ∈ PN , you can calculate the
minimum duration of P , denoted by D (G, x0), i.e. the minimum time the
project needs to complete all activities taking into account the structure of
the graph. This time can be obtained as the solution of a linear programming
problem, and thus, can be easily computed. Alternatively, D (G, x0) can be
calculated using a project planning methodology like PERT (see, for instance,
Hillier and Lieberman (2001) for details on project planning).

Given a node x ∈ X, we define the set of immediate predecessors of x
as the set of activities ending in x, Pred (x) = {i ∈ N/xi,2 = x}, and the
immediate successors of x as Suc (x) = {i ∈ N/x = xi,1}. We define the
earliest time DE

i (G, x0) of an activity i ∈ N as the minimum time required
to complete all immediate predecessor activities of xi,1, i.e. the earliest start
time the activity i can start taking into account the graph

DE
i

(
G, x0

)
= max

j∈Pred(xi,1)
{DE

j

(
G, x0

)
+ x0

j}.

The latest completion time DL
i (G, x0) of an activity i ∈ N is the latest
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point in time when the activity can end without delaying the project

DL
i

(
G, x0

)
=


max

j∈N ;Suc(xj,2)=∅
{DE

j

(
G, x0

)
+ x0

j} if Suc (xi,2) = ∅,

min
j∈Suc(xi,2)

{DL
j

(
G, x0

)
− x0

j} otherwise.

It is easy to see that DE
i (G, x0) ≤ DL

i (G, x0) for all i ∈ N . Also, we can
calculate the minimum duration of a project, using the earliest start times,
as D (G, x0) = maxi∈N{DE

i (G, x0) + x0
i }.

We define the slack Si (G, x
0) of an activity i ∈ N as the maximum time,

in addition to x0
i , that i can use to complete its task without delaying the

project
Si
(
G, x0

)
= DL

i

(
G, x0

)
−DE

i

(
G, x0

)
− x0

i .

If the slack for an activity is equal to 0, then this activity is critical, i.e.
any perturbation in its time modifies the duration of the project. We can also
define two other types of slack. The free slack of an activity is the maximum
amount of time that this activity can be delayed without causing a delay in
the project or in the earliest time of the other activities. The free slack of an
activity can be calculated as

FSi
(
G, x0

)
= min

j∈Suc(xi,2)
{DE

j

(
G, x0

)
} −DE

i

(
G, x0

)
− x0

i .

The independent slack of an activity is the maximum time that the activ-
ity duration can be increased without affecting the times of others activities

ISi
(
G, x0

)
= max{ min

j∈Suc(xi,2)
{DE

j

(
G, x0

)
} −DL

i

(
G, x0

)
− x0

i , 0}.

Given the slack of an activity, we define the latest start time as the latest
time that an activity can start without delaying the project

DEL
i

(
G, x0

)
= DE

i

(
G, x0

)
+ Si

(
G, x0

)
and the earliest completion time as the earliest time in which an activity can
end if it starts in its earliest start time

DLE
i

(
G, x0

)
= DL

i

(
G, x0

)
− Si

(
G, x0

)
.

Besides the schedule of a project, we can manage the resources allocated
to the activities. The minimal cost expediting or MCE method (Kelley, 1961)
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considers that the duration of some activities can be reduced by increasing
the resources allocated to them and thus the implementation costs. An MCE
problem is a tuple (P, x̄0, c,D), where P is a deterministic project, x̄0 ∈ Rn

+

is the vector of minimum durations, that is, for each activity i ∈ N , x̄0
i is

the minimum duration that the activity can take if the resources allocated
to carry it out are increased, c ∈ Rn is the vector of unit costs, that is, for
each activity i ∈ N , ci is the cost of accelerating a unit of time the duration
of i, and D is the minimum duration of the project we are trying to achieve,
with D < D (G, x0). This problem can be solved as a linear programming
problem.

Two other interesting problems that arise from the management of re-
sources are the levelling and the allocation (Hegazy, 1999). These problems
take into account that in order for activities to be carried out in the estim-
ated time, a certain level of resources must be used. The problem of levelling
of resources is to find a schedule that allows to execute the project in its
minimum duration time D (G, x0) whilst the use of resources is as uniform
as possible over time. In the problem of allocation of resources, the level
of resources available in each period of time is limited. The aim is to find
the minimum duration time and a schedule for the execution of the project
taking into account this resource constraint. Given the complex nature of
these problems, their exact resolution is computationally demanding. The
most common practice is to use heuristic methods to solve them.

Once the project is completed, we can know the actual (observed) dur-
ation of the activities and, therefore, whether there has been a delay in the
project, that is, whether the actual duration of the project has been differ-
ent than expected. We define a deterministic project with delays as a tuple
CP = (G, x0, x, C), where (G, x0) is a deterministic project, x ∈ Rn

+ is the
vector of actual duration of the activities, and C : R+ → R is the delay cost
function. We assume that C only depends on the duration of the project, it
is a non-decreasing function, and C (D (G, x0)) = 0. In practice, the most
commonly used functions, for a vector y ∈ Rn

+, are

C (D (G, y)) = D (G, y)− δ (2.1)

with δ ∈ R+, for example δ = D (G, x0).

We denote by CPN the family of all deterministic projects with delays
with set of activities N , and by CP the family of all deterministic projects
with delays.

In a deterministic project with delays CP ∈ CPN , we may need to allocate
C (D (G, x)) among the activities. This can be useful for several reasons. For
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example, it can serve as an incentive for those responsible for the activities
that have been delayed to be more diligent in similar projects that we may
carry out with them in the future; or it can be a mechanism to distribute
among those responsible for the activities that have been delayed the financial
penalty that the project manager has contractually guaranteed. Brânzei
et al. (2002) propose two rules based on bankruptcy problems to address
this problem: the Proportional rule and the Truncated Proportional rule.
Although they define these rules for the case xi ≥ x0

i , we do not consider
this restriction. These rules are only defined when the sum of the individual
delays is not zero.

The Proportional rule for deterministic scheduling problems with delays
φ is defined, for each i ∈ N , by

φi =
xi − x0

i∑
j∈N xj − x0

j

· C (D (G, x)) .

The Truncated Proportional rule for deterministic scheduling problems
with delays φ̄ is defined, for each i ∈ N , by

φ̄i =
min{xi − x0

i , C (D (G, x))}∑
j∈N min{xj − x0

j , C (D (G, x))}
· C (D (G, x)) .

In Bergantiños et al. (2018), the problem of allocating the delay costs is
addressed in the context of cooperative game theory using a Shapley rule. As
we illustrate later in an example, the Shapley rule allocates the delay costs in
a more sensible way than the proportional rules, at least in some cases. It is
much more costly to compute it but, in general, the extra effort is worthwhile.
A TU-game is a pair (N, v) where N is a finite non-empty set, and v is a map
from 2N to R with v (∅) = 0. We say that N is the player (activity) set of the
game and v is the characteristic function of the game, and we usually identify
(N, v) with its characteristic function v. The Shapley value, an allocation
rule in cooperative game theory, is a map Φ that associates to each TU-game
(N, v) a vector Φ (v) ∈ RN satisfying

∑
i∈N Φi (v) = v (N) and providing a

fair allocation of v (N) among the players in N . The explicit formula of the
Shapley value for every TU-game (N, v) and every i ∈ N is given by

Φi (v) =
∑

S⊆N\{i}

(|N | − |S| − 1)! |S|!
|N |!

(v (S ∪ {i})− v (S)) .

Since its introduction by Shapley (1953), the Shapley value has proved
to be one of the most important rules in cooperative game theory and to
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have applications in many practical problems (see, for instance, Moretti and
Patrone (2008)).

Bergantiños et al. (2018) define the Shapley rule for deterministic projects
with delays Sh as Sh (CP ) = Φ

(
vCP

)
, where for all CP = (G, x0, x, C) ∈

CPN :

• vCP is the TU-game with set of players N given by

vCP (S) = C
(
D
(
G,
(
xS, x

0
N\S
)))

for all S ⊆ N , where
(
xS, x

0
N\S

)
denotes the vector in RN whose i-th

component is xi if i ∈ S or x0
i if i ∈ N \ S, and

• Φ
(
vCP

)
denotes the proposal of the Shapley value for vCP .

The calculation of the Shapley value has, in general, an exponential com-
plexity. In this context, its exact calculation is impossible in practice, even
for a moderate number of activities. As an alternative to exact calculation,
Castro et al. (2009) proposed an estimate of the Shapley value in polyno-
mial time using a sampling process. In practical terms, this estimate is a
reasonable solution.

Next, we introduce a generalization of the model and the rules described
above. It follows the results in Gonçalves-Dosantos et al. (2020a). If instead
of x0

i , the planned duration of activity i ∈ N , we consider the non-negative
random variable X0

i describing the duration of i, we can define a stochastic
project SP as tuple SP = (G,X0). Unlike in the deterministic setting, the
duration of activities, the duration of the project, as well as the early and
last times are now random variables instead of fixed numbers.

A stochastic project with delays is a tuple SCP = (G,X0, x, C), where
(G,X0) is a stochastic project, x is the vector of actual durations, and C :
R+ → R is the delay cost function. We assume that C is non-decreasing and
C (D (G, 0)) = 0, where 0 ∈ Rn is the vector with all components equal to
zero. Proportional rules can be extended to stochastic projects with delays
in a straightforward way.

The Stochastic Proportional rule for deterministic scheduling problems
with delays φ is defined, for each i ∈ N , by

φi =
xi − E (X0

i )∑
j∈N xj − E

(
X0
j

) · C (D (G, x)) .
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The Stochastic Truncated Proportional rule for deterministic scheduling
problems with delays φ̄ is defined, for each i ∈ N , by

φ̄i =
min{xi − E (X0

i ) , C (D (G, x))}∑
j∈N min{xj − E

(
X0
j

)
, C (D (G, x))}

· C (D (G, x)) .

Also, we can extend the Shapley rule to the stochastic context. Let us
see two extensions of the rule. The Shapley rule for stochastic projects with
delays SSh is defined by SSh (SCP ) = Φ

(
vSCP

)
, where

• vSCP is the TU-game with set of players N given by

vSCP (S) = E
(
C
(
D
(
G,
(
xS, X

0
N\S
))))

for all non-empty S ⊆ N ,2 and

• Φ
(
vSCP

)
denotes the proposal of the Shapley value for vSCP .

As an alternative to the previous rule, the Shapley rule in two steps for
stochastic projects with delays SSh2 is defined by SSh2 (SCP ) = Φ

(
vSCP1

)
+

Φ
(
vSCP2

)
, where

• vSCP1 is the TU-game with set of players N given by

vSCP1 (S) = E
(
C
(
D
(
G,
(
xS, X

0
N\S
))))

− E
(
C
(
D
(
G,X0

)))
for all S ⊆ N ,

• vSCP2 is the TU-game with set of players N given by

vSCP2 (S) = E
(
C
(
D
(
G,
(
X0
S, 0N\S

))))
for all S ⊆ N , where 0 ∈ Rn is the vector with all components equal
to zero, and

• Φ
(
vSCP1

)
and Φ

(
vSCP2

)
denote the proposal of the Shapley value for

vSCP1 and vSCP2 .

In general, the calculation of vSCP , vSCP1 and vSCP2 is very complex. In our
package, we use simulations to approximate these characteristic functions.

2As in all TU-games, we define vSCP (∅) = 0.
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2.3 ProjectManagement package

ProjectManagement is a new R package that allows the user to address
different tasks in project management. The user can obtain the duration of
a project and a schedule of activities, and can plot this schedule for a better
understanding of the problem. When the actual durations of each activity
are observed, the package proposes several allocations of the delay cost, if
there was any, among the activities. In the stochastic context, the package
estimates the average duration of the project and plots the density functions
of the following random variables: duration of the project, and early and last
times of the activities. As in the deterministic case, it can make an allocation
of the delay cost, if any.

The following dependencies of the package must be taken into account:
triangle (Carnell, 2019), plotly (Sievert, 2020), igraph (Csardi and Nepsusz,
2006), kappalab (Grabisch et al., 2015), GameTheory (Cano−Berlanga, 2017)
and lpSolveAPI (lp solve et al., 2020). The first one is used for calculations
with triangular distributions, the second one to plot interactive graphics, the
third one to plot graphs, the next two are related to game-theoretic concepts
and the last one to solve linear programming problems.

The functions incorporated in the package can be seen in Table 2.1.
Note that for projects of more than 10 activities, functions delay.pert

and delay.stochastic.pert will approximate the Shapley value through
a sampling process. Table 2.2 describes the complete list of parameters used
by the functions. Tables 2.3, 2.4 and 2.5 state which arguments use each
function.

ProjectManagement allows the user to plot the activities on nodes graph
of the Project (AON). Originally, in the PERT methodology, projects are
represented by activities on arcs graphs (AOA). This is the representation
we have used in this paper up to now. Both AON and AOA representa-
tions are widely used in the literature, each having some advantages over the
other in particular circumstances. For automatically drawing the network of
a project, the AON representation is more appropriate because it is compu-
tationally much more efficient. This is why we have incorporated it into the
dag.plot function. This representation will be useful mainly for the user to
check that he has entered the precedence matrices correctly, which are the
ones that really characterize the project.
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Function Description
dag.plot Plots the AON graph of a project.
delay.pert Calculates the delay cost of a deterministic

project and allocates it among the activities.
delay.stochastic.pert Calculates the delay cost of a stochastic

projectand allocates it among the activities.
early.time Calculates the earliest start time for each

activity.
last.time Calculates the latest completion time for each

activity.
levelling.resources Calculates the schedule of the project so that

the consumption of resources is as uniform
as possible.

mce Calculates the costs per activity needed to
accelerate the project.

organize Relabels the activities of a project (if i
precedes j then i ≤ j).

rebuild Builds a type 1 precedence matrix.
resource.allocation Calculates the project schedule so that

resource consumption does not exceed the
maximum available per time period.

schedule.pert Calculates the duration of a project and the
schedule of each activity, and plots the
schedule and the AON graph.

stochastic.pert Calculates the average duration of a stochastic
project, the criticality index of each activity,
and the density functions of the duration of
the project, early times and last times.

Table 2.1: Summary of functions in ProjectManagement.
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ProjectManagement also allows the user to choose from four different
types of immediate precedences between the activities.

• Type 1: Finish to start (FS). If an activity i ∈ N precedes type 1 to
j ∈ N , then j cannot start until activity i has finished.

• Type 2: Start to start (SS). If an activity i ∈ N precedes type 2 to
j ∈ N , then j cannot start until activity i has started.

• Type 3: Finish to finish (FF). If an activity i ∈ N precedes type 3 to
j ∈ N , then j cannot finish until activity i has finished.

• Type 4: Start to finish (SF). If an activity i ∈ N precedes type 4 to
j ∈ N , then j cannot finish until activity i has started.

The relationships between the types of dependencies are as follows: Type
1 implies type 2, type 2 implies type 4, type 1 implies type 3 and finally
type 3 implies type 4. Considering these relations, if one activity precedes
another by more than one type, it is only necessary to indicate the one with
the strongest character.

The user can indicate types 1 or 2 in the "prec1and2" parameter (see
Table 2.2) using the values 1 or 2 respectively, and types 3 or 4 in "prec3and4"

using 3 or 4 respectively. Note that cycles can not exist.
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Parameter Description
duration Vector with the expected duration for each activity.
prec1and2 Matrix indicating precedence type 1 or type 2 between

the activities (Default=matrix(0)).
prec3and4 Matrix indicating precedence type 3 or type 4 between

the activities (Default=matrix(0)).
observed.duration Vector with the actual duration for each activity.
delta Value indicating the maximum time that the project

can take without delay (see equation 2.1). This value
is only used with the default cost function.

distribution Vector with the distribution function of the duration
for each activity. It can be normal, triangular,
exponential, uniform, beta, t-Student, F distribution,
chi-squared, gamma, Weibull, binomial, Poisson,
geometric, hypergeometric, and empirical.

values Matrix with the arguments of the distribution function
of the duration for each activity. By rows the activities,
and by columns the arguments.

percentile Value used to calculate the maximum time allowed for
the duration of the project without delay. This value is
only used if no delta value is assigned.

compilations Number of simulations that the function uses for
estimation (Default=1000).

cost.funtion Delay cost function. If this value is not added, the
package uses equation 2.1.

early.times Vector with the early time for each activity.
PRINT Logical parameter indicating if the schedule and the

AON graph are depicted (Default=TRUE).
plot.activities.times Vector of selected activities from which it is shown

the distribution of their early and last times
(Default=NULL).

minimum.durations Vector with the minimum duration an activity can
take even if the resources are increased.

critical.activities Vector with the critical activities to represent them
in a different color in the AON graph (Default=NULL).

duration.project Value indicating the minimum time sought in the
project (Default=NULL).

activities.costs Vector indicating the cost of accelerating a unit of
time the duration for each activity.

resources Vector indicating the necessary resources for each
activity per period of time.

int Value indicating the duration of each period of time
(Default=1).

max.resources Value indicating the maximum number of resources
that can be used in each period of time.

Table 2.2: Summary of parameters in ProjectManagement.
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Table 2.3: Arguments used by each function in ProjectManagement.
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Table 2.4: Arguments used by each function in ProjectManagement.
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Table 2.5: Arguments used by each function in ProjectManagement.
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2.4 Examples

ProjectManagement is available for download from CRAN. To use the
package you will need to load it at the beginning of the session, usually by
typing

> library("ProjectManagement")

Next we analyse the following deterministic project with 10 activities.
Their durations and precedence relations are given in Table 2.6.

N 1 2 3 4 5 6 7 8 9 10
Immediate precedence type 1 - - - 2 3 3 1, 4 2 5, 8 6
Immediate precedence type 2 - - - - 4 - - - - -
Immediate precedence type 3 - - - - - 8 - - - -
Immediate precedence type 4 - - - - - - 9 - - -

Durations 2 1.5 1 4.5 2 2.5 3 4 2 5

Table 2.6: Example of a deterministic project.

We start by introducing the data set characterizing the project. We use
the function dag.plot for depicting its AON graph. Figure 2.2 shows it;
the green blocks contain the activities and the precedences are represented
by arrows. The blocks S and E are the source and sink nodes, respectively.
Note that the precedences type 1 are arrows without label, precedences type
2 are labeled as SS, precedences type 3 as FF, and precedences type 4 as SF.

> prec1and2<-matrix(0,nrow=10,ncol=10)

> prec1and2[1,7]<-1; prec1and2[2,4]<-1; prec1and2[2,8]<-1;

> prec1and2[3,5]<-1; prec1and2[3,6]<-1; prec1and2[4,7]<-1;

> prec1and2[5,9]<-1; prec1and2[6,10]<-1; prec1and2[8,9]<-1;

> prec1and2[4,5]<-2

> prec3and4<-matrix(0,nrow=10,ncol=10)

> prec3and4[8,6]<-3; prec3and4[9,7]<-4

> dag.plot(prec1and2,prec3and4)
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Figure 2.2: AON graph of the project. In an AON graph the activities are
embodied in the nodes (squares) and the precedences of the various types,
FS, SS, FF, SF, in the arcs (arrows).

Using schedule.pert, we obtain the project schedule, i.e. the minimum
time needed to complete all activities and the early and last times. Also, we
can plot the schedule. Let us see it:

> duration<-c(2,1.5,1,1.5,2,2.5,3,4,2,5)

> schedule.pert(duration,prec1and2,prec3and4)

‘Total duration of the project‘

[1] 10.5

[[2]]

Activities Duration Earliest start Latest start Earliest completion

1 2.0 0.0 5.5 2.0

2 1.5 0.0 0.0 1.5

3 1.0 0.0 2.0 1.0

4 1.5 1.5 6.0 3.0

5 2.0 1.5 6.5 3.5

6 2.5 2.0 3.0 5.5

7 3.0 3.0 7.5 6.0

8 4.0 1.5 1.5 5.5

9 2.0 5.5 8.5 7.5

10 5.0 5.5 5.5 10.5
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Activities Latest completion Slack Free Slack Independent Slack

1 7.5 5.5 1.0 0.0

2 1.5 0.0 0.0 0.0

3 3.0 2.0 0.0 0.0

4 7.5 4.5 0.0 0.0

5 8.5 5.0 2.0 0.0

6 5.5 2.0 2.0 0.0

7 10.5 4.5 4.5 0.0

8 5.5 0.0 0.0 0.0

9 10.5 3.0 3.0 0.0

10 10.5 0.0 0.0 0.0

[[3]]

In this output we can see the total duration (10.5 units) of the project as
well as other relevant information for each activity. Figure 2.3 depicts the
different times of each activity using a colour coding. If we click on the points
on the graph, a label indicates which activity and time it belongs to. Also,
if we double click on a section of the legend we can see the data related to
it, as in Figure 2.4 with the last times for each activity (another double click
restarts the graph). In the output, the plot depicted in Figure 2.3 is saved as
an object on [[3]]; this allows the users to manipulate the plot according to
their needs. Finally, Figure 2.5 shows the AON graph of the project where
critical activities are represented in red.

Next, suppose we are interested in shortening the duration of the project.
The mce function is used for this purpose. Let us use the function with the
following input data: the minimum duration for each activity even if the
resources are increased

x̄0 = (1, 1, 0.5, 1, 1, 2, 2, 3, 1, 3)

and the costs per unit time to shorten each activity

c = (1, 2, 1, 1, 3, 2, 1, 2, 3, 5) .

> minimum.durations<-c(1,1,0.5,1,1,2,2,3,1,3)

> activities.costs<-c(1,2,1,1,3,2,1,2,3,5)
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Figure 2.3: This figure shows an interactive graphic that displays the schedule
of the project. If we move the mouse over the highlighted points of the
segments, pop-up tags are generated with information about the activities.
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Figure 2.4: Latest completion times. This interactive graphic is the result of
double clicking on the “Latest completion date” section of the legend.
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Figure 2.5: AON graph of the project. In an AON graph the activities are
embodied in the nodes (squares) and the precedences of the various types,
FS, SS, FF, SF, in the arcs (arrows). Nodes in red indicate critical activities.

> mce(duration,minimum.durations,prec1and2,prec3and4,

activities.costs,duration.project=NULL)

necessary negative increase

1: 0.5

Read 1 item

Project duration =

[1] 10.0 9.5 9.0 8.5 8.0 7.5 7.0

Estimated durations = Costs per solution =

2.0 2.0 2.0 2.0 2.0 2.0 2.0

1.5 1.5 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.5 1.5 1.5 1.5 1.5 1.5 1.5

2.0 2.0 2.0 2.0 2.0 2.0 2.0

2.5 2.5 2.5 2.5 2.5 2.5 2.5

3.0 3.0 3.0 3.0 3.0 3.0 3.0

3.5 3.0 3.0 3.0 3.0 3.0 3.0

2.0 2.0 2.0 2.0 2.0 2.0 2.0

5.0 5.0 5.0 4.5 4.0 3.5 3.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 1.0 1.0 1.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 2.0 2.0 2.0 2.0 2.0 2.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 2.5 5.0 7.5 10

The parameter duration.project=NULL means that we do not indicate a min-
imum duration of the project, so the function asks us for a decrease of the duration
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of the project to obtain all possible solutions. We have considered it convenient
a decrease of 0.5 units of time. Therefore, we have obtained that the project can
reduce its minimum duration to 10, 9.5, 9, 8.5, 8, 7.5 and 7. For each possible dur-
ation of the project, we have the durations of each activity (duration per column
and activity per row), as well as the cost needed to reduce their times to these
durations.

Suppose now that to complete the project each activity needs the amount of
resources

(6, 6, 6, 3, 4, 2, 1, 2, 3, 1) ,

and we are interested in obtaining a new schedule with a uniform consumption of
resources over time. To do this we use the function levelling.resources in such
a way

> resources<-c(6,6,6,3,4,2,1,2,3,1)

> levelling.resources(duration,prec1and2,prec3and4,resources,int=0.5)

Earliest start times =

[1] 3.5 0.0 2.0 2.0 6.5 3.0 5.5 1.5 8.5 5.5

Resources by period=

[1] 6 6 6 2 11 11 7 10 10 10 10 2 2 6 6 6 6 4 4 4 4

Figure 2.6: This graphic shows the resource consumption according to the
initial scheduling (in black) and according to the scheduling after leveling
(in red). The x-axis represents time and the y-axis represents resource con-
sumption.
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As we can see, the function returns the new earliest start times of the activities
and the resources consumed in each period with the new schedule, where time
periods start at 0 and end at 10.5 with an increase of 0.5 time units. Figure
2.6 represents the resources required in each period of time, before and after the
readjustment.

To conclude with the analysis of resources, consider that the maximum amount
of resources available in each period is 10. We use the resource.allocation

function in this situation.

> max.resources<-10

> resource.allocation(duration,prec1and2,prec3and4,resources,

max.resources,int=0.5)

Project duration =

[1] 11

Earliest start times =

[1] 6.0 0.0 1.5 2.5 4.0 2.5 8.0 1.5 6.0 5.5

Resources by period =

[1] 6 6 6 8 8 7 7 7 8 8 6 5 10 10 10 10 2 2 2 2 2 1

With the new restriction, the minimum duration of the project becomes 11
instead of 10. The output includes the new earliest start times for each activity
and the consumption of resources by period (note that the last period is now 11).

Continuing the example, we now analyse the allocation of delays. The function
delay.pert shows if there has been a delay in the project and, in that case,
allocates it among the activities. Let us see it using the delay cost function

C (D (G, y)) =

{
0 if D (G, y) ≤ 10.5,
D (G, y)− 10.5 otherwise,

and the (observed) actual durations

x = (2.5, 1.5, 2, 2, 2, 6, 4, 6, 3, 5.5) .

> observed.duration<-c(2.5,1.5,2,2,2,6,4,6,3,5.5)

> cost.function<-function(x){return(max(x-10.5,0))}

> delay.pert(duration,prec1and2,prec3and4,observed.duration,

delta=NULL,cost.function)

There has been a delay of = 3



2.4. Examples 77

1 2 3 4 5

The proportional rule 0.150 0.000 0.300 0.150 0.000

The truncated proportional rule 0.158 0.000 0.316 0.158 0.000

Shapley rule 0.000 0.000 0.333 0.000 0.000

6 7 8 9 10

The proportional rule 1.050 0.300 0.600 0.300 0.150

The truncated proportional rule 0.947 0.316 0.632 0.316 0.158

Shapley rule 1.083 0.000 1.083 0.000 0.500

The output shows that there is a delay in the project of 3 units. As there
is a delay, we proceed to make the allocation using three rules: proportional,
truncated proportional and Shapley. We can see the differences between the three
rules, especially in activities 1, 4, 7 and 9. While the proportional and truncated
proportional rules assign a positive payment, the Shapley rule does not assign
costs to these activities. This is due to the fact that, although they fall behind
the planned duration, they do not affect the overall delay of the project. Note
that if the project has more than ten activities, delay.pert does not calculate the
Shapley rule; instead, it asks the user if he wants to calculate an estimate of its
value.

Let us now assume that we are in a stochastic context, with additional in-
formation on planned durations being random variables. Using the the package’s
function stochastic.pert with the following random variables to describe the
duration of the activities

X0 = (t (1, 2, 3) , exp (2/3) , t (1/2, 5/4, 5/4) , t (1/4, 7/4, 5/2) , t (1, 2, 3) ,

t (1, 3/2, 5) , t (1, 1, 7) , t (3, 4, 5) , t (1/2, 5/2, 3) , t (1, 6, 8)) ,

where t (a, b, c) denotes the triangular distribution with parameters a, b, and
c, and exp (α) denotes the exponential distribution with parameter α, we can
obtain relevant information about the project. Note that with the argument
plot.activities.times=c(7,8) we indicate the activities for which we want to
estimate the densities of their earliest and latest start and completion times; in
this example we have requested only such densities for activities 7 and 8.

> values<-matrix(c(1,3,2,2/3,0,0,1/2,5/4,5/4,1/4,5/2,7/4,1,3,2,1,5,

3/2,1,7,1,3,5,4,1/2,3,5/2,1,8,6),nrow=10,ncol=3,byrow=T)

> distribution<-c("TRIANGLE","EXPONENTIAL",rep("TRIANGLE",8))

> stochastic.pert(prec1and2,prec3and4,distribution,values,

percentile=0.95,plot.activities.times=c(7,8))
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Average duration of the project = 10.64242

Percentile duration of the project = 14.21999

1 2 3 4 5 6 7 8 9 10

Criticality index 0.6 88 11.4 2 0.1 11.3 2.6 86 4 93.4

In the output we can see the average duration of the project and the percentile
duration of the project. The percentile duration of the project shows the value
of such that the probability that the duration of the project is smaller than d
equals the variable percentile introduced by the user (see Table 2.2); in this case
percentile=0.95. In addition, we obtain the criticality index by activity, that is,
the proportion of times that an activity is critical. An activity is critical when it
has zero slack. Figure 2.7 plots estimations of the density function of the project
duration, the earliest start time and the latest completion time of activities 7 and
8.

We proceed now to the allocation of the delay cost in the stochastic model
using the function delay.stochastic.pert. To be able to compare the results,
we will use the same delay cost function as in the deterministic case. As expected,
there are noticeable differences in the allocations between the two models, as the
stochastic model makes use of more complex information.

> delay.stochastic.pert(prec1and2,prec3and4,distribution,values,

observed.duration,percentile=NULL,delta=NULL,cost.function)

Total delay of the stochastic project = 3

1 2 3 4 5

Stochastic Shapley rule 0.072 -0.076 0.570 0.074 0.072

Stochastic Shapley rule 2 0.006 0.034 0.520 0.013 0.007

The proportional payment 0.150 0.000 0.300 0.150 0.000

The truncated proportional payment 0.156 0.000 0.316 0.158 0.000

6 7 8 9 10

Stochastic Shapley rule 1.665 0.083 0.119 0.073 0.348

Stochastic Shapley rule 2 1.621 0.023 0.250 0.010 0.513

The proportional payment 1.050 0.300 0.600 0.300 0.150

The truncated proportional payment 0.947 0.316 0.632 0.316 0.158
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Figure 2.7: Density estimation of project duration time and earliest start and latest
completion times for activities 7 and 8.
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Finally, to illustrate the runtime of previously used functions, Table 2.7 shows
the time (in seconds) needed to compute several problems. We have selected a
variety of projects with 2, 4, 6, 8 and 10 activities, and we have run the different
routines on a computer with Intel Core i5− 7200U and 12 GB of RAM.

Activities 2 4 6 8 10
delay.pert 0.00 0.00 0.00 0.03 0.11

delay.stochastic.pert 0.06 0.44 1.68 6.23 30.58
early.time 0.00 0.00 0.00 0.00 0.00
last.time 0.00 0.00 0.00 0.00 0.00

levelling.resources 0.00 0.00 0.00 0.02 0.03
mce 0.00 0.00 0.00 0.00 0.02

organize 0.00 0.00 0.00 0.00 0.00
resources.allocation 0.00 0.00 0.00 0.01 0.02

schedule.pert 0.08 0.11 0.13 0.11 0.12
stochastic.pert 0.02 0.03 0.05 0.04 0.04

Table 2.7: Runtime in seconds of ProjectManagemet functions.
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César HM (2013). Ppcproject: An educational tool for software project manage-
ment. Computers and Education, 69, 181-188.

Schmitz K, Mahapatra R, Nerur S (2019). User engagement in the era of
hybrid agile methodology. IEEE Software, 36, 32-40.



82 Chapter 2. ProjectManagement: an R Package for Managing Projects

Shapley LS (1953). A value for n-person games. Contributions to the Theory
of Games, 2, 307-317.

Sievert C (2020). Interactive Web-Based Data Visualization with R, plotly,
and shiny. Chapman and Hall/CRC. ISBN 9781138331457. https://plotly-r.com.



Chapter 3

On egalitarian values for
cooperative games with a priori
unions

JM Alonso-Meijide, J Costa, I Garćıa-Jurado, JC Gonçalves-Dosantos
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3.1 Introduction

Many economic problems deal with situations in which several agents cooperate
to generate benefits or to reduce costs. Cooperative game theory studies proced-
ures to allocate the resulting benefits (or costs) among the cooperating agents in
those situations.

One of the most commonly used allocating procedures is the Shapley value,
introduced in Shapley (1953) and analyzed more recently in Moretti and Patrone
(2008) or in Algaba et al. (2019). Very often, however, agents cooperate on the
basis of a kind of egalitarian principle according to which the benefits will be shared
equitably. For instance, Selten (1972) indicates that egalitarian considerations
explain in a successful way observed outcomes in experimental cooperative games.

In recent years, the game theoretical literature has dealt with several egalitarian
solutions in cooperative games. For instance, van den Brink (2007) provides a
comparison of the equal division value and the Shapley value, and Casajus and
Hüttner (2014) compare those two solutions with the equal surplus division value
(studied first in Driessen and Funaki, 1991). In van den Brink and Funaki (2009),
Chun and Park (2012), van den Brink et al. (2016), Ferrières (2017) and Béal

83
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et al. (2019) several axiomatic characterizations of the equal division and equal
surplus division values are provided. Ju et al. (2007) introduce and characterize
the consensus value, a new solution that somewhat combines the Shapley value and
the equal division rule. Dutta and Ray (1989) introduce the egalitarian solution for
cooperative games, closely related to Lorenz dominance, that considers cooperating
agents who believe in equality as a desirable social goal and negotiate accordingly;
this solution was later characterized by Dutta (1990), Klijn et al. (2000) and Aŕın
et al. (2003), and modified by Dietzenbacher et al. (2017).

Another stream of literature in cooperative game theory started in Owen
(1977), where a variant of the Shapley value for games with a priori unions is
introduced and characterized. In a game with a priori unions there exists a parti-
tion of the set of players, whose classes are called unions, that is interpreted as an
a priori coalition structure that conditions the negotiation among the players and,
consequently, modifies the fair outcome of the negotiation. There is a large literat-
ure concerning the Owen value and its applications; just to cite some recent papers,
Lorenzo-Freire (2016) provides new axiomatic characterizations of the Owen value,
Costa (2016) deals with an application in a cost allocation problem, and Saavedra-
Nieves et al. (2018) propose a sampling procedure to approximate it. Not only
the Shapley value but also other values have been modified for the case with a
priori unions. For instance, Alonso-Meijide and Fiestras-Janeiro (2002) deal with
the Banzhaf value for games with a priori unions, Casas-Méndez et al. (2003)
introduce the τ -value for games with a priori unions, Alonso-Meijide et al. (2011)
study the Deegan-Packel index for simple games with a priori unions, and Hu et
al. (2019) introduce an egalitarian efficient extension of the Aumann-Drèze value
(Aumann and Drèze, 1974). Finally, the literature of games with a priori unions
has developed in many other directions. For instance, Alonso-Meijide et al. (2014)
analyze an extension of the Shapley value for games with a priori unions altern-
ative to the Owen value, Vázquez-Brage et al. (1996) and van den Brink et al.
(2015) introduce and study values for games with graph-restricted communication
and a priori unions, and Hu (2019) deals with a weighted value for games with a
priori unions.

In this paper we modify the equal division value and the equal surplus division
value for games with a priori unions. In Section 2 we illustrate the interest of
our study describing a cost allocation problem that arises in the installation of
an elevator in an apartment building. In Section 3 we define and characterize
the equal division rule for games with a priori unions. In Section 4 we introduce
and characterize three alternative extensions of the equal surplus division rule for
games with a priori unions. In Section 5 we include some final remarks.
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3.2 An example

In this section we consider an example where the owners of apartments in a
building have agreed to install an elevator and share the corresponding costs. This
example is inspired by a problem analyzed in Crettez and Deloche (2019) from the
point of view of French legislation. The French Law on Apartment Ownership of
Buildings does not provide a precise method for sharing the cost of an improvement
but indicates that the co-owners must pay “in proportion to the advantages” they
will receive. In the case of elevators in France, Crettez and Deloche (2019) indicate
that there is a de facto sharing method that they call the elevator rule. The elevator
rule associates a parameter λi = 1+(i−1)/2 to each floor i and distributes the total
cost among the floors proportionally to those parameters; then the cost allocated
to each floor is divided equally among its apartments. In their paper Crettez and
Deloche study the elevator rule and other proposals in the spirit of the French
legislation.

However, Crettez and Deloche (2019) explain that in other European countries
the legislation is based on principles of egalitarian character. For example, in the
Netherlands each of the owners of the apartments must “participate for an equal
part in the debts and costs which are for account of all apartments owned pursuant
to law or the internal arrangements, unless the internal arrangements provide for
another proportion of participation.”

The Spanish Horizontal Property Law 49/1960 (modified by the Act 8/2013)
indicates that “to each apartment or local will be attributed a quota of participa-
tion in relation to the total of the value of the building (. . . ). This quota will serve
as a module to determine the participation in the burdens and benefits due to the
community.” These quotas generally depend on the surface area of each apartment
but can take into account other aspects.

In a particular example, let us see how the Dutch and Spanish rules would share
the costs of installing an elevator. Consider the following three-storey building with
no apartments or offices on the ground floor: on the first floor there is a single
apartment of 180 square meters, on the second floor there are two apartments,
one of 100 and other one of 90 square meters, and on the third floor there are
three apartments of 60 square meters each. The second floor has a slightly larger
area because one of the two apartments on the floor has an additional gallery.
Suppose now that the cost of installing the elevator is 120 (in thousands of euros),
50 of which correspond to the machine, 40 to the works to make the hollow of
the elevator, and 30 to the works to be done on each floor to allow access to the
elevator (10 in each of them). Table 3.1 below shows the distribution of costs
for each of the apartments according to the Dutch and Spanish rules (the latter
with quotas for each apartment given by its surface). Notice that both rules are
based on egalitarian principles and can be interpreted as the equal division rule;
the difference is that in the case of the Dutch rule the subjects that receive the
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equitable distribution are the apartments, whereas in the case of the Spanish rule
the equitable distribution subjects are the quota units.1 Notice that the same
egalitarian spirit of these rules can be maintained despite changing the equitable
distribution subjects. For instance, it would be natural to consider a kind of
two-step equitable distribution subjects, where the subjects in the first step are
the floors and the subjects in the second step are the apartments (in the case
of the Dutch rule) or the quota units (in the case of the Spanish rule). This
would result in the distribution of costs shown in Table 3.2 below. Observe that
this variation arises from considering that the floors of the building naturally give
rise to a structure of a priori unions in the sense of Owen (1977) and, thus, the
convenience of extending the equal division value for games with a priori unions
emerges spontaneously in this example. We do it formally in Section 3. Table 3.2
also displays the distribution proposed by the elevator rule that is by definition a
two-step rule.

There are other possible variations of these Dutch and Spanish rules with and
without the structure of a priori unions when using the equal surplus division value
instead of the equal division value. Thus, the convenience of extending the equal
surplus division value for games with a priori unions can also be motivated on the
basis of this example. We do it in Section 4, where we also analyse in more depth
how the equal surplus division value for games with a priori unions can be applied
in the example we have discussed in this section.

Dutch rule Spanish rule
3rd floor 20 20 20 13.0909 13.0909 13.0909
2nd floor 20 20 21.8182 19.6364
1st floor 20 39.2727

Table 3.1: Distribution according to the Dutch and Spanish rules.

Dutch rule Spanish rule elevator rule
3rd 13.3333 13.3333 13.3333 13.3333 13.3333 13.3333 17.7777 17.7777 17.7777

2nd 20 20 21.0526 18.9474 20 20
1st 40 40 26.6666

Table 3.2: Distribution according to the two-step Dutch and Spanish rules
and to the elevator rule.

1In this example the quota units are the square meters of the apartments. For the
approach we adopt to be meaningful, the quota unit numbers must be integers.
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3.3 The equal division value for TU-games

with a priori unions

In this section we extend the equal division value for TU-games to the more
general setup of TU-games with a priori unions. To start with, we introduce the
basic concepts and notations we use in this paper.

A transferable utility cooperative game (from now on a TU-game) is a pair
(N, v) where N is a finite set of n players, and v is a map from 2N to R with
v(∅) = 0, that is called the characteristic function of the game. In the sequel,
GN will denote the family of all TU-games with player set N and G the family of
all TU-games. A value for TU-games is a map f that assigns to every TU-game
(N, v) ∈ G a vector f(N, v) = (fi(N, v))i∈N ∈ RN with

∑
i∈N fi(N, v) = v(N).2

As it was remarked in the introduction, sometimes agents cooperate on the
basis of a kind of egalitarian principle according to which the benefits will be
shared equitably. This gives rise to the equal division value ED that distributes
v(N) equally among the players in N . Formally, the equal division value ED is
defined for every (N, v) ∈ G and for all i ∈ N by

EDi(N, v) =
v(N)

n
.

Now denote by P (N) the set of all partitions of N . A TU-game with a priori
unions is a triplet (N, v, P ) where (N, v) ∈ G and P = {P1, . . . , Pm} ∈ P (N). The
set of TU-games with a priori unions and with player set N will be denoted by GUN ,
and the set of all TU-games with a priori unions by GU . A value for TU-games
with a priori unions is a map g that assigns to every (N, v, P ) ∈ GU a vector
g(N, v, P ) = (gi(N, v, P ))i∈N ∈ RN with

∑
i∈N gi(N, v, P ) = v(N). The next

definition provides the natural extension of the equal division value to TU-games
with a priori unions.

Definition 3.1. The equal division value for TU-games with a priori unions EDU

is defined by

EDU
i (N, v, P ) =

v(N)

mpk

for all i ∈ N and all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk; pk denotes
the cardinal of Pk.

Notice that the equal division value for TU-games with a priori unions has been
used in the motivating example in Section 2 (see Table 3.2 and the corresponding

2Notice that we have included the efficiency in the definition of value. We could have
considered it as one more property and then it would have appeared explicitly in the
characterizations; nothing relevant would have changed in that case.
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comments). Next we provide an axiomatic characterization of this value. We start
giving some properties of a value g for TU-games with a priori unions.

Additivity (ADD). A value g for TU-games with a priori unions satisfies addit-
ivity if, for all (N, v, P ), (N,w, P ) ∈ GU , it holds that

g(N, v + w,P ) = g(N, v, P ) + g(N,w, P ).

Take a TU-game (N, v) ∈ GN and i, j ∈ N . We say that i, j are indistinguish-
able in v if v(S ∪ i) = v(S ∪ j) for all S ⊆ N \ {i, j}.

Symmetry within unions (SWU). A value g for TU-games with a priori unions
satisfies symmetry within unions if, for all (N, v, P ) ∈ GU , all Pk ∈ P , and all
i, j ∈ Pk indistinguishable in v, it holds that gi(N, v, P ) = gj(N, v, P ).

Take (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and denote M = {1, . . . ,m}. The
quotient game of (N, v, P ) is the TU-game (M,v/P ) where

(v/P )(R) = v(∪r∈RPr) for all R ⊆M.

Symmetry among unions (SAU). A value g for TU-games with a priori uni-
ons satisfies symmetry among unions if, for all (N, v, P ) ∈ GU and all k, l ∈ M
indistinguishable in v/P , it holds that

∑
i∈Pk

gi(N, v, P ) =
∑

i∈Pl
gi(N, v, P ).

Take a TU-game (N, v) ∈ GN and i ∈ N . We say that i is a nullifying player
in v if v(S ∪ i) = 0 for all S ⊆ N . In words, a player is nullifying when every
coalition containing it receives zero according to the characteristic function.

Nullifying player property (NPP). A value g for TU-games with a priori
unions satisfies the nullifying player property if, for all (N, v, P ) ∈ GU and all
i ∈ N nullifying player in v, it holds that gi(N, v, P ) = 0.

An analogous to NPP above is used in van den Brink (2007) to characterize
the equal division value for TU-games. In the next theorem, we extend van den
Brink’s result to TU-games with a priori unions.

Theorem 3.1. EDU is the unique value for TU-games with a priori unions that
satisfies ADD, SWU, SAU and NPP.

Proof. It is immediate to check that EDU satisfies ADD, SWU, SAU and NPP. To
prove the unicity, consider a value g for TU-games with a priori unions that satisfies
ADD, SWU, SAU and NPP. Fix N and define for all α ∈ R and all non-empty
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T ⊆ N the TU-game (N, eαT ) given by eαT (S) = α if S = T and eαT (S) = 0 if S 6= T .
If T = N , since g satisfies SWU and SAU, it is clear that gi(N, e

α
N , P ) = α

mpk
for any P = {P1, . . . , Pm} and all i ∈ Pk ⊆ N , because all players in N are
indistinguishable in eαN and all players in M are indistinguishable in eαN/P . If
T ⊂ N notice that all players in N \ T are nullifying players in eαT and then, since
g satisfies NPP, ∑

i∈T
gi(N, e

α
T , P ) =

∑
i∈N

gi(N, e
α
T , P ) = eαT (N) = 0

for any P . Then, since g satisfies SWU and SAU it is not difficult to check that

g(N, eαT , P ) = 0. Finally, the additivity of g and the fact that v =
∑

T⊆N e
v(T )
T

imply that

gi(N, v, P ) =
∑
T⊆N

gi(N, e
v(T )
T , P ) = gi(N, e

v(N)
N , P ) =

v(N)

mpk
= EDU

i (N, v, P )

for any P and all i ∈ Pk ⊆ N .

3.4 The equal surplus division value for TU-

games with a priori unions

In this section we extend the equal surplus division value for TU-games to the
more general setup of TU-games with a priori unions. To start with, remember
that the equal surplus division value ESD is defined for every (N, v) ∈ G and for
all i ∈ N by

ESDi(N, v) = v(i) +
v0(N)

n
,

where v0(S) = v(S) −
∑

i∈S v(i) for all S ⊆ N . Notice that ESD is a variant
of ED in which we first allocate v(i) to each player i ∈ N , and then distribute
v0(N) among the players using ED. ESD is a reasonable alternative to ED for
situations where individual benefits and joint benefits are neatly separable. Let us
illustrate this with the example of Section 2 (notice that it deals with costs instead
of with benefits).

Consider again the three-storey building of Section 2. Assume now that the
cost of the machine is 55 and that the owner of the third apartment of the third
floor can get a discount of 5. Clearly, the cost of the machine is a joint cost,
whereas the cost due to the works to be done on each floor should be paid by the
owners of each floor. With respect to the costs of the hollow, assume that there
is a fixed cost of 10 and an individual cost of 10 for the owners of the first floor
that is incremented by 10 for the owners of the second floor and by an additional
10 for the owners of the third floor. According to this, the cost c(i) in which each
player is involved is:
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• 55 (machine) + 10 (floor) + 40 (hollow) = 105, for the first and second
players of the third floor,

• 50 (machine) + 10 (floor) + 40 (hollow) = 100, for the third player of the
third floor,

• 55 (machine) + 10 (floor) + 30 (hollow) = 95, for the players of the second
floor,

• 55 (machine) + 10 (floor) + 20 (hollow) = 85, for the players of the first
floor.

Now we can compute the equal surplus division value for the game in which
the players are the apartments and c(N) = 120 (this is what we call the ES-Dutch
rule) and the equal surplus division value for the game in which the players are
the quota units and c(N) = 120 (this is what we call the ES-Spanish rule). In
the latter case, the discount achieved by the owner of the third apartment of the
third floor is divided equally among its quota units, i.e., c(i) = 105−5/60 for each
square meter i in the third apartment of the third floor. Table 3.3 below displays
the distributions of the cost among the apartments using both rules. Notice that
these distributions are not satisfactory because they seem to penalize too much
the apartments on the third floor, specially the ES-Spanish rule that even proposes
that the apartment on the first floor is recompensed if the elevator is installed. The
reason for this seems to be that the individual costs in this example actually belong
to the floors instead of to the players; consequently it would be more reasonable
to use a kind of two-step rule for the equal surplus division value analogous to the
two-step rule for the equal division value introduced in Section 2. In other words,
this example suggests that we should consider the structure of a priori unions
given by the floors and distribute the costs using an extension of the equal surplus
division value to TU-games with a priori unions.

Dutch rule Spanish rule
3rd floor 27.5 27.5 22.5 613.6364 613.6364 608.6364
2nd floor 17.5 17.5 22.7273 20.4545
1st floor 7.5 -1759.0910

Table 3.3: Distribution according to the ES-Dutch and ES-Spanish rules.

Next we propose three alternative ways for extending the equal surplus division
value to TU-games with a priori unions. The first one divides the value of the
grand coalition in the quotient game using the equal surplus division value and
then divides the amount assigned to each union equally among its members. It
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maintains the spirit of ESD but applies it to the quotient game in order to take
into account the unions; then it divides equally within the unions.

Definition 3.2. The equal surplus division value (one) for TU-games with a priori
unions ESD1U is defined by

ESD1Ui (N, v, P ) =
(v/P )(k)

pk
+

(v/P )0(M)

mpk
=
v(Pk)

pk
+
v(N)−

∑
l∈M v(Pl)

mpk

for all i ∈ N and all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and with i ∈ Pk.

The second extension divides again the value of the grand coalition in the
quotient game using the equal surplus division value; then it distributes the amount
v(N)−

∑
l∈M v(Pl)

m equally among the players in each union, and the amount v(Pk)
giving v(i) to each player i ∈ Pk and dividing v(Pk) −

∑
j∈Pk

v(j) equally among
the players in Pk. It maintains the spirit of ESD and, in some sense, applies
it twice: first to the quotient game and second to divide each v(Pk) among its
members.

Definition 3.3. The equal surplus division value (two) for TU-games with a priori
unions ESD2U is defined by

ESD2Ui (N, v, P ) = v(i) +
v(Pk)−

∑
j∈Pk

v(j)

pk
+
v(N)−

∑
l∈M v(Pl)

mpk

for all i ∈ N and all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and with i ∈ Pk.

Finally, the third extension assigns v(i) to each player i and then divides v0(N)
among the players using EDU . It maintains the spirit of ESD in the sense that
it allocates v(i) to each i; then it divides v(N) −

∑
j∈N v(j) equally, first among

the unions and then within the unions.

Definition 3.4. The equal surplus division value (three) for TU-games with a
priori unions ESD3U is defined by

ESD3Ui (N, v, P ) = v(i) + EDU (N, v0, P ) = v(i) +
v(N)−

∑
j∈N v(j)

mpk

for all i ∈ N and all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and with i ∈ Pk.

Now we can compute the equal surplus division values one, two and three for
the game with a priori unions in which the players are the apartments, the unions
are the floors and c(N) = 120 (they are what we call the ESD1U , ESD2U and
ESD3U -Dutch rules) and the equal surplus division values one, two and three for
the game with a priori unions in which the players are the quota units, the unions
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are the floors and c(N) = 120 (they are what we call the ESD1U , ESD2U and
ESD3U -Spanish rules). Tables 3.4, 3.5 and 3.6 below display the distributions of
the cost among the apartments using these rules. The results in Tables 3.4 and
3.5 seem to be more reasonable than those in Table 3.3; notice that they slightly
penalize the higher floors in comparison with the results in Table 3.2 (except for
the elevator rule). The results in Table 3.6 are not satisfactory since they penalize
too much the apartments on the third floor and allocate a negative cost to the
apartment on the first floor; thus, Table 3.6 shows that ESD3U is not appropriate
for this example. The reason for this can be that ESD3U does not satisfy the
quotient game property (QGP).3 We believe that QGP is especially relevant in
this example because, as we have already mentioned, the individual costs here
belong to the floors (the unions) more than to the players.

Dutch rule Spanish rule
3rd floor 15.5556 15.5556 15.5556 15.5556 15.5556 15.5556
2nd floor 20.8333 20.8333 21.9298 19.7368
1st floor 31.6667 31.6667

Table 3.4: Distribution according to ESD1U .

Dutch rule Spanish rule
3rd floor 17.2222 17.2222 12.2222 17.2222 17.2222 12.2222
2nd floor 20.8333 20.8333 21.9298 19.7368
1st floor 31.6667 31.6667

Table 3.5: Distribution according to ESD2U .

Dutch rule Spanish rule
3rd floor 53.3333 53.3333 48.3333 508.3333 508.3333 503.3333
2nd floor 17.5 17.5 355.2632 319.7368
1st floor -70 -2075

Table 3.6: Distribution according to ESD3U .

3A value g for TU-games with a priori unions satisfies the quotient game property if, for
all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and for its quotient game (M,v/P ), it holds that∑
i∈Pk

gi (N, v, P ) = gk (M, v/P, Pm) for all Pk ∈ P , where Pm = {{1} , {2} , . . . , {m}}.



3.4. The equal surplus division value for TU-games with a priori unions 93

In the remainder of this section we study ESD1U , ESD2U and ESD3U from
the point of view of their properties; in particular, we provide axiomatic charac-
terizations of these values. We start by introducing new properties of a value g
for TU-games with a priori unions. Take (N, v) ∈ G and i ∈ N . We say that i
is a dummifying player in v if v(S ∪ i) =

∑
j∈S∪i v(j) for all S ⊆ N . In words,

a player is dummifying when every coalition containing it is inessential accord-
ing to the characteristic function, in the sense that its value equals the sum of
the individual values of its members. Take now a TU-game with a priori unions
(N, v, P ) ∈ GU where P = {P1, . . . , Pm}. We say that Pk is a dummifying union
in (v, P ) if k is a dummifying player in v/P . Dummifying players and dummifying
unions should play a relevant role in the characterizations of ESD1U , ESD2U and
ESD3U since a property on dummifying players is used in Casajus and Hüttner
(2014) for characterizing ESD. In fact they use the following property (for G
instead of GU ).

Dummifying player property (DPP). A value g for TU-games with a priori
unions satisfies the dummifying player property if, for all (N, v, P ) ∈ GU and all
i ∈ N dummifying player in v, it holds that gi(N, v, P ) = v(i).

Notice that ESD3U satisfies DPP, but neither ESD1U nor ESD2U satisfy it.
In the search of properties that ESD1U or ESD2U might satisfy, we propose the
following variations of DPP and NPP.

Dummifying union/player property (DUPP). A value g for TU-games with
a priori unions satisfies the dummifying union/player property if, for all (N, v, P ) ∈
GU and all Pk ∈ P dummifying union in (v, P ) with i ∈ Pk being a dummifying
player in vPk

,4 it holds that gi(N, v, P ) = v(i).

Dummifying union/nullifying player property (DUNPP). A value g for
TU-games with a priori unions satisfies the dummifying union/nullifying player
property if, for all (N, v, P ) ∈ GU and all Pk ∈ P dummifying union in (v, P ) with
i ∈ Pk being a nullifying player in vPk

, it holds that gi(N, v, P ) = 0.

Now we give parallel characterizations of the three extensions of ESD using
the properties we have introduced above.

Theorem 3.2. ESD1U is the unique value for TU-games with a priori unions
that satisfies ADD, SWU, SAU and DUNPP.

Proof. It is immediate to check that ESD1U satisfies ADD, SWU, SAU and
DUNPP. To prove the unicity, consider a value g for TU-games with a priori

4vPk
denotes the characteristic function of the TU-game (Pk, vPk

), where vPk
(S) = v(S)

for all S ⊆ Pk.
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unions that satisfies ADD, SWU, SAU and DUNPP. Take (N, v, P ) ∈ GU with
P = {P1, . . . , Pm} and define the TU-game (N, v1) given by

v1(S) =
∑
Pl⊆S

v(Pl) =

m∑
l=1

vPl(S)

for all S ⊆ N , where vPl(S) = v(Pl) if Pl ⊆ S and vPl(S) = 0 otherwise.

Take Pk ∈ P . Since g is a value for TU-games with a priori unions, then∑
i∈N

gi(N, v
Pk , P ) = vPk(N) = v(Pk).

All unions Pl ∈ P are dummifying unions in (vPk , P ) and all players i ∈ Pl, with
l 6= k, are nullifying players in (vPk)Pl

. By DUNPP, gi(N, v
Pk , P ) = 0 for all

i /∈ Pk. And since all players in Pk are indistinguishable in vPk , then SWU implies
that, for all i ∈ Pk, gi(N, vPk , P ) = v(Pk)

pk
. Using the additivity of g, for all i ∈ Pk,

gi(N, v
1, P ) =

v(Pk)

pk
. (3.1)

Define now v2 = v − v1 and, for all α ∈ R and all non-empty T ⊆ N , eαT by

eαT (S) = α if S = T and eαT (S) = 0 if S 6= T . It is clear that v2 =
∑

T⊆N e
v2(T )
T . If

T = N , since all players in N are indistinguishable in e
v2(N)
N and all players in M

are indistinguishable in e
v2(N)
N /P , SWU and SAU imply that, for all i ∈ Pk,

gi(N, e
v2(N)
N , P ) =

v2(N)

mpk
=
v(N)−

∑
l∈M v(Pl)

mpk
.

If T ⊂ N , consider two cases:

• Take T = ∪l∈LPl, with ∅ ⊂ L ⊂ M . For all Pu ∈ P , if T 6= Pu then

e
v2(T )
T (Pu) = 0 and if T = Pu then e

v2(T )
T (Pu) = v2(Pu) = 0. Hence, it is

easy to see that all the unions in M \L are dummifying unions in (e
v2(T )
T , P ).

Also, since all players in N \ T are nullifying players in e
v2(T )
T , DUNPP

implies that gi(N, e
v2(T )
T , P ) = 0 for all i /∈ T . Notice that since all unions

in L are indistinguishable in e
v2(T )
T , then by SAU

∑
i∈Pk

gi(N, e
v2(T )
T , P ) =∑

i∈Pl
gi(N, e

v2(T )
T , P ) for all k, l ∈ L; notice also that since∑

i∈T
gi(N, e

v2(T )
T , P ) =

∑
i∈N

gi(N, e
v2(T )
T , P ) = e

v2(T )
T (N) = 0

then
∑

i∈Pk
gi(N, e

v2(T )
T , P ) = 0 for all k ∈ L. To conclude, SWU implies

that gi(N, e
v2(T )
T , P ) = 0 for all i ∈ Pk, with k ∈ L, and therefore for all

i ∈ N .
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• For any other T ⊂ N that is not in the previous case, the quotient game

(M, e
v2(T )
T /P ) satisfies that (e

v2(T )
T /P )(R) = 0 for all R ⊆ M and, thus, all

the unions in P are indistinguishable and dummifying unions in (e
v2(T )
T , P ).

If i /∈ T , then i is a nullifying player in e
v2(T )
T and DUNPP implies that

gi(N, e
v2(T )
T , P ) = 0. Analogously as in the previous case, SAU and SWU

imply that gi(N, e
v2(T )
T , P ) = 0 for all i ∈ T .

Now ADD implies that, for all i ∈ Pk with Pk ∈ P ,

gi(N, v
2, P ) =

∑
T⊆N

gi(N, e
v2(T )
T , P ) =

v2(N)

mpk
. (3.2)

Finally, from (3.1), (3.2), ADD and v = v1 + v2 it is clear that

g(N, v, P ) = ESD1U (N, v, P ).

Theorem 3.3. ESD2U is the unique value for TU-games with a priori unions
that satisfies ADD, SWU, SAU and DUPP.

Proof. It is immediate to check that ESD2U satisfies ADD, SWU, SAU and DUPP.
To prove the unicity, consider a value g for TU-games with a priori unions that
satisfies ADD, SWU, SAU and DUPP. Take (N, v, P ) ∈ GU with P = {P1, . . . , Pm}
and define va, v01 and v02 by:

• va(S) =
∑

i∈S v(i),

• v01(S) =
∑

Pl⊆S v
0(Pl) =

∑m
l=1 v

0Pl(S),

• v02(S) = v0(S)−
∑

Pl⊆S v
0(Pl),

for all S ⊆ N , where v0Pl(S) = v0(Pl) if Pl ⊆ S and v0Pl(S) = 0 otherwise.

Since all unions are dummifying in (va, P ) and all players are dummifying in
va, then DUPP implies that, for all i ∈ N ,

gi(N, v
a, P ) = va(i) = v(i). (3.3)

Take Pk ∈ P . Since g is a value for TU-games with a priori unions, then∑
i∈N

gi(N, v
0Pk , P ) = v0Pk(N) = v0(Pk).
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All unions Pl ∈ P are dummifying unions in (v0Pk , P ) and all players i ∈ Pl, with
l 6= k, are dummifying players in (v0Pk)Pl

. By DUPP, gi(N, v
0Pk , P ) = v0Pk(i) = 0

for all i /∈ Pk. And since all players in Pk are indistinguishable in v0Pk , then SWU

implies that, for all i ∈ Pk, gi(N, v0Pk , P ) = v0(Pk)
pk

. Using ADD, for all i ∈ Pk,

gi(N, v
01, P ) =

v0(Pk)

pk
. (3.4)

Take now into account that v02 =
∑

T⊆N e
v02(T )
T . If T = N , since all players

in N are indistinguishable in e
v02(N)
N and all players in M are indistinguishable in

e
v02(N)
N /P , SWU and SAU imply that, for all i ∈ Pk,

gi(N, e
v02(N)
N , P ) =

v02(N)

mpk
.

If T ⊂ N , consider two cases:

• Take T = ∪l∈LPl, with ∅ ⊂ L ⊂ M . Since e
v02(T )
T (Pu) = 0 for all Pu ∈ P

and (e
v02(T )
T /P )(R) = 0 for all R ⊆ M with R ∩ (M \ L) 6= ∅, all the

unions in M \ L are dummifying unions in (e
v02(T )
T , P ). Also, since all

players in N \ T are dummifying players in e
v02(T )
T , DUPP implies that

gi(N, e
v02(T )
T , P ) = e

v02(T )
T (i) = 0 for all i /∈ T . Notice that since all unions

in L are indistinguishable in e
v02(T )
T , then by SAU

∑
i∈Pk

gi(N, e
v02(T )
T , P ) =∑

i∈Pl
gi(N, e

v02(T )
T , P ) for all k, l ∈ L, and notice that since∑

i∈T
gi(N, e

v02(T )
T , P ) =

∑
i∈N

gi(N, e
v02(T )
T , P ) = e

v02(T )
T (N) = 0

then
∑

i∈Pk
gi(N, e

v02(T )
T , P ) = 0 for all k ∈ L. Hence, SWU implies that

gi(N, e
v02(T )
T , P ) = 0 for all i ∈ T .

• For any other T ⊂ N that is not in the previous case, the quotient game

(M, e
v02(T )
T /P ) satisfies that (e

v02(T )
T /P )(R) = 0 for all R ⊆M and, thus, all

the unions in P are indistinguishable and dummifying unions in (e
v02(T )
T , P ).

If i /∈ T , then i is a dummifying player in e
v02(T )
T and DUPP implies that

gi(N, e
v02(T )
T , P ) = e

v02(T )
T (i) = 0. Analogously as in the previous case, SAU

and SWU imply that gi(N, e
v02(T )
T , P ) = 0 for all i ∈ T .

Now ADD implies that, for all i ∈ Pk with Pk ∈ P ,

gi(N, v
02, P ) =

∑
T⊆N

gi(N, e
v02(T )
T , P ) =

v02(N)

mpk
. (3.5)
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Finally, from (3.3), (3.4), (3.5), ADD and v = va + v01 + v02 it is clear that

g(N, v, P ) = ESD2U (N, v, P ).

Now we provide a characterization of ESD3U . In order to do it we introduce
a new property that is a weaker version of SAU.

Weak symmetry among unions (WSAU). A value g for TU-games with a
priori unions satisfies weak symmetry among unions if, for all (N, v, P ) ∈ GU with
v(j) = 0 for all j ∈ N , and for all k, l ∈M indistinguishable in v/P , it holds that∑

i∈Pk
gi(N, v, P ) =

∑
i∈Pl

gi(N, v, P ).

Theorem 3.4. ESD3U is the unique value for TU-games with a priori unions
that satisfies ADD, SWU, WSAU and DPP.

Proof. It is immediate to check that ESD3U satisfies ADD, SWU, WSAU and
DPP. To prove the unicity, consider a value g for TU-games with a priori unions
that satisfies ADD, SWU, WSAU and DPP. Take now (N, v, P ) ∈ GU and i ∈ Pk
with Pk ∈ P , and define va = v − v0. ADD implies that

gi(N, v, P ) = gi(N, v
a, P ) + gi(N, v

0, P ). (3.6)

Since all players are dummifying in va, then DPP implies that

gi(N, v
a, P ) = va(i) = v(i). (3.7)

Now, using for (N, v0) analogous arguments as those used in the proof of
Theorem 3.1, it is clear that ADD, SWU, WSAU and DPP imply that

gi(N, v
0, P ) = EDi(N, v

0, P ). (3.8)

Finally, from (3.6), (3.7) and (3.8) it is clear that

g(N, v, P ) = ESD3U (N, v, P ).

It is immediate to prove that ESD3U does not satisfy SAU. Since WSAU is
a weaker version of SAU, and ESD3U is characterized with ADD, SWU, WSAU
and DPP, we conclude that there does not exist a value for TU-games with a priori
unions satisfying ADD, SWU, SAU and DPP.

To conclude, we indicate that the properties in the theorems of this paper are
independent. We prove this in a separate appendix.
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Appendix

a) Independence of the properties of Theorem 3.1:

• ϕi = v(Pk)
pk

+
v(N)−

∑
l∈M v(Pl)

mpk
satisfies ADD, SWU and SAU, but not NPP.

• ϕi = v(N)
n satisfies ADD, SWU and NPP, but not SAU.

• ϕi = 2v(N)
mpk

if i = min
j∈Pk

j or ϕi = (pk−2)v(N)
mpk(pk−1) if i ∈ Pk and i 6= minj∈Pk

j,

satisfies ADD, SAU and NPP, but not SWU.

• ϕi = 2v(N)
mpk|Zk| if i ∈ Zk = {j ∈ Pk/v(j) = min

z∈Pk

v(z)}, ϕi = (pk−2)v(N)
mpk(pk−|Zk|) if

i ∈ Pk\Zk, satisfies SWU, SAU and NPP, but not ADD.

b) Independence of the properties of Theorem 3.2:

• ϕi = v(Pk)
pk

+
v(N)−

∑
l∈M v(Pl)

n satisfies ADD, SWU, DUNPP, but not SAU.

• ϕi = v(Pk)
pk

+
2(v(N)−

∑
l∈M v(Pl))

mpk
if i = min

j∈Pk

j or ϕi = v(Pk)
pk

+
(pk−2)(v(N)−

∑
l∈M v(Pl))

mpk(pk−1)

if i ∈ Pk and i 6= minj∈Pk
j, satisfies ADD, SAU and DUNPP, but not SWU.

• ϕi = v(Pk)
pk

+
2(v(N)−

∑
l∈M v(Pl))

mpk|Zk| if i ∈ Zk = {j ∈ Pk/v(j) = min
z∈Pk

v(z)},

ϕi = v(Pk)
pk

+
(pk−2)(v(N)−

∑
l∈M v(Pl))

mpk(pk−|Zk|) if i ∈ Pk\Zk, satisfies SWU, SAU and
DUNPP, but not ADD.

• ϕi = v(i)+
v(Pk)−

∑
j∈Pk

v(j)

pk
+
v(N)−

∑
l∈M v(Pl)

mpk
satisfies ADD, SWU and SAU,

but not DUNPP.

c) Independence of the properties of Theorem 3.3:

• ϕi = v(i)+
v(Pk)−

∑
j∈Pk

v(j)

pk
+
v(N)−

∑
l∈M v(Pl)

n satisfies ADD, SWU and DUPP,
but not SAU.
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• ϕi = v(i) +
v(Pk)−

∑
j∈Pk

v(j)

pk
+

2(v(N)−
∑

l∈M v(Pl))

mpk
if i = min

j∈Pk

j or ϕi = v(i) +

v(Pk)−
∑

j∈Pk
v(j)

pk
+

(pk−2)(v(N)−
∑

l∈M v(Pl))

mpk(pk−1) if i ∈ Pk and i 6= minj∈Pk
j, satisfies

ADD, SAU and DUPP, but not SWU.

• ϕi = v(i) +
v(Pk)−

∑
j∈Pk

v(j)

pk
+

2(v(N)−
∑

l∈M v(Pl))

mpk|Zk| if i ∈ Zk = {j ∈ Pk/v(j) =

min
z∈Pk

v(z)}, ϕi = v(i)+
v(Pk)−

∑
j∈Pk

v(j)

pk
+

(pk−2)(v(N)−
∑

l∈M v(Pl))

mpk(pk−|Zk|) if i ∈ Pk\Zk,
satisfies SWU, SAU and DUNPP, but not ADD.

• ϕi = v(Pk)
pk

+
v(N)−

∑
l∈M v(Pl)

mpk
satisfies ADD, SWU and SAU, but not DUPP.

d) Independence of the properties of Theorem 3.4:

• ϕi = v(i) +
v(N)−

∑
j∈N v(j)

n satisfies ADD, SWU and DPP, but not WSAU.

• ϕi = v(i)+
2(v(N)−

∑
j∈N v(j))

mpk
if i = min

j∈Pk

j or ϕi = v(i)+
(pk−2)(v(N)−

∑
j∈N v(j))

mpk(pk−1)

if i ∈ Pk and i 6= minj∈Pk
j, satisfies ADD, WSAU and DPP, but not SWU.

• ϕi = v(i) +
2(v(N)−

∑
j∈N v(j))

mpk|Zk| if i ∈ Zk = {j ∈ Pk/v(j) = min
z∈Pk

v(z)}, ϕi =

v(i) +
(pk−2)(v(N)−

∑
j∈N v(j))

mpk(pk−|Zk|) if i ∈ Pk\Zk, satisfies SWU, WSAU and DPP,
but not ADD.

• ϕi = v(Pk)
pk

+
v(N)−

∑
l∈M v(Pl)

mpk
satisfies ADD, SWU, WSAU but not DPP.
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New results on egalitarian
values for games with a priori
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Preprint

4.1 Introduction

In cooperative games, the egalitarian values are rules for distributing the co-
operative benefits between the agents on the basis of a kind of egalitarian principle.
These values are some of the most studied in the literature, as well as the Shap-
ley value (Shapley 1953). For instance, van den Brink (2007) compare the equal
division value and the Shapley value, Casajus and Hüttner (2014) also study the
equal surplus division value proposed in Driessen and Funaki (1991). These values
satisfy several good properties and then, van den Brink and Funaki (2009), Chun
and Park (2012), van den Brink et al. (2016), Ferrières (2017) and Bèal et al.
(2019), among others, provide many axiomatic characterizations.

In Owen (1977) cooperative games with a priori unions are considered. In
these games there is a partition of the set of agents, that affects to the negoti-
ation among the different agents. In addition, Owen (1977) extends the Shapley
value to cooperative games with a priori unions, known as the Owen value, and
characterises it. Numerous papers study the Owen value providing new axiomatic
characterizations as Lorenzo-Freire (2016), applications as Costa (2016), and a
sampling procedure to approximate it in Saavedra-Nieves et al. (2018). Another
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values are extended to cooperative games with a priori unions. In the context
that concerns us, Alonso-Meijide et al. (2020) extend and characterize the equal
division value and the equal surplus division value. For the second value, three
alternative ways to adapt it to a priori unions are proposed.

In this paper we provide new axiomatic characterizations of these coalitional
extensions of the equal division and equal surplus division values. Besides we ob-
tain new solutions using the Owen method and balanced contributions. In Section
4.2 we introduce some preliminary concepts about game theory. In Section 4.3
we characterise the coalitional equal division value using the concept of coalitional
value. We also prove that this solution coincides with the one obtained by the
Owen method. In Section 4.4 we characterise the coalitional equal surplus divi-
sion values in the same context as the previous section. Finally, in Section 4.5
we obtain a new solution with the Owen method. With the concept of balanced
contributions and quotient game property, we obtain a new coalitional extension
of the equal surplus division value.

4.2 Preliminaries

4.2.1 TU-games and values

A transferable utility cooperative game (from now on a TU-game) is a pair
(N, v) where N is a finite set of n players, and v is a map from 2N to R with
v(∅) = 0, that is called the characteristic function of the game. In the sequel,
GN will denote the family of all TU-games with player set N and G the family of
all TU-games. A value for TU-games is a map f that assigns to every TU-game
(N, v) ∈ G a vector f(N, v) = (fi(N, v))i∈N ∈ RN .

Well-known values for TU-games are the egalitarian values. The equal division
value ED distributes v(N) equally among the players in N . Formally, the equal
division value ED is defined for every (N, v) ∈ G, and every i ∈ N by

EDi(N, v) =
v(N)

n
.

The equal surplus division value ESD is defined for every (N, v) ∈ G, and
every i ∈ N by

ESDi(N, v) = v(i) +
v0(N)

n

where v0(N) = v(N)−
∑

i∈N v(i). Notice that ESD is a variant of ED in which
we first allocate v(i) to each player i, and then distribute v0(N) among the players
using ED. ESD is a reasonable alternative to ED for situations where individual
benefits and joint benefits are neatly separable.
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Alternative values for TU-games are the Shapley (Shapley 1953) and Banzhaf
value (Banzhaf 1964).

4.2.2 Games with a priori unions

We denote by P (N) the set of all partitions of N . Then, a TU-game with a
priori unions is a triplet (N, v, P ) where (N, v) ∈ G, P = {P1, . . . , Pm} ∈ P (N)
and Pk ∈ P is called a priori union for all k ∈ M with M = {1, ...,m}. The set
of TU-games with a priori unions and with player set N will be denoted by GUN ,
and the set of all TU-games with a priori unions by GU . A value for TU-games
with a priori unions is a map g that assigns to every (N, v, P ) ∈ GU a vector
g(N, v, P ) = (gi(N, v, P ))i∈N ∈ RN .

Two examples of values for TU-games with a priori unions are the Owen value
(Owen 1977), and the Banzhaf-Owen value (Owen 1981).

Given (N, v, P ) ∈ GU with P = {P1, . . . , Pm} ∈ P (N), the quotient game of
(N, v, P ) is the TU-game (M, v/P ) where

(v/P )(R) = v (∪r∈RPr) for all R ⊆M.

We say that a value for TU-games with a priori unions g is a coalitional equal
division value if, for any TU-game (N, v) ∈ G, it holds that

g(N, v, Pn) = ED(N, v),

where Pn denotes the trivial partition {{1}, . . . , {n}}. Using similar concepts, the
Owen value is a coalitional Shapley value, and Banzhaf-Owen value is a coalitional
Banzhaf value.

4.2.3 Coalitional values in two steps

Given (N, v, P ) ∈ GUN with P = {P1, . . . , Pm} and a coalition S ⊆ Pr, the
modified game of (N, v, P ) is defined as (M,ur,S) where

ur,S (H) =

{
v (∪k∈HPk) if r /∈ H

v
(
∪k∈H\rPk ∪ S

)
if r ∈ H (4.1)

for all H ⊆M. That is, the modified game (M,ur,S), is defined based on the game
(M, v, P ) where each player k with k 6= r is the union Pk, and the player r is the
coalition S.

Using the modified game (M,ur,S) and a value f for TU-games, the reduced
game (Pr, wr) is a TU-game with set of players Pr and characteristic function
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wr (S) = fr (M,ur,S) (4.2)

for any S ⊆ Pr.

Finally, a value g for TU-games with a priori unions is obtained reapplying the
value f over (Pr, wr). That is

gi (N, v, P ) = fi (Pr, wr) (4.3)

for all i ∈ Pr.

We call Owen procedure to that described in (4.2) and (4.3) to obtain a coali-
tional value g for TU games with a priori unions using a value f for TU games.

The Owen value is the result of applying the Owen procedure using the Shapley
value (Owen 1977).

The Banzhaf-Owen value is the result of applying the Owen procedure using
the Banzhaf value (Owen 1981).

4.3 The equal division value for TU-games

with a priori unions

Alonso-Meijide et al. (2020) provide an extension of the equal division value
to TU-games with a priori unions and an axiomatic characterization of this new
value.

Definition 4.1. (Alonso-Meijide et al. 2020) The equal division value for TU-
games with a priori unions EDU is defined by

EDU
i (N, v, P ) =

v(N)

mpk

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk where pk denotes the
cardinal of Pk.

Now we provide a second axiomatic characterization of the equal division value
for TU-games with a priori unions in the same spirit as an axiomatic characteriza-
tion of the Owen value given in Vázquez-Brage et al. (1997). Let us first introduce
two additional properties.

Quotient Game Property (QGP). A value g for TU-games with a priori
unions satisfies the quotient game property if, for all (N, v, P ) ∈ GUN with P =
{P1, . . . , Pm}, it holds that∑

i∈Pk

gi (N, v, P ) = gk (M, v/P, Pm)
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for all Pk ∈ P , where (M, v/P ) is the quotient game of (N, v, P ).

Balanced Contributions in the Unions (BCU). A value g for TU-games with
a priori unions satisfies balanced contributions in the unions if, for all (N, v, P ) ∈
GUN and all i, j ∈ Pk with Pk ∈ P , it holds that

gi (N, v, P )− gi (N, v, P−j) = gj (N, v, P )− gj (N, v, P−i)

where P−l denotes the partition {P1, . . . , Pk−1, Pk \ {l}, {l}, Pk+1, . . . , Pm} for all
l ∈ Pk.

Theorem 4.1. EDU is the unique coalitional equal division value satisfying QGP
and BCU.

Proof. Take a TU-game with a priori unions (N, v, P ) ∈ GU such that P =
{P1, ..., Pm} and denote M = {1, ...,m}. Let us check that EDU satisfies QGP.
For all k ∈M , we have that∑

i∈Pk

EDU
i (N, v, P ) =

∑
i∈Pk

v(N)

mpk
=
v(N)

m

and

EDU
k (M,v/P, Pm) =

(v/P )(M)

m
=
v(N)

m
.

Let us check that EDU satisfies BCU. For all i, j ∈ Pk, we have that

EDU
i (N, v, P )− EDU

i (N, v, P−j) =
v(N)

mpk
− v(N)

(m+ 1)(pk − 1)

and

EDU
j (N, v, P )− EDU

j (N, v, P−i) =
v(N)

mpk
− v(N)

(m+ 1)(pk − 1)
.

Finally, the uniqueness is proven in an analogous way as the uniqueness in
Theorem 2 of Vázquez-Brage et al. (1997).

The EDU value is an extension of ED for TU games with a priori unions
quite intuitive and natural. Moreover, let us check that is the value obtained by
the procedure to obtain coalitional values in two steps proposed in Owen (1977)
described in Subsection 4.2.3.

Theorem 4.2. The equal division value with a priori unions EDU is the result of
applying the Owen procedure using the equal division value ED.
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Proof. Take a TU-game with a priori unions (N, v, P ) ∈ GU such that P =
{P1, ..., Pm} and denote M = {1, ...,m}. Given a coalition S ⊆ Pr, we can obtained
the reduced game (4.2) applying ED to the modified game (4.1),

wr (S) = EDr (M,ur,S) =
ur,S (M)

m
=
v
(
∪k∈H\rPk ∪ S

)
m

Again, if we reapply ED to the reduced game (4.2) as (4.3), for all player
i ∈ Pr we obtain

EDi (Pr, wr) =
wr (Pr)

pr
=
v
(
∪k∈H\rPk ∪ Pr

)
/m

pr
=
v (N)

mpr
= EDU

i (N, v, P ) .

4.4 Three equal surplus division values for

TU-games with a priori unions

In Alonso-Meijide et al. (2020), three alternative ways for extending the equal
surplus division value to TU-games with a priori unions are proposed. In this
section we provide new characterizations of these coalitional values.

4.4.1 The equal surplus division value 1

The equal surplus division value 1 divides the value of the grand coalition in the
quotient game using the equal surplus division value and then divides the amount
assigned to each union equally among its members.

Definition 4.2. (Alonso-Meijide et al. 2020) The equal surplus division value
(one) for TU-games with a priori unions ESD1U is defined by

ESD1Ui (N, v, P ) =
(v/P )(k)

pk
+

(v/P )0(M)

mpk
=
v(Pk)

pk
+
v(N)−

∑
l∈M v(Pl)

mpk

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

Notice that it is easy to check that ESD1U is a coalitional equal surplus division
value, in the sense that

ESD1U (N, v, Pn) = ESD(N, v)

for all (N, v) ∈ G.
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We use this feature to provide a new characterization of ESD1U in the re-
mainder of this subsection. First let us define a new property.

Equality Inside Unions (EIU). A value g for TU-games with a priori unions
satisfies equality inside unions if, for all (N, v, P ) ∈ GU , all Pk ∈ P , and all
i, j ∈ Pk, it holds that gi(N, v, P )− gj(N, v, P ) = 0.

Theorem 4.3. ESD1U is the unique coalitional equal surplus division value for
TU-games with a priori unions satisfying QGP and EIU.

Proof. Take a TU-game with a priori unions (N, v, P ) ∈ GU such that P =
{P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD1U satisfies QGP.
For all k ∈M , we have that

∑
i∈Pk

ESD1Ui (N, v, P ) =
∑
i∈Pk

(
v(Pk)

pk
+
v(N)−

∑
l∈M v(Pl)

mpk

)

= v(Pk) +
v(N)−

∑
l∈M v(Pl)

m

and

ESD1Uk (M,v/P, Pm) =
(v/P )(k)

1
+

(v/P )(M)−
∑

l∈M (v/P )(l)

m

= v(Pk) +
v(N)−

∑
l∈M v(Pl)

m
.

Let us check that ESD1U satisfies EIU. For all i, j ∈ Pk, we have that

ESD1Ui (N, v, P )− ESD1Uj (N, v, P ) = 0.

Finally, the uniqueness is proven in an analogous way as the uniqueness in
Theorem 2 of Vázquez-Brage et al. (1997).

4.4.2 The equal surplus division value 2

The equal surplus division value 2 divides again the value of the grand coalition
in the quotient game using the equal surplus division value; then it distributes the
amount v(Pk) assigned to each union Pk giving v(i) to each player i ∈ Pk and
dividing v(Pk)−

∑
j∈Pk

v(j) equally among the players in Pk.
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Definition 4.3. (Alonso-Meijide et al. 2020) The equal surplus division value
(two) for TU-games with a priori unions ESD2U is defined by

ESD2Ui (N, v, P ) = v(i) +
v(Pk)−

∑
j∈Pk

v(j)

pk
+
v(N)−

∑
l∈M v(Pl)

mpk

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

Notice that it is easy to check that ESD2U is a coalitional equal surplus division
value, in the sense that

ESD2U (N, v, Pn) = ESD(N, v)

for all (N, v) ∈ G.

We use this feature to provide a new characterization of ESD2U in the re-
mainder of this subsection. First let us define a new property.

Difference Maintenance of Individual Values Inside Unions (DMIVIU).
A value g for TU-games with a priori unions satisfies difference maintenance of
individual values inside unions if, for all (N, v, P ) ∈ GU , all Pk ∈ P , and all
i, j ∈ Pk, it holds that gi(N, v, P )− gj(N, v, P ) = v(i)− v(j).

Theorem 4.4. ESD2U is the unique coalitional equal surplus division value for
TU-games with a priori unions satisfying QGP and DMIVIU.

Proof. Take a TU-game with a priori unions (N, v, P ) ∈ GU such that P =
{P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD2U satisfies QGP.
For all k ∈M , we have that∑
i∈Pk

ESD2Ui (N, v, P ) =
∑
i∈Pk

(
v(i) +

v(Pk)−
∑

j∈Pk
v(j)

pk
+
v(N)−

∑
l∈M v(Pl)

mpk

)

=
∑
i∈Pk

v(i) + v(Pk)−
∑
j∈Pk

v(j) +
v(N)−

∑
l∈M v(Pl)

m

= v(Pk) +
v(N)−

∑
l∈M v(Pl)

m

and

ESD2Uk (M, v/P, Pm) = (v/P )(k) +
(v/P )(k)− (v/P )(k)

1

+
(v/P )(M)−

∑
l∈M (v/P )(l)

m

= v(Pk) +
v(N)−

∑
l∈M v(Pl)

m
.
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Let us check that ESD2U satisfies DMIVIU. For all i, j ∈ Pk, we have that

ESD2Ui (N, v, P )− ESD2Uj (N, v, P ) = v(i)− v(j).

Finally, the uniqueness is proven in an analogous way as the uniqueness in
Theorem 2 of Vázquez-Brage et al. (1997).

4.4.3 The equal surplus division value 3

Finally, the equal surplus division value 3 assigns v(i) to each player i and then
divides v0(N) among the players using EDU .

Definition 4.4. (Alonso-Meijide et al. 2020) The equal surplus division value
(three) for TU-games with a priori unions ESD3U is defined by

ESD3Ui (N, v, P ) = v(i) + EDU (N, v0, P ) = v(i) +
v(N)−

∑
j∈N v(j)

mpk

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

Notice that it is easy to check that ESD3U is a coalitional equal surplus division
value, in the sense that

ESD3U (N, v, Pn) = ESD(N, v)

for all (N, v) ∈ G.

We use this feature to provide a new characterization of ESD3U in the re-
mainder of this section. Nevertheless ESD3U does not satisfy QGP, so in order
to do it we introduce a new modified of quotient game.

Take (N, v, P ) ∈ GU with P = {P1, ..., Pm} and denote M = {1, ...,m}. The
quotient* game of (N, v, P ) is the TU-game (M, v̄/P ) where

(v̄/P )(R) =


∑
k∈R

∑
i∈Pk

v(i) if R ⊂M

v(N) if R = M

Quotient* Game Property (Q*GP). A value g for TU-games with a priori
unions satisfies the quotient* game property if, for all (N, v, P ) ∈ GU with P =
{P1, ..., Pm}, it holds that∑

i∈Pk

gi (N, v, P ) = gk (M, v̄/P, Pm)

for all Pk ∈ P , where (M, v̄/P ) is the quotient* game of (N, v, P ).
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Theorem 4.5. ESD3U is the unique coalitional equal surplus division value for
TU-games with a priori unions satisfying Q*GP and BCU.

Proof. Take a TU-game with a priori unions (N, v, P ) ∈ GU such that P =
{P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD3U satisfies Q*GP.
For all k ∈M , we have that∑

i∈Pk

ESD3Ui (N, v, P ) =
∑
i∈Pk

(
v(i) +

v(N)−
∑

j∈N v(j)

mpk

)

=
∑
i∈Pk

v(i) +
v(N)−

∑
j∈N v(j)

m

and

ESD3Uk (M, v̄/P, Pm) = (v̄/P )(k) +
(v̄/P )(M)−

∑
l∈M (v̄/P )(l)

m

=
∑
i∈Pk

v(i) +
v(N)−

∑
k∈M

∑
j∈Pk

v(j)

m

=
∑
i∈Pk

v(i) +
v(N)−

∑
j∈N v(j)

m
.

Let us check that ESD3U satisfies BCU. For all i, j ∈ Pk, we have that

ESD3Ui (N, v, P )−ESD3Ui (N, v, P−j) =
v(N)−

∑
j∈N v(j)

mpk
−
v(N)−

∑
j∈N v(j)

(m+ 1)(pk − 1)

and

ESD3Uj (N, v, P )−ESD3Uj (N, v, P−i) =
v(N)−

∑
j∈N v(j)

mpk
−
v(N)−

∑
j∈N v(j)

(m+ 1)(pk − 1)
.

Finally, the uniqueness is proven in an similar way as the uniqueness in The-
orem 2 of Vázquez-Brage et al. (1997).

4.5 Two new extensions of the equal surplus

division value

In this section, we introduce two new extensions of the equal surplus division
value for TU-games with a priori unions. One of them is the value obtained
applying the Owen procedure using the equal surplus division value. The other
value is an extension of the equal surplus division value that satisfies the quotient
game and balanced contributions in the unions properties.
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4.5.1 Coalitional value using equal surplus division value
in two steps

The first new extension is obtained applying the procedure in two steps using
the equal surplus division value.

Definition 4.5. The equal surplus division value (four) for TU-games with a priori
unions ESD4U is defined by

ESD4Ui (N, v, P ) = v(i) +
v(Pk)−

∑
j∈Pk

v(j)

pk
+
v(N)−

∑
l∈M v(Pl)

mpk
+

1

m

∑
t∈Pk

v (t)

pk
− v (i)

+
1

m

v (∪r∈M\kPr ∪ i)−∑
t∈Pk

v
(
∪r∈M\kPr ∪ t

)
pk



for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

Using again the procedure proposed by Owen (1977) shown in Subsection 4.2.3
where now ESD is used in the games (4.2) and (4.3), we can obtain the solution
g = ESD4U . Let us see this in the next theorem.

Theorem 4.6. The equal surplus division value with a priori unions ESD4U is
the result of applying the Owen procedure using the equal surplus division value
ESD.

Proof. Take a TU-game with a priori unions (N, v, P ) ∈ GU such that P =
{P1, ..., Pm} and denote M = {1, ...,m}. First at all, ESD is applied to the
modified game (4.1), to obtained the reduced game (4.2); where note that only the
individual pay-offs ur,S(i) and the total pay-off ur,S(M) are necessary. Therefore,
for all union Pr

wr (S) = ESDr (M,ur,S) = ur,S(r) +
ur,S(M)−

∑
l∈M ur,S(l)

m
=

v (S) +
v
(
∪k∈M\rPk ∪ S

)
−
∑

l∈M\r v (Pl)− v (S)

m
.

Taking again ESD, and applying it to the reduced game (4.2) as (4.3), for all
player i ∈ Pr,
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ESDi (Pr, wr) = wr(i) +
wr(Pr)−

∑
t∈Pr

wr(t)

pr

= v (i) +
v
(
∪k∈M\rPk ∪ i

)
−
∑

l∈M\r v (Pl)− v (i)

m

+
v (Pr) +

v(∪k∈M\rPk∪Pr)−
∑

l∈M\r v(Pl)−v(Pr)

m

pr

−
∑

t∈Pr
(v (t) +

v(∪k∈M\rPk∪t)−
∑

l∈M\r v(Pl)−v(t)

m )

pr
.

As

v
(
∪k∈M\rPk ∪ Pr

)
−
∑
l∈M\r

v (Pl)− v (Pr) = v (N)−
∑
l∈M

v (Pl)

we have that

ESDi (Pr, wr) =v (i) +
v
(
∪k∈M\rPk ∪ i

)
m

− v (i)

m
−
∑

l∈M\r v (Pl)

m
+
v (Pr)

pr
+

v (N)

mpr
−
∑

l∈M v (Pl)

mpr
−
∑
t∈Pr

v (t)

pr
−
∑
t∈Pr

v
(
∪k∈M\rPk ∪ t

)
mpr

+

∑
t∈Pr

∑
l∈M\r

v (Pl)

mpr
+
∑
t∈Pr

v (t)

mpr
.

The second last term can be written as∑
t∈Pr

∑
l∈M\r

v (Pl)

mpr
=
∑
l∈M\r

pr
v (Pl)

mpr
=
∑
l∈M\r

v (Pl)

m

and then, we obtain that

ESDi (Pr, wr) = v (i) +
v
(
∪k∈M\rPk ∪ i

)
m

− v (i)

m
+
v (Pr)

pr
+

v (N)

mpr
−
∑

l∈M v (Pl)

mpr
−
∑
t∈Pr

v (t)

pr
−
∑
t∈Pr

v
(
∪k∈M\rPk ∪ t

)
mpr

+
∑
t∈Pr

v (t)

mpr
.
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Reordering terms, we have that

ESDi (Pr, wr) = v (i) +
1

m

(∑
t∈Pr

v (t)

pr
− v (i)

)
+

1

pr

v (N)−
∑

l∈M v (Pl)

m
+

1

pr

(
v (Pr)−

∑
t∈Pr

v (t)

)
+

1

m

(
v
(
∪k∈M\rPk ∪ i

)
−
∑
t∈Pr

v
(
∪k∈M\rPk ∪ t

)
pr

)
= ESD4Ui (N, v, P ) .

Remark 4.1. Note that ESD4 can be written in terms of ESD2

ESD4Ui (N, v, P ) = ESD2Ui (N, v, P ) +
1

m

(∑
t∈Pr

v (t)

pr
− v (i)

)
+

1

m

(
v
(
∪k∈M\rPk ∪ i

)
−
∑
t∈Pr

v
(
∪k∈M\rPk ∪ t

)
pr

)

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

It is easy to check that

ESD4Ui (N, v, Pn) = ESDi(N, v)

and ∑
i∈Pr

ESD4Ui (N, v, P ) = ESDr(M,v/P ),

that is ESD4U is a coalitional equal surplus division value and it satisfies the
quotient game property.

The value ESD4 is a coalitional equal surplus division value that satisfies
quotient game. To characterize ESD4U in the proposed context, let us define the
following property.

Balanced contributions due to the players abandonment in the union
(BCPA). A value g for TU-games with a priori unions satisfies BCPA if, for all
(N, v, P ) ∈ GU and all i, j ∈ Pk with Pk ∈ P , it holds that

gi (N, v, P )− gi
(
N\Pk ∪ i, vN\Pk∪i, P\Pk ∪ {i}

)
=

gj (N, v, P )− gj
(
N\Pk ∪ j, vN\Pk∪j , P\Pk ∪ {j}

)
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where the game
(
N\Pk ∪ i, vN\Pk∪i, P\Pk ∪ {i}

)
is defined as vN\Pk∪i(S) = v(S)

for all S ⊆ N\Pk ∪ i.

This new property says that given two players in the same union, they get
the same difference between the pay-off of the original game and the pay-off of
the game where all the players of the union leave. This property has a similar
interpretation to the property of balanced contributions.

Theorem 4.7. ESD4U is the unique coalitional equal surplus division value for
TU-games with a priori unions satisfying QGP and BCPA.

Proof. Take a TU-game with a priori unions (N, v, P ) ∈ GU such that P =
{P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD4U satisfies BCPA.
For all l ∈M and all i, j ∈ Pl,

ESD4Ui (N, v, P )− ESD4Uj (N, v, P ) = ESD2Ui (N, v, P )− ESD2Uj (N, v, P ) +

1

m

∑
t∈Pl

v (t)

pl
− v (i)

+
1

m

v (∪k∈M\lPk ∪ i)−∑
t∈Pl

v
(
∪k∈M\lPk ∪ t

)
pl

−
1

m

∑
t∈Pl

v (t)

pl
− v (j)

− 1

m

v (∪k∈M\lPk ∪ j)−∑
t∈Pl

v
(
∪k∈M\lPk ∪ t

)
pl

 .

By the property DMIVIU that satisfies ESD2U we have that ESD2i−ESD2j =
v(i)− v(j). Then we have that

ESD4Ui (N, v, P )− ESD4Uj (N, v, P ) =

v(i)− v(j)− v(i)

m
+
v(j)

m
+
v
(
∪k∈M\lPk ∪ i

)
m

−
v
(
∪k∈M\lPk ∪ j

)
m

.

On the other hand

ESD4Ui
(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
− ESD4Uj

(
N\Pl ∪ j, vN\Pl∪j , P\Pl ∪ {j}

)
=

ESD2Ui
(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
+

1

m

(
vN\Pl∪i (i)

1
− vN\Pl∪i (i)

)
+

1

m

(
vN\Pl∪i

(
∪Pk∈P\Pl

Pk ∪ i
)
−
vN\Pl∪i

(
∪Pk∈P\Pl

Pk ∪ i
)

1

)
−

ESD2Uj
(
N\Pl ∪ j, vN\Pl∪j , P\Pl ∪ {j}

)
− 1

m

(
vN\Pl∪j (j)

1
− vN\Pl∪j (j)

)
−

1

m

(
vN\Pl∪j

(
∪Pk∈P\Pl

Pk ∪ j
)
−
vN\Pk∪j

(
∪Pk∈P\Pl

Pk ∪ j
)

1

)
.
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We have that

ESD4Ui
(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
− ESD4Uj

(
N\Pl ∪ j, vN\Pl∪j , P\Pl ∪ {j}

)
=

ESD2Ui
(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
− ESD2Uj

(
N\Pl ∪ j, vN\Pl∪j , P\Pl ∪ {j}

)
and then

ESD2Ui
(
N\Pl ∪ i, vN\Pl∪i, P\Pl ∪ {i}

)
− ESD2Uj

(
N\Pl ∪ j, vN\Pl∪j , P\Pl ∪ {j}

)
=

vN\Pl∪i(i) +
vN\Pl∪i(i)− vN\Pl∪i(i)

1
+

vN\Pl∪i(N\Pl ∪ i)− (
∑

Pk∈P\Pl∪i vN\Pl∪i(Pk))

m
− vN\Pl∪j(j)−

vN\Pl∪j(j)− vN\Pl∪j(j)

1
−
vN\Pl∪j(N\Pl ∪ j)− (

∑
Pk∈P\Pl∪j vN\Pl∪j(Pk))

m
=

vN\Pl∪i(i)− vN\Pl∪j(j) +
vN\Pl∪i(N\Pl ∪ i)

m
−
vN\Pl∪j(N\Pl ∪ j)

m
−∑

Pk∈P\Pl∪i vN\Pl∪i(Pk)

m
+

∑
Pk∈P\Pl∪j vN\Pl∪j(Pk)

m
=

v(i)− v(j) +
v
(
∪k∈M\lPk ∪ i

)
m

−
v
(
∪k∈M\lPk ∪ j

)
m

− v(i)

m
+
v(j)

m
.

Finally, the uniqueness is proven in an similar way as the uniqueness in The-
orem 2 of Vázquez-Brage et al. (1997).

4.5.2 Coalitional equal surplus division value satisfy-
ing balanced contributions and quotient game

In this section we define a value for TU-games with a priori unions that ex-
tends the equal surplus division value and satisfies the quotient game property and
balanced contributions in the unions.

Definition 4.6. The equal surplus division value (five) for TU-games with a priori
unions ESD5U is defined by

ESD5Ui (N, v, P ) =
v(Pk)

pk
+
v (N)−

∑
l∈M v (Pl)

mpk
+∑

T⊂Pk
i∈T

Pm,pk,t

t
v (T )−

∑
T⊂Pk
i/∈T

Pm,pk,t

pk − t
v (T )
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for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk; where t = |T | and

Pm,pk,t =
1

2
if pk = 2 and t = 1,

Pm,pk,t =
1

pk

1 +

pk−2∑
j=1

1

m+ j

 if pk > 2 and t = 1,

Pm,pk,t =
m

(m+ 1)pk
if pk > 2 and t = pk − 1,

Pm,pk,t =
m+ (z − 1)

(pk − (z − 1))(m+ z)

z−2∑
j=0

pk − j − t
pk − j


if pk > 3 and t = (pk − z) such that z ∈ {2, ..., pk − 2}.

Remark 4.2. Note that ESD5 can be written in terms of ESD1

ESD5Ui (N, v, P ) = ESD1Ui (N, v, P ) +
∑
T⊂Pk
i∈T

Pm,pk,t

t
v (T )−

∑
T⊂Pk
i/∈T

Pm,pk,t

pk − t
v (T ) .

for all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk.

In the last result of this work, we characterized the ESD5 value in the same
spirit as an axiomatic characterization of the Owen value given in Vázquez-Brage
et al. (1997).

Theorem 4.8. ESD5U is the unique coalitional equal surplus division value sat-
isfying QGP and BCU.

Proof. Take a TU-game with a priori unions (N, v, P ) ∈ GU such that P =
{P1, ..., Pm} and denote M = {1, ...,m}. Let us check that ESD5U satisfies QGP.
For all k ∈M , we have that∑
i∈Pk

ESD5Ui (N, v, P ) =
∑
i∈Pk

(
v(Pk)

pk
+
v(N)−

∑
l∈M v(Pl)

mpk

)
+

∑
i∈Pk

∑
T⊂Pk
i∈T

Pm,pk,t

t
v (T )−

∑
i∈Pk

∑
T⊂Pk
i/∈T

Pm,pk,t

pk − t
v (T ) =

v(Pk) +
v(N)−

∑
l∈M v(Pl)

m
+ t

∑
T⊂Pk

Pm,pk,t

t
v (T )− (pk − t)

∑
T⊂Pk

Pm,pk,t

pk − t
v (T ) =

v(Pk) +
v(N)−

∑
l∈M v(Pl)

m
.
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It is immediate that

ESD5Uk (M, v/P, Pm) = v(Pk) +
v(N)−

∑
l∈M v(Pl)

m
.

Let us check that ESD5U satisfies BCU. For all k ∈M and all i, j ∈ Pk,

ESD5Ui (N, v, P )− ESD5Uj (N, v, P ) =
∑
T⊂Pk
i∈T

Pm,pk,t

t
v (T )−

∑
T⊂Pk
i/∈T

Pm,pk,t

pk − t
v (T )−

∑
T⊂Pk
j∈T

Pm,pk,t

t
v (T ) +

∑
T⊂Pk
j /∈T

Pm,pk,t

pk − t
v (T ) =

∑
T⊆Pk\j
i∈T

Pm,pk,t

t
v (T )−

∑
T⊆Pk\i
j∈T

Pm,pk,t

t
v (T )−

∑
T⊂Pk
i/∈T
j∈T

Pm,pk,t

pk − t
v (T ) +

+
∑
T⊂Pk
j /∈T
i∈T

Pm,pk,t

pk − t
v (T ) = pk

∑
T⊆Pk\j
i∈T

Pm,pk,t

(pk − t)t
v (T )−

∑
T⊆Pk\i
j∈T

Pm,pk,t

(pk − t)t
v (T ) .

On the other hand,

ESD5Ui (N, v, P−j)− ESD5Uj (N, v, P−i) =
v(Pk\j)
pk − 1

− v(Pk\i)
pk − 1

+

v(N)−
∑

Pl∈P−j
v(Pl)

(m+ 1)(pk − 1)
−
v(N)−

∑
Pl∈P−i

v(Pl)

(m+ 1)(pk − 1)
+

∑
T⊂Pk\j
i∈T

Pm+1,pk−1,t

t
v (T )−

∑
T⊂Pk\j
i/∈T

Pm+1,pk−1,t

pk − t
v (T )−

∑
T⊂Pk\i
j∈T

Pm+1,pk−1,t

t
v (T ) +

∑
T⊂Pk\i
j /∈T

Pm+1,pk−1,t

pk − t
v (T ) =

v(Pk\j)
pk − 1

− v(Pk\i)
pk − 1

− v(Pk\j) + v(j)

(m+ 1)(pk − 1)
+

v(Pk\i) + v(i)

(m+ 1)(pk − 1)
+

∑
T⊂Pk\j
i∈T

Pm+1,pk−1,t

t
v (T )

−
∑

T⊂Pk\j
i/∈T

Pm+1,pk−1,t

pk − t
v (T )−

∑
T⊂Pk\i
j∈T

Pm+1,pk−1,t

t
v (T ) +

∑
T⊂Pk\i
j /∈T

Pm+1,pk−1,t

pk − t
v (T ) =

m · v(Pk\j)
(m+ 1)(pk − 1)

− m · v(Pk\i)
(m+ 1)(pk − 1)

+
v(i)

(m+ 1)(pk − 1)
− v(j)

(m+ 1)(pk − 1)
+
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∑
T⊂Pk\j
i∈T

Pm+1,pk−1,t

t
v (T )−

∑
T⊂Pk\j
i/∈T

Pm+1,pk−1,t

pk − t
v (T )−

∑
T⊂Pk\i
j∈T

Pm+1,pk−1,t

t
v (T ) +

∑
T⊂Pk\i
j /∈T

Pm+1,pk−1,t

pk − t
v (T ) =

m · v(Pk\j)
(m+ 1)(pk − 1)

− m · v(Pk\i)
(m+ 1)(pk − 1)

+
v(i)

(m+ 1)(pk − 1)
−

v(j)

(m+ 1)(pk − 1)
+

∑
T⊂Pk\j
i∈T

Pm+1,pk−1,t

t
v (T )−

∑
T⊂Pk\i
j∈T

Pm+1,pk−1,t

t
v (T ) .

Let us see that the two equations are the same. We only need to see that
for a player i and any coalition T ⊂ Pk\j such that i ∈ T , the weights coincide.
Consider the all different cases. Noticed that as i, j ∈ Pk, then pk ≥ 2.

Case i) pk = 2 then

pk
∑

T⊆Pk\j
i∈T

Pm,pk,t

(pk − t)t
v (T ) =

pk
2(pk − 1)

v(i) = v(i)

and on the other side

m · v(Pk\j)
(m+ 1)(pk − 1)

+
v(i)

(m+ 1)(pk − 1)
=

(m+ 1)v(i)

(m+ 1)(pk − 1)
= v(i).

Case ii) pk > 2 and |T | = 1 (T = i) then

pk
(pk − t)t

Pm,pk,tv (i) =
pk

(pk − 1)
Pm,pk,1v (i) =

pk
(pk − 1)

1

pk

1 +

pk−2∑
j=1

1

m+ j

 v(i)

and on the other side

v(i)

(m+ 1)(pk − 1)
+
Pm+1,pk−1,t

t
v (i) =

v(i)

(m+ 1)(pk − 1)
+

1

pk − 1

1 +

pk−3∑
j=1

1

m+ 1 + j

 v(i) =
1

pk − 1

1 +

pk−3∑
j=0

1

m+ 1 + j

 v(i) =

1

pk − 1

1 +

pk−2∑
j=1

1

m+ j

 v(i).
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Case ii) pk > 2 and |T | = pk − 1 (T = Pk\j) then

pk
Pm,pk,t

(pk − t)t
v (Pk\j) =

pk
pk − 1

m

(m+ 1)pk
v (Pk\j) =

m

(m+ 1)(pk − 1)
v (Pk\j)

and on the other side
m · v(Pk\j)

(m+ 1)(pk − 1)
.

Case iii) pk > 2 and |T | = pk − 2 then

pk
Pm,pk,t

2(pk − 2)
v (T ) =

pk
2(pk − 2)

m+ 1

m+ 2

1

pk − 1

2

pk
v (T ) =

1

(pk − 2)

m+ 1

m+ 2

1

pk − 1
v (T )

and on the other side

Pm+1,pk−1,t

t
v (T ) =

1

pk − 2

m+ 1

m+ 2

1

pk − 1
v (T ) .

Case iv) pk > 2 and |T | = pk − z where z ∈ {3, ..., pk − 2}

pk
Pm,pk,t

(pk − t)t
v (T ) =

pk
z(pk − z)

m+ (z − 1)

(pk − (z − 1))(m+ z)

(
z−2∑
l=0

pk − l − t
pk − l

)
v (T )

=
1

(pk − z)
m+ (z − 1)

(pk − (z − 1))(m+ z)

(
z−2∑
l=1

pk − l − t
pk − l

)
v (T )

and on the other side

Pm+1,pk−1,t

t
v (T ) =

1

pk − z
m+ 1 + (z′ − 1)

(pk − 1− (z′ − 1))(m+ 1 + z′)

z′−2∑
j=0

pk − 1− j − t
pk − 1− j


where z′ = z − 1 because Pm+1,pk−1,t depends on Pk\j.

Finally, the uniqueness is proven in an analogous way as the uniqueness in
Theorem 2 of Vázquez-Brage et al. (1997).

4.6 Example

In this section, we apply the extensions of the egalitarian values to an example.
In this way, we can check the behaviour of these solutions when a real problem is
faced. In addition, we can compare these solutions to each other.
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This problem is motivated by a building where an elevator wants to be installed.
The building has three floors, where on the first floor there is one apartment,
the second floor has two apartments, and the third, and last, floor there are 3
apartments. However, access to an apartment on the second and third floor is in
a parallel corridor to the other apartments.

The cost of installing the elevator is as follows: 50 (in thousands of euros) the
cost of the machine, 40 to the works to make the hollow, that is a fixed cost of 10
and an individual cost of 10 for the owners of the first floor that is incremented by
10 for the owners of the second floor and by another 10 for the owners of the third
floor. Finally, 10 on each floor to allow access to the elevator (total 30). The total
costs are 120 thousands of euros, but there is an increment if the apartments in
the parallel corridor want direct access to the elevator. That is, an increment of
10 in the elevator to buy it with double door; and an increment of 5 to the second
and third floor to allow access to the elevator. However, if both apartments decide
to allow access to the elevator, 2 will be discounted in each one. Therefore the
total costs are 136. According to this, the individual costs are

• 60 (machine with double door) + 15 (floor) + 40 (hollow) = 115, for the
first player of the third floor,

• 50 (machine) + 10 (floor) + 40 (hollow) = 100, for the second and third
players of the third floor,

• 60 (machine with double door) + 15 (floor) + 30 (hollow) = 105, for the
first player of the second floor,

• 50 (machine) + 10 (floor) + 30 (hollow) = 90, for the second player of the
second floor,

• 50 (machine) + 10 (floor) + 20 (hollow) = 80, for the players of the first
floor.

EDU

3rd floor 15.11 15.11 15.11
2nd floor 22.67 22.67
1st floor 45.33

Table 4.1: Distribution according to EDU .

Table 4.1 displays the distribution proposed by EDU , Table 4.2 displays the
distribution proposed by ESD1U , ESD2U and ESD3U , and Table 4.3 the distri-
bution of ESD4U and ESD5U . Since ESD3U does not satisfy the QGP property,
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ESD1U ESD2U ESD3U

3rd floor 20.11 20.11 20.11 30.11 15.11 15.11 64.56 49.56 49.56
2nd floor 25.17 25.17 32.67 17.67 29.33 14.33
1st floor 25.33 25.33 -71.33

Table 4.2: Distribution according to ESD1U , ESD2U , ESD3U .

ESD4U ESD5U

3rd floor 27.00 16.67 16.67 30.11 15.11 15.11
2nd floor 30.33 20.00 32.67 17.67
1st floor 25.33 25.33

Table 4.3: Distribution according to ESD4U , ESD5U .

the results of this solution are not reasonable. ESD1U allocates the same value for
the apartments on the same floor, and ESD2U takes into account the individual
costs of the apartments to do the distribution. However, ESD2U does not take
into account the relationships between unions and doest not consider the discounts.
ESD4U makes up for this shortfall. Finally, ESD5U is equal to ESD2U . This is
because when |Pk| = 1 then ESD1U = ESD2U = ESD4U = ESD5U ; if |Pk| = 2
then ESD2U = ESD5U ; and for |Pk| > 2 there are differences between these two
values, but the fact of the symmetry between the apartments causes the equality
of these two values.
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Chapter 5

Necessary players and values

JC Gonçalves-Dosantos, I Garćıa-Jurado, J Costa, JM Alonso-Meijide

In second revision.

5.1 Introduction

The Shapley value, introduced in Shapley (1953), is a rule for distributing the
benefits that a set of agents N can generate, taking into account the marginal con-
tributions of each agent to all possible coalitions of which that agent may be part,
and the sizes of such coalitions. The Shapley value is one of the most important
solutions of cooperative game theory and it has many applications in a wide variety
of fields. For instance, in recent years the Shapley value has been applied to cancer
research (see Albino et al., 2008), to machine learning (see Strumbelj and Konon-
enko, 2010), to data envelopment analysis (see Yang and Zhang, 2015), to image
classification (see Gurram et al., 2016), to project management (see Bergantiños et
al., 2018, and Gonçalves-Dosantos et al., 2020), etc. Moretti and Patrone (2008)
is a survey explaining the transversality of the Shapley value.

The game theory literature provides many alternatives to the Shapley value,
such as the nucleolus (Schmeidler, 1969), the Banzhaf value (Owen, 1975), the
τ -value (Tijs, 1981), the equal-surplus division value (Driessen and Funaki, 1991)
or, more recently, the consensus value (Ju et al., 2007) and the ie-Banzhaf value
(Alonso-Meijide et al., 2019b). All those alternative values have appealing prop-
erties and could be used instead of the Shapley value. In order to decide what
is the most appropriate value for a particular problem it is helpful to know the
properties that are essentially connected to each value. This is why game theory
is interested in the so-called characterizations: to characterize a value in a class of
games is to find a set of properties so that it is the only value that fulfills them in
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that class. For instance, in Luchetti et al. (2010), two relevance indexes for genes
are compared, one based on the Shapley value and the other based on the Banzhaf
value, and for that purpose they are characterized in the corresponding class of
games, the so-called microarray games.

In this article we introduce a value for cooperative games that results from
proposing a new property for so-called necessary players that, in a way, corrects
the properties for such players met by the Shapley and Banzhaf values. Informally,
necessary players are those without whom the characteristic function of the game
would be zero. These players have attracted the attention of game theorists for
axiomatic studies in the last years. For instance, Alonso-Meijide et al. (2019a) and
Béal and Navarro (2020) are two recent papers dealing with necessary players and
characterizations. Apart from introducing a new value, in this paper we provide an
axiomatic characterization of it, which allows to compare the new value with other
solution concepts for cooperative games. Furthermore, we extend and characterize
the new value for cooperative games with a coalition structure. A cooperative game
with a coalition structure models those situations where the agents in a set N aim
to distribute the benefits they generate taking into account the contributions of
each agent and of each possible subset of N , as well as a coalition structure (a
partition of N) that conditions the distribution, in the sense that distribution
among the classes of the partition is made first and, then, a distribution within
those classes is performed. Cooperative games with a coalition structure have
been applied in several fields like political analysis (see, for instance, Carreras
and Puente, 2015), infrastructure management (see Costa, 2016), cost allocation
(see Fragnelli and Iandolino, 2004), etc. The Owen value (Owen, 1977) and the
Banzhaf-Owen value (Owen, 1982) are, respectively, the variations of the Shapley
value and the Banzhaf value for cooperative games with a coalition structure. In
this paper we also provide new characterizations of the Owen and the Banzhaf-
Owen values using properties involving necessary players.

The structure of this paper is as follows. In Section 5.2 we introduce the Γ
value, a new value for cooperative games. We also provide an axiomatic charac-
terization of the Γ value and illustrate its behaviour in a practical example that
arises in a problem of sharing the costs of installing an elevator. In Section 5.3
we provide new characterizations of the Owen and Banzhaf-Owen values and in-
troduce and characterize an extension of the Γ value for cooperative games with
a coalitional structure. We finish the paper with a section of concluding remarks.

5.2 Values and necessary players

A cooperative game is a pair (N, v) given by a finite set of players N and a
characteristic function v : 2N → R, that assigns to each coalition S ⊆ N a real
number v(S) that indicates the benefits that coalition S is able to generate; by
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definition v(∅) = 0. We denote by GN the family of all cooperative games with
player set N .

A value for cooperative games is a map f that assigns to every game (N, v) ∈
GN a vector f(N, v) ∈ RN . Two of the most important values for cooperative
games are the Shapley value (Shapley, 1953) and the Banzhaf value (Owen, 1975).
A number of characterizations of these two values can be found on the literature.
For example, Alonso-Meijide et al. (2019a) provides characterizations of those
values using only three properties for each of them: two common properties and
one extra property concerning the so-called necessary players that differs for the
Shapley and the Banzhaf values. In this paper we concentrate on characterizations
of values involving necessary players. Let us first remember the formal definition
of a necessary player.

Definition 5.1. A player i ∈ N is said to be necessary in the cooperative game
(N, v) if v(S) = 0 for all S ⊆ N \ {i}.

In words, a necessary player is one without whom cooperation does not pro-
duce any results. In fact, notice that if i is necessary in (N, v), then v(S) =∑

j∈S v({j}) = 0 for all S ⊆ N \ {i}; hence, the game resulting after the elimina-
tion of i is additive and null. Necessary players often arise in real situations. Take,
for instance, the following example.

Example 5.1. Consider a council formed by three entities with 24, 15 and 9 votes,
respectively. Any proposal must receive at least 25 votes to be approved. In the
resulting voting game, it is easy to see that the entity with 24 votes is a neces-
sary player because, without it, the other two entities cannot get any proposals
approved.

In some specific problems, as in the example above, the necessary players arise
in a natural way and, therefore, a characterization based on such players can be
relevant in deciding what value to use in those problems. We start by remembering
the characterizations of the Shapley and Banzhaf values in Alonso-Meijide et al.
(2019a) and some other preliminary material. The Shapley value ϕ is defined as

ϕi (N, v) =
1

n

∑
S⊆N\{i}

1(
n−1
s

)(v (S ∪ {i})− v (S))

for all (N, v) ∈ GN and all i ∈ N ; n and s denote the cardinalities of N and S,
respectively. The Banzhaf value β is defined as

βi (N, v) =
1

2n−1

∑
S⊆N\{i}

(v (S ∪ {i})− v (S))
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for all (N, v) ∈ GN and all i ∈ N . Both the Shapley and the Banzhaf value are
additive. This means that they satisfy the following condition.

Additivity. A value for cooperative games f satisfies the property of additivity
if for each pair of cooperative games (N, v) , (N,w) it holds that

f (N, v + w) = f (N, v) + f (N,w) .

Additivity is a good property because, at the same time that it is natural and
easily interpretable, it greatly facilitates the mathematical analysis of the values
that comply with it and the calculation of such values; for instance, Benati et al.
(2019) provides a method to approximate additive values in cooperative games
that is useful when the number of players is large.

Another reasonable property that is satisfied by the Shapley and Banzhaf value
concerns null players. Remember that a null player of (N, v) is an i ∈ N such that
v(S) = v(S ∪ {i}) for all S ⊆ N \ {i}.

Null Player. A value for cooperative games f satisfies the property of null player
if for each cooperative game (N, v) and for each i ∈ N null player of (N, v), it
holds that fi (N, v) = 0.

Now let us see two alternative properties for necessary players introduced in
Alonso-Meijide et al. (2019a) and the main result concerning them.

Necessary Players Get the Weighted Mean. A value for cooperative games
f satisfies the property of necessary players get the weighted mean if, for each
cooperative game (N, v) and for each i ∈ N necessary player in (N, v), it holds
that

fi (N, v) =
1

n

∑
S⊆N,i∈S

1(
n−1
s−1

)v(S).

Necessary Players Get the Mean. A value for cooperative games f satisfies
the property of necessary players get the mean if, for each cooperative game (N, v)
and for each i ∈ N necessary player in (N, v), it holds that

fi (N, v) =
1

2n−1

∑
S⊆N,i∈S

v(S).

Observe that the two properties above are similar. Both establish that a necessary
player must receive the average of the values of the coalitions to which that player
belongs, although the former takes into account the size of such coalitions and the
latter does not.
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Theorem 5.1. (Alonso-Meijide et al., 2019a).
1. The Shapley value is the unique value for cooperative games that satisfies the
properties of additivity, null player and necessary players get the weighted mean.
2. The Banzhaf value is the unique value for cooperative games that satisfies the
properties of additivity, null player and necessary players get the mean.

Now, we remember two widely known properties for values that will be relevant
in the subsequent discussion.

Efficiency. A value for cooperative games f satisfies the property of efficiency if
for each cooperative game (N, v), it holds that∑

i∈N
fi (N, v) = v (N) .

We say that players i, j ∈ N are symmetric in (N, v) ∈ GN if v(S ∪ {i}) =
v(S ∪ {j}) for every S ⊆ N \ {i, j}.

Symmetry. A value for cooperative games f satisfies the property of symmetry if
for each cooperative game (N, v) and for all i, j ∈ N symmetric players in (N, v),
it holds that

fi (N, v) = fj (N, v) .

It is well-known that the Shapley and Banzhaf values satisfy the symmetry
property. However, only the Shapley value is efficient. In some problems, efficiency
is not an essential property for a value, see for example microarray games in
Lucchetti et al. (2010). In many cases, however, efficiency will be required for
a value to make sense; this happens, for example, when we are faced with cost
allocation problems. One question we can ask is whether there is a value that
fulfills the necessary players get the mean property and the efficiency property.
The answer is negative because those properties are incompatible. Indeed, assume
that a value for cooperative games f satisfies both properties and for every non-
empty S ⊆ N denote by (N, eS) the cooperative game in GN given, for every
T ⊆ N , by:

eS(T ) =

{
1 if T = S,
0 otherwise.

(5.1)

Since f satisfies efficiency, it holds that∑
i∈N

fi (N, eN ) = 1. (5.2)

Notice now that every i ∈ N is necessary in (N, eN ) and then, since f satisfies the
necessary players get the mean property, it holds that∑

i∈N
fi (N, eN ) =

∑
i∈N

1

2n−1
=

n

2n−1
. (5.3)
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Observe that (5.2) and (5.3) are incompatible for n > 2, which implies that ne-
cessary players get the mean and efficiency are incompatible properties. Such
incompatibility vanishes when we consider the next weak version of the former
property.

(Weak) Necessary Players Get the Mean. A value for cooperative games f
satisfies the (weak) necessary players get the mean property if, for each cooperative
game (N, v) with v(N) = 0 and for each i ∈ N necessary player in (N, v), it holds
that

fi (N, v) =
1

2n−1

∑
S⊆N,i∈S

v(S).

With this new property we can prove the following theorem.

Theorem 5.2. There exists a unique value for cooperative games that satisfies
the properties of additivity, (weak) necessary players get the mean, efficiency and
symmetry. This value that we denote by G is given, for all (N, v) ∈ GN and all
i ∈ N , by:

Gi (N, v) =
1

2n−1

 ∑
S⊂N,i∈S

v(S)−
∑

S⊂N,i6∈S

s

n− s
v(S)

+
v(N)

n
. (5.4)

Proof. (Existence). It is clear that G satisfies additivity. To check that it satisfies
the (weak) necessary players get the mean property, take a cooperative game (N, v)
with v(N) = 0 and such that i ∈ N is a necessary player in (N, v). Then expression
(5.4) reduces to

Gi(N, v) =
1

2n−1

∑
S⊂N,i∈S

v(S) =
1

2n−1

∑
S⊆N,i∈S

v(S).

To check that G satisfies efficiency notice that, for every cooperative game (N, v),

∑
i∈N

Gi(N, v) =
1

2n−1

∑
i∈N

 ∑
S⊂N,i∈S

v(S)−
∑

S⊂N,i6∈S

s

n− s
v(S)

+ v(N)

=
1

2n−1

(∑
S⊂N

sv(S)−
∑
S⊂N

(n− s) s

n− s
v(S)

)
+ v(N)

= v(N).

To check that G satisfies symmetry take a cooperative game (N, v) and a pair of
symmetric players in (N, v) i, j ∈ N . Notice that∑
S⊂N,i∈S

v(S)−
∑

S⊂N,i6∈S

s

n− s
v(S) =

∑
S⊆N\{i,j}

(v(S ∪ {i})) +
∑

S⊂N\{i,j}

(v(S ∪ {i, j}))

−
∑

S⊆N\{i,j}

(
s

n− s
v(S) +

s+ 1

n− s− 1
v(S ∪ {j})

)
.
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Now, since i, j are symmetric in (N, v), the last expression is equal to

∑
S⊆N\{i,j}

(v(S ∪ {j})) +
∑

S⊂N\{i,j}
(v(S ∪ {i, j}))−

∑
S⊆N\{i,j}

(
s

n− s
v(S) +

s+ 1

n− s− 1
v(S ∪ {i})

)

and then it is clear that Gi(N, v) = Gj(N, v).

(Uniqueness). Take f , a value for cooperative games that satisfies efficiency, sym-
metry, (weak) necessary players get the mean and additivity and take a cooperative
game (N, v). We prove now that f(N, v) = G(N, v). Indeed, consider the canon-
ical basis of the vector space of characteristic functions of cooperative games with
set of players N : {eS}S∈2N\∅ (see expression (5.1)). Observe that v can be written
in a unique way as a linear combination of the elements of the canonical basis:
v =

∑
S∈2N\∅ v(S)eS . Since f satisfies additivity,

f(N, v) =
∑

S∈2N\∅

f(N, v(S)eS).

Note that efficiency, symmetry and (weak) necessary players get the mean char-
acterize a unique value in the class {(N, v(S)eS) | S ⊂ N,S 6= ∅}. Besides,
efficiency and symmetry characterize a unique value for (N, v(N)eN ). Hence
f(N, v) = G(N, v).

Surprisingly enough, the new value G introduced in Proposition 5.2 looks a
lot like the e-Banzhaf value defined in Alonso-Meijide et al. (2019b) but it is not
the same, because n−s

s is changed by s
n−s and, moreover, those two parameters

do not multiply the same summands in the expressions of G and of the e-Banzhaf
value. Indeed, such parameters do not seem to have a clear interpretation from
the point of view of fairness, which leads us to think that perhaps the (weak)
necessary players get the mean property should be reformulated. In fact, it is
more reasonable to ask that a necessary player be entitled to the average of the
per capita values of the coalitions that contain it rather than the average of the
values of those coalitions; in fact, such players are necessary for coalitions to have
a value other than zero, but they require the other coalition members to generate
such a value. Thus we propose the new property formulated below.

Necessary Players Get the Per Capita Mean. A value for cooperative games
f satisfies the necessary players get the per capita mean property if, for each
cooperative game (N, v) with v(N) = 0 and for each i ∈ N necessary player in
(N, v), it holds that

fi (N, v) =
1

2n−1

∑
S⊆N,i∈S

v(S)

s
.

The next result introduces and characterizes a new value for cooperative games.



132 Chapter 5. Necessary players and values

Theorem 5.3. There exists a unique value for cooperative games that satisfies the
properties of additivity, necessary players get the per capita mean, efficiency and
symmetry. This value that we denote by γ is given, for all (N, v) ∈ GN and all
i ∈ N , by:

γi (N, v) =
1

2n−1

 ∑
S⊂N,i∈S

v(S)

s
−

∑
S⊂N,i 6∈S

v(S)

n− s

+
v(N)

n
. (5.5)

Proof. (Existence). It is clear that γ satisfies additivity. To check that it satisfies
the necessary players get the per capita mean property take a cooperative game
(N, v) with v(N) = 0 and such that i ∈ N is a necessary player in (N, v). Then
expression (5.5) reduces to

γi(N, v) =
1

2n−1

∑
S⊂N,i∈S

v(S)

s
=

1

2n−1

∑
S⊆N,i∈S

v(S)

s
.

To check that γ satisfies efficiency notice that, for every cooperative game (N, v),

∑
i∈N

γi(N, v) =
1

2n−1

∑
i∈N

 ∑
S⊂N,i∈S

v(S)

s
−

∑
S⊂N,i6∈S

v(S)

n− s

+ v(N)

=
1

2n−1

(∑
S⊂N

s
v(S)

s
−
∑
S⊂N

(n− s) v(S)

n− s

)
+ v(N)

= v(N).

To check that γ satisfies symmetry take a cooperative game (N, v) and a pair of
symmetric players in (N, v) i, j ∈ N . Notice that

∑
S⊂N,i∈S

v(S)

s
−

∑
S⊂N,i6∈S

v(S)

n− s
=

∑
S⊆N\{i,j}

v(S ∪ {i})
s+ 1

+
∑

S⊂N\{i,j}

v(S ∪ {i, j})
s+ 2

−
∑

S⊆N\{i,j}

(
v(S)

n− s
+
v(S ∪ {j})
n− s− 1

)
.

Now, since i, j are symmetric in (N, v), the last expression is equal to

∑
S⊆N\{i,j}

v(S ∪ {j})
s+ 1

+
∑

S⊂N\{i,j}

v(S ∪ {i, j})
s+ 2

−
∑

S⊆N\{i,j}

(
v(S)

n− s
+
v(S ∪ {i})
n− s− 1

)

and then it is clear that γi(N, v) = γj(N, v).
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(Uniqueness). Take f , a value for cooperative games that satisfies efficiency,
symmetry, necessary players get the per capita mean and additivity and take
a cooperative game (N, v). We prove now that f(N, v) = γ(N, v). Indeed, con-
sider the basis of the vector space of characteristic functions of cooperative games
with set of players N : {eS}S∈2N\∅ (see expression (5.1)). Observe that v can
be written in a unique way as a linear combination of the elements of the basis:
v =

∑
S∈2N\∅ v(S)eS . Since f satisfies additivity,

f(N, v) =
∑

S∈2N\∅

f(N, v(S)eS).

Notice that efficiency, symmetry and necessary players get the per capita mean
characterize a unique value in the class of games {(N, v(S)eS) | S ⊂ N,S 6= ∅}.
Besides, efficiency and symmetry characterize a unique value for (N, v(N)eN ).
Hence f(N, v) = γ(N, v).

A very desirable property for values for cooperative games is the invariance to
S-equivalence, which we remember below. Two cooperative games with the same
sets of players (N, v) and (N,w) are said to be S-equivalent if there exist a ∈ R
with a > 0 and b ∈ RN such that, for every T ⊆ N , it holds that

w(T ) = av(T ) +
∑
j∈T

bj .

When (N, v) and (N,w) are S-equivalent we can transform v into w simply by
changing the scale and translating the players’ utilities. In these conditions it seems
reasonable to ask a value for cooperative games f that f(N, v) is transformed into
f(N,w) by doing the corresponding change of scale and translations.

Invariance to S-equivalence (INV). A value for cooperative games f satisfies
invariance to S-equivalence if for each pair of S-equivalent cooperative games (N, v)
and (N,w) such that w(T ) = av(T ) +

∑
j∈T bj for all T ⊆ N (with a ∈ R, a > 0

and b ∈ RN ) it holds that, for every i ∈ N ,

fi(N,w) = afi(N, v) + bi.

Unfortunately, the value γ defined by (5.5) is not invariant to S-equivalence.
Then, we make an adjustment of γ that leads us to the Γ value for cooperative
games that we define below.

Definition 5.2. The Γ value for cooperative games is given for every (N, v) ∈ GN
and every i ∈ N by:

Γi(N, v) = v({i}) + γi(N, v
0), (5.6)

where v0(S) = v(S)−
∑

j∈S v({j}) for all S ⊆ N .
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It is easy to check that Γ satisfies the invariance to S-equivalence. In order
to characterize it, we introduce below a new property concerning the necessary
players.

Necessary Players Get the 0-Normalized Per Capita Mean. A value for
cooperative games f satisfies the necessary players get the 0-normalized per capita
mean property if, for each cooperative game (N, v) with v(N) =

∑
j∈N v({j}) and

for each i ∈ N necessary player in (N, v), it holds that

fi (N, v) = v({i}) +
1

2n−1

∑
S⊆N,i∈S

v0(S)

s
.

Theorem 5.4. Γ is the unique value for cooperative games that satisfies the proper-
ties of additivity, necessary players get the 0-normalized per capita mean, efficiency
and symmetry.

Proof. (Existence). Since γ satisfies additivity, efficiency and symmetry, it is clear
that Γ also satisfies those properties. To check that it fulfils the necessary players
get the 0-normalized per capita mean property take a cooperative game (N, v)
with v(N) =

∑
j∈N v({j}) and such that i ∈ N is a necessary player in (N, v).

Then expression (5.6) reduces to

Γi(N, v) = v({i}) +
1

2n−1

∑
S⊂N,i∈S

v0(S)

s
= v({i}) +

1

2n−1

∑
S⊆N,i∈S

v0(S)

s
.

(Uniqueness). Take f a value for cooperative games that satisfies efficiency, sym-
metry, necessary players get the 0-normalized per capita mean and additivity and
take a cooperative game (N, v). We prove now that f(N, v) = Γ(N, v). Indeed,
consider the basis of the vector space of characteristic functions of cooperative
games with set of players N given by:

{e{i} + eN | i ∈ N} ∪ {eS | S ∈ 2N , |S| ≥ 2}.

Observe that v can be written in a unique way as a linear combination of the
elements of this basis. Since f satisfies additivity and, moreover, the properties of
efficiency, symmetry and necessary players get the 0-normalized per capita mean
characterize a unique value in the games of the basis, the proof is concluded.

Now we analyse an example in order to make some comments on the Γ value.
It is based on a similar example in Alonso-Meijide et al. (2020).
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Example 5.2. Consider a three-story building with one apartment on each floor,
the three apartments having the same surface. The three corresponding owners
have agreed to install an elevator and share the corresponding cost. Such a cost
is 120 (in thousands of euros), 50 of which correspond to the machine, 40 to the
works to make the hollow of the elevator (a fixed cost of 10 plus a cost of 10 for
the owner of the apartment in the first floor that is incremented by 10 for the
owner of the apartment in the second floor and by an additional 10 for the owner
of the apartment in the third floor), and 30 to the works to be done on each floor
to allow access to the elevator (10 in each of them). According to this, the cost
c(i) in which each player is involved is:

• 50 (machine) + 10 (floor) + 20 (hollow) = 80 for i = 1, the player of the
first floor,

• 50 (machine) + 10 (floor) + 30 (hollow) = 90 for i = 2, the player of the
second floor,

• 50 (machine) + 10 (floor) + 40 (hollow) = 100 for i = 3, the player of the
third floor.

The rest of the corresponding cost game is given by: c({1, 2}) = 100, c({1, 3}) =
c({2, 3}) = 110, c(N) = 120. Table 5.1 below shows the distribution of costs for
each of the apartments according to the Egalitarian value, the Shapley value and Γ.
In European city centres it is common to find buildings coping with situations like
the one described in this example. It is not uncommon for the owners of the lower
floors to be less favourable to installing an elevator because of the costs involved.
According to Spanish legislation, when owners decide to make an investment in
the common elements of a building, the corresponding costs will be distributed in
proportion to the owners’ shares (which, in turn, sometimes depend only on the
surface areas of the apartments). Therefore, the distribution due to the Egalitarian
value will be the one proposed by the legislation in some occasions. Note that the
proposed Shapley value and Γ distributions tend to favour the owners of the lower
floors. In short, Γ seems to be the least controversial distribution in view of the
usual dynamics of homeowners’ communities, because it tends to favour the owners
of the lowest floor, who are usually the most reluctant to bear the costs of installing
an elevator.

Egalitarian Shapley Γ
1 40 33.3333 32.5
2 40 38.3333 38.75
3 40 48.3333 48.75

Table 5.1: The Egalitarian value, the Shapley value and Γ for (N, c).
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It is not uncommon that in real situations such as those described in this ex-
ample not all the owners are in favour of the elevator. When this occurs, sometimes
the elevator will not be installed immediately even if the owners in favour of it
have a majority. The reason for this is that the unfavourable owners (generally
those on the lower floors) may refuse to pay the financial amounts due to them and
the owners’ community can only force them to do so by initiating legal proceed-
ings which may be long, economically costly and which, moreover, may profoundly
damage coexistence in the building. The practical consequence of this is that ne-
gotiations often take place within the owners’ community to try to ensure that the
installation of the elevator is possible without damaging coexistence in the build-
ing. One possible solution is that the owners not in favour of the elevator give up
its service; this means that the elevator will not have stops on the corresponding
floors, so that the works to give access to the elevator on those floors will not be
necessary and the total cost of the installation will be lower. Assume, for instance
that in the three-story building in this example the owner of the apartment in the
first floor is not in favour to install the elevator and, moreover, declares that he
will not pay any costs unless a court decision obliges him to do so. Negotiation
in the community may propose that the elevator does not serve the first floor. In
that case, the cost d(i) in which each player is involved is:

• 0 for i = 1, the player of the first floor,

• 50 (machine) + 10 (floor) + 30 (hollow) = 90 for i = 2, the player of the
second floor,

• 50 (machine) + 10 (floor) + 40 (hollow) = 100 for i = 3, the player of the
third floor.

The rest of the corresponding cost game is given by: d({1, 2}) = 90, d({1, 3}) =
100, d({2, 3}) = 110, d(N) = 110. Table 5.2 below shows the distribution of costs
for each of the apartments according to the Egalitarian value, the Shapley value
and Γ. Note that the distribution given by the Egalitarian rule does not seem to
facilitate the agreement on the installation of the elevator because the owner of the
first floor will continue to pay a considerable amount and, in addition, will give up
the service of the elevator. The distributions given by the Shapley value and by Γ,
however, do seem to facilitate a final settlement. According to the Shapley value,
the owner of the first floor will waive elevator service but pay nothing in return.
According to Γ, the owner of the first floor will even receive a small compensation
for the inconvenience caused to him by the works and the installation.
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Egalitarian Shapley Γ
1 36.6666 0 -6.6666
2 36.6666 50 53.3333
3 36.6666 60 63.3333

Table 5.2: The Egalitarian value, the Shapley value and Γ for (N, d).

5.3 Coalitional values and necessary players

In this section we extend the Γ value to cooperative games with a coalition
structure. We start by remembering the main features concerning that model.

We denote by P (N) the set of all partitions of a finite set N . Each P ∈ P (N),
of the form P = {P1, . . . , Pm}, is called a coalition structure on N . We call unions
of P to its elements P1, . . . , Pm. We denote by M the set {1, ...,m}.

A cooperative game with a coalition structure is a triple (N, v, P ) where (N, v) ∈
GN and P ∈ P (N). GcsN denotes the family of all cooperative games with a coalition
structure and with player set N . Note that the first two elements of a cooperative
game with a coalition structure, (N, v), characterize a cooperative game.

By a coalitional value we mean a map g that assigns to every game with a co-
alition structure (N, v, P ) a vector g(N, v, P ) ∈ RN with components gi(N, v, P ),
i ∈ N . Two of the most important coalitional values are the Owen value (Owen,
1977) and the Banzhaf-Owen value (Owen, 1982). In a similar way to the Shap-
ley and Banzhaf values, the value of a particular player is a weighted sum of his
contributions. In the case of the Shapley and Banzhaf values all possible contribu-
tions are taken into account, but for the coalitional values only the contributions
to some coalitions are used to compute the values.

The Owen value Φ is the coalitional value defined by:

Φi(N, v, P ) =
1

m

1

pk

∑
R⊆M\{k}

∑
T⊆Pk\{i}

1(
m−1
r

) 1(
pk−1
t

)[v(
⋃
r∈R

Pr∪T∪{i})−v(
⋃
r∈R

Pr∪T )
]

for all (N, v, P ) ∈ GcsN and all i ∈ N , where Pk ∈ P is the union such that i ∈ Pk;
m, pk, r and t are the cardinalities of M , Pk, R and T , respectively.

The Banzhaf–Owen value Ψ is the coalitional value defined as

Ψi(N, v, P ) =
1

2m−1

1

2pk−1

∑
R⊆M\{k}

∑
T⊆Pk\{i}

[
v(
⋃
r∈R

Pr ∪ T ∪ {i})− v(
⋃
r∈R

Pr ∪ T )
]

for all (N, v, P ) ∈ GcsN and all i ∈ N , where Pk ∈ P is the union such that i ∈ Pk;
m, pk, r and t are the cardinalities of M , Pk, R and T , respectively.
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In the literature, we can find several characterizations of the Owen and the
Banzhaf-Owen coalitional values; see for example Vázquez et al. (1997), Amer et
al. (2002), Khmelnitskaya and Yanovskaya (2007), Alonso-Meijide et al. (2007),
Casajus (2010) and Lorenzo-Freire (2016). We contribute to this research line
providing a new characterization of these two coalitional values using necessary
players. Only three properties are used in our results and the difference between
them is the assigned payoff to necessary players.

Necessary Players Get the Weighted Coalitional Mean. A coalitional value
g satisfies the property of necessary players get the weighted coalitional mean if
for each coalitional game (N, v, P ) and for each necessary player i ∈ Pk in (N, v),
it holds that

gi (N, v, P ) =
1

m

1

pk

∑
R⊆M\{k}

∑
T⊆Pk

1(
m−1
r

) 1(
pk−1
t−1

)v(
⋃
r∈R

Pr ∪ T ).

Necessary Players Get the Coalitional Mean. A coalitional value g satisfies
the property of necessary players get the coalitional mean if for each coalitional
game (N, v, P ) and for each necessary player i ∈ Pk in (N, v), it holds that

gi (N, v, P ) =
1

2m−1

1

2pk−1

∑
R⊆M\{k}

∑
T⊆Pk

v(
⋃
r∈R

Pr ∪ T ).

Both properties propose that a necessary player must receive the average worth
over all coalitions that are compatible with the partitions (i.e., those that are
formed by some complete unions and a subset of another union), but the first one
takes into account the size of the coalitions while the second one assigns the same
weight to all compatible coalitions.

Based on these two properties we will now state and prove two results charac-
terizing the Banzhaf-Owen and the Owen values, respectively. But first we must
make the following clarification. In this section, the properties of additivity, null
player and efficiency in general refer to coalitional values for coalitional games
with a coalition structure instead of to values for cooperative games (as in the
previous section). The extensions of the null player and efficiency properties to
coalitional values are immediate and we will not write them down formally. The
additivity is extended in the following way: a coalitional value g satisfies the prop-
erty of additivity if for each pair of cooperative games with a coalition structure
(N, v, P ), (N,w, P ) it holds that

g(N, v + w,P ) = g(N, v, P ) + g(N,w, P ).
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Theorem 5.5. The Banzhaf-Owen value is the unique coalitional value that satis-
fies the properties of additivity, null player and necessary players get the coalitional
mean.

Proof. (Existence). It is known that the Banzhaf-Owen value satisfies additivity
and null player. Now let us see that it satisfies the property of necessary players get
the coalitional mean. Take a cooperative game with a coalition structure (N, v, P )
and take i ∈ Pk a necessary player in (N, v). Then the Banzhaf-Owen value is
reduced to

Ψi(N, v, P ) =
1

2m−1

1

2pk−1

∑
R⊆M\{k}

∑
T⊆Pk\{i}

[
v(
⋃
r∈R

Pr ∪ T ∪ {i})− v(
⋃
r∈R

Pr ∪ T )
]

=
1

2m−1

1

2pk−1

∑
R⊆M\{k}

∑
T⊆Pk\{i}

v(
⋃
r∈R

Pr ∪ T ∪ {i})

=
1

2m−1

1

2pk−1

∑
R⊆M\{k}

∑
T⊆Pk

v(
⋃
r∈R

Pr ∪ T ).

(Uniqueness). For every S ⊆ N , S 6= ∅, the unanimity game (N, uS) is given,
for every T ⊆ N , by:

uS(T ) =

{
1 if S ⊆ T ,
0 otherwise.

(5.7)

Take a coalitional value g that satisfies additivity, null player and necessary players
get the coalitional mean and take a cooperative game with a coalition structure
(N, v, P ). We prove now that g(N, v, P ) = Ψ(N, v, P ). Given S ⊆ N , in the
unanimity game (N, uS) every i ∈ S is a necessary player and every i ∈ N\S is a
null player. Let us fix P , a finite set S ⊆ N and c ∈ R. By additivity it is sufficient
to prove that for all i ∈ N , gi(N, cuS , P ) = Ψi(N, cuS , P ). If i ∈ N\S, applying
the null player property gi(N, cuS , P ) = Ψi(N, cuS , P ) = 0. If i ∈ S, applying
neccesary players get the coalitional mean, we have that

gi(N, cuS , P ) = Ψi(N, cuS , P ) = c
1

2m−1

1

2pk−1

∑
R⊆M\k

∑
T⊆Pk

uS(
⋃
r∈R

Pr ∪ T ),

where Pk is the union such that i ∈ Pk.

Theorem 5.6. The Owen value is the unique coalitional value that satisfies the
properties of additivity, null player and necessary players get the weighted coali-
tional mean.

Proof. (Existence). It is known that the Owen value satisfies additivity and null
player. Let us see that it satisfies the property of necessary players get the weighted
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coalitional mean. Suppose that i is a necessary player with i ∈ Pk; then the Owen
value is

Φi(N, v, P ) =

1

m

1

pk

∑
R⊆M\{k}

∑
T⊆Pk\{i}

1(
m−1
r

) 1(
pk−1
t

)[v(
⋃
r∈R

Pr ∪ T ∪ {i})− v(
⋃
r∈R

Pr ∪ T )
]

=

1

m

1

pk

∑
R⊆M\{k}

∑
T⊆Pk\{i}

1(
m−1
r

) 1(
pk−1
t

)v(
⋃
r∈R

Pr ∪ T ∪ {i}) =

1

m

1

pk

∑
R⊆M\{k}

∑
T⊆Pk

1(
m−1
r

) 1(
pk−1
t−1

)v(
⋃
r∈R

Pr ∪ T ).

(5.8)

(Uniqueness) Take a coalitional value g that satisfies additivity, null player and
necessary players get the weighted coalitional mean and take a cooperative game
with a coalition structure (N, v, P ). We prove now that g(N, v, P ) = Φ(N, v, P ).
Given S ⊆ N , in the unanimity game (N, uS) every i ∈ S is a necessary player
and every i ∈ N\S is a null player. Let us fix P , a finite set S ⊆ N and c ∈ R. By
additivity it is sufficient to prove that for all i ∈ N , gi(N, cuS , P ) = Φi(N, cuS , P ).
If i ∈ N\S, applying the null player property

gi(N, cuS , P ) = Φi(N, cuS , P ) = 0.

If i ∈ S, applying necessary players get the weighted coalitional mean, we have
that

gi(N, cuS , P ) = Φi(N, cuS , P ) = c
1

2m−1

1

2pk−1

∑
R⊆M\k

∑
T⊆Pk

uS(
⋃
r∈R

Pr ∪ T ),

where Pk is the union such that i ∈ Pk.

We are now willing to extend the Γ value, defined in Section 5.2, to cooperative
games with a coalition structure. We next remind some properties that are relevant
for our aim.

Symmetry Inside Unions. A coalitional value g satisfies the property of sym-
metry inside unions if for each cooperative game with a coalition structure (N, v, P ),
it holds that

gi (N, v, P ) = gj (N, v, P ) .

for all i, j symmetric players in (N, v) with i, j ∈ Pk, Pk ∈ P .
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We say that unions Pk, Pl ∈ P are symmetric in (N, v, P ) ∈ GcsN if v(S ∪Pk) =
v(S ∪ Pl), for every S = ∪j∈RPj with R ⊆M\{k, l}.

Symmetry Among Unions. A coalitional value g satisfies the property of
symmetry among unions if for each cooperative game with a coalition structure
(N, v, P ), it holds that ∑

i∈Pk

gi (N, v, P ) =
∑
j∈Pr

gj (N, v, P )

for all Pk, Pr ∈ P , symmetric unions in (N, v, P ).

Given the properties of efficiency, additivity, symmetry inside unions and sym-
metry among unions one can expect to extend the Γ value to cooperative games
with a coalition structure and to characterize the new value using a property for
necessary players that somewhat adapts the necessary players get the 0-normalized
per capita mean property. First at all, let us see how to extend the γ value, since
the Γ value depends on it.

Definition 5.3. The γC value for cooperative games with a coalition structure is
given for every (N, v, P ) ∈ GcsN and every i ∈ Pk by:

γCi (N, v, P ) =
1

2m−1

1

2pk−1

 ∑
R⊆M\k

∑
T⊂Pk,i∈T

v(
⋃
r∈R

Pr ∪ T )

t

−
∑

R⊆M\k

∑
T⊂Pk,i/∈T,T 6=∅

v(
⋃
r∈R

Pr ∪ T )

pk − t


+

1

2m−1

1

pk

 ∑
R⊂M,k∈R

v(
⋃
r∈R

Pr)

r
−

∑
R⊆M\k

v(
⋃
r∈R

Pr)

m− r

+
v(N)

mpk
.

(5.9)

Let us see that γC is a reasonable extension of γ. To check it, we can see that
γC is a coalitional value of γ, that is γC(N, v, Pn) = γ(N, v) for all (N, v, Pn) ∈ GcsN
where Pn = {{1}, ..., {n}}. In fact

γCi (N, v, Pn) =
1

2m−1

 ∑
R⊂M,k∈R

v(
⋃
r∈R

Pr)

r
−

∑
R⊆M\k

v(
⋃
r∈R

Pr)

m− r

+
v(N)

mpk

=
1

2n−1

 ∑
S⊂N,i∈S

v(S)

s
−

∑
S⊆N\{i}

v(S)

n− s

+
v(N)

n
= γi (N, v) .
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The next lemma proves that γC satisfies an interesting property for cooperative
games with a coalition structure.

Lemma 5.1. The γC value satisfies the quotient game property, i.e., that∑
i∈Pk

γCi (N, v, P ) = γCk
(
M, vP , Pm

)
for all Pk ∈ P , where vP (R) = v(∪r∈RPr) for allR ⊆M , and Pm = {{1} , . . . , {m}}.

Proof. Take a cooperative game with a coalition structure (N, v, P ) and Pk ∈ P .
Then∑
i∈Pk

γCi (N, v, P ) =

1

2m−1

1

2pk−1

∑
i∈Pk

 ∑
R⊆M\k

∑
T⊂Pk
i∈T

v(
⋃
r∈R

Pr ∪ T )

t
−

∑
R⊆M\k

∑
T⊂Pk,i/∈T,T 6=∅

v(
⋃
r∈R

Pr ∪ T )

pk − t


+

1

2m−1

1

pk

∑
i∈Pk

 ∑
R⊂M,k∈R

v(
⋃
r∈R

Pr)

r
−

∑
R⊆M\k

v(
⋃
r∈R

Pr)

m− r

+
∑
i∈Pk

v(N)

mpk
=

1

2m−1

1

2pk−1

 ∑
R⊆M\k

∑
T⊂Pk

tv(
⋃
r∈R

Pr ∪ T )

t
−

∑
R⊆M\k

∑
T⊂Pk

(pk − t)v(
⋃
r∈R

Pr ∪ T )

pk − t


+

1

2m−1

 ∑
R⊂M,k∈R

v(
⋃
r∈R

Pr)

r
−

∑
R⊆M\k

v(
⋃
r∈R

Pr)

m− r

+
v(N)

m
=

1

2m−1

 ∑
R⊂M,k∈R

v(
⋃
r∈R

Pr)

r
−

∑
R⊆M\k

v(
⋃
r∈R

Pr)

m− r

+
v(N)

m
= γCk

(
M,vP , Pm

)
.

The quotient game is an interesting property because it guarantees that the
total worth obtained by the players of a union coincides with the worth obtained
by the union in the game played by the unions with the trivial coalition structure.
Note that the Banzhaf-Owen value does not satisfy this property; however, Alonso-
Meijide and Fiestras-Janeiro (2002) introduces the so-called symmetric coalitional
Banzhaf value, which is an extension of the Banzhaf value to cooperative games
with a coalition structure that satisfies the quotient game property.

In order to characterize γC , we introduce a new property for necessary players.
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Necessary Players Get the Per Capita Coalitional Mean. A coalitional
value g satisfies the property of necessary players get the per capita coalitional
mean if for each coalitional game (N, v, P ) with v(N) = 0 and for each necessary
player i ∈ Pk in (N, v), it holds that

gi (N, v, P ) =
1

2m−1

 1

2pk−1

∑
R⊆M\k

∑
T⊂Pk,i∈T

v(
⋃
r∈R

Pr ∪ T )

t
+

1

pk

∑
R⊆M,k∈R

v(
⋃
r∈R

Pr)

r


where t = |T | and r = |R| for all T ⊂ Pk and R ⊆M .

Theorem 5.7. The γC value is the unique value for cooperative games with a
coalition structure that satisfies the properties of additivity, necessary players get
the per capita coalitional mean, efficiency, symmetry inside unions and symmetry
among unions.

Proof. (Existence). It is clear that γC satisfies additivity. To check that it sat-
isfies the necessary players get the per capita coalitional mean property take a
cooperative game with a coalition structure (N, v, P ) with v(N) = 0 and such
that i ∈ Pk ⊆ N is a necessary player in (N, v). Then expression (5.9) reduces to

γCi (N, v, P ) =

1

2m−1

1

2pk−1

 ∑
R⊆M\k

∑
T⊂Pk,i∈T

v(
⋃
r∈R

Pr ∪ T )

t

+
1

2m−1

1

pk

 ∑
R⊂M,k∈R

v(
⋃
r∈R

Pr)

r

 =

1

2m−1

1

2pk−1

∑
R⊆M\k

∑
T⊂Pk

v(
⋃
r∈R

Pr ∪ T )

t
+

1

2m−1

1

pk

∑
R⊆M

v(
⋃
r∈R

Pr)

r
.

To check that γC satisfies symmetry inside unions take a cooperative game with
a coalition structure (N, v, P ) and a pair of symmetric players in (N, v) i, j ∈ Pk
with Pk ∈ P . Notice that, for a fixed R ⊆M\k,

∑
T⊂Pk,i∈T

v(
⋃
r∈R

Pr ∪ T )

t
−

∑
T⊂Pk,i/∈T,T 6=∅

v(
⋃
r∈R

Pr ∪ T )

pk − t
=

∑
T⊆Pk\{i,j}

v(
⋃
r∈R

Pr ∪ T ∪ {i})

t+ 1
+

∑
T⊂Pk\{i,j}

v(
⋃
r∈R

Pr ∪ T ∪ {i, j})

t+ 2

−
∑

T⊆Pk\{i,j},T 6=∅

v(
⋃
r∈R

Pr ∪ T )

pk − t
−

∑
T⊆Pk\{i,j}

v(
⋃
r∈R

Pr ∪ T ∪ {j})

pk − t− 1
.
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Now, since i, j are symmetric in (N, v), the last expression is equal to

∑
T⊆Pk\{i,j}

v(
⋃
r∈R

Pr ∪ T ∪ {j})

t+ 1
+

∑
T⊂Pk\{i,j}

v(
⋃
r∈R

Pr ∪ T ∪ {i, j})

t+ 2

−
∑

T⊆Pk\{i,j},T 6=∅

v(
⋃
r∈R

Pr ∪ T )

pk − t
−

∑
T⊆Pk\{i,j}

v(
⋃
r∈R

Pr ∪ T ∪ {i})

pk − t− 1

and then it is clear that γCi (N, v, P ) = γCj (N, v, P ).

Since γC satisfies the quotient game property and it is a coalitional value of γ,
then ∑

i∈Pk

γCi (N, v, P ) = γCk
(
M, vP , Pm

)
= γk(M,vP ).

Now, the efficiency and the symmetry properties of γ imply that γC satisfies sym-
metry among unions and efficiency.

(Uniqueness). Take g, a value for cooperative games with a coalition struc-
ture that satisfies efficiency, symmetry inside unions, symmetry among unions,
necessary players get the per capita coalitional mean and additivity, and take
a cooperative game with a coalition structure (N, v, P ). We prove now that
g(N, v, P ) = γC(N, v, P ). Indeed, consider the basis of the vector space of charac-
teristic functions of cooperative games with set of players N given by: {eS}S∈2N\∅
(see expression (5.1)). Observe that v can be written in a unique way as a linear
combination of the elements of the basis: v =

∑
S∈2N\∅ v(S)eS . Since g satisfies

additivity,

g(N, v, P ) =
∑

S∈2N\∅

g(N, v(S)eS , P ).

Notice that efficiency, symmetry inside unions, symmetry among unions, and ne-
cessary players get the per capita coalitional mean characterize a unique value
in the class of games {(N, v(S)eS , P ) | S ⊂ N,S 6= ∅}. Besides, efficiency, sym-
metry inside unions and symmetry among unions, characterize a unique value for
(N, v(N)eN , P ). Hence g(N, v, P ) = γC(N, v, P ).

Now, in an analogous way as we obtain Γ from γ, we introduce the following
value.

Definition 5.4. The ΓC value for cooperative games with a coalition structure is
given for every (N, v, P ) ∈ GcsN and every i ∈ Pk by:

ΓCi (N, v, P ) = v({i}) +
v(Pk)−

∑
j∈Pk

v({j})
pk

+ γCi (N, v0′ , P ), (5.10)
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where v0′(S) = v(S)−
∑

r∈R v(Pr)−
∑

j∈S\(∪r∈RPr) v({j}) and R = {r ∈M | Pr ⊆
S} for all S ⊆ N .

As for γC , we check that ΓC is a coalitional value of Γ. Take the cooperative
game with a coalition structure (N, v, Pn). Then

ΓCi (N, v, Pn) =

v({i}) +
v(Pk)−

∑
j∈Pk

v({j})
pk

+
1

2m−1

 ∑
R⊂M,k∈R

v0′(
⋃
r∈R

Pr)

r
−

∑
R⊆M\k

v0′(
⋃
r∈R

Pr)

m− r

+
v0′(N)

mpk
=

v({i}) +
1

2n−1

 ∑
S⊂N,i∈S

v0(S)

s
−

∑
S⊆N\{i}

v0(S)

n− s

+
v0(N)

n
=

Γi (N, v) .

Now we provide an axiomatic characterization of ΓC . We start with a lemma
concerning the quotient game property.

Lemma 5.2. The ΓC value satisfies the quotient game property, i.e., that∑
i∈Pk

ΓCi (N, v, P ) = ΓCk
(
M,vP , Pm

)
for all Pk ∈ P , where vP (R) = v(∪r∈RPr) for allR ⊆M , and Pm = {{1} , . . . , {m}}.

Proof. Take a cooperative game with a coalition structure (N, v, P ) and i ∈ N
such that Pk ∈ P . Then

∑
i∈Pk

ΓCi (N, v, P ) =

v(Pk) +
1

2m−1

1

2pk−1

∑
i∈Pk

 ∑
R⊆M\k

∑
T⊂Pk,i∈T

v0′(
⋃
r∈R

Pr ∪ T )

t

−
∑

R⊆M\k

∑
T⊂Pk,i/∈T,T 6=∅

v0′(
⋃
r∈R

Pr ∪ T )

pk − t

+

1

2m−1

1

pk

∑
i∈Pk

 ∑
R⊂M,k∈R

v0′(
⋃
r∈R

Pr)

r
−

∑
R⊆M\k

v0′(
⋃
r∈R

Pr)

m− r

+
∑
i∈Pk

v0′(N)

mpk
=
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1

2m−1

1

2pk−1

 ∑
R⊆M\k

∑
T⊂Pk

tv0′(
⋃
r∈R

Pr ∪ T )

t
−

∑
R⊆M\k

∑
T⊂Pk

(pk − t)v0′(
⋃
r∈R

Pr ∪ T )

pk − t

+

1

2m−1

 ∑
R⊂M,k∈R

v0′(
⋃
r∈R

Pr)

r
−

∑
R⊆M\k

v0′(
⋃
r∈R

Pr)

m− r

+
v0′(N)

m
+ v(Pk) =

v(Pk) +
1

2m−1

 ∑
R⊂M,k∈R

v0′(
⋃
r∈R

Pr)

r
−

∑
R⊆M\k

v0′(
⋃
r∈R

Pr)

m− r

+
v0′(N)

m
=

ΓCk
(
M,vP , Pm

)
.

In order to characterize ΓC , we introduce a new property for necessary players.

Necessary Players Get the 0-Normalized Per Capita Coalitional Mean. A
coalitional value g satisfies the property of necessary players get the 0-normalized
per capita coalitional mean if for each coalitional game (N, v, P ) with v(N) =∑

r∈M v(Pr) and for each necessary player i ∈ Pk in (N, v), it holds that

gi (N, v, P ) = v({i}) +
v(Pk)−

∑
j∈Pk

v({j})
pk

+

1

2m−1

1

2pk−1

∑
R⊆M\k

∑
T⊂Pk

v0′(
⋃
r∈R

Pr ∪ T )

t
+

1

2m−1

1

pk

∑
R⊆M

v0′(
⋃
r∈R

Pr)

r
,

where t = |T | and r = |R| for all T ⊂ Pk and R ⊆M .

Theorem 5.8. ΓC is the unique coalitional value for cooperative games with a
coalition structure that satisfies the properties of additivity, necessary players get
the 0-normalized per capita coalitional mean, efficiency, symmetry inside unions
and symmetry among unions.

Proof. (Existence). Since γC satisfies additivity and symmetry inside unions, it is
clear that ΓC also satisfies those properties. To check that it fulfils the necessary
players get the 0-normalized per capita coalitional mean take a cooperative game
with a coalition structure (N, v, P ) with v(N) =

∑
r∈M v(Pr) and such that i ∈ N ,

with i ∈ Pk ∈ P , is a necessary player in (N, v). Then expression (5.10) reduces
to

ΓCi (N, v, P ) = v({i}) +
v(Pk)−

∑
j∈Pk

v({j})
pk

+
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1

2m−1

1

2pk−1

 ∑
R⊆M\k

∑
T⊂Pk

v0′(
⋃
r∈R

Pr ∪ T )

t

+
1

2m−1

1

pk

∑
R⊂M

v0′(
⋃
r∈R

Pr)

r

 .

Since this solution satisfies the quotient game property and it is a coalitional
value of Γ, for a cooperative game with a coalition structure (N, v, P ) and Pk ∈ P
it holds that ∑

i∈Pk

ΓCi (N, v, P ) = ΓCk
(
M,vP , Pm

)
= Γk(M,vP ).

Then it is easy to check that ΓC satisfies symmetry among unions and efficiency
taking into account that Γ satisfies efficiency and symmetry.

(Uniqueness). Take g, a value for cooperative games with a coalition structure
that satisfies efficiency, symmetry, necessary players get the 0-normalized per cap-
ita coalitional mean and additivity and take a cooperative game with a coalition
structure (N, v, P ). We prove now that g(N, v, P ) = ΓC(N, v, P ). Indeed, consider
the basis of the vector space of characteristic functions of cooperative games with
set of players N given by:

{ePr + eN | r ∈M} ∪ {eS | S ∈ 2N , S 6= Pr, r ∈M}.

Observe that v can be written in a unique way as a linear combination of the
elements of this basis. Since g satisfies additivity and, moreover, the properties
of efficiency, symmetry and necessary players get the 0-normalized per capita co-
alitional mean characterize a unique value in the games of the basis, the proof is
concluded.

5.4 Concluding Remarks

Notice that G, γ and Γ, the three values introduced in Section 5.2, satisfy the
properties of additivity, efficiency and symmetry and then they can be written
using the formula provided in Ruiz et al. (1998). Moreover, it is clear that G
and γ satisfy the property of coalitional monotonicity dealt with in Wang et al.
(2019) and thus, in view of Theorem 3.2 in Wang et al. (2019), they belong to the
family of ideal values. Moreover, it is not difficult to prove that Γ also satisfies
the property of coalitional monotonicity and then it is also an ideal value. We
provide next such a proof; to start with, we remember the property of coalitional
monotonicity.

Coalitional Monotonicity. A value for cooperative games f satisfies the prop-
erty of coalitional monotonicity if for each pair of cooperative games (N, v) and
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(N,w) fulfilling that there exists T ⊆ N with v(T ) > w(T ) and v(S) = w(S) for
all S ⊆ N , S 6= T , it holds that

fi(N, v) ≥ fi(N,w)

for all i ∈ T .

In view of expressions (5.4) and (5.5), it is clear that G and γ satisfy the property
of coalitional monotonicity. With respect to Γ notice that, in view of expressions
(5.5) and (5.6), for every TU-game (N, u) and for every i ∈ N , Γi(N, u) can be
written as:

Γi(N, u) =
1

2n−1

∑
S⊂N,i∈S

1

s

u(S)−
∑
j∈S

u(j)


− 1

2n−1

∑
S⊂N,i 6∈S

1

n− s

u(S)−
∑
j∈S

u(j)

 (5.11)

+
1

n

u(N)−
∑
j∈N

u(j)

+ u(i).

Take now (N, v), (N,w) and T ⊆ N as in the statement of coalitional monotonicity.
Using (5.11) it is clear that if T has two or more elements, then Γi(N, v) ≥ Γi(N,w)
for all i ∈ T . Assume now that T = {i} (i ∈ N). According to (5.6), the coefficients
of v(i) and w(i) in Γi(N, v) and Γi(N,w) are identical and given by:

− 1

2n−1

∑
S⊂N,i∈S,S 6=i

1

s
− 1

n
+ 1

= − 1

2n−1

n−1∑
s=2

1

s

(
n− 1
s− 1

)
− 1

n
+ 1

= − 1

2n−1

n−1∑
s=2

1

n

(
n
s

)
− 1

n
+ 1

= − 1

2n−1

1

n
(2n − 1− n− 1)− 1

n
+ 1 =

n− 3

n
+

2 + n

2n−1n
.

It is easy to check that n−3
n + 2+n

2n−1n
> 0 for all n ≥ 1, which implies that Γi(N, v) >

Γi(N,w) and completes the proof.

We finish this paper with a remark on the relation between our new values and
the equal division and the equal surplus division values, that we denote by ED
and ESD (see, for instance Alonso-Meijide et al., 2020). It is clear that, for every
(N, v) ∈ GN and every i ∈ N ,
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γi (N, v) = EDi(N, v) +
1

2n−1

 ∑
S⊂N,i∈S

v(S)

s
−

∑
S⊂N,i 6∈S

v(S)

n− s

 ,

Γi (N, v) = ESDi(N, v) +
1

2n−1

 ∑
S⊂N,i∈S

v0(S)

s
−

∑
S⊂N,i6∈S

v0(S)

n− s

 .

Now, if EDU and ESD2U are the extensions of ED and ESD for cooperative
games with a coalition structure introduced in Alonso-Meijide et al. (2020), then
for every (N, v, P ) ∈ GcsN and every i ∈ N it holds that

γCi (N, v, P ) = EDU
i (N, v, P )+

1
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+

1
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1

pk
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Pr)

r
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∑
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⋃
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Pr)

m− r

 ,

ΓCi (N, v, P ) = ESD2Ui (N, v, P )+

1

2m−1

1
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+
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 .
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Chapter 6

A two-stage heuristic algorithm
for a class of
multi-compartment vehicle
routing problems with
stochastic demands

JC Gonçalves-Dosantos, BV Casas-Méndez

Preprint

6.1 Introduction

The vehicle routing problems (VRPs) contemplate the design of a set of min-
imum cost routes for a fleet of vehicles to serve the demand of a group of custom-
ers. Due to this more basic problem, other more complex problems arise, adding
different types of restrictions, in such a way as to adapt as much as possible
to reality. Among them, we find the multi-compartment vehicle routing prob-
lems (MC-VRPs). This kind of problem shares the same objective as VRPs, but
there are different incompatible products that must be transported in independent
vehicle compartments.

However, many of these problems, even given an imposing amount of restric-
tions, do not take into account an important aspect, since they do not consider the
fact that the parameters that constitute the problem in real life are random. When
any of the model parameters is random, we are faced with stochastic vehicle rout-
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ing problems (SVRPs). In contrast to deterministic models, these have a rather
dispersed and unorganized literature.

From existing works in the literature, one of the most studied problems is when
we consider the demands as random variables. These are called vehicle routing
problems with stochastic demands (VRPSD). As in the deterministic case, we want
to determine a fixed set of routes of minimum total distance, which corresponds
to the distance traveled corresponding to the fixed set of routes plus the expected
value of the extra distance (we call it expected distance) that could be required
by a particular realization of the random variables. These extra distances are due
to the fact that the demand on the routes may occasionally exceed the capacity of
the vehicle, since when demand is random this is known gradually as the vehicle
completes its route, forcing it to return to the depot before continuing the route.

Figure 6.1: Area of influence of an agrarian cooperative in Spain.

This work combines the two models mentioned above, the multi-compartment
vehicle routing problems and the vehicle routing problems with stochastic de-
mands. We deal with that we call multi-compartment vehicle routing problem
with stochastic demands (MC-VRPSD). There are not many works in the literat-
ure that analyze this double problem. In addition, we incorporate the restriction
that in the same compartment we can not mix different products or products de-
manded by different customers, that there may be urgent orders (this is a kind of
the so-called time window restriction), and that there may be problems of access-
ibility of the trucks to certain customers. All these ingredients make our model
novel, as far as we know.

For the resolution of the problem, we designed a constructive algorithm ex-
tending the known Clarke and Wright algorithm, which provides an initial solution
to the problem and that takes into account the restriction that prevents mixing
products in the same hopper of a truck and the urgencies of the orders, when the
saving associated with the insertion of a new customer in a route is defined. In
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addition, taking into account the stochastic nature of the problem and the pos-
sibility of large demands in relation to the capacity of the hoppers, we will allow
that the demand of a customer can be divided and served in different hoppers of
the same truck or of different trucks. The final solution is an improvement of this,
obtained through the tabu search philosophy. It is also interesting to note that the
algorithms designed pursue a double objective of maximizing the transported load
along with a minimization of transport costs. We test the algorithm with real life
data and we also created 14 testcases on which a computational study is carried
out.

The motivation of the work is a problem taken from the real life. Certain
types of agricultural cooperatives produce different types of food for farm animals
that are distributed to a large number of farmers. Many times, the costumers
are scattered over a wide area. Traditionally, they order different types of feed,
and the cooperative has a specific delivery time depending on the order urgency.
If the order is urgent this must be delivered in one day, but delivery costs are
higher. This procedure can produce saturations in the system and it is not the
most adequate for an efficient design of the routes.

We consider a cooperative in Galicia, a region of the northwest of Spain, where
four types of feed are produced. In this cooperative, there are more than 1500
customers and each of them places at most two orders per month, and usually only
one kind of feed. This cooperative has a fleet of different trucks. Each of these
has several hoppers, compartments, with different capacities, and each hopper can
only transport one type of feed. They are also restricted to a limited number of
distance traveled per day and load. The truck’s driver is paid for the distance
traveled (which also can be expressed in terms of the time needed to travel it) and
the cargo transported. For last, access to each farm is restricted to only a few
vehicles. Figure 6.1 presents the area of influence of an agrarian cooperative in
Spain.

The goal for this work is to provide the company with an anticipation tool,
that is to say, a method to design their routes of future deliveries, which can im-
prove the efficiency of distribution, reduce the associated costs and above all avoid
saturations of the system. Knowing the number of days since the last delivery and
the estimated daily consumption of a farm, we can know how urgently it needs to
be visited. In addition, by knowing the past orders we can estimate a distribution
for the customer’s demand. Moreover, technological advances allow to know the
inventory levels of the members of the cooperative. With this information, the
company can make the selection of customers to be served every day according
to the available fleet and they need a tool that is responsible for planning the
routes of the vehicles so that they generate the minimum cost of transport. In
order to address this problem in a general way, our model will consider a hetero-
geneous vehicle fleet both in capacity, as well as in the number and capacity of its
compartments.
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The paper is structured as follows. Section 2 deals with an overview about
related problems of vehicle routes. Sections 3 and 4 present the methodology ad-
opted in the paper and the mathematical formulation of the problem, respectively.
In section 5 the algorithms designed to solve the problem are shown, which are
illustrated in section 6 through examples taken from real life. Section 7 presents
a computational study and section 8 summarizes the conclusions of the paper.
Finally, the references that have been handled are presented.

6.2 Literature review

Next, we made a broad overview of papers related to the problem of our in-
terest, focusing especially on problems of compartmentalized vehicle routes.

Dantzig and Ramser (1959), under the name “The truck dispatching problem”,
propose several problems with a common objective, to design optimal routes for
petrol delivery trucks between a terminal and a large number of stations. We can
see the different variants of VRPs and solutions methods in Cordeau et al. (2007),
Laporte (2009), and Pollaris et al. (2015) surveys.

Gendreau et al. (1996), Berhan et al. (2014), Dror (2016), and Oyola et
al. (2016) present surveys on SVRPs variants and solution methods. From the
point of view of the applications, Dror et al. (1985) consider the delivery of home
heating oil where daily customer consumption is also random. Bertsimas and
Simchi−Levi (1996) discuss many other applications like the distribution of beer,
gasoline or pharmaceuticals.

A special case of VRPs is one in which the vehicles are divided into multi-
compartments (MC-VRP). Brown and Graves (1981) and Brown et al. (1987) are
considered seminal jobs about this type of problem. They consider separately the
design of the routes and the allocation of products to compartments and make
use of a collection of traveling salesman problems. van der Bruggen et al. (1995)
is another of the first articles on MC-VRPs. In it, a problem of redistribution of
products in a large oil company is modeled and a heuristic algorithm is proposed
for its resolution. This algorithm applied to company data generates cost savings
with respect to the company’s starting distribution.

Chajakis and Guignard (2003) propose a heuristic algorithm based on Lag-
range relaxation for the supply of so-called convenience stores. Avella et al.
(2004) propose a formulation of set partitioning. Based on it, they consider an
exact branch-and-price algorithm and, finally, they make use of a packing/routing
heuristic algorithm for large problems. El Fallahi et al. (2008) compared a con-
structed algorithm, a memetic algorithm and a tabu search, when the assignment
of product types to compartments is fixed. They conclude that the tabu search
provides slightly better results although it requires more computing time. Oppen
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and L∅kketangen (2008) propose a tabu search algorithm for a problem dealing
with transportation of animals, multi-compartment vehicles and inventory con-
straints.

Caramia and Guerriero (2010) investigate a multi-compartment vehicle routing
problem where at most one type of product can be assigned to a compartment and
the aditional constraint that some farms are small and inaccesible by large vehicles.
A model that encompasses the whole problem is not provided. Instead, a heuristic
in two stages is used. The first is to minimize the number of vehicles and the
assignment of customers to vehicles. In the second part the cost of the routes is
minimized. The restriction of inaccessibility in this case, is handled assuming the
existence of vehicles formed by a truck and a trailer, so that some farms can not
be visited by the trailer in which case they are visited only by the truck.

Muyldermans and Pang (2010) get a feasible initial solution built with Clarke
and Wright’s savings algorithm. Next, they perform a local search by means of
movements taken from the literature and improve the quality of the solution ob-
tained by means of a meta-heuristic of the type guided local search. They perform
a sensitivity analysis on certain parameters and work with new instances and oth-
ers taken from the literature. Derigs et al. (2011) consider a model involving a set
of vehicles all of them with the same capacity and the same number of compart-
ments, with the same capacity. They introduce a benchmark suite and a solver
suite of heuristic components which covers a broad range of alternative approaches
for construction, local search, large neighbourhood search and metaheuristics, with
the aim of identifying effective algorithmic setups for achieving high solution qual-
ity. They say that “the following extensions present interesting avenues for further
studies: optimized splitting of an order to allow delivering one order in several com-
partments and considering vehicles with different compartment setups (number of
compartments and capacities of compartment) in one model.”

Another recent paper is Coelho and Laporte (2015) that define and compare
four categories of the multi-compartment fuel delivery problem that can involve
both routing and inventory costs. They propose two formulations for each case
and describe a branch-and-cut algorithm that solves single period and multi-period
cases, which contain up to 50 and 20 customers, respectively. Archetti et al. (2016)
study the problem of the delivery of various products and compare transport costs
if vehicles are used for a single commodity or for more than one. Silvestrin and
Ritt (2017) present a tabu search to solve an MC-VRP. Henke et al. (2018) con-
sider a variant of the MC-VRP that occurs in the context of the recycling of glass
waste. It is assumed that for the collection of the contents of glass containers, a
homogeneous vehicle fleet is available. Individually for each vehicle, the capacity
can be discretely separated in a limited number of compartments to which differ-
ent types of glass waste are assigned. The objective of the problem is to minimize
the total distance that the elimination vehicles must travel. To solve this problem
optimally, they develop and implement a branch-and-cut algorithm. Ostermeier



158 Chapter 6. A two-stage heuristic algorithm

and Hübner (2018) consider vehicle slection for an MC-VRP with flexible com-
partments. The objective of the research is to show the benefits of considering
both single-compartments vehicles and multicompartments for distribution fleets,
taking into account the cost incurred by the use of the corresponding types of
vehicles. The problem was solved with large neighborhood search.

According to Mendoza et al. (2010) “In contrast to the VRPSD, research to
the MC-VRPSD is scarce. Tatarakis and Minis (2009) tackled a single-route vari-
ant of the problem in which the sequence of customers (route) is fixed beforehand.
The problem consists of selecting the optimal restocking points along the route.
The authors propose a set of dynamic programming algorithms and solve to op-
timality problems of up to 15 customers. Mendoza et al. (2011) proposed a set of
construction heuristics comprising stochastic versions of the nearest neighbor, best
insertion, and Clarke and Wright (Dror and Trudeau, 1986) heuristics, extended
to the multi-compartment case. The latter proved to be the most competitive
according to extensive computational experiments conducted on different types
of instances. To the best of our knowledge,these are the few attempts made to
solve the MC-VRPSD.” Pandelis et al. (2012) consider the problem of designing
the path of a single compartmentalized vehicle that delivers different demands of
products that are random variables. They use a dynamic programming algorithm
to meet customer demands with the expected total minimum cost. Huang 2015
proposes a mathematical programming model for an MC-SVRP. Two types of cus-
tomers are considered, those who request a certain product or those to whom a
product must be collected. They use two fleets of vehicles and form two sets of
different routes. For the resolution of the model they use a tabu search, which
starts from an initial solution created in a random way. The effectiveness of the
algorithm is tested by means of different benchmarks. Goodson (2015) proposes a
simulated annealing algorithm for an MC-SVRP.

The problems of the routes of the vehicles are of an NP-hard complexity. The
different algorithms that provide an exact solution are interesting to test the model
but, in general, they are useful only when a small number of clients are considered.
Instead of exact solutions, solutions obtained by metaheuristic algorithms com-
bined with heuristics that provide a good initial solution are generally considered.
As we have seen in the previous panoramic, among the metaheuristics, one of the
most used is the tabu algorithm (cf. Glover, 1989, Glover, 1990, and Xia et al.
(2018) among others), which is characterized by its simplicity, speed, accuracy and
robustness. Regarding heuristics, the pioneering works of MC-SVRP have designed
adaptations of the Clarke and Wright (Clarke and Wright, 1964) algorithm.

To finish this review, with respect to the concrete problem of food distribution,
recent works are for example Hsu et al. (2007), wich consider a VRPSD, Ambrosino
and Sciomachen (2007) and Kuznietsov et al. (2016) that study a VRP and Frutos
and Casas-Méndez (to appear) in the context of MC-VRP.
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6.3 Methodological approach

We now explain, in summary form, the methodology followed to address our
problem.

In the first place, we carry out the mathematical formulation of our problem
of vehicle routes, with multi-compartments, stochastic demands and restrictions
on the prohibition of mixing products, urgent customers and accessibility to the
farms. Through this model we make explicit all the ingredients that constitute
the problem, including deterministic and random parameters, decision variables
and the different restrictions. For its resolution, we develop an initial solution by
means of a new adaptation of the Clarke and Wright algorithm and from this we
design a new tabu search algorithm. Note that this methodology is a consequence
of what has been followed in the investigation of problems that can be seen as a
particular case of the problem analyzed here The algorithms are programmed in
the R language. First, we illustrate the model and its solution with a numerical
example and a set of real data. Then, we perform a computational study through
a set of simulated data and a benchmark created for the occasion.

6.4 Stochastic vehicle routing problem for-

mulation

In this section, we are going to present a mathematical programming formula-
tion of the model.

6.4.1 Indexes and sets

The main elements of our formulation are the following.

n,N = Index and set of customers.
N̄ := N ∪ {0} = Set of customers and the cooperative.
t, T = Index and set of trucks.
h,Ht = Index and set of hoppers of truck t ∈ T .
f, F = Index and set of livestock feeds.
r,Rt = Index and set of possible routes of truck t ∈ T

that are considered in the planning.
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6.4.2 Parameters

Ct := {cth}h∈Ht = Vector of capacities of truck t ∈ T , where cth is
the capacity in grams of hopper h ∈ Ht.

O := [On,f ]n∈N,f∈F = Random matrix of orders, where On,f is the random

variable of the order of customer n ∈ N and feed f ∈ F .
D := [dn1,n2 ]n1,n2∈N̄ = Matrix of times in minutes, where dn1,n2 is the time

a truck needs to go from customer or cooperative
n1 ∈ N̄ to customer or cooperative n2 ∈ N̄ .

E := [en1,n2 ]n1,n2∈N̄ = Matrix of distances in kilometers, where en1,n2 is

the distance a truck needs to go from customer or
cooperative n1 ∈ N̄ to customer or cooperative n2 ∈ N̄ .

I := [it,n]t∈T,n∈N = Matrix that describes which customers can be

visited by the truck t ∈ T , such that it,n is equal 1
if the truck t can visit client n ∈ N and 0 otherwise.

lt = Maximum allowable load of the truck t ∈ T .
U := {Un}n∈N = Random urgency vector where Un is the random variable

of the maximum number of days that stockbreeder n ∈ N
can wait to be served.

M = Estimated maximum distance that a truck can cover
in a single day.

σ = Fixed cost of each unloading of a truck.
γ(a) = Variable cost per gram carried and kilometer traveled,

where a is the distance covered.

6.4.3 Decision variables

The variables define the routes followed by the trucks of the fleet and the way
in which their compartments are loaded.

xt,rn1,n2 =


1 if truck t ∈ T , on its route r ∈ Rt, travels from n1 ∈ N̄ to

n2 ∈ N̄ ,
0 otherwise.

yt,rn,f,h = Proportion (∈ [0, 1]) of the hopper h ∈ Ht that is being used to carry feed
f ∈ F by truck t ∈ T on its route r ∈ Rt to serve the customer n ∈ N .

6.4.4 Constraints

The constraints of the mathematical program are classified in five groups.
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1) Constraints describing the routes of trucks.

xt,rn,n = 0 ∀t ∈ T, ∀r ∈ Rt,∀n ∈ N̄ . (6.1)∑
n∈N

xt,r0,n ≤ 1 ∀t ∈ T, ∀r ∈ Rt.

(6.2)

xt,rn1,n2
≤
∑
n∈N

xt,r0,n ∀t ∈ T, ∀r ∈ Rt,∀n1, n2 ∈ N.

(6.3)∑
n∈N̄

xt,rn,n1
≤
∑
n∈N̄

xt,rn1,n ∀t ∈ T, ∀r ∈ Rt, ∀n1 ∈ N̄ .

(6.4)∑
n1,n2∈S

xt,rn1,n2
≤ |S| − 1 ∀t ∈ T, ∀r ∈ Rt, ∀S ⊆ N and |S| > 1.

(6.5)

Constraint (6.1) describes that no truck is allowed to go from a stockbreeder
and back to the same stockbreeder. (6.2) indicates that each route of each truck
departs from the cooperative headquarters at most once. (6.3) indicates that each
planned route or each truck has to start from the cooperative. (6.4) is a flow
conservation constraint, i.e., on each route if a truck arrives at a costumer it also
has to leave from the same costumer. Finally, (6.5) eliminates possible subtours
on each route of each truck.

2) Constraints that link the routes of trucks and their loading.

1

|Ht|
∑
f∈F

∑
h∈Ht

yt,rn1,f,h
≤
∑
n∈N̄

xt,rn,n1
∀t ∈ T, ∀r ∈ Rt, ∀n1 ∈ N.

(6.6)∑
n∈N̄

xt,rn,n1
≤
∑
f∈F

∑
h∈Ht

M ′yt,rn1,f,h
∀t ∈ T, ∀r ∈ Rt, ∀n1 ∈ N.

(6.7)

Constraint (6.6) describes that if a truck is carrying feed for a stockbreeder, we
ensure that the truck visits him. (6.7) indicates that if a truck visits a costumer
on a route, it is indeed carrying feed for him. Here, M ′ denotes a sufficiently large
constant. In general, it will be enough to take M ′ = cth where h ∈ Ht.

3) Constraints modelling random urgent stockbreeder orders.

P

∑
t∈T

∑
r∈Rt

∑
h∈Ht

cthy
t,r
n,f,h ≤ On,f

 ≤ α ∀f ∈ F,∀n ∈ N, if P [Un = 0] ≥ β.

(6.8)
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P

∑
t∈T

∑
r∈Rt

∑
h∈Ht

cthy
t,r
n,f,h ≤ On,f

 ≥ 1− α ∀f ∈ F,∀n ∈ N, if P [Un = 0] ≤ β.

(6.9)

Constraint (6.8) indicates that if a client’s order is urgent with high probab-
ility, then it is unlikely that the client’s demand will not be addressed. On the
contrary, (6.9) indicates that when an order is unlikely to be urgent, it is more
likely that the full order will not be served. In both constraints, we take β = 0.95.
In the first restriction, we take α = 0.05 while in the second we will take α equal
to 0.2 or 0.3.

4) Constraints modelling accessibility, the capacities of trucks and limits on
minutes and kilometers in the working day (capacity constraints).∑
n∈N̄

xt,rn,n1
≤ it,n1 ∀t ∈ T, ∀r ∈ Rt,∀n1 ∈ N.

(6.10)∑
f∈F

yt,rn1,f,h
≤ it,n1 ∀t ∈ T, ∀r ∈ Rt,∀h ∈ Ht,∀n1 ∈ N.

(6.11)∑
r∈Rt

∑
n1∈N̄

∑
n2∈N̄

(dn1,n2 + 2d0,n2p
t,r
n2,f,h

)xt,rn1,n2
≤ 540 ∀t ∈ T, ∀h ∈ Ht,∀f ∈ F

(6.12)
where:

pt,rn2,f,h
:=

{
0 if P [Un2 = 0] ≤ β or n2 = 0,

P
[
cthy

t,r
n2,f,h

≤ On2,f

]
otherwise.∑

r∈Rt

∑
n1∈N̄

∑
n2∈N̄

(en1,n2 + 2e0,n2p
t,r
n2,f,h

)xt,rn1,n2
≤M ∀t ∈ T, ∀h ∈ Ht, ∀f ∈ F.

(6.13)∑
n∈N

∑
f∈F

∑
h∈Ht

cthy
t,r
n,f,h ≤ lt ∀t ∈ T, ∀r ∈ Rt.

(6.14)

(6.10) and (6.11) describe that impossible visits are not allowed. In (6.12), it
is established that each route of each truck lasts a maximum of 540 minutes. Note
that we do not consider unloading time. To properly formulate the restriction, we
need to sum the expected time for a so-called failed route. This happens when
a truck visits a costumer with urgent order and the truck does not carry enough
cargo to meet the full demand. (6.13) is similar to (6.12), but instead minutes we
use kilometers and a maximum of M per route. Finally, (6.14) indicates that a
truck can not transport more than its authorized legal cargo.
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5) Constraints modelling technical restrictions on the loading procedure of the
trucks.

yt,rn1,f1,h
+ yt,rn2,f2,h

≤ max{yt,rn1,f1,h
, yt,rn2,f2,h

} ∀t ∈ T, ∀r ∈ Rt,∀h ∈ Ht,

∀n1, n2 ∈ N,n1 6= n2, ∀f1, f2 ∈ F, f1 6= f2.
(6.15)

yt,rn1,f,h
+ yt,rn2,f,h

≤ max{yt,rn1,f,h
, yt,rn2,f,h

} ∀t ∈ T, ∀r ∈ Rt,∀h ∈ Ht,

∀n1, n2 ∈ N,n1 6= n2,∀f ∈ F.
(6.16)

yt,rn,f1,h + yt,rn,f2,h ≤ max{yt,rn,f1,h, y
t,r
n,f2,h

} ∀t ∈ T, ∀r ∈ Rt,∀h ∈ Ht,

∀n ∈ N, ∀f1, f2 ∈ F, f1 6= f2.
(6.17)

(6.15) and (6.16) describe that each hopper of each truck cannot be used to
serve more than one stockbreeder. (6.17) indicates that each hopper of each truck
cannot be loaded with more than one type of feed. 1

6.4.5 Objective function

In the main objective function, we maximize the amount of feed delivered in
the current working day. In a second auxiliary objective function, we minimize
the total transportation cost assumed by the cooperative.

max
∑
t∈T

∑
r∈Rt

∑
h∈Ht

∑
f∈F

∑
n∈N

cthy
t,r
n,f,h,

min
∑
t∈T

∑
r∈Rt

σ
∑

n1,n2∈N̄

xt,rn1,n2
+
∑
t∈T

∑
r∈Rt

γ

∑
n1∈N̄

∑
n2∈N̄

(en1,n2 + 2e0,n2p
t,r
n2,f,h

)xt,rn1,n2

∑
n1∈N̄

∑
n2∈N̄

(en1,n2 + 2e0,n2p
t,r
n2,f,h

)xt,rn1,n2

 ∑
h∈Ht

∑
f∈F

∑
n∈N

cthy
t,r
n,f,h.

(6.18)

6.5 Heuristic algorithms

Constructive algorithms and tabu search algorithms have shown to be effective
tools for solving many NP-hard combinatorial optimization problems. Construct-
ive algorithms provide good initial solutions and tabu search algorithms are able

1Note that these restrictions are non-linear, however it would also be possible to express
them linearly by incorporating new variables into the model.



164 Chapter 6. A two-stage heuristic algorithm

to improve an initial solution and they require an initial solution, a neighborhood
structure, and proceed by transiting from one solution to another using moves
across a number of iterations trying to avoid local optima and revisit already ex-
plored solutions. In this section we provide our proposals of these two kinds of
algorithms to solve the stochastic vehicle routing problem presentd in this paper.

6.5.1 Constructive heuristic

In this section, we present the constructive heuristic algorithm with which we
will obtain an initial solution. It consists of a generalization of the Clarke and
Wright algorithm (Clarke and Wright, 1964 and Dror and Trudeau, 1986) that
adapts to the characteristics of our stochastic problem, with compartmentalized
vehicles and restrictions on accessibility, urgency of some orders and mixing of
different products. The general idea is to select a customer and consider the route
that connects the deposit to that customer. In addition, a truck is selected to serve
that customer, a hopper is assigned to it and the hopper must be loaded taking
into account the customer’s demand. Then, customers are inserted into the route,
following the so-called criterion of maximum savings.

Keep in mind that a customer may have a very large demand so that if a single
hopper is assigned it is very likely that if the order is urgent, upon arrival to the
customer it is necessary to return to the warehouse to complete the order. For this
reason, we will consider the so-called partner replicas, which we explain below.
Given a customer n ∈ N , let pn = P[Un = 0] be and qn the quantile of order pn
of the random variable On corresponding to the demand of said customer. Let
c = max{cth : t ∈ T, h ∈ Ht} be the maximum size among the hoppers of all
trucks and rn =

⌈ qn
c

⌉
.2 The client n will be replicated in rn clients with rn ≥ 1

and in such a way that the distance between a replica of n and a replica of another
client n′ will be equal than the distance between n and n′. In addition, we assume
that the distance between two replicas of the same client is equal to 0. On the
other hand, the mean and the standard deviation of the demand of the replica of
a client n will be taken as the mean and the standard deviation, respectively, of
the demand of n divided by rn.

Once the replicas of the clients are constructed by the procedure explained,
the first step of the algorithm is to choose the first customer that forms the route.
To do this, our goal is to minimize the distance expected for customers with large
demands. To this end, for each agent, we consider both the expected distance
traveled to attend it if it is urgent and the smallest hopper available is used and
the expected distance if it is urgent and the largest hopper is used. Finally, we will
choose the client that maximizes the difference between these distances. Formally,
if N∗ is the set formed by the replicas of all the clients, defined as explained at

2dxe denotes the smallest integer greater or equal than x.
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the beginning of this section, and n ∈ N∗, we define:

Dif(n) = 2d0,n

(
max

t∈T,h∈Ht

{P[On > cht ]} − min
t∈T,h∈Ht

{P[On > cht ]}
)
P[Un = 0].

We will select the customer n such that

n ∈ {n∗ ∈ N∗ : Dif(n∗) = max
n′∈N∗

Dif(n′)}.

Once n ∈ N∗ has been selected, in a second step a route is created from the
deposit to the client n and from this it is returned to the deposit. To do this, we
choose the vehicle tn and the hopper in it, hn, more suitable, that is, such that:

P[On > ctnhn ] = min{P[On > cth] : t ∈ T, h ∈ Ht}.

Regarding the filling process, the hopper hn ∈ Htn will be loaded with qn
(quantil of order pn of On, with pn = P[Un = 0]) provided that qn ≤ ctnhn . If

qn > ctnhn the charge will be equal to ctnhn , that is, the hopper will be filled completely.

With this procedure, we take into account the two objectives of our optimiza-
tion problem that are to maximize the amount of feed delivered and to minimize
the total transport cost.

In the third stage, another customer replica is selected from which n is replica.
If there is no such replica, for each n′ ∈ N∗\{n}, we calculate the following amount,
which is the saving obtained if the client n′ is inserted in the currently considered
route:

Shn,tnn,n′ = dn,0 + d0,n′ − dn,n′ + λItn,hnn′ , (6.19)

such that:

Itn,hnn′ = 2d0,n′

 min
t
′∈T\{tn}
h∈H

t
′

{P[On′ > ct
′
h ]} − min

h∈Htn\{hn}
{P[On′ > ctnh ]}

P[Un′ = 0].

(6.20)

Note that in (6.20), we evaluate the difference between the expected distance
that is traveled by serving the client n′ in the largest hopper of a truck other than tn
if it is urgent, and the expected distance when serving it in the largest free hopper
of tn if it is urgent. In (6.19), this amount is weighted by a factor λ ∈ [0,+∞).
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That is to say, when evaluating the saving obtained by inserting a new client in a
route, we consider distances traveled by the truck and expected distances due to
having to return to the warehouse, taking into account the restriction that prevents
mixing products and the urgencies of the orders.

Then, the client that maximizes the saving as defined in (6.19) will be chosen.
Once a new client n′ has been selected by one of the methods explained (that is,
taking another replica of a client or taking the one that maximizes the saving) it
will be inserted in the route to be visited after n. This new customer is served by
assigning the load in a truck hopper following the same procedure as with the first
customer.

To finish this stage, we have to verify that the so-called capacity restrictions
are verified as well as the maximum distance that each vehicle can travel. If
affirmative, the client n′ is definitely added to the truck route tn. In another case,
this stage is restarted eliminating n′ from the set of candidates to be inserted in
said route.

The process of inserting customers on the route is repeated while the truck has
free hoppers. Keep in mind that, in general, to insert a new client once we have
two or more customers per route (and to simplify the process), the savings Shn,tnn′,n
are considered, where n represents the first client currently visited when leaving
the deposit and the savings Shn,tnn,n′ , where n represents the last client currently
visited, before arriving at said deposit. In both cases, n′ represents any client of
N∗ who has not been assigned a route. Finally, once the route of a truck has been
completely designed, the rest will be followed in a similar way.

Schematically, the algorithm proceeds as follows:

1. Make replicas of customers taking into account their demands.

(a) While there are unattended customers:

i. Select the customer n ∈ N∗ who maximize the value Dif(n).

ii. Create the route r := (0, n, 0) for the vehicle tn ∈ T and allocate
the load.

iii. If there are unattended customers:

A. Select a new replica of the same client or the best customer
n′ ∈ N∗ that maximizes Shn,tnn,n′ or Shn,tnn′,n .

B. If capacity and distance constraints are satisfied, insert n′ in
the route and return to (iii).

C. Otherwise, discard n′ and go back to (iii).

D. End (iii) when the vehicle is full or there are no feasible inser-
tions.
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iv. Delete the vehicle tn and the allocated customers. Return to (a).

2. Conclude.

6.5.2 Tabu search

In this section, we propose an adaptation of the tabu search that allows obtain-
ing a better solution than that provided by the constructive algorithm presented
in the previous section.

We know that tabu search (Glover, 1989 and Glover, 1990) is a local search
technique that manages to improve its performance by means of a memory struc-
ture consisting in that once a possible solution is obtained it is not considered
again in the immediate iterations of the algorithm. As a local search technique,
it makes use of a neighborhood structure that allows moving from one solution to
another, until a certain stop rule is verified. There are different variants in the
literature and we have adapted the variant proposed in Osman (1993).

Our tabu search algorithm starts with the selection of 3 parameters σ, k and
m. σ is a number of random selected routes, k the maximum number of possible
exchanges between two routes and m the maximum number of iterations. We also
need an initial solution to our problem, which is obtained with the constructive
algorithm of the previous section.

Note that the neighborhood structure that we are going to use is based on
the so-called k-exchanges. More precisely, consider r1 and r2 two different routes,
assigned to two respective trucks, of the same solution. A k-exchange consists of
transferring at most k clients from r1 to r2 and at most k clients from r2 to r1.
It must be taken into account that the number of clients that each route sends to
the other is not necessarily the same, but both amounts must be less than k. Also
one, and only one, of these routes may not send any clients.

Once the starting solution is selected, it is considered as the current solution
and the algorithm proceeds as follows. In each iteration, σ routes are arbitrarily
chosen in the current solution. A solution neighboring the current solution is
obtained by making a k-interchange on two routes belonging to the σ routes chosen.
All possible solutions neighboring the current one are considered and that they
verify the restrictions of the problem. The one with the shortest total distance is
chosen, which becomes the current solution and it is passed to a new iteration.

At the end of each iteration, information about the exchange made is stored in
the tabu list. In particular, each client that has moved from one route to another
is stored. This client is prevented from moving to another route (the original or
any other route) for 3 iterations.

It must be borne in mind that an iteration can conclude taking as a current
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solution one that does not provide a total distance less than those obtained up to
that moment. This type of exchanges are allowed to avoid local optimum, however,
they can be done, at most, in 3 iterations.

Next, we present the algorithm schematically:

1. Start with an initial solution provided by the constructive algorithm as cur-
rent solution and fixed σ, k and m.

2. iter = 0 and s.iter = 0.

3. While iter < m:

(a) iter = iter + 1.

(b) Select σ random routes of the current solution.

(c) Make all possible k-exchanges.

(d) Choose the feasible k-exchange that minimizes the total distance and
update the current solution.

(e) Add changed customers to the tabu list and if iter ≥ 4 remove the first
entry from the tabu list.

(f) If the new solution does not improve the previous solutions, then
s.iter = s.iter + 1 and if s.iter = 3 then conclude.

4. Conclude.

5. Select the best solution obtained in 3.

6.6 Examples

In this section, we illustrate the performance of our algorithms. To do this, we
first consider a small fictional example and secondly a set of data taken from real
life.

6.6.1 Fictitious example

Let’s consider an example with five customers and a deposit. The distances in
kilometers among the deposit and each customer, as well as among customers can
be seen in the Table 6.1.

The average of orders of the different clients are 3.30, 2.95, 3.00, 3.02, and 2.50
tonnes, respectively. We are going to consider that the orders are random variables
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Stockbreeders

Stockbreeders 0 1 2 3 4 5
0 − 28 69 64 27 17
1 28 − 67 62 20 20
2 69 67 − 7 74 58
3 64 62 7 − 69 53
4 27 20 74 69 − 25
5 17 20 58 53 25 −

Table 6.1: Travelling distances between pairs of stockbreeders and coopera-
tive in the fictitious example.

with normal distribution. We will use different standard deviations to check the
effect on the results. We assume that all the costumers have urgent orders of only
one type of feed, then P (Ui = 0) = 0.95 for each i ∈ {1, 2, 3, 4, 5}.

We take two similar trucks with five hoppers that can contain up to 3, 3.7, 3.8, 3.7
and 3 tonnes of feed, respectively. The trucks cannot carry more than 11.6 tonnes,
and each truck can deliver food to all the stockbreeders.

Constructive heuristic

We present below the results obtained for the constructive heuristic based on
different values of the parameters of the model. In particular, we provide the total
distance of the designed routes, which is the sum of the distance traveled by the
truck when traveling the assigned route plus the expected distance for return to
the deposit of those customers with urgent demands in the case where they are
reached with an insufficient load.

The locally optimal solution that the constructive heuristic provides is, for
a standard deviation equals to 0.1, where there is no necessary to make order
divisions, as follows:

• The truck 1 goes from the deposit to costumer 1, then to 2, and then to
3, and it carries 3.46 tonnes of feed in hopper 4 to customer 1, 3.12 tonnes
of feed in hopper 2 to customer 2 and 3.17 tonnes of feed in hopper 3 to
customer 3.

• The truck 2 goes from the deposit to costumer 5 and then to 4, and it
carries 2.66 tonnes of feed in hopper 2 to costumer 5 and 3.18 tonnes of feed
in hopper 3 to customer 4.
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With this solution, the total distance traveled is 255.5 km. In this case the
solution does not vary although we use different values for the parameter λ that
appears in the saving definition used when designing the algorithm (see (6.19)).

In the following cases it is necessary to replicate customers given the greater
variability in the demand. We will consider two situations, with and without
replicas.

The locally optimal solution that the constructive heuristic provides is, for a
standard deviation equals to 0.5 and λ = 0, without replicas, as follows:

• The truck 1 goes from the deposit to costumer 3, then to 2, and then to
1, and it carries 3.7 tonnes of feed in hopper 2 to 3, 3.77 tonnes of feed in
hopper 3 to 2 and 3.7 tonnes of feed in hopper 4 to 1.

• The truck 2 goes from the deposit to costumer 5 and then to 4, and it carries
3.32 tonnes of feed in hopper 2 to 5 and 3.8 tonnes of feed in hopper 3 to 4.

With this solution, the total distance traveled is 269.07 km.

The locally optimal solution that the constructive heuristic provides is, for a
standard deviation equals to 0.5 and λ = 1, without replicas, as follows:

• The truck 1 goes from the deposit to costumer 3, then to 2, and then to
5, and it carries 3.7 tonnes of feed in hopper 2 to 3, 3.77 tonnes of feed in
hopper 3 to 2 and 3.32 tonnes of feed in hopper 4 to 5.

• The truck 2 goes from the deposit to costumer 4 and then to 1, and it carries
3.7 tonnes of feed in hopper 2 to 4 and 3.8 tonnes of feed in hopper 3 to 1.

The total distance traveled is 253.56 km.

For last, the locally optimal solution that the constructive heuristic provides
is, for a standard deviation equals to 0.5 and any λ, with replicas, as follows:

• The truck 1 goes from the deposit to costumer 3, then to 2, and then to
1, and it carries 1.91 and 1.91 tonnes of feed in hoppers 4 and 2 to 3, 3.77
tonnes of feed in hopper 3 to 2 and 2.06 tonnes of feed in hopper 1 to 1.

• The truck 2 goes from the deposit to costumer 4 then to 1 and 5, and it
carries 1.91 and 1.91 tonnes of feed in hoppers 1 and 4 to customer 4, 2.06
tonnes of feed in hopper 2 to 1 and 3.31 tonnes in hopper 3 to 5.

The total distance traveled is 270.5 km.
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Tabu search

In this section, the results of the tabu search algorithm applied to our so-called
fictitious example are shown. With respect to the parameters of the algorithm, we
take σ = 2, k = 1, and m = 50, because it is a case with few clients and trucks.

If we start from the solution obtained with the constructive heuristic, for the
case in which the standard deviation of the demand variable is 0.1, and we apply
the tabu search algorithm we get:

• The truck 1 goes from the deposit to costumer 1 and then to 4, and it
carries 3.46 tonnes of feed in hopper 2 to customer 1 and 3.18 tonnes of feed
in hopper 4 to customer 4.

• The truck 2 goes from the deposit to costumer 2, then to 3, and then to
5, and it carries 3.12 tonnes of feed in hopper 4 to customer 2, 3.17 tonnes
of feed in hopper 2 to customer 3 and 2.66 tonnes of feed in hopper 5 to
customer 5.

With this solution, the total distance is 241.49 km.

From the solution obtained for a standard deviation of 0.5, without replicas,
the tabu search obtains the following solution:

• The truck 1 goes from the deposit to costumer 1 and then to 4, and it carries
3.8 tonnes of feed in hopper 3 to customer 1 and 3.7 tonnes of feed in hopper
4 to customer 4.

• The truck 2 goes from the deposit to costumer 2, then to 3 and then to 5,
and it carries 3.7 tonnes of feed in hopper 4 to customer 2, 3.8 tonnes of feed
in hopper 3 to customer 3 and 3.32 tonnes of feed in hopper 2 to customer
5.

In this solution, the total distance is 242.57 km.

Finally, in the case where the standard deviation is equal to 0.5 and replications
of the clients are made, the tabu search provides the following solution:

• The truck 1 goes from the deposit to costumer 1 and then to 4, and it carries
2.06 and 2.06 tonnes of feed in hoppers 5 and 1 to costumer 1 and 1.91 and
1.91 tonnes of feed in hoppers 2 and 4 to customer 4.

• The truck 2 goes from the deposit to costumer 2, then to 3 and then to 5,
and it carries 3.77 tonnes of feed in hopper 3 to customer 2, 1.91 and 1.91
tonnes of feed in hoppers 5 and 1 to customer 3 and 3.32 tonnes of feed in
hopper 2 to customer 5.
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In this case, the total distance is 241.50 km.

Deterministic case

Guitián de Frutos and Casas-Méndez (to appear) have solved the deterministic
problem when they use the mean of the random variables as the order of each
customer respectively.

The locally optimal solution is as follows:

• The truck 1 goes from the deposit to costumer 5, then to 3, and then to
customer 2, where it carries 2.50 tonnes of feed in hopper 2 to 5, 1.55 and
1.45 tonnes of feed in hoppers 3 and 4, respectively, to 3. Finally, 1.47 and
1.47 tonnes in hopper 1 and 5 to customer 2.

• The truck 2 goes from the deposit to costumer 4 and finally to 1. It carries
1.51 and 1.51 tonnes of feed in hoppers 1 and 5 to 4 and 3.30 tonnes to 1 in
the hopper 3.

With this solution, the distance traveled is 221 km.

Comparing solutions

Algorithm

SD Constructive heuristic Tabu search Deterministic case
0.1 255.5 km 241.49 km

0.5 (no replicas)
269.07 km (λ = 0)
253.56 km (λ = 1)

242.57 km 221 km

0.5 (replicas) 270.5 km 241.50 km

Table 6.2: Different solutions obtained with the fictitious example (SD means
standard desviation).

Table 6.2 shows a summary of the results obtained in this section. In particular,
it reflects the total distance corresponding to the deterministic case and to the
application of the two algorithms in the stochastic case and for different values in
the standard deviation of the demand.

In the deterministic case, the total distance is 221 km. In the stochastic case
with a standard deviation of 0.1, applying the constructive heuristic, the distance
traveled is 235 km and the expected distance is 20.5 km (corresponding to possible
returns to the deposit caused by the impossibility of fully satisfying the demands
of a client). We observe an increase in the traveled distance of a 6.33%. When
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applying the improvement tabu algorithm, the distance traveled becomes 221 km,
as in the deterministic case, and the expected distance is 20.49, which also means
an improvement, although slight, with respect to the constructive heuristic.

For a standard deviation of 0.5 and the parameter λ equal to 0 (if we do not
consider replicas), the constructive heuristic obtains a traveled distance of 235
km and 34.07 km of expected distance. As in the previous case, we obtain a
worsening of 6.33% with respect to the deterministic model. But this situation is
rectified with the tabu search, because we get a distance traveled of 221 km and
21.57 km of expected distance. We are also getting a 36.7% improvement over the
expected distance. If we consider λ equal to 1, the constructive heuristic obtains a
traveled distance of 221 km and an expected distance of 32.56 km. In this case, the
tabu search only improves the expected distance, with respect to the constructive
heuristic, by 33.75%. However, if client replicas are allowed, the solution obtained
is the same for any λ value. It is in this case when the worst results are obtained
for the constructive heuristic. This is mainly due to the fact that both trucks visit
the same client causing an unnecessary extra distance. The situation is corrected
with the tabu search, and it even improves the solution obtained for the case
without replicas. This is because when we replicate the customers, the probability
of satisfying their demands is higher, decreasing the expected distances.

6.6.2 Real data

Now we are going to consider some real data provided by an agricultural co-
operative. The information obtained corresponds to one working day of the com-
pany. The company would like to visit 19 customers scattered throughout Galicia
from the depot. We do not know the demand of each client but, with data from
past deliveries, we can estimate that demand. We know the mean and standard
deviation of each demand and we are going to assume that it follows a normal
distribution with these parameters. As we know the number of days since the last
visit to each client we can obtain a probability urgency value between 0 and 1,
such that 0 is not urgent and 1 is urgent. We will also assume that any value
greater than 0.9 is an urgent order that must be placed on the same day.

For the different deliveries we have a fleet of 2 trucks. The first truck has
five hoppers with a capacity of 4, 3, 1.7, 4.5 and 3 tonnes and the second truck of
3, 3.7, 3.8, 3.7 and 3 tonnes. In addition, the maximum load that can be transported
by both trucks is 15.3 tonnes. Finally we know all the distances between customers
and with the depot. Complete data can be obtained if requested from the authors.

First, we will solve our problem with the constructive heuristic. We will use
different values for λ and standard deviations to carry out a sensitivity analysis.
The urgency values are 0.95 for all costumers. The results are shown in the
Tables 6.3, 6.4, and 6.5.
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The results corresponding to standard deviations of 1 or 3.04 do not have many
differences between them, although with high values of λ it is when the best results
are obtained.

When working with a standard deviation of 0.5 is when more differences are
observed in the results obtained, depending on the value of λ considered. If we
look at the total distance we can see differences of up to 13%, which is a value
that can be considered relevant when dealing with a logistics problem.

It should be noted that with a value of λ equal to 5 and a standard deviation
of 1, we obtain a solution in which the distance traveled is 519 km., the expected
distance is 113.24 km. and the total distance is 633.24 km. In this case, the
amount delivered is 134.92 tonnes.

Results

Parameters Distance Expected Total Amount
λ = 0 Traveled Distance Distance Delivered
sd = 0.5 388 379.58 767.58 115.07
sd = 1 507 158.58 665.58 130.68
sd = 3.04 623 121.09 744.09 180.66

Table 6.3: Solutions obtained for the real data with the constructive heuristic
and a value of urgency equal to 0.95 (a).

Results

Parameters Distance Expected Total Amount
λ = 1 Traveled Distance Distance Delivered

sd = 0.5 385 280.20 665.20 119.01
sd = 1 526 117.90 643.90 134.10
sd = 3.04 622 118.89 740.89 182.06

Table 6.4: Solutions obtained for the real data with the constructive heuristic
and a value of urgency equal to 0.95 (b).

Now we are going to consider that the emergency variables follow a uniform
distribution, that is to say, we will take for each variable a value generated with a
uniform in (0, 1). The new results are shown in the Tables 6.6, 6.7, and 6.8.

With the new distribution of the emergency variables, we can see that the
expected distances are smaller than in the previous case. The reason is that there
are fewer customers with urgent demands that are far from the deposit. This has
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Results

Parameters Distance Expected Total Amount
λ = 2 Traveled Distance Distance Delivered

sd = 0.5 529 136.55 665.55 121.90
sd = 1 539 116.53 655.53 134.99
sd = 3.04 612 117.12 729.12 183.78

Table 6.5: Solutions obtained for the real data with the constructive heuristic
and a value of urgency equal to 0.95 (c).

as a consequence that in each route we can visit more customers, that the amount
delivered is less and also the distance traveled.

If the standard deviation is equal to 0.5, we obtain better results with λ equal
to 1, with an improvement of approximately 23% compared to the solution for λ
equal to 2. For a standard deviation of 1, the best solution is obtained when λ is
equal to 2, with an improvement of approximately 24% compared to the solution
for λ equal to 0. Finally, for a standard deviation of 3.04 we get the best solution
for λ equal to 0.

Results

Parameters Distance Expected Total Amount
λ = 0 Traveled Distance Distance Delivered
sd = 0.5 392 8.92 400.92 104.68
sd = 1 492 3.72 495.72 111.03
sd = 3.04 495 6.12 501.12 121.27

Table 6.6: Solutions obtained for the real data with the constructive heuristic
and a uniform emergency (a).

We explain below the results obtained when applying tabu search. In the
Table 6.9 we consider a value for the urgency of 0.95. If we compare with the results
obtained when applying the constructive algorithm, for a standard deviation of
0.5, we obtain that the distance traveled may be higher in some cases, while the
expected distance and the total distance always decrease. Comparing with the
best result obtained with the constructive algorithm, the tabu search provides
an improvement in the total distance of 11%. For a standard deviation of 1,
the results are similar and in this case, comparing with the best result obtained
with the constructive algorithm, the tabu search provides an improvement in the
total distance of 3%. Finally, with a standard deviation of 3.04, the tabu search
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Results

Parameters Distance Expected Total Amount
λ = 1 Traveled Distance Distance Delivered
sd = 0.5 389 2.10 391.10 105.28
sd = 1 369 12.11 381.11 108.60
sd = 3.04 515 7.36 522.36 121.02

Table 6.7: Solutions obtained for the real data with the constructive heuristic
and a uniform emergency (b).

Results

Parameters Distance Expected Total Amount
λ = 2 Traveled Distance Distance Delivered
sd = 0.5 505 2.10 507.10 107.13
sd = 1 375 3.06 378.06 108.27
sd = 3.04 496 9.00 505.00 122.93

Table 6.8: Solutions obtained for the real data with the constructive heuristic
and a uniform emergency (c).

always reduces the distance traveled, the expected distance and the total distance.
Comparing with the best result obtained with the constructive algorithm, the tabu
search provides an improvement in the total distance of 4%.

The results obtained when the urgency values are generated using a uniform
distribution are shown in the Table 6.10. Comparing with the best results obtained
when using the constructive algorithm, decreases in the total distance of 9%, 3%
and 8% are observed, with standard deviations in the demands of 0.5, 1 and 3.04
respectively. Noteworthy are the decreases in the expected distance, which reach
a 55% reduction when the standard deviation is 3.04.

6.7 Computational experiments

In this section, we create an MC-VRPSD benchmark suite for the research com-
munity, because to the best of our knowledge, no instances are publicly available
for the characteristics of our problem. That is why we will modify the instances
created by Christofides et al. (1979). There are 14 problems that contain between
50 and 199 customers. The 5 first instances no include a route length restriction.
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Results

Parameters Distance Expected Total Amount
Traveled Distance Distance Delivered

sd = 0.5 483 108.97 591.97 122.24
sd = 1 524 97.01 621.01 133.42
sd = 3.04 606 92.77 698.77 184.70

Table 6.9: Solutions obtained for the real data with the tabu search and a
value of urgency equal to 0.95.

Results

Parameters Distance Expected Total Amount
Traveled Distance Distance Delivered

sd = 0.5 352 2.10 354.10 105.86
sd = 1 364 2.23 366.23 109.46
sd = 3.04 461 2.76 463.76 116.50

Table 6.10: Solutions obtained for the real data with the tabu search a
uniform emergency.

The code was created using the program R x64 3.5.0.0. and running in a PC
with 3.6 Ghz Intel Core i7-9700K, 64 GB of RAM, and Windows 10 x64.

In order to adapt to the characteristics of our problem, we will consider that the
orders of each customer have normal distribution. The mean is given by the exact
value of each example, and the standard deviation is considered as 0.3 multiplied
by the mean. For all problems, we will use the same vehicle with hoppers capacity
equal to 50, 40, 40, 30, and 30 tonnes respectively. Each problem has its own
maximum allowable load of the trucks. The complete data of these benchmarks
can be requested from the authors.

In Table 6.11, we show the results corresponding to the resolution of all in-
stances through the constructive heuristic when we considered all orders urgents.
The different columns collect the number of clients of the problem, the distance
traveled by the vehicle, the expected distance in case of return to the deposit and
the total distance. Finally, we have the amount delivered and the time that we
needed to get the solution in seconds. In brackets, we find the value of λ with
which the best solution is obtained. The solutions with or without route length
restriction are the same, because each route only visits a maximum of 5 clients
(one per hopper) so this restriction is never broken.

In Table 6.12, we have resolved the above problems using the tabu search



178 Chapter 6. A two-stage heuristic algorithm

Results

Instance n Distance Expected Total Amount Time
Traveled Distance Distance Delivered

(λ)
vrpnc1 50 831.44 (2) 121.25 952.69 1159.75 0.06
vrpnc2 75 1258.96 (1) 188.99 1447.95 2032.15 0.11
vrpnc3 100 1560.47 (10) 249.47 1809.94 2177.46 0.17
vrpnc4 150 2113.23 (1) 369.64 2482.87 3336.82 0.41
vrpnc5 199 2664.90 (1) 482.80 3147.70 4756.35 0.97
vrpnc6 50 831.44 (2) 121.25 952.69 1159.75 0.05
vrpnc7 75 1258.96 (1) 188.99 1447.95 2032.15 0.11
vrpnc8 100 1560.47 (10) 249.47 1809.94 2177.45 0.17
vrpnc9 150 2113.23 (1) 369.64 2482.87 3336.82 0.41
vrpnc10 199 2664.90 (1) 482.80 3147.70 4756.35 0.97
vrpnc11 120 3064.89 (0) 611.97 3676.86 2053.50 0.25
vrpnc12 100 1590.32 (1) 288.55 1878.87 2703.15 0.16
vrpnc13 120 3064.89 (0) 611.97 3676.86 2053.50 0.16
vrpnc14 100 1590.32 (1) 288.55 1878.87 2703.15 0.16

Table 6.11: Instances solved with the constructive heuristic.

algorithm. To this purpose, we have considered a limit of 5000 iterations and we
only solve the problems that do not have route length restriction. We can observe
in the column Total Distances, in brackets, the improvement achieved respect to
the solution obtained by the constructive heuristic. Appendix 6.9 presents the
solutions of the testcases in detail.

6.8 Conclusions and final remarks

In this paper, we introduce a general class of vehicle routing problems in which
the fleet is heterogeneous with respect to the capacity and the vehicles are com-
partmentalized. The fleet is responsible for distributing various products among
a set of customers, the demands are stochastic, each compartment can not con-
tain different products or products of different customers, some vehicles can not
access certain customers and, finally, the orders of some customers are considered
urgent. We propose a tabu algorithm for the resolution that starts from a solution
obtained through a constructive procedure.

In our opinion, the main contribution of this work is the proposal of a model
that represents situations that appear in real life considering in a new way various
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Results

Instance n Distance Expected Total Amount Time
Traveled Distance Distance Delivered

(%)
vrpnc1 50 752.70 120.03 872.73 (8.39%) 1160.50 355.31
vrpnc2 75 1129.98 181.84 1311.82 (9.40%) 2036.75 200.47
vrpnc3 100 1432.13 250.01 1682.14 (7.06%) 2177.00 429.53
vrpnc4 150 1977.12 368.45 2345.57 (5.53%) 3337.50 469.11
vrpnc5 199 2533.26 480.47 3013.73 (4.26%) 4758.10 510.70
vrpnc11 120 2786.79 613.50 3400.29 (7.52%) 2053.00 442.46
vrpnc12 100 1509.30 289.33 1798.63 (4.27%) 2703.02 408.22

Table 6.12: Instances solved with the tabu search.

restrictions that are produced. In addition, the algorithm of Clarke and Wright is
generalized and combined with a tabu search in a context of problems of routes with
stochastic demands and vehicles with compartments, in which existing literature
is scarce. In addition to illustrating the algorithms with small examples and see
their operation in a real case, we have designed a collection of testcases for use in
future research in this field.

These algorithms are programmed in R language so they can be integrated into
a more complete tool to support the decision of the managers of the company,
along with others able, for example, to forecast consumption on farms or generate
reports of interest. The creation of simple interfaces that facilitate the task of the
managers or allow simulations for advanced users is also viable through R libraries.
Such tools suppose an advantage for the companies, since they allow to automate
certain tasks in front of other methodologies ”human based” less efficient or certain
commercial tools less transparent and difficult to adapt.

The work is motivated from the tasks developed by an animal feed factory.
This company is located in a Spanish region of about 13,000 km2 in which there
are more than 15 companies of this type. The model is applicable to other types
of companies such as those that collect milk or distribute cereals or gasoline and
the algorithms can generate savings in the transportation performed by these com-
panies.

Regarding possible future lines of research, it may be interesting to adapt to
the presented model another type of well-known metaheuristics such as simulated
annealing or genetic algorithms. Regarding alternative models, it is worth con-
sidering the so-called “truck and trailer problem” (cf. Derigs et al., 2013) to deal
with accessibility restrictions, when such vehicles are available to companies and
can reduce transport costs.
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6.9 Appendix

This appendix contain the real solutions produced in this study for the test
problems. The input data are not included due to the limited space, but can be
obtained from the authoros. For every problem we use the following abbreviations:

n = Index of customers.
Q = Total amount delivered.
T.D = Total distance traveled.
D.T = Distance traveled.
E.D = Expected distance traveled.

In Tables 6.13, 6.14, 6.15, 6.16, 6.17, 6.18 and 6.19 we present the results
obtained with the constructive algorithm. In Tables 6.20, 6.21, 6.22, 6.23, 6.24,
6.25 and 6.26 we present the results obtained with the tabu search algorithm. All
routes start and end at the depot (0).

Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 61.55 8.54 70.09 98.34 4− 17− 15− 37− 12
2 63.69 5.76 69.45 96.34 6− 23− 1− 27− 46
3 89.38 12.73 102.11 127.34 14− 25− 24− 43− 7
4 83.89 12.69 96.58 113.34 16− 9− 34− 10− 49
5 76.10 11.66 87.76 104.34 22− 31− 26− 8− 48
6 97.14 17.83 114.97 119.34 28− 3− 36− 35− 20
7 86.17 13.92 100.09 111.34 30− 50− 21− 29− 2
8 54.75 6.14 60.89 130.34 32− 11− 38− 5− 47
9 120.09 17.04 137.13 127.67 39− 33− 45− 44− 41
10 98.68 14.93 113.61 131.34 42− 19− 40− 13− 18

Table 6.13: Instance 1: n = 50, Q = 1159.75, T.D = 952.69, D.T = 831.44,
E.D = 121.25, λ = 1.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 99.92 14.95 114.87 132.87 1− 63− 23− 56− 24
2 80.91 11.20 92.11 139.87 5− 47− 74− 62− 33
3 49.93 4.80 54.73 139.87 6− 68− 27− 34− 67
4 69.03 8.23 77.26 137.87 7− 8− 54− 46− 52
5 92.06 9.55 101.61 139.87 19− 13− 30− 48− 2
6 93.99 18.61 112.60 130.90 37− 20− 70− 36− 21
7 93.62 17.76 111.38 128.87 43− 41− 42− 64− 22
8 70.26 10.47 80.73 138.87 49− 3− 44− 32− 40
9 99.23 17.65 116.88 128.90 50− 18− 25− 55− 9
10 55.18 5.67 60.85 129.87 51− 16− 17− 12− 26
11 69.23 9.77 79.00 135.90 53− 11− 14− 35
12 61.23 9.50 70.73 130.87 57− 15− 29− 45− 4
13 112.22 12.61 124.83 138.87 58− 10− 31− 39− 73
14 106.13 17.92 124.05 112.87 60− 71− 69− 61− 28
15 100 19.99 119.99 136.89 72− 38− 65− 66− 59
16 6 0.3 6.3 28.97 75

Table 6.14: Instance 2: n = 75, Q = 2032.15, T.D = 1447.95, D.T =
1258.96, E.D = 188.99, λ = 1.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 65.20 7.14 72.34 117.97 12− 4− 26− 40− 58
2 97.01 17.08 114.09 143.97 14− 44− 38− 86− 16
3 77.78 12.48 90.26 96.97 15− 43− 37− 98− 59
4 61.26 7.93 69.19 108.97 21− 2− 95− 97− 13
5 75.95 12.28 88.23 96.97 22− 41− 57− 42− 87
6 101.45 17.79 119.24 128.97 23− 67− 39− 25− 55
7 98.54 16.80 115.34 120.97 45− 46− 47− 36− 48
8 78.88 11.28 90.16 107.97 50− 1− 30− 32− 70
9 43.22 4.10 47.32 92.97 53− 6− 89− 52− 27
10 69.09 7.35 76.44 77.97 60− 18− 7− 69− 28
11 112.78 19.09 131.87 113.97 63− 11− 64− 49− 19
12 99.53 16.79 116.32 117.97 71− 35− 34− 29− 68
13 63.64 12.42 76.06 101.97 73− 74− 56− 75− 72
14 66.77 12.13 78.90 109.97 77− 3− 33− 81− 51
15 113.62 18.51 132.13 108.97 78− 9− 65− 66− 20
16 80.07 11.51 91.58 98.97 80− 54− 24− 79− 76
17 68.38 11.56 79.94 104.97 82− 8− 83− 84− 5
18 69.56 11.99 81.55 109.97 88− 62− 90− 10− 31
19 43.24 8.34 51.58 106.97 96− 99− 93− 92− 94
20 74.47 12.86 87.33 109.97 100− 91− 85− 61− 17

Table 6.15: Instance 3: n = 100, Q = 2177.46, T.D = 1809.94, D.T =
1560.47, E.D = 249.47, λ = 10.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 48.13 7.18 55.31 98.76 2− 137− 95− 117− 13
2 56.84 8.39 65.23 96.76 7− 106− 18− 60− 147
3 79.49 13.33 92.82 110.76 8− 46− 45− 84− 118
4 109.35 19.09 128.44 109.76 11− 64− 143− 36− 48
5 82.94 14.00 96.94 100.76 15− 43− 14− 91− 59
6 76.32 15.05 91.37 148.41 17− 113− 16− 141− 85
7 91.38 17.91 109.29 118.41 32− 131− 128− 66− 20
8 96.50 15.62 112.12 111.76 35− 34− 121− 29− 68
9 50.51 7.54 58.05 96.76 40− 115− 73− 21− 105
10 65.98 11.64 77.62 100.76 41− 145− 57− 144− 87
11 73.45 12.43 85.88 110.76 42− 142− 100− 61− 5
12 72.31 13.23 85.54 91.76 51− 78− 129− 79− 3
13 45.91 6.80 52.71 87.76 52− 88− 127− 69− 132
14 36.98 3.47 40.45 89.76 53− 6− 89− 146− 27
15 92.79 17.43 110.22 141.76 56− 23− 67− 39− 139
16 40.92 5.13 46.05 120.76 58− 26− 149− 138− 28
17 103.00 20.44 123.44 122.76 71− 65− 136− 135− 120
18 59.78 12.91 72.69 128.76 74− 22− 133− 75− 72
19 47.84 8.54 56.38 108.76 76− 77− 116− 109− 12
20 50.22 9.31 59.53 105.76 93− 92− 37− 98− 94
21 41.80 7.25 49.05 106.76 97− 104− 99− 96− 112
22 72.24 13.78 86.02 135.76 103− 9− 81− 33− 102
23 72.35 15.06 87.41 106.41 108− 90− 126− 63− 31
24 63.76 11.12 74.88 94.76 110− 4− 54− 80− 150
25 92.56 18.25 110.81 121.76 119− 44− 38− 140− 86
26 71.58 12.06 83.64 105.76 122− 30− 70− 10− 62
27 79.51 12.57 92.08 128.76 123− 82− 114− 125− 83
28 95.78 17.53 113.31 139.76 124− 47− 49− 107− 19
29 79.91 14.44 94.35 92.76 130− 55− 25− 24− 134
30 63.08 8.09 71.17 102.76 148− 101− 1− 50− 111

Table 6.16: Instance 4: n = 150, Q = 3336.82, T.D = 2482.87, D.T =
2113.23, E.D = 369.64, λ = 1.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 85.30 17.29 102.59 120.5 9− 135− 164− 34− 78
2 87.20 16.59 103.79 154.60 10− 108− 32− 181− 159
3 83.66 14.42 98.08 116.50 14− 142− 43− 15− 178
4 38.91 5.65 44.56 127.50 18− 166− 147− 6− 112
5 89.79 15.67 105.46 111.50 19− 124− 46− 45− 125
6 92.06 17.05 109.11 131.50 20− 128− 66− 103− 120
7 54.18 7.50 61.68 92.50 21− 2− 137− 117− 13
8 93.59 18.08 111.67 137.50 25− 170− 67− 39− 187
9 103.05 21.07 124.12 125.50 35− 136− 65− 71− 161
10 52.89 11.35 64.24 111.50 37− 100− 193− 91− 59
11 54.91 6.22 61.13 118.50 50− 184− 26− 40− 105
12 74.86 14.01 88.87 128.50 51− 188− 160− 30− 122
13 41.02 5.81 46.83 108.50 52− 106− 153− 89− 156
14 86.72 15.83 102.55 102.50 56− 186− 23− 139− 55
15 59.99 10.44 70.43 107.50 60− 84− 5− 93− 98
16 60.19 8.61 68.80 107.50 73− 41− 115− 58− 152
17 59.29 13.04 72.33 134.50 74− 75− 133− 22− 171
18 82.99 12.20 95.19 111.50 77− 158− 3− 81− 24
19 56.03 12.78 68.81 127.60 79− 185− 33− 157− 102
20 44.36 7.61 51.97 126.50 80− 177− 12− 138− 154
21 60.85 12.37 73.22 112.50 83− 199− 8− 174− 114
22 37.77 7.59 45.36 115.50 95− 104− 99− 96− 183
23 47.49 8.94 56.43 115.50 109− 150− 116− 196− 76
24 58.09 11.87 69.96 128.50 110− 155− 4− 197− 72
25 92.56 18.25 110.81 124.50 119− 44− 38− 140− 86
26 68.34 13.55 81.89 113.50 129− 169− 121− 29− 68
27 79.91 15.10 95.01 103.50 131− 90− 63− 126− 190
28 34.61 6.05 40.66 104.50 132− 69− 1− 176− 111
29 50.03 8.66 58.69 114.50 144− 97− 151− 92− 94
30 66.60 11.62 78.22 99.50 145− 57− 42− 172− 87
31 26.55 2.08 28.63 82.60 146− 27− 28− 53
32 47.58 8.09 55.67 133.50 149− 195− 179− 198− 180
33 47.09 7.73 54.82 102.50 162− 101− 70− 127− 167
34 68.33 12.93 81.26 122.50 163− 134− 165− 130− 54
35 95.81 17.84 113.65 140.50 168− 47− 49− 107− 11
36 71.67 13.06 84.73 124.50 173− 61− 113− 17− 118
37 110.09 19.15 129.24 114.50 175− 64− 143− 36− 48
38 73.06 12.47 28.63 135.50 189− 62− 123− 182− 148
39 67.59 14.11 81.70 152.50 192− 191− 141− 16− 85
40 59.81 10.03 69.84 113.50 194− 82− 7− 88− 31

Table 6.17: Instance 5: n = 199, Q = 4756.35, T.D = 3147.7, D.T =
2664.9, E.D = 482.8, λ = 1.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 113.01 24.15 137.16 103.27 2− 1− 15− 14− 13
2 94.42 22.01 116.43 78.27 6− 7− 9− 10− 5
3 101.93 15.51 117.44 89.27 11− 4− 3− 81− 119
4 184.14 40.30 224.44 73.27 29− 28− 32− 26− 23
5 179.50 35.23 214.73 91.27 33− 24− 22− 12− 8
6 175.75 33.77 209.52 85.27 34− 30− 27− 19− 87
7 174.24 40.64 214.88 80.27 35− 36− 31− 25− 17
8 168.47 38.31 206.78 105.27 40− 43− 39− 38− 37
9 180.96 40.64 221.60 88.27 45− 42− 44− 47− 41
10 184.49 43.23 227.72 82.27 46− 49− 50− 51− 48
11 240.95 31.56 272.51 81.27 52− 16− 21− 20− 90
12 173.83 28.51 202.34 87.27 53− 54− 57− 115− 97
13 188.71 44.56 233.27 87.27 55− 58− 60− 62− 61
14 174.24 32.37 206.61 99.27 56− 79− 80− 72− 75
15 204.47 46.47 250.95 107.27 64− 63− 66− 65− 59
16 120.79 24.81 145.60 97.27 69− 70− 67− 73− 68
17 119.19 27.76 146.95 86.27 71− 74− 78− 77− 76
18 30.15 5.01 35.16 73.27 85− 112− 84− 117− 82
19 25.85 2.96 28.81 64.27 88− 111− 86− 106− 105
20 26.60 4.48 31.08 76.27 102− 93− 94− 96− 95
21 34.96 6.14 41.10 72.27 104− 116− 100− 99− 101
22 53.12 8.28 61.40 86.27 109− 108− 114− 91− 92
23 58.51 7.50 66.01 77.27 110− 98− 103− 107− 120
24 43.78 7.72 51.50 81.27 113− 83− 118− 18− 89

Table 6.18: Instance 11: n = 120, Q = 2053.50, T.D = 3676.86, D.T =
3064.89, E.D = 611.97, λ = 0.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 46.87 9.45 56.32 134.65 1− 2− 4− 6− 8
2 90.51 19.21 109.72 144.65 12− 14− 16− 19− 18
3 81.65 13.99 95.64 154.65 17− 15− 13− 11− 9
4 22.19 2.02 24.21 47.86 20− 21
5 60.07 7.71 67.78 104.6 23− 26− 22− 24− 52
6 46.45 9.06 55.51 134.65 28− 30− 29− 27− 25
7 86.88 18.97 105.85 164.65 36− 39− 38− 37− 33
8 48.96 9.58 58.54 104.65 41− 40− 42− 47− 49
9 73.07 6.21 79.28 75.72 43− 67− 65− 101− 90
10 55.17 11.06 66.23 114.65 44− 45− 48− 46− 50
11 90.65 16.06 106.71 134.65 51− 31− 35− 32− 34
12 99.72 21.05 120.77 164.65 60− 56− 53− 54− 55
13 51.39 8.76 60.15 86.26 64− 61− 72− 74− 102
14 48.33 8.51 56.85 115.19 69− 68− 66− 62− 63
15 162.39 22.23 184.62 144.65 73− 80− 58− 59− 57
16 43.57 7.98 51.55 114.65 75− 5− 3− 7− 10
17 121.28 27.08 148.36 124.65 76− 71− 70− 77− 79
18 111.94 19.65 131.59 144.65 84− 83− 82− 78− 81
19 62.06 13.29 75.35 144.65 89− 88− 85− 86− 87
20 89.89 16.42 106.31 144.65 91− 98− 95− 97− 99
21 97.25 20.19 117.44 144.65 100− 94− 92− 93− 96

Table 6.19: Instance 12: n = 100, Q = 2703.15, T.D = 1878.87, D.T =
1590.32, E.D = 288.55, λ = 1.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 75.66 12.37 88.03 100.35 1− 28− 31− 26− 8
2 90.70 16.90 107.60 113.35 20− 35− 36− 3− 22
3 89.65 15.53 105.18 112.35 10− 39− 30− 34− 50
4 69.74 11.41 81.15 109.35 16− 21− 29− 2− 32
5 79.09 13.30 92.39 106.35 15− 33− 45− 44− 37
6 50.64 6.66 57.30 145.35 12− 17− 4− 18− 47
7 54.82 8.66 63.48 122.35 5− 49− 9− 38− 11
8 51.86 5.94 57.80 106.35 6− 23− 48− 27− 46
9 101.17 16.49 117.66 117.35 13− 41− 40− 19− 42
10 89.38 12.72 102.10 127.35 14− 25− 24− 43− 7

Table 6.20: Instance 1: n = 50, Q = 1160.5, T.D = 872.73, D.T =
752.70, E.D = 120.03, possible exchanges = 1, random selected routes = 2,
maximum number of iterations = 5000.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 92.61 15.91 108.52 126.85 21− 61− 69− 36− 47
2 60.70 10.55 71.25 134.85 33− 73− 62− 28− 74
3 48.03 7.36 55.39 137.85 17− 40− 44− 3− 51
4 81.44 11.51 92.95 134.85 6− 63− 49− 24− 32
5 93.49 19.34 112.83 107.85 37− 20− 70− 60− 71
6 78.78 12.29 91.07 140.85 12− 39− 9− 50− 18
7 32.35 3.42 35.77 123.88 34− 52− 4− 75
8 17.12 1.15 18.27 65.94 26− 67
9 69.08 11.92 81.00 116.85 5− 15− 57− 13− 27
10 84.41 15.64 100.05 128.85 16− 23− 56− 41− 43
11 103.75 15.90 119.65 137.85 25− 55− 31− 10− 58
12 47.97 7.49 55.46 130.85 45− 29− 48− 30− 68
13 90.06 12.06 102.12 137.88 35− 14− 59− 66
14 76.77 13.12 89.89 137.85 53− 11− 65− 38− 72
15 89.64 14.98 104.62 139.85 1− 42− 64− 22− 2
16 63.74 9.17 72.91 133.8 7− 19− 54− 8− 46

Table 6.21: Instance 2: n = 75, Q = 2036.75, T.D = 1311.82, D.T =
1129.98, E.D = 181.84, possible exchanges = 1, random selected routes = 2,
maximum number of iterations = 5000.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 77.21 14.29 91.50 115.95 4− 56− 23− 75− 74
2 93.89 16.49 110.38 117.95 39− 67− 25− 55− 54
3 38.08 6.67 44.75 120.95 6− 94− 95− 97− 13
4 46.35 3.39 49.74 114.95 28− 27− 89− 58− 53
5 104.19 18.91 123.10 114.95 20− 66− 65− 71− 51
6 101.75 16.93 118.68 85.95 9− 35− 34− 29− 24
7 44.88 9.04 53.92 95.95 92− 98− 59− 99− 96
8 61.30 12.38 73.68 131.95 61− 16− 91− 85− 93
9 58.54 8.31 66.85 96.95 50− 1− 70− 31− 69
10 79.72 15.24 94.96 108.95 10− 63− 90− 32− 30
11 48.10 9.30 57.40 123.95 12− 80− 68− 77− 76
12 77.67 13.16 90.83 101.95 37− 14− 43− 42− 87
13 48.94 8.31 57.25 106.95 26− 21− 72− 73− 40
14 56.93 9.11 66.04 86.95 18− 82− 7− 88− 52
15 89.09 16.55 105.64 113.95 8− 46− 36− 47− 48
16 65.53 13.16 78.69 111.95 3− 79− 78− 81− 33
17 63.68 11.34 75.02 98.95 5− 84− 45− 83− 60
18 74.45 12.76 87.21 80.95 2− 57− 15− 41− 22
19 98.41 16.45 114.86 123.95 17− 86− 38− 44− 100
20 103.35 18.18 121.53 122.95 19− 49− 64− 11− 62

Table 6.22: Instance 3: n = 100, Q = 2177, T.D = 1682.14, D.T =
1432.13, E.D = 250.01, possible exchanges = 1, random selected routes = 2,
maximum number of iterations = 5000.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 81.03 15.65 96.68 151.75 48− 47− 19− 107− 123
2 109.79 20.73 130.52 103.75 11− 64− 49− 143− 36
3 73.70 15.41 89.11 98.75 62− 126− 63− 90− 108
4 66.16 11.58 77.74 107.75 88− 148− 10− 30− 122
5 38.98 6.00 44.98 112.75 27− 132− 69− 31− 127
6 63.24 12.12 75.36 99.75 54− 134− 24− 80− 150
7 69.74 13.48 83.22 87.75 110− 4− 25− 55− 130
8 47.84 8.55 56.39 108.75 12− 109− 116− 77− 76
9 87.54 17.28 104.82 101.75 79− 78− 34− 35− 135
10 102.73 19.93 122.66 121.75 103− 71− 65− 136− 120
11 35.11 5.25 40.36 103.75 13− 117− 137− 58− 53
12 34.09 4.93 39.02 123.75 28− 138− 149− 26− 105
13 28.69 4.07 32.76 113.75 112− 6− 147− 89− 146
14 76.29 14.65 90.94 114.75 84− 17− 113− 16− 141
15 82.82 14.54 97.36 117.75 5− 125− 45− 46− 124
16 66.99 12.69 79.68 113.75 42− 142− 100− 91− 85
17 91.25 17.70 108.95 125.75 44− 38− 140− 86− 61
18 51.93 9.02 60.95 93.75 18− 82− 7− 106− 52
19 41.14 8.03 49.17 125.75 94− 59− 92− 97− 95
20 65.17 12.80 77.97 108.75 3− 129− 29− 121− 68
21 66.88 13.12 80.00 129.75 51− 9− 81− 33− 102
22 48.89 8.64 57.53 82.75 2− 115− 73− 21− 40
23 56.85 10.76 67.61 121.75 114− 8− 83− 60− 118
24 44.75 9.18 53.93 97.75 96− 99− 104− 93− 98
25 83.04 14.91 97.95 88.75 15− 43− 14− 119− 37
26 52.53 7.97 60.50 90.75 101− 70− 1− 50− 111
27 91.37 17.34 108.71 118.75 32− 131− 128− 66− 20
28 65.98 11.66 77.63 100.75 41− 145− 57− 144− 87
29 92.79 17.45 110.24 141.7 56− 23− 67− 39− 139
30 59.78 12.92 72.70 128.75 74− 22− 133− 75− 72

Table 6.23: Instance 4: n = 150, Q = 3337.50, T.D = 2345.57, D.T =
1977.12, E.D = 368.45, possible exchanges = 1, random selected routes = 2,
maximum number of iterations = 5000.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 47.16 8.32 55.48 123.50 149− 179− 198− 21− 180
2 51.73 8.31 60.04 121.50 40− 73− 171− 115− 152
3 48.33 8.99 57.32 116.50 58− 2− 178− 57− 144
4 52.44 9.54 61.98 94.50 117− 42− 172− 87− 137
5 44.17 6.48 50.65 125.50 26− 195− 184− 76− 28
6 48.69 9.73 58.42 111.50 80− 150− 116− 77− 196
7 40.67 7.21 47.88 130.50 101− 162− 190− 127− 167
8 70.43 13.91 84.34 122.50 31− 10− 126− 63− 108
9 26.97 2.16 29.13 87.60 53− 105− 27− 146
10 85.40 16.26 101.66 106.50 70− 131− 32− 181− 90
11 59.63 10.56 70.19 113.50 60− 5− 61− 93− 98
12 67.23 12.94 80.17 118.50 118− 84− 17− 113− 173
13 25.55 3.78 29.33 130.50 89− 147− 6− 112− 156
14 50.72 8.17 58.89 106.50 52− 153− 82− 18− 166
15 87.36 16.87 104.23 136.50 20− 66− 161− 103− 51
16 72.16 14.62 86.78 132.50 30− 160− 128− 188− 122
17 93.08 17.93 111.01 125.50 39− 67− 170− 25− 55
18 79.96 15.99 95.95 114.50 56− 186− 23− 187− 139
19 65.47 13.54 79.01 111.50 41− 22− 133− 75− 74
20 80.78 16.29 97.07 148.50 48− 168− 47− 175− 107
21 109.79 20.72 130.51 106.50 11− 64− 49− 143− 36
22 55.46 11.65 67.11 127.50 3− 158− 129− 79− 102
23 56.64 11.56 68.20 114.50 50− 157− 33− 81− 185
24 39.19 7.72 46.91 121.50 13− 97− 92− 151− 94
25 71.49 12.81 84.30 136.50 148− 123− 62− 159− 189
26 90.94 17.98 108.92 125.50 16− 86− 140− 38− 119
27 67.59 14.39 81.98 151.50 85− 191− 141− 44− 192
28 103.06 20.65 123.71 116.50 71− 65− 136− 35− 120
29 88.17 15.06 103.23 97.50 142− 14− 43− 15− 145
30 76.26 13.91 90.17 110.50 68− 24− 29− 121− 169
31 40.38 7.21 47.59 131.50 109− 177− 12− 138− 154
32 48.63 10.02 58.65 113.50 88− 182− 7− 194− 106
33 85.30 17.29 102.59 120.50 9− 135− 164− 34− 78
34 89.78 15.67 105.45 111.50 9− 124− 46− 45− 125
35 52.89 11.35 64.24 111.50 37− 100− 193− 91− 59
36 60.85 12.37 73.22 112.50 83− 199− 8− 174− 114
37 37.78 7.59 45.37 115.50 95− 104− 99− 96− 183
38 58.09 11.87 69.96 128.50 110− 155− 4− 197− 72
39 34.61 6.05 40.66 104.50 132− 69− 1− 176− 111
40 68.33 12.94 81.27 122.50 163− 134− 165− 130− 54

Table 6.24: Instance 5: n = 199, Q = 4758.10, T.D = 3013.73, D.T =
2533.26, E.D = 480.47, possible exchanges = 1, random selected routes = 2,
maximum number of iterations = 5000.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 115.22 16.57 131.79 106.25 97− 109− 8− 12− 108
2 158.09 37.59 195.68 85.25 17− 20− 23− 26− 21
3 119.62 27.73 147.35 88.25 73− 76− 77− 78− 74
4 129.27 29.07 158.34 102.25 68− 79− 80− 72− 75
5 183.29 42.51 225.80 50.25 29− 36− 34− 35− 32
6 175.44 42.19 217.63 67.25 27− 33− 30− 31− 28
7 200.52 46.56 247.08 86.25 56− 60− 63− 66− 64
8 190.31 44.78 235.09 99.25 55− 58− 62− 61− 65
9 33.60 5.41 39.01 83.25 81− 117− 84− 89− 92
10 91.84 16.77 108.61 83.25 83− 3− 4− 5− 113
11 179.42 41.83 221.25 91.25 52− 53− 54− 57− 59
12 162.74 39.22 201.96 94.25 16− 22− 24− 25− 19
13 112.74 21.05 133.79 94.25 69− 70− 71− 67− 103
14 23.15 3.76 26.91 83.25 87− 85− 112− 86− 111
15 37.12 7.56 44.68 77.25 18− 118− 114− 90− 91
16 51.43 9.32 60.75 75.25 100− 116− 98− 110− 115
17 35.80 2.87 38.67 85.25 88− 82− 119− 120− 105
18 173.01 41.62 214.63 81.25 41− 47− 49− 46− 44
19 183.36 42.45 225.81 89.25 42− 48− 50− 51− 45
20 27.99 5.02 33.01 66.25 101− 99− 104− 107− 106
21 94.71 22.44 117.15 79.25 6− 10− 11− 9− 7
22 113.01 24.21 137.22 103.25 2− 1− 15− 14− 13
23 168.47 38.41 206.88 105.25 40− 43− 39− 38− 37
24 26.60 4.49 31.09 76.25 102− 93− 94− 96− 95

Table 6.25: Instance 11: n = 120, Q = 2053, T.D = 3400.29, D.T =
2786.79, E.D = 613.50, possible exchanges = 1, random selected routes = 2,
maximum number of iterations = 5000.
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Results

i Distance Expected Total Amount Route
Traveled Distance Distance Delivered

1 53.02 8.35 61.37 94.65 20− 24− 52− 49− 47
2 45.47 9.67 55.14 104.65 41− 40− 44− 42− 43
3 93.65 18.63 112.28 134.65 91− 94− 92− 93− 96
4 62.06 13.30 75.36 144.65 87− 86− 85− 88− 89
5 52.63 11.41 64.04 114.65 46− 45− 48− 51− 50
6 86.13 18.00 104.13 154.65 98− 95− 97− 100− 99
7 45.46 7.45 52.91 75.72 66− 64− 68− 69
8 53.84 5.15 58.99 115.73 67− 65− 63− 101− 90
9 50.88 9.86 60.74 125.73 62− 61− 72− 74− 102
10 42.67 8.83 51.50 124.65 5− 6− 9− 8− 7
11 42.54 8.94 51.48 124.65 3− 4− 2− 1− 75
12 28.19 3.54 31.73 76.79 21− 22− 23
13 42.19 8.64 50.83 134.65 25− 27− 30− 28− 26
14 139.66 20.78 160.44 124.65 59− 57− 55− 80− 79
15 99.71 22.06 121.77 184.65 54− 53− 56− 58− 60
16 82.37 15.76 98.13 144.65 29− 34− 33− 35− 31
17 121.20 27.56 148.76 124.65 76− 71− 70− 73− 77
18 78.15 13.66 91.81 154.65 10− 11− 13− 15− 17
19 86.98 18.79 105.77 154.65 32− 37− 38− 39− 36
20 90.51 19.22 109.73 144.65 12− 14− 16− 19− 18
21 111.94 19.66 131.60 144.65 84− 83− 82− 78− 81

Table 6.26: Instance 12: n = 100, Q = 2703.02, T.D = 1798.63, D.T =
1509.30, E.D = 289.33, possible exchanges = 1, random selected routes = 2,
maximum number of iterations = 5000.
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Antecedentes

Cuando se detecta un problema, la toma de decisiones es primordial para abor-
darlo correctamente. Aqúı surge la investigación de operaciones (IO), que permite
maximizar la efectividad de las decisiones tomadas. Es por ello que la investigación
de operaciones es tan antigua como la humanidad, pero no es hasta la segunda
guerra mundial cuando adquiere autonomı́a cient́ıfica. Dada la escasez de recursos,
exist́ıa la necesidad de asignarlos de la mejor manera posible a las diferentes act-
ividades militares de las que se compońıa cada operación. Por tanto, en el seno
de los ejércitos aliados se decide reunir a grupos de cient́ıficos para asesorar sobre
la optimización de las operaciones militares. Es aqúı donde, con estos cient́ıficos,
surge la IO. Dado el gran éxito de la IO en las diferentes operaciones, después de
la guerra es introducida en problemas industriales, de negocio o de gobierno como
forma de obtener una mejor relación entre costo/beneficio.

Investigar sobre las operaciones, como el nombre indica, aborda un amplio y
diverso conjunto de temas. Sin embargo, podemos destacar una serie de prob-
lemas, y modelos, clásicos de especial relevancia y a la vez generales. Entre ellos,
la programación lineal (ver, por ejemplo, Hillier y Lieberman, 2002) es, quizás, la
herramienta más utilizada en IO dada su gran versatilidad. Esta herramienta es
utilizada en problemas que buscan asignar de la manera más eficiente posible un
conjunto de recursos limitados a diversas tareas que compiten entre śı, teniendo
en cuenta un conjunto de restricciones a la hora de hacer este reparto, y buscando
maximizar el beneficio. Asociado a la programación lineal, el método śımplex prop-
uesto por Dantzig en 1947 (Dantzig, 1963, es el primer libro escrito por el propio
autor donde aparece esta metodoloǵıa) es un procedimiento de resolución para
este tipo de problemas eficaz y rápido, aún para problemas de gran tamaño. Dos
problemas particulares de programación lineal son el problema del transporte y el
de asignación. El problema del transporte, formalizado por primera vez en Monge
(1781) y siendo resuelto matemáticamente en Tolstoi (1930), consiste en optim-
izar la manera de transportar bienes desde oŕıgenes a destinos diferentes a mı́nimo
costo, y el problema de asignación (Kuhn, 1955), consiste en asignar distintas
tareas a personas (cabe destacar que el problema de asignación es considerado un
caso especial del problema de transporte, limitando el número de restricciones y
variables). Aunque ambos son modelables como problemas de programación lin-
eal, el número elevado de restricciones y variables hace que la resolución con el
método simplex requiera un elevado esfuerzo computacional; por ello, se han de-
sarrollado diversos algoritmos espećıficos para este tipo de problemas. Estos dos
problemas particulares entran en la subcategoŕıa de la IO llamada modelos de op-
timización de redes, debido a su carácter y representación en forma de red. Otros
problemas de redes son el de la ruta más corta (Dijkstra, 1959), el del árbol de
mı́nima expansión (Kruskal, 1956) o el de flujo máximo (Ford y Fulkerson, 1956).
Destacamos, a mayores, un problema de modelado de redes de gran relevancia a lo
largo de este trabajo, el problema PERT (Program Evaluation and Review Tech-
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niques), o también conocido como CPM (Critical Path Method); véase Malcolm
et al. (1959) y, para una revisión más completa, Punmia y Khandelwal (2002). En
este tipo de problemas se formula y estudia un proyecto como una red dirigida con
un único nodo inicio y final, formada por un conjunto de actividades con relaciones
de precedencia entre ellas.

Todos los problemas presentados hasta ahora son deterministas, pero la IO
también trata problemas estocásticos. Por ejemplo, en los problemas de teoŕıa de
colas presentados en Erlang (1909), y con una revisión más completa en Gross
(2008), se estudian las ĺıneas de espera y se trata de obtener el tiempo que pasa
cada cliente en la cola, el tiempo que cada servidor está ocupado, la longitud de
la cola, etc. También cómo debe ser un sistema óptimo diseñado para reducir el
tiempo que los usuarios pasan en él, sin incrementar el coste de mantenimiento del
sistema.

Anteriormente hemos mencionado los modelos de programación lineal. Como
el nombre indica este tipo de modelos se caracteriza por ser descrito mediante
funciones lineales. Esto restringe las caracteŕısticas del problema a analizar, y no
permite abordar con exactitud algunos problemas que surgen en la realidad. Es
por ello que la programación matemática no lineal (para una referencia completa
ver Bazaraa et al., 2013) considera modelos más generales. Sin embargo, aunque
algunos de esos modelos pueden resolverse de manera eficiente, tales como los
modelos convexos, en la mayoŕıa de los casos no es posible resolverlos de manera
exacta. Es por ello que algoritmos de aproximación y algoritmos heuŕısticos para
obtener buenas soluciones suelen ser utilizados.

La IO no solo contempla problemas en los cuales un agente toma decisiones
sobre un problema para optimizar los beneficios correspondientes. Existen situa-
ciones en las cuales nos encontramos con un conflicto entre varios agentes, o
jugadores, y para cada conjunto de decisiones, o estrategias, tomadas se obtiene
un escenario y resultado diferente. La teoŕıa de juegos (Von Neumann y Morgen-
stern, 1947) estudia este tipo de situaciones desde un punto de vista matemático y
comprende dos subcategoŕıas: la cooperativa y la no cooperativa. En la teoŕıa de
juegos no cooperativa, los jugadores toman las decisiones basadas en los conjuntos
de estrategias disponibles, y dada la competición natural entre los jugadores, el
resultado final de cada jugador depende de la decisión tomada por todos ellos. De
manera diferente, en la teoŕıa de juegos cooperativos los jugadores buscan formar
coaliciones para maximizar las ganancias obtenidas, y un reparto “justo” entre los
diferentes jugadores es uno de los principales objetivos del problema; el valor de
Shapley (Shapley 1953) es una de las reglas de reparto más conocidas y utilizadas
en la teoŕıa de juegos cooperativos.

A mayores, se debe destacar que gran parte del avance que ha experimentado
la investigación de operaciones a lo largo de su (corta) historia ha sido gracias a
la programación informática. El avance informático ha sido esencial a la hora de
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resolver problemas de grandes dimensiones. Además, la creación de software es-
pećıfico y libre hace que cualquier usuario pueda desarrollar su problema y obtener
una solución de manera relativamente sencilla y cómoda, lo que provoca un avance
aún más rápido en el desarrollo de la IO. De mención especial, por los beneficios
que aporta y por el uso del mismo en esta tesis, es el software libre R (R Core
Team, 2020). R es un software estad́ıstico formado por un conjunto de herrami-
entas muy flexibles que permiten al usuario adecuarlas en todo momento para su
uso personal. Además, está compuesto por paquetes, o libreŕıas: un conjunto de
funciones diseñadas por usuarios y accesibles para toda la comunidad mediante
una sencilla descarga. Esto hace que su funcionalidad aumente d́ıa a d́ıa.

Los objetivos generales de esta tesis son desarrollar diversas herramientas para
abordar nuevas variantes, o desde nuevas perspectivas, de algunos problemas de la
investigación de operaciones tanto deterministas como estocásticos, aśı como estu-
diar el buen comportamiento de dichas herramientas de manera teórica y práctica,
y crear libreŕıas en el software estad́ıstico R con estas herramientas y otras ya
existentes en la literatura para ponerlas a disposición de la comunidad cient́ıfica.

Resumen general de la tesis

El desarrollo de la tesis se presenta en seis caṕıtulos. El primer caṕıtulo está
dedicado al reparto de costos de demora en proyectos estocásticos ya finalizados
(Gonçalves-Dosantos et al., 2020c). La gestión de proyectos es un campo dedicado
a desarrollar técnicas para seleccionar, planificar, ejecutar y supervisar proyectos.
Uno de los principales temas de interés en relación a la planificación de proyec-
tos es la gestión del tiempo, con el objetivo de finalizar el proyecto y las diversas
actividades que lo forman en su fecha de entrega. Sin embargo, a menudo los
proyectos se ven retrasados, por lo que el costo asociado a ello debe ser sufrag-
ado entre los diferentes agentes responsables de la ejecución del proyecto. En la
literatura existen diversas maneras de abordar el problema, desde reglas propor-
cionales basadas en problemas de bancarrota (Brânzei et al., 2002) hasta reglas
basadas en la teoŕıa de juegos (por ejemplo, Bergantiños et al., 2018, y Castro et
al., 2007). Todas ellas suponen que la duración inicialmente esperada de cada act-
ividad es determinista. Sin embargo es natural considerar estas duraciones como
variables estocásticas, siguiendo algún modelo de distribución, lo que enriquece
el modelo y lo acerca más a la realidad. Además, dadas las ventajas que supone
utilizar un juego cooperativo frente a las reglas basadas en problemas de bancar-
rota, hemos optado por extender el juego propuesto por Bergantiños et al. (2018)
al contexto estocástico y utilizar el valor de Shapley como regla de reparto. Por
último, caracterizamos la regla propuesta en el contexto de estos juegos de proyec-
tos y proponemos un algoritmo de aproximación, basado en Castro et al. (2009),
para obtenerla por simulación en proyectos con un número elevado de actividades.

El Caṕıtulo 2 desarrolla el paquete ProjectManagement, un paquete de gestión
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de proyectos para el software estad́ıstico R (Gonçalves-Dosantos et al., 2020a).
ProjectManagement es una herramienta que permite la gestión de proyectos com-
putacionalmente y de forma libre y gratuita. Dada la escasez de software relativo
a gestión de proyectos, o en su defecto con licencias de alto coste, creemos que
un paquete de R será de gran ayuda para cualquier usuario con necesidades es-
pećıficas en gestión de proyectos. ProjectManagement permite al usuario gestionar
un proyecto para obtener un calendario del mismo, es decir, la fecha de finalización
del proyecto, los tiempos de inicio y fin de cada actividad, aśı como la holgura que
dispone cada actividad sin que se retrase el proyecto. En relación a costes en
proyectos finalizados, el paquete dispone de repartos con diferentes reglas de asig-
nación propuestas, tales como reglas proporcionales y/o el valor de Shapley. Todo
esto también se aborda desde un punto de vista estocástico, utilizando la meto-
doloǵıa propuesta y estudiada en el Caṕıtulo 1. Por último, ProjectManagement
incluye la gestión de recursos, lo que permite reducir el tiempo de finalización del
proyecto aumentando los recursos y, por consiguiente, el coste, una redistribución
del horario para un nivel más uniforme del consumo de recursos y una nueva gestión
del proyecto considerando un ĺımite máximo de recursos por unidad de tiempo.

Hemos visto como la teoŕıa de juegos y el valor de Shapley se pueden utilizar
para resolver problemas que surgen en la gestión de proyectos a la hora de repartir
costes de demora. Ahora, desde un punto de vista más teórico, en el Caṕıtulo 3
veremos cómo surgen nuevos valores para juegos cooperativos y cómo son carac-
terizados. Para ello, extendemos los valores igualitarios a juegos cooperativos con
uniones a priori (Alonso-Meijide et al., 2020). Los valores igualitarios se basan
en repartir equitativamente los beneficios obtenidos entre los diferentes jugadores
cooperantes. Mucha es la literatura teórica que propone diferentes variantes de
soluciones igualitarias, por ejemplo, van den Brink (2007) o Casajus y Hüttner
(2014), donde estos valores son comparados con el valor de Shapley. Además, en
van den Brink y Funaki (2009) y en van den Brink et al. (2016) pueden verse
varias caracterizaciones del valor igualitario y el equal surplus division value. Sin
embargo, estos valores nunca hab́ıan sido introducidos y estudiados en los juegos
cooperativos con uniones a priori. Un juego con uniones a priori (Owen, 1977)
se diferencia en contar con una partición del conjunto de jugadores, es decir, una
estructura de coalición a priori entre los diferentes jugadores que condiciona la ne-
gociación entre ellos y, en consecuencia, hace variar el resultado de la negociación.
Es en Owen (1977) donde, también, el valor de Shapley es extendido a este tipo
de juegos, dando lugar al valor de Owen. Una vez propuestos el valor igualitario
y tres posibles variantes del equal surplus division value para juegos cooperativos
con uniones a priori, caracterizamos estos nuevos valores con propiedades simil-
ares a las utilizadas en los valores originales. Por último, para comprobar el buen
comportamiento de estos valores, estos son aplicados a un ejemplo que surge en el
reparto de costes correspondientes a la instalación de un ascensor en un edificio de
viviendas.
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En el Caṕıtulo 4 se estudian nuevas caracterizaciones para los valores propues-
tos en el caṕıtulo anterior (Gonçalves-Dosantos y Alonso-Meijide, 2020), de forma
similar a como el valor de Owen es caracterizado en Vázquez-Brage et al. (1997).
Además, dos nuevos valores, y sus respectivas caracterizaciones, para extender el
equal surplus division value son introducidos. Uno de ellos es el valor obtenido ap-
licando el procedimiento propuesto por Owen (1977) para llegar al valor de Owen
a partir del valor de Shapley, pero en esta nueva situación, utilizando el equal
surplus division value. La segunda extensión surge buscando un valor coalicional
para el equal surplus division value que verifique la propiedad de contribuciones
equilibradas. Para comparar estos nuevos valores, entre śı y con los ya presenta-
dos en el Caṕıtulo 3, un ejemplo similar al del caṕıtulo anterior es usado en este
caṕıtulo.

En los dos caṕıtulos anteriores, hemos obtenido extensiones de diversos valores
ya existentes en un marco concreto de los juegos cooperativos. En el Caṕıtulo 5
considerando un tipo especial de jugador, jugador necesario, y su pago asociado
proponemos un nuevo valor para juegos cooperativos (Gonçalves-Dosantos et al.,
2020d). Un jugador necesario es aquel sin el cual el valor obtenido por cualquier
coalición del juego es igual a cero. En Alonso-Meijide et al. (2019a) y Béal y
Navarro (2020) se utilizan este tipo de jugadores para caracterizar el valor de
Shapley, el valor de Banzhaf (Banzhaf III, 1964) y el equal surplus division value.
Para poder comparar teóricamente este nuevo valor con otros ya existentes en
la literatura, se propone una caracterización del mismo. Además se comprueba
su comportamiento, frente a estos otros valores, en un ejemplo práctico. Por
último, este valor es extendido al contexto de los juegos cooperativos con uniones
a priori, para caracterizarlo de igual manera utilizando propiedades de jugadores
necesarios. Finalizamos con dos caracterizaciones para el valor de Owen y Banzhaf-
Owen (Owen, 1982) utilizando, de nuevo, los jugadores necesarios de forma similar
a como Alonso-Meijide et al. (2019a) caracterizan el valor de Shapley y Banzhaf.

En el Caṕıtulo 6, desde un punto de vista más practico que en el Caṕıtulo
1, resolvemos un problema real de redes con elementos estocásticos (Gonçalves-
Dosantos y Casas-Mendez, 2020). Los problemas de rutas de veh́ıculos, con origen
en Dantzig y Ramser (1959), contemplan el diseño de un conjunto de rutas de costo
mı́nimo para una flota de veh́ıculos que deben atender la demanda de un grupo
de clientes dispersos en diferentes localizaciones. De este modelo básico, surgen
muchos otros al contemplar distintas restricciones, tales como flotas de veh́ıculos
con capacidades heterogéneas, ventanas de tiempo en las cuales los clientes deben
ser atendidos y varios puntos de entrega o recogida, entre otros. En este caṕıtulo
se estudian los problemas de rutas de veh́ıculos con multi-compartimentos. Es-
tos problemas se caracterizan por la existencia de varios productos incompatibles
que deben ser entregados, por lo que la flota de veh́ıculos consta de varios multi-
compartimentos independientes para impedir la mezcla de unos y otros. En la
literatura existente para estos modelos no se tiene en cuenta aspectos importantes
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de la vida real que a menudo son aleatorios. En este sentido nosotros vamos a
considerar que las demandas de los clientes son variables estocásticas. La moti-
vación de este modelo viene dado por un problema real que surge en una cooper-
ativa agŕıcola gallega. En esta cooperativa se fabrican cuatro tipos distintos de
alimentos para animales de granja, consta de una flota de veh́ıculos de varios com-
partimentos con diferentes capacidades y en cada compartimento solo un tipo de
alimento puede ser transportado. Dado la alta complejidad computacional de este
tipo de modelos, se propone un algoritmo en dos pasos. Primero, se utiliza una
heuŕıstica constructiva basada en el algoritmo de Clarke y Wright (1964), para
después, mediante una búsqueda tabú (Glover, 1989 y Glover, 1990) mejorar esta
solución inicial. Se muestran resultados a través de los datos reales para, final-
mente, realizar un estudio de simulación para comprobar el comportamiento de
este algoritmo.

Conclusiones

En el primer caṕıtulo se estudian los problemas de reparto de costes en proyec-
tos cuando las duraciones de las actividades son variables estocásticas. Se ha
planteado un juego cooperativo para determinar la influencia entre las distintas
actividades a la hora de retrasar el proyecto, y aśı, mediante el valor de Shapley
hacer un reparto ecuánime de los costes por demora asignados a cada una de el-
las. La comparación con el modelo determinista es satisfactoria, al obtener costes
diferentes para actividades con duraciones iguales en media pero diferentes dis-
tribuciones. Un algoritmo de estimación de la regla de reparto ha sido propuesto,
obteniendo en tiempos manejables buenos resultados y con errores aceptables. El
segundo caṕıtulo propone un software de gestión de proyectos de uso libre y gra-
tuito, con un manual online para el soporte del mismo.

En los Caṕıtulos 3 y 4 se extienden los valores igualitarios al contexto de juegos
cooperativos con uniones a priori. Con un número aceptable de propiedades coher-
entes, los distintos valores han sido caracterizados, probándose la independencia
de las distintas propiedades que caracterizan cada valor.

En el Caṕıtulo 5 ha sido propuesto un nuevo valor considerando un reparto para
los jugadores necesarios. En cierta manera, la propiedad propuesta para jugadores
necesarios corrige las propiedades para tales jugadores que se encuentran en los
valores de Shapley y Banzhaf. Además, se han propuesto caracterizaciones para
el valor de Owen y Banzhaf-Owen utilizando únicamente tres propiedades.

Por último, en el Caṕıtulo 6 se resuelve un problema real de rutas de veh́ıculos
con multi-compartimentos y demandas estocásticas. Dada la alta complejidad
computacional de estos problemas un algoritmo en dos pasos ha sido propuesto. El
algoritmo constructivo tiene en cuenta el hecho de que las demandas son variables
estocásticas a la hora de seleccionar los clientes y, en caso de ser necesario, la vuelta
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al depósito para repostar bienes necesarios. En el segundo paso una búsqueda tabú
mejora la solución inicial, seleccionando rutas al azar e intercambiando desde uno
hasta dos clientes entre las rutas. En el ejemplo con datos reales utilizados se han
comparado las soluciones obtenidas con el caso determinista. La distancia recorrida
por los veh́ıculos coincide con la recorrida en el caso determinista cuando todas las
demandas (que en nuestro caso son estocásticas) pueden ser satisfechas sin que los
veh́ıculos tengan que retornar al depósito. En todo caso, la distancia recorrida en
el caso estocástico aumenta en media aproximadamente un 6% por la presencia de
tal aleatoriedad. Por último, en la simulación realizada se comparan las soluciones
obtenidas en el primer y el segundo paso del algoritmo. Las soluciones iniciales
son conseguidas en tiempos inferiores a un segundo y con buenos resultados. En
el segundo paso, en tiempos razonables, se mejora la solución inicial hasta en un
10%.

Ĺıneas Futuras

Finalmente, existen varias tareas abiertas que tenemos intención de abordar en
el futuro. En relación a los repartos de costes de demora en proyectos estocásticos
nuevas reglas de reparto pueden ser propuestas para ser comparadas, tanto en la
práctica como teóricamente, con la regla utilizada en Gonçalves-Dosantos et al.
(2020d). Además, se pueden definir proyectos con uniones a priori, considerando
que hay un conjunto de empresas, cada una de las cuales gestiona una o más tareas,
y estudiar, por ejemplo, el valor de Owen como regla de reparto. En relación al
paquete ProjectManagement nuevas funciones pueden ser implementadas, desde
la metodoloǵıa que acabamos de comentar anteriormente hasta la creación de una
interfaz gráfica para un uso más intuitivo del paquete.

Un tema de interés en gestión de proyectos en los que intervienen varios
jugadores es analizar diversas cuestiones en relación al esfuerzo que realizan. Se
pueden considerar situaciones en las que cada uno de los jugadores tiene el control
sobre el tiempo que necesita para completar su actividad, por ejemplo, destinando
más o menos recursos a llevarla a cabo. En este tipo de situaciones los jugadores
pueden generar ingresos destinando parte de los recursos iniciales a otros proyec-
tos pero ello conlleva posiblemente costes debidos a sanciones por retraso. En
este contexto surge un juego no cooperativo entre los jugadores que eligen las de-
moras para sus actividades individuales. Una solución de equilibrio en la que los
jugadores eligen el retraso de sus actividades de forma simultánea o secuencial,
dependiendo de la ubicación de la actividad dentro del proyecto, puede ser con-
siderada. En este tema hemos empezado a trabajar durante una visita a la Duke
University en el otoño de 2019 y tenemos un art́ıculo en preparación con Fernando
Bernstein (Duke University) y Greg DeCroix (University of Wisconsin-Madison)
que pensamos terminar en un futuro próximo.

En los valores igualitarios para juegos cooperativos con uniones a priori, nuevas
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caracterizaciones pueden ser obtenidas, por ejemplo, basándose en las que propone
Ferrières (2017) para caracterizar los valores igualitarios en juegos cooperativos.
Además, los valores igualitarios pueden ser extendidos a juegos cooperativos en los
que existe un grafo que limita las posibilidades de comunicación entre los jugadores
(ver Borm et al., 1992), y a su vez ser caracterizados.

Con la propiedad propuesta para jugadores necesarios, un valor no eficiente
surge al considerar que este cumpla las propiedades de aditividad, simetŕıa y
jugador nulo. Este valor puede ser comparado con los valores de Shapley y Ban-
zhaf en la clase de microarray games (Lucchetti et al., 2010), lo que permite, entre
otras cosas, a partir de una matriz de datos de expresión genética identificar los
genes que son responsables de una enfermedad determinada.

Por último, en el problema de rutas de veh́ıculos con multi-compartimentos y
demandas estocásticas se pueden desarrollar nuevas metaheuŕısticas para mejorar
las soluciones obtenidas y/o los tiempos de cálculo, basadas en colonia de hormigas
(Rajappa et al., 2016), templado simulado (Xiao et al., 2014) o algoritmos genéticos
(Vidal et al., 2013), entre otros.






