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Abstract The purpose of this paper is twofold. We first provide the mathe-
matical analysis of a dynamic contact problem in thermoelasticity, when the
contact is governed by a normal damped response function and the consti-
tutive thermoelastic law is given by the Duhamel-Neumann relation. Under
suitable hypotheses on data and using a Faedo-Galerkin strategy, we show the
existence and uniqueness of solution for this problem. We then study the par-
ticular case when the deformable body is, in fact, a shell and use asymptotic
analysis to study the convergence to a 2D limit problem when the thickness
tends to zero.
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1 Introduction

For the last 50 years, asymptotic methods have been used to derive and justify
simplified models for three-dimensional solid mechanics problems for beams,
plates and shells. The foundation for these methods was established by Lions
in [7]. Regarding elastic shells, a complete theory can be found in [3].

Recently, in [1] the asymptotic limit of a dynamic problem for elliptic
shells in thermoelasticity has been analyzed. The aim of the present note is
to obtain similar results for thermoelastic shells in contact with a foundation.
Contact problems abound in industry and many other areas in which mathe-
matical models apply, as can tell the growing number of publications on the
mathematical theory of contact (see for example [12] and references therein).
The addition of a contact condition introduces a nonlinearity in the problem
and, thus the methods and arguments needed will differ considerably from
our previous work. Nevertheless, since both problems are cast into the same
framework of the asysmptotic analysis of shells in thermoelasticity, the state
of the art will not be reviewed here again, and we refer the interested reader
to [1] and references therein.

Following the same principle, some notation will not be introduced here,
since all required definitions are available in [1], and we will focus in the nov-
elties due to the contact condition and how it affects the subsequent analysis.

The structure of the paper is the following: in Section 2 we shall describe
the variational and mechanical formulations of the contact problem in carte-
sian coordinates in a general domain, and present a result of existence and
uniqueness of solution for that problem. In Section 3 we consider the par-
ticular case when the deformable body is, in fact, a shell and reformulate the
variational formulation in curvilinear coordinates. Then we give the scaled for-
mulation. To do that, we will use a projection map into a reference domain and
we will introduce the scaled unknowns and forces as well as the assumptions
on coefficients. We also devote this section to recall and derive results that
will be needed later. In Section 4 we briefly describe the formal asymptotic
analysis which leads to the formulation of limit two-dimensional problems.
Then, in Section 5 we prove the existence and uniqueness of solution for the
two-dimensional limit problem and then we focus on the elliptic membrane
case, for which we provide a rigorous convergence result. Finally, in Section 6
we show that the solution to the re-scaled version of this problem, with true
physical meaning, also converges. The paper ends with Section 7, devoted to
the conclusions and future work.

2 A three-dimensional dynamic contact problem for thermoelastic
bodies. The normal damped response case

Let Ω̂ε be a three-dimensional bounded domain and assume that
¯̂
Ωε is the

reference configurarion of a deformable body made of an elastic material, which
is homogeneous and isotropic, with Lamé coefficients λ̂ε ≥ 0, µ̂ε > 0. Let
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Γ̂ ε = ∂Ω̂ε denote the boundary of the body, which is divided into three disjoint
parts Γ̂ ε+, Γ̂ εC and Γ̂ ε0 , where the measure of the latter is strictly positive.

The equations for the three-dimensional dynamic thermoelastic frictionless
contact problem between a regular three-dimensional solid and a deformable
foundation with normal damped response are the following:

Problem 1 Find the stress field σ̂ε = (σ̂εij), the displacements field ûε = (ûεi )

and the temperature field ϑ̂ε verifying

σ̂εij = λ̂εêεkk(ûε)δij + 2µ̂εêεij(û
ε)− α̂εT (3λ̂ε + 2µ̂ε)ϑ̂εδij in Ω̂ε × (0, T ), (1)

ρ̂ε ¨̂uε − divσ̂ε = f̂
ε

in Ω̂ε × (0, T ) (2)

β̂ε
˙̂
ϑε = ∂j(k̂

ε∂̂εj ϑ̂
ε)− α̂εT (3λ̂ε + 2µ̂ε)êεkk( ˙̂uε) + q̂ε in Ω̂ε × (0, T ), (3)

ûε = 0 on Γ̂ ε0 × (0, T ), (4)

ϑ̂ε = 0 on Γ̂ ε0 × (0, T ), (5)

σ̂εn̂ε = ĥ
ε

on Γ̂ ε+ × (0, T ), (6)

− σ̂εn = p̂ε(ˆ̇uεn), σ̂εt = (σ̂εti) = 0 on Γ̂ εC × (0, T ), (7)

k̂ε∂̂εj ϑ̂
εnj = 0 on (Γ̂ ε+ ∪ Γ̂ εC)× (0, T ), (8)

˙̂uε(·, 0) = ûε(·, 0) = 0 in Ω̂ε, (9)

ϑ̂ε(·, 0) = 0 in Ω̂ε. (10)

We refer the reader to [1] for the details on the set of equations and conditions
(1)–(10),with the exception of the contact condition (7), on which we elabo-
rate now. We consider that the body may enter in contact with a deformable
foundation which, initially, is at a known distance (or gap) ŝε measured along
the direction of outward normal vector n̂ε = (n̂εi ) on Γ̂ εC , and we assume that
the normal response on the contact surface only happens when the surface
element is moving towards the foundation, and vanishes when it is moving
away. Thus to model contact in the normal direction we are using the so-
called normal damped response (see [12] and references therein). Therefore,
p̂ε : R → R+ is a non negative function which vanishes when its argument
(the surface velocity) is nonpositive. Specifically, one may use

p̂ε(r) = κ̂ε r+, (11)

where κ̂ε > 0 stands for the normal damping coefficient, and we denote r+ =
max{r, 0} for any r ∈ R. The set of mathematical assumptions for p̂ε(·) : R→
R+ is detailed below:

p̂ε(r) = 0 if r ≤ 0,
There exists Lp > 0 such that |p̂ε(r1)− p̂ε(r2)| ≤ Lp|r1 − r2|

∀ r1, r2 ∈ R,
(p̂ε(r1)− p̂ε(r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R.

(12)

In particular, hypotheses (12) are verified by (11). For simplicity, we shall
consider that in the reference configuration body and foundation are already
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in contact, thus ŝε = 0. Now, to derive the variational formulation of the
problem, let

V (Ω̂ε) := {v̂ε = (v̂εi ) ∈ [H1(Ω̂ε)]3; v̂ε = 0 on Γ̂ ε0 },
S(Ω̂ε) := {ϕ̂ε ∈ H1(Ω̂ε); ϕ̂ε = 0 on Γ̂ ε0 },

which are the Hilbert spaces of admissible displacements and temperatures,
respectively. We define the nonlinear map P̂ ε : [H1(Ω̂ε)]3 → [H1(Ω̂ε)]3

′
such

that 〈
P̂ ε(ûε), v̂ε

〉
=

∫
Γ̂ ε
C

p̂ε(ûεn)v̂εn dΓ̂
ε ∀ûε, v̂ε ∈ [H1(Ω̂ε)]3.

Above and below we use the notation for a duality pair 〈·, ·〉 in V ′(Ω̂ε)×V (Ω̂ε)
(also for S′(Ω̂ε)× S(Ω̂ε)).

Then, it is straightforward to obtain the following variational formulation:

Problem 2 Find a pair t 7→ (ûε(x̂ε, t), ϑ̂ε(x̂ε, t)) of [0, T ] → V (Ω̂ε)× S(Ω̂ε)
verifying

ρ̂ε
〈

¨̂uεi , v̂
ε
i

〉
+ aV,ε(ûε, v̂ε)− cε(ϑ̂ε, v̂ε) +

〈
P̂ ε( ˙̂uε), v̂ε

〉
=
〈
Ĵε(t), v̂ε

〉
∀v̂ε ∈ V (Ω̂ε), a.e. in (0, T ),

(13)

β̂ε
〈

˙̂
ϑε, ϕ̂ε

〉
+ aS,ε(ϑ̂ε, ϕ̂ε) + cε(ϕ̂ε, ˙̂uε) =

〈
Q̂ε(t), ϕ̂ε

〉
∀ϕ̂ε ∈ S(Ω̂ε), a.e. in (0, T ),

(14)

with ˙̂uε(·, 0) = ûε(·, 0) = 0 and ϑ̂ε(·, 0) = 0.

In favour of simplicity, we are going to assume that the different param-
eters of the problem (thermal conductivity, thermal dilatation, specific heat
coefficient, mass density, Lamé coefficients) are constants.

Theorem 1 Let us assume that
f̂
ε
∈ H1(0, T ; [L2(Ω̂ε)]3),

ĥ
ε
∈ H2(0, T ; [L2(Γ̂ ε+)]3), and ĥ

ε
(·, 0) = 0,

q̂ε ∈ H1(0, T ;L2(Ω̂ε)).

Then, there exists a unique pair (ûε(x, t), ϑ̂ε(x̂, t)) solution to Problem 2 such
that 

ûε ∈ L∞(0, T ;V (Ω̂ε))
˙̂uε ∈ L∞(0, T ; [L2(Ω̂ε)]3) ∩ L∞(0, T ;V (Ω̂ε)),
¨̂uε ∈ L∞(0, T ;V ′(Ω̂ε)) ∩ L∞(0, T ; [L2(Ω̂ε)]3),

(15)

{
ϑ̂ε ∈ L∞(0, T ;L2(Ω̂ε)) ∩ L2(0, T ;S(Ω̂ε)),
˙̂
ϑε ∈ L∞(0, T ;L2(Ω̂ε)) ∩ L2(0, T ;S(Ω̂ε)).

(16)
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Remark 1 The regularity results in (15c) and (16b) imply that the duality

products involving ¨̂uε and
˙̂
ϑε in (13) and (14) can be replaced by the usual

inner products in L2(Ω̂ε).

Proof We proceed by following the Faedo-Galerkin method. Let {ŵi}∞i=1 and
{ŝi}∞i=1 be two sequences of functions such that


ŵi ∈ V (Ω̂ε) ∀i,
ŵ1, . . . , ŵm are orthonormal functions and Vm = 〈ŵ1, . . . , ŵm〉 , ∀m
V (Ω̂ε) =

⋃
m≥1

Vm.

(17)


ŝi ∈ S(Ω̂ε) ∀i,
ŝ1, . . . , ŝm are orthonormal functions and Sm = 〈ŝ1, . . . , ŝm〉 , ∀m
S(Ω̂ε) =

⋃
m≥1

Sm.

(18)

The approximated solutions (ûm, ϑ̂m) are defined by the following problem:

Problem 3 Find the functions ûm : [0, T ]→ Vm and ϑ̂m : [0, T ]→ Sm in the
form

ûm(x̂, t) =
m∑
i=1

umi (t)ŵi(x̂),

ϑ̂m(x̂, t) =
m∑
i=1

ϑmi (t)ŝi(x̂),

such that

ρ̂ε
〈

¨̂um, v̂m
〉

+aV,ε(ûm, v̂m)−cε(ϑ̂m, v̂m)+
〈
P̂ ε( ˙̂um), v̂m

〉
=
〈
Ĵε(t), v̂m

〉
, ∀ v̂m ∈ Vm,
(19)

β̂ε
〈

˙̂
ϑm, ϕ̂m

〉
+ aS,ε(ϑ̂m, ϕ̂m) + cε(ϕ̂m, ˙̂um) =

〈
Q̂ε(t), ϕ̂m

〉
, ∀ ϕ̂m ∈ Sm.

(20)
with the initial conditions

ûm(0) = ˙̂um(0) = 0, ϑ̂m(0) = 0. (21)

Finding a solution for Problem 3 is equivalent to solving a first order differential
equation system

Ż(t) = F(t,Z), Z(0) = 0.
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where Z(t) = (vm1 (t), . . . , vmm(t), um1 (t), . . . , umm(t), ϑm1 (t), . . . , ϑmm(t)), with vmj (t) =
u̇mj (t). The Picard-Lindeloff theorem gives a unique absolutely continuous so-
lution in an interval [0, tm] which depends on the supreme of function F (which
does not depend on time). Then, being the functions Fj uniformly Lipschitz
in the variable Z, if we prove that the solution Z(t) is bounded, we can extend
the solution to the whole interval [0, T ].
Now the goal is to obtain estimations in appropriate normed spaces for ûm,

˙̂um, ϑ̂m and
˙̂
ϑm.

We can take v̂m = ˙̂um ∈ Vm and ϕ̂m = ϑ̂m ∈ Sm in (19), (20) respectively,
and adding both equations we have that

ρ̂ε
〈

¨̂um, ˙̂um
〉

+ aV,ε(ûm, ˙̂um) + β̂ε
〈

˙̂
ϑm, ϑ̂m

〉
+ aS,ε(ϑ̂m, ϑ̂m) +

〈
P̂ ε( ˙̂um), ˙̂um

〉
=
〈
Ĵε(t), ˙̂um

〉
+
〈
Q̂ε(t), ϑ̂m

〉
,

or equivalently

1

2

d

dt

{
ρ̂ε
∣∣∣ ˙̂um(t)

∣∣∣2
0

+ aV,ε(ûm(t), ûm(t)) + β̂ε
∣∣∣ϑ̂m(t)

∣∣∣2
0

}
+ aS,ε

(
ϑ̂m, ϑ̂m

)
+
〈
P̂ ε( ˙̂um), ˙̂um

〉
=
〈
Ĵε(t), ˙̂um

〉
+
〈
Q̂ε(t), ϑ̂m

〉
,

(22)

which, taking into account the monotonicity of p̂ε, becomes

1

2

d

dt

{
ρ̂ε
∣∣∣ ˙̂um(t)

∣∣∣2
0

+ aV,ε(ûm(t), ûm(t)) + β̂ε
∣∣∣ϑ̂m(t)

∣∣∣2
0

}
+ aS,ε

(
ϑ̂m, ϑ̂m

)
≤
〈
Ĵε(t), ˙̂um

〉
+
〈
Q̂ε(t), ϑ̂m

〉
.

Notice that we shall use the notation | · |0 for a (vector or scalar) L2 norm.
The same applies for ‖ · ‖1 to denote a H1 norm. Integrating in [0, t], taking
into account (21), the coercivity of aV,ε, aS,ε, integrating by parts the term in
Γ̂ ε+ and using Korn’s inequality we get

ρ̂ε
∣∣∣ ˙̂um(t)

∣∣∣2
0

+ C ‖ûm(t)‖2V + β̂ε
∣∣∣ϑ̂m(t)

∣∣∣2
0

+ k̂C̃

∫ t

0

∥∥∥ϑ̂m(s)
∥∥∥2

S
ds

≤
∫ t

0

{∣∣∣f̂ε(s)∣∣∣
0

∣∣∣ ˙̂um(s)
∣∣∣
0

+
∣∣∣ ˙̂hε(s)∣∣∣

0,Γ̂ ε
+

|ûm(s)|0,Γ̂ ε
+

+ |q̂ε(s)|0
∣∣∣ϑ̂m(s)

∣∣∣
0

}
ds.

(23)

Above and in what follows, C, C̃ denote positive constants whose specific value
may change from line to line, only depending on data. Next, applying Young’s
inequality to each term in the right side in (23) and the continuity of the trace
operator, yields that∣∣∣ ˙̂um(t)

∣∣∣2
0

+ ‖ûm(t)‖2V +
∣∣∣ϑ̂m(t)

∣∣∣2
0

+

∫ t

0

∥∥∥ϑ̂m(s)
∥∥∥2

S
ds

≤ C(f̂
ε
,

˙̂
hε, q̂ε) + C̃

∫ t

0

{∣∣∣ ˙̂um(s)
∣∣∣2
0

+ ‖ûm(s)‖21 +
∣∣∣ϑ̂m(s)

∣∣∣2
0

}
ds,

(24)
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which, applying Gronwall’s Lemma, gives∣∣∣ ˙̂um(t)
∣∣∣2
0

+ ‖ûm(t)‖2V +
∣∣∣ϑ̂m(t)

∣∣∣2
0
≤ C(f̂

ε
,

˙̂
hε, q̂ε) + eC̃T , ∀m, (25)

from where,

˙̂um ∈ L∞(0, T, [L2(Ω̂ε)]3), ϑ̂m ∈ L∞(0, T, L2(Ω̂ε)), ûm ∈ L∞(0, T, V (Ω̂ε)).

Further, going back to (24), we have

ϑ̂m ∈ L2(0, T, S(Ω̂ε)),

and going back to (22), repeating the process, but keeping the term∫ t

0

〈
P̂ ε( ˙̂um), ˙̂um

〉
dr =

∫ t

0

κ̂ε( ˙̂umn )2
+dr,

we find that

( ˙̂umn )+ ∈ L2(0, T ;L2(Γ̂ εC)).

Note that all the estimates are independent of m. Then

{ûm}m is a bounded subset of L∞(0, T, V (Ω̂ε)), (26)

{
˙̂u
m
}
m

is a bounded subset of L∞(0, T, [L2(Ω̂ε)]3), (27)

{
ϑ̂m
}
m

is a bounded subset of L∞(0, T, L2(Ω̂ε)) and L2(0, T ;S(Ω̂ε)),

(28){
( ˙̂umn )+

}
m

is a bounded subset of L2(0, T ;L2(Γ̂ εC)). (29)

We now add equations (19) and (20) and write the result at times t + h,
with h > 0 and 0 ≤ t ≤ T − h, then subtract the resulting equations to get:

ρ̂ε
〈

¨̂umi (t+ h)− ¨̂umi (t), v̂mi

〉
+ aV,ε(ûm(t+ h)− ûm(t), v̂m)− cε(ϑ̂m(t+ h)− ϑ̂m(t), v̂m)

+
〈
P̂ ε( ˙̂um(t+ h))− P̂ ε( ˙̂um(t)), v̂m

〉
+ β̂ε

〈
˙̂
ϑm(t+ h)− ˙̂

ϑm(t), ϕ̂m
〉

+ aS,ε(ϑ̂m(t+ h)− ϑ̂m(t), ϕ̂m) + cε(ϕ̂m, ˙̂um(t+ h)− ˙̂um(t))

=

∫
Ω̂ε

(f̂ i,ε(t+ h)− f̂ i,ε(t))v̂mi dx̂ε +

∫
Γ̂ ε
+

(ĥi,ε(t+ h)− ĥi,ε(t))v̂mi dΓ̂ ε +

∫
Ω̂ε

(q̂ε(t+ h)− q̂ε(t))ϕ̂m dx̂ε

∀v̂m ∈ Vm, ∀ϕ̂m ∈ Sm, a.e. in (0, T ).
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Next we take v̂m = ˙̂um(t+h)− ˙̂um(t) ∈ Vm and ϕ̂m = ϑ̂m(t+h)− ϑ̂m(t) ∈ Sm
to obtain

ρ̂ε
〈

¨̂umi (t+ h)− ¨̂umi (t), ˙̂umi (t+ h)− ˙̂umi (t)
〉

+ aV,ε(ûm(t+ h)− ûm(t), ˙̂um(t+ h)− ˙̂um(t))

+
〈
P̂ ε( ˙̂um(t+ h))− P̂ ε( ˙̂um(t)), ˙̂um(t+ h)− ˙̂um(t)

〉
+ β̂ε

〈
˙̂
ϑm(t+ h)− ˙̂

ϑm(t), ϑ̂m(t+ h)− ϑ̂m(t)
〉

+ aS,ε(ϑ̂m(t+ h)− ϑ̂m(t), ϑ̂m(t+ h)− ϑ̂m(t))

=

∫
Ω̂ε

(f̂ i,ε(t+ h)− f̂ i,ε(t))( ˙̂umi (t+ h)− ˙̂umi (t)) dx̂ε +

∫
Γ̂ ε
+

(ĥi,ε(t+ h)− ĥi,ε(t))( ˙̂umi (t+ h)− ˙̂umi (t)) dΓ̂ ε

+

∫
Ω̂ε

(q̂ε(t+ h)− q̂ε(t))(ϑ̂m(t+ h)− ϑ̂m(t)) dx̂ε.

Further, because of the monotonicity of p̂ε we have that

ρ̂ε
1

2

d

dt

{∣∣∣ ˙̂um(t+ h)− ˙̂um(t)
∣∣∣2
0

}
+

1

2

d

dt

{
aV,ε(ûm(t+ h)− ûm(t), ûm(t+ h)− ûm(t))

}
+

1

2

d

dt

∫
Ω̂ε

β̂ε(ϑ̂m(t+ h)− ϑ̂m(t))2dx̂ε + aS,ε(ϑ̂m(t+ h)− ϑ̂m(t), ϑ̂m(t+ h)− ϑ̂m(t))

≤
∫
Ω̂ε

(f̂ i,ε(t+ h)− f̂ i,ε(t))( ˙̂umi (t+ h)− ˙̂umi (t)) dx̂ε +

∫
Γ̂ ε
+

(ĥi,ε(t+ h)− ĥi,ε(t))( ˙̂umi (t+ h)− ˙̂umi (t)) dΓ̂ ε

+

∫
Ω̂ε

(q̂ε(t+ h)− q̂ε(t))(ϑ̂m(t+ h)− ϑ̂m(t)) dx̂ε.

Integrating in time in [0, t] we get:

1

2
ρ̂ε
∣∣∣ ˙̂um(t+ h)− ˙̂um(t)

∣∣∣2
0
− 1

2
ρ̂ε
∣∣∣ ˙̂um(h)− ˙̂um(0)

∣∣∣2
0

+
1

2
aV,ε(ûm(t+ h)− ûm(t), ûm(t+ h)− ûm(t))− 1

2
aV,ε(ûm(h)− ûm(0), ûm(h)− ûm(0))

+
1

2

∫
Ω̂ε

β̂ε(ϑ̂m(t+ h)− ϑ̂m(t))2dx̂ε − 1

2

∫
Ω̂ε

β̂ε(ϑ̂m(h)− ϑ̂m(0))2dx̂ε

+

∫ t

0

aS,ε(ϑ̂m(r + h)− ϑ̂m(r), ϑ̂m(r + h)− ϑ̂m(r))dr

≤
∫ t

0

∫
Ω̂ε

(f̂ i,ε(r + h)− f̂ i,ε(r))( ˙̂umi (r + h)− ˙̂umi (r)) dx̂εdr

+

∫ t

0

∫
Γ̂ ε
+

(ĥi,ε(r + h)− ĥi,ε(r))( ˙̂umi (r + h)− ˙̂umi (r)) dΓ̂ εdr

+

∫ t

0

∫
Ω̂ε

(q̂ε(r + h)− q̂ε(r))(ϑ̂m(r + h)− ϑ̂m(r)) dx̂εdr.
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Now, dividing the equation by h2 and having in mind (25), we can take limits
when h→ 0+ to have

1

2
ρ̂ε
∣∣∣¨̂um(t)

∣∣∣2
0
− 1

2
ρ̂ε
∣∣∣¨̂um(0)

∣∣∣2
0

+
1

2
aV,ε( ˙̂um(t), ˙̂um(t))− 1

2
aV,ε( ˙̂um(0), ˙̂um(0))

+
1

2

∫
Ω̂ε

β̂ε(
˙̂
ϑm(t))2dx̂ε − 1

2

∫
Ω̂ε

β̂ε(
˙̂
ϑm(0))2dx̂ε +

∫ t

0

aS,ε(
˙̂
ϑm(r),

˙̂
ϑm(r))dr

≤
∫ t

0

∫
Ω̂ε

˙̂
f i,ε(r)¨̂umi (r) dx̂εdr +

∫ t

0

∫
Γ̂ ε
+

˙̂
hi,ε(r)¨̂umi (r) dΓ̂ εdr +

∫ t

0

∫
Ω̂ε

˙̂qε(r)
˙̂
ϑm(r) dx̂εdr.

(30)

Integrating by parts the term on Γ̂ ε+ above and applying Young’s inequality,
we get

ρ̂ε|¨̂um(t)|20 − ρ̂ε|¨̂um(0)|20 + || ˙̂um(t)||2V + β̂ε| ˙̂ϑm(t)|20 − β̂ε|
˙̂
ϑm(0)|20 +

∫ t

0

‖ ˙̂
ϑm(r)‖2Sdr

≤ C̃(
˙̂
fε,

¨̂
hε, ˙̂qε) + C

∫ t

0

{
|¨̂um(r)|20 + || ˙̂um(r)||21 + | ˙̂ϑm(r)|20

}
dr. (31)

In order to obtain bounds for |¨̂um(0)|20 and | ˙̂ϑm(0)|20 we first notice that equa-
tions (19) and (20) hold for t = 0 due to the compatibility required between ini-
tial and boundary conditions. Therefore, taking t = 0 and v̂m = ¨̂um(0) ∈ Vm
in (19) and ϕ̂m =

˙̂
ϑm(0) ∈ Sm in (20), taking into account the initial condi-

tions, and using Young’s inequality, we obtain

ρ̂ε|¨̂um(0)|20 =

∫
Ω̂ε

f̂ i,ε(0)¨̂umi (0) dx̂ε +

∫
Γ̂ ε
+

ĥi,ε(0)¨̂umi (0) dΓ̂ ε ≤ 1

δ
C + δ|¨̂um(0)|20,

β̂ε| ˙̂ϑm(0)|20 =

∫
Ω̂ε

q̂ε(0)
˙̂
ϑm(0) dx̂ε ≤ 1

δ̃
C̃ + δ̃| ˙̂ϑm(0)|20,

where δ, and δ̃ are sufficiently small positive constants. Next, applying Korn’s
inequality and Gronwall’s lemma in (31) we find

|¨̂um(t)|20 + || ˙̂um(t)||2V + | ˙̂ϑm(t)|20 ≤ C.

Again, all the estimates are independent of m. Then,

{
˙̂um
}
m

is a bounded subset of L∞(0, T, V (Ω̂ε)), (32){
¨̂u
m
}
m

is a bounded subset of L∞(0, T, [L2(Ω̂ε)]3), (33){
˙̂
ϑm
}
m

is a bounded subset of L∞(0, T, L2(Ω̂ε)). (34)
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Observe that (26)–(29) and (32)–(34) imply that there exists subsequences of

ûm and ϑ̂m, also denoted by ûm and ϑ̂m, and there exist elements ûε, ˙̂uε, ¨̂uε,

ϑ̂ε,
˙̂
ϑε and χε such that

ûm
∗−−−⇀

m→∞
ûε inL∞(0, T ;V (Ω̂ε)), (35)

˙̂um
∗−−−⇀

m→∞
˙̂uε inL∞(0, T ; [L2(Ω̂ε)]3) ∩ L∞(0, T ;V (Ω̂ε)), (36)

¨̂um
∗−−−⇀

m→∞
¨̂uε inL∞(0, T ; [L2(Ω̂ε)]3), (37)

ϑ̂m
∗−−−⇀

m→∞
ϑ̂ε inL∞(0, T ;L2(Ω̂ε)) ∩ L∞(0, T ;S(Ω̂ε)), (38)

˙̂
ϑm

∗−−−⇀
m→∞

˙̂
ϑε inL∞(0, T ;L2(Ω̂ε)), (39)

( ˙̂umn )+ −−⇀
m→∞

χε inL2(0, T ;L2(Γ̂ εC)). (40)

In order to show that χε = ( ˙̂uεn)+, we first observe that (36) and (37) imply
that {

˙̂um
}
m

is a bounded subset of [H1(Ω̂ε × (0, T ))]3.

Since the trace map is a compact operator from H1(Ω̂ε × (0, T )) to L2(Γ̂ ε ×
(0, T )), we can affirm that there exists a subsequence of ˙̂um (still denoted by
˙̂um) such that

˙̂um → ˙̂uε, strongly in [L2(Γ̂ εC×(0, T ))]3, and then ˙̂um(y)→ ˙̂uε(y) a.e. on Γ̂ εC×(0, T ).

Then, being the positive part a continuous function it holds that

( ˙̂umn )+ → ( ˙̂uεn)+ a.e. on Γ̂ εC × (0, T ). (41)

On the other hand, (29) implies that

( ˙̂umn )+ is a bounded subset of L2(Γ̂ εC × (0, T )). (42)

From (41), (42) and [6, Lema 1.3] it follows that

( ˙̂umn )+ ⇀ ( ˙̂uεn)+ in L2(Γ̂ εC × (0, T )).

Since (40) also implies that ( ˙̂umn )+ ⇀ χε in L2(Γ̂ εC × (0, T )), the uniqueness of

weak limits implies that χε = ( ˙̂uεn)+ and

( ˙̂umn )+ −−⇀
m→∞

( ˙̂uεn)+ in L2(0, T ;L2(Γ̂ εC)). (43)

Consider now v̂m = ŵj and ϕ̂m = ŝi in equations (19) and (20) fixed:

ρ̂ε
〈

¨̂um, ŵj

〉
+ aV,ε(ûm, ŵj)− cε(ϑ̂m, ŵj) +

〈
P̂ ε( ˙̂um), ŵj

〉
=
〈
Ĵε(t), ŵj

〉
,

(44)
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〈
˙̂
ϑm, ŝi

〉
+ aS,ε(ϑ̂m, ŝi) + cε(ŝi, ˙̂um) =

〈
Q̂ε(t), ŝi

〉
. (45)

Observe that (35) and (36) imply that

aV,ε(ûm, ŵj)→ aV,ε(ûε, ŵj) and cε(ŝi, ˙̂um)→ cε(ŝi, ˙̂uε) in L∞(0, T ).

Analogously, from (38) we can state that

aS,ε(ϑ̂m, si)→ aS,ε(ϑ̂ε, si) and cε(ϑ̂m, ŵj)→ cε(ϑ̂ε, ŵj) in L∞(0, T ).

Now, from (37) and (39) we have:〈
¨̂um, ŵj

〉
= (¨̂um, ŵj)→ (¨̂uε, ŵj) and

〈
˙ϑm, si

〉
= ( ˙ϑm, si)→ (ϑ̇ε, si) in L∞(0, T ).

Also, from (43) 〈
P̂ ε( ˙̂um), ŵj

〉
→
〈
P̂ ε( ˙̂uε), ŵj

〉
in D′(0, T ).

Then, we can take m→∞ in (44)–(45) obtaining that

ρ̂ε(¨̂uε, ŵj) + aV,ε(ûε, ŵj)− cε(ϑ̂ε, ŵj) +
〈
P̂ ε( ˙̂uε), ŵj

〉
=
〈
Ĵε(t), ŵj

〉
, in D′(0, T ), ∀ j ≥ 1,

(46)

(
˙̂
ϑε, ŝi) + aS,ε(ϑ̂ε, ŝi) + cε( ˙̂uε, ŝi) =

〈
Q̂ε(t), ŝi

〉
, in L∞(0, T ), ∀ i ≥ 1.

(47)

Next, from (17), (18), (46) and (47) we conclude that (13) holds in D′(0, T )
while (14) holds in L∞(0, T ). Let us see now that (13) also holds a.e. in (0, T ).
Indeed, we have that〈
P̂ ε( ˙̂uε), ŵj

〉
= −ρ̂ε(¨̂uε, ŵj)−aV,ε(ûε, ŵj)+c

ε(ϑ̂ε, ŵj)+
〈
Ĵε(t), ŵj

〉
, in D′(0, T ), ∀ j ≥ 1.

We observe that the left-hand side is in D′(0, T ), while the right-hand side
terms are in L∞(0, T ), from which we deduce that P̂ ε( ˙̂uε) ∈ L∞(0, T ;V ′) and
(13) and (14) hold a.e. in (0, T ). Besides, since the initial conditions (21) are
null, it is trivial that, when m→∞, the limit functions have null initial con-
ditions as well, which completes the proof for the existence and regularity of
the solutions. We focus now on proving the uniqueness.

Let us assume that there exist two solutions {ûε,1, ϑ̂ε,1} and {ûε,2, ϑ̂ε,2}
for Problem 2. Let us define wε = ûε,1 − ûε,2 and φε = ϑ̂ε,1 − ϑ̂ε,2. Now,
we consider equations (13)–(14) at time t for {ûε,i, ϑ̂ε,i}, take as test function
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v̂ε = ẇε(t) and ϕ̂ε = φε(t) for both i = 1 and i = 2, and subtract the resulting
equations to find:∫
Ω̂ε

ρ̂εẅε(t)ẇε(t)dx̂ε + aV,ε(wε(t), ẇε(t))− cε(φε(t), ẇε(t))

+

∫
Γ̂ ε
C

(p̂ε( ˙̂uε,1n (t))− p̂ε( ˙̂uε,2n (t)))ẇεn(t) dΓ̂ ε = 0, a.e. in (0, T ),∫
Ω̂ε

β̂εφ̇ε(t)φε(t)dx̂ε + aS,ε(φε(t), φε(t)) + cε(φε(t), ẇε(t)) = 0, a.e. in (0, T ).

Adding these last two equations we have∫
Ω̂ε

ρ̂εẅε(t)ẇε(t)dx̂ε + aV,ε(wε(t), ẇε(t)) +

∫
Γ̂ ε
C

(p̂ε( ˙̂uε,1n (t))− p̂ε( ˙̂uε,2n (t)))( ˙̂uε,1n (t)− ˙̂uε,2n (t)) dΓ̂ ε

+

∫
Ω̂ε

β̂εφ̇ε(t)φε(t)dx̂ε + aS,ε(φε(t), φε(t)) = 0, a.e. in (0, T ).

Taking into account the monotonicity of pε,

1

2

d

dt

{∫
Ω̂ε

ρ̂εẇε(t)ẇε(t)dx̂ε + aV,ε(wε(t),wε(t)) +

∫
Ω̂ε

β̂εφε(t)φε(t)dx̂ε
}

+ aS,ε(φε(t), φε(t)) ≤ 0, a.e. in (0, T ).

Integrating in [0, t], and taking into account the initial conditions we obtain:

ρ̂ε|ẇε(t)|20 + ||wε(t)||2V + β̂ε|φε(t)|20 +

∫ t

0

aS,ε(φε(r), φε(r))dr ≤ 0, a.e. in (0, T ),

from where one easily deduce that wε = 0 and φε = 0. ut

3 The three-dimensional shell contact problem

In this section we consider the particular case when the deformable body is,
in fact, a shell. The reader interested in a detailed exposition of the notation
can consult [3] and in the context of contact problems in [10].

Let ω be a bounded domain of R2,
and let θ ∈ C2(ω̄;R3) be an injective mapping such that the two vectors

aα(y) := ∂αθ(y) are linearly independent. These vectors form the covariant
basis of the tangent plane to the surface S := θ(ω̄) at the point θ(y). We then
define the contravariant basis vectors aα(y), the first fundamental form aαβ ,
the second fundamental form bαβ in covariant or mixed components bβα and
the Christoffel symbols of the surface S as Γσαβ .

We then define the three-dimensional domain Ωε := ω × (−ε, ε) and its
boundary Γ ε = ∂Ωε with the boundary partitioned into Γ ε+ := ω × {ε},
Γ εC := ω × {−ε}, Γ ε0 := γ0 × [−ε, ε], where γ0 ⊆ γ.

Let Θ : Ω̄ε → R3 be the mapping defined by

Θ(xε) := θ(y) + xε3a3(y) ∀xε = (y, xε3) = (y1, y2, x
ε
3) ∈ Ω̄ε. (48)
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By identifying Ω̂ε = Θ(Ωε), Γ̂ ε = Θ(Γ ε), Γ̂ ε0 = Θ(Γ ε0 ), etc. we cast this
setting into the more general three dimensional framework of the preceding
section, as a particular case. Then, we pass to define the covariant and con-
travariant basis of the tangent space gεi and gi,ε, respectively, and from them
we obtain the covariant and contravariant components of the metric tensor
gεij , g

ij,ε, and Christoffel symbols Γ p,εij . The volume element in the set Θ(Ω̄ε)
is
√
gεdxε and the surface element in Θ(Γ ε) is

√
gεdΓ ε where gε := det(gεij).

Let nε(xε) denote the unit outward normal vector on xε ∈ Γ ε and n̂ε(x̂ε)
the unit outward normal vector on x̂ε = Θ(xε) ∈ Θ(Γ ε) (see, [2, p. 41]
for the relation between the two). In particular, on Γ εC , it is verified that
v̂n = (v̂εi n̂

i,ε) = vεi n
i,ε = −vε3.

We now define the corresponding contravariant components in curvilinear
coordinates for the applied forces densities:

f̂ i,ε(x̂ε)êi dx̂
ε =: f i,ε(xε)gεi (x

ε)
√
gε(xε) dxε, ĥi,ε(x̂ε)êidΓ̂

ε =: hi,ε(xε)gεi (x
ε)
√
gε(xε)dΓ ε,

and the covariant components in curvilinear coordinates for the displacements
field:

ûε(x̂ε) = ûεi (x̂
ε)êi =: uεi (x

ε)gi,ε(xε), with x̂ε = Θ(xε).

Remark 2 Notice that forces and unknowns above depend also on the time
variable t ∈ [0, T ], but we decided to keep it implicit for the sake of readiness,
since the subject of the change of variable is the spatial component. The same
comment applies in a number of situations below.

We also define ϑε(xε) := ϑ̂ε(x̂ε) and qε(xε) := q̂ε(x̂ε). Regarding the
normal damped response function, we define pε(rε) := p̂ε(rε). Let us define
the spaces,

V (Ωε) = {vε = (vεi ) ∈ [H1(Ωε)]3;vε = 0 on Γ ε0 }, S(Ωε) = {ϕε ∈ H1(Ωε);ϕε = 0 on Γ ε0 }.

Both are real Hilbert spaces with the induced inner product of [H1(Ωε)]d,
d ∈ {1, 3}. The corresponding norm is denoted by ‖·‖1,Ωε in both cases, since
no confusion is possible. With these definitions it is straightforward to derive
from the Problem 2 the following variational problem (see [3] for the case in
linear elasticity and use similar arguments):
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Problem 4 Find a pair t 7→ (uε(xε, t), ϑε(xε, t)) of [0, T ] → V (Ωε)× S(Ωε)
verifying∫
Ωε

ρε(üεαg
αβ,εvεβ + üε3v

ε
3)
√
gε dxε +

∫
Ωε

Aijkl,εeεk||l(u
ε)eεi||j(v

ε)
√
gεdxε

−
∫
Ωε

αεT (3λε + 2µε)ϑε(eεα||β(vε)gαβ,ε + eε3||3(vε))
√
gεdxε −

∫
Γ ε
C

pε(−u̇ε3)vε3
√
gεdΓ ε

=

∫
Ωε

f i,εvεi
√
gεdxε +

∫
Γ ε
+

hi,εvεi
√
gεdΓ ε ∀vε ∈ V (Ωε), a.e. in (0, T ),∫

Ωε

βεϑ̇εϕε
√
gεdxε +

∫
Ωε

kε(∂εαϑ
εgαβ,ε∂εβϕ

ε + ∂ε3ϑ
ε∂ε3ϕ

ε)
√
gεdxε

+

∫
Ωε

αεT (3λε + 2µε)ϕε(eεα||β(u̇ε)gαβ,ε + eε3||3(u̇ε))
√
gεdxε

=

∫
Ωε

qεϕε
√
gεdxε ∀ϕε ∈ S(Ωε), a.e. in (0, T ),

with u̇ε(·, 0) = uε(·, 0) = 0 and ϑε(·, 0) = 0.

Above, Aijkl,ε = Ajikl,ε = Aklij,ε ∈ C1(Ω̄ε), defined by

Aijkl,ε := λgij,εgkl,ε + µ(gik,εgjl,ε + gil,εgjk,ε), (49)

represent the contravariant components of the three-dimensional elasticity ten-
sor, and the functions eεi||j(v

ε) = eεj||i(v
ε) ∈ L2(Ωε) that represent the covari-

ant components of the linearized change of metric tensor, or strain tensor, are
defined by

eεi||j(v
ε) :=

1

2
(∂εj v

ε
i + ∂εi v

ε
j )− Γ

p,ε
ij v

ε
p,

for all vε ∈ [H1(Ωε)]3, where ∂εi denotes partial derivative with respect to xεi .
Note that the following simplifications are verified,

Γ 3,ε
α3 = Γ p,ε33 = 0 in Ω̄ε, Aαβσ3,ε = Aα333,ε = 0 in Ω̄ε, (50)

as a consequence of the definition of Θ in (48). The definitions of the fourth
order tensor (49) imply that (see [3, Theorem 1.8-1]) for ε > 0 small enough,
there exists a constant Ce > 0, independent of ε, such that,∑

i,j

|tij |2 ≤ CeAijkl,ε(xε)tkltij , (51)

for all xε ∈ Ω̄ε and all t = (tij) ∈ S3 (vector space of 3 × 3 real symmetric
matrices).

Remark 3 We recall that the vector field uε = (uεi ) : Ωε× [0, T ]→ R3 solution
of Problem 4 has to be interpreted conveniently. The functions uεi : Ω̄ε ×
[0, T ] → R3 are the covariant, time dependent, components of the “true”
displacements field Uε := uεig

i,ε : Ω̄ε × [0, T ]→ R3.
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For convenience, we consider a reference domain independent of the small
parameter ε. Hence, let us define the three-dimensional domain Ω := ω ×
(−1, 1) and its boundary Γ = ∂Ω. We also define the following parts of the
boundary,

Γ+ := ω × {1}, ΓC := ω × {−1}, Γ0 := γ0 × [−1, 1].

Let x = (x1, x2, x3) be a generic point in Ω̄ and we consider the notation ∂i
for the partial derivative with respect to xi. We define the projection map
πε : Ω̄ → Ω̄ε, such that

πε(x) = xε = (xεi ) = (xε1, x
ε
2, x

ε
3) = (x1, x2, εx3) ∈ Ω̄ε,

hence, ∂εα = ∂α and ∂ε3 = 1
ε∂3. We consider the displacements related scaled

unknown u(ε) = (ui(ε)) : Ω̄ × [0, T ] → R3 and the scaled vector fields v =
(vi) : Ω̄ → R3 defined as

uεi (x
ε) =: ui(ε)(x) and vεi (x

ε) =: vi(x) ∀x ∈ Ω̄, xε = πε(x) ∈ Ω̄ε.

Besides, we define the scaled temperature ϑ(ε) : Ω̄ × [0, T ]→ R defined as

ϑ(ε)(x) := ϑε(xε) ∀x ∈ Ω, where xε = πε(x) ∈ Ωε.

For the sake of simplicity, from now on, we are going to assume that the
different parameters of the problem (thermal conductivity, thermal dilatation,
specific heat coefficient, mass density, Lamé coefficients) are all independent
of ε. Also, let the functions, Γ p,εij , g

ε, Aijkl,ε be associated with the functions

Γ pij(ε), g(ε), Aijkl(ε), defined by

Γ pij(ε)(x) := Γ p,εij (xε), g(ε)(x) := gε(xε), Aijkl(ε)(x) := Aijkl,ε(xε),

for all x ∈ Ω̄, xε = πε(x) ∈ Ω̄ε. For all v = (vi) ∈ [H1(Ω)]3, let there be
associated the scaled linearized strains (ei||j(ε)(v)) ∈ [L2(Ω)]3×3

sym, which we
also denote as (ei||j(ε;v)), defined by

eα||β(ε;v) :=
1

2
(∂βvα + ∂αvβ)− Γ pαβ(ε)vp, (52)

eα||3(ε;v) :=
1

2
(
1

ε
∂3vα + ∂αv3)− Γ pα3(ε)vp, (53)

e3||3(ε;v) :=
1

ε
∂3v3. (54)

Note that with these definitions it is verified that

eεi||j(v
ε)(πε(x)) = ei||j(ε;v)(x) ∀x ∈ Ω.

Remark 4 The functions Γ pij(ε), g(ε), Aijkl(ε) converge in C0(Ω̄) when ε tends
to zero.
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Remark 5 When we consider ε = 0 the functions will be defined with respect
to y ∈ ω̄. Notice the singularities in (53) and (54) for that case. We shall dis-
tinguish the three-dimensional Christoffel symbols from the two-dimensional
ones associated to S by using Γσαβ(ε) and Γσαβ , respectively.

In [3, Theorem 3.3-2] we find an important result which shows that under
suitable regularity conditions, take for example θ ∈ C2(ω̄;R3), there exists an
ε0 > 0 such that Aijkl(ε) is positive-definite, uniformly with respect to x ∈ Ω̄
and ε, provided that 0 < ε ≤ ε0. Further, the asymptotic behavior of Aijkl(ε)
is detailed. Indeed, it is satisfied that

Aijkl(ε) = Aijkl(0) +O(ε) and Aαβσ3(ε) = Aα333(ε) = 0,

for all ε, 0 < ε ≤ ε0, and

Aαβστ (0) = λaαβaστ + µ(aασaβτ + aατaβσ), Aαβ33(0) = λaαβ , (55)

Aα3σ3(0) = µaασ, A3333(0) = λ+ 2µ, Aαβσ3(0) = Aα333(0) = 0. (56)

Moreover, and related with (51), there exists a constant Ce > 0, independent
of the variables and ε, such that∑

i,j

|tij |2 ≤ CeAijkl(ε)(x)tkltij , (57)

for all ε, 0 < ε ≤ ε0, for all x ∈ Ω̄ and all t = (tij) ∈ S3.
Notice that the limits are functions of y ∈ ω̄ only, that is, independent

of the transversal variable x3. We also recall [3, Theorem 3.3-1], which pro-
vides the asymptotic behavior of Christoffel’s symbols Γ pij(ε), g

ij(ε) and g(ε).

Indeed, if θ ∈ C3(ω̄;R3), then

Γσαβ(ε) = Γσαβ − εx3b
σ
β |α +O(ε2), ∂3Γ

p
αβ(ε) = O(ε), Γ 3

α3(ε) = Γ p33(ε) = 0,

(58)

Γ 3
αβ(ε) = bαβ − εx3b

σ
αbσβ , Γσα3(ε) = −bσα − εx3b

τ
αb
σ
τ +O(ε2), (59)

gαβ(ε) = aαβ + 2εx3a
ασbβσ +O(ε2), gi3(ε) = δi3, g(ε) = a+O(ε), (60)

for all ε, 0 < ε ≤ ε0, where the order symbols O(ε) and O(ε2) are meant with
respect to the norm ‖·‖0,∞,Ω̄ defined by

‖w‖0,∞,Ω̄ = sup{|w(x)|;x ∈ Ω̄},

and the covariant derivatives bσβ |α are defined by

bσβ |α := ∂αb
σ
β + Γσατ b

τ
β − Γ ταβbστ .

The functions bαβ , b
σ
α, Γ

σ
αβ , b

σ
β |α and a are identified with functions in C0(Ω̄).

Further, there exist constants a0, g0 and g1 such that

0 < a0 ≤ a(y) ∀y ∈ ω̄,
0 < g0 ≤ g(ε)(x) ≤ g1 ∀x ∈ Ω̄ and ∀ ε, 0 < ε ≤ ε0. (61)
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Let the scaled heat source q(ε) : Ω × (0, T ) → R and scaled applied forces
f(ε) : Ω × (0, T )→ R3 and h(ε) : Γ+ × (0, T )→ R3 be defined by

qε(xε) =: q(ε)(x) ∀x ∈ Ω, where xε = πε(x) ∈ Ωε,
fε = (f i,ε)(xε) =: f(ε) = (f i(ε))(x) ∀x ∈ Ω, where xε = πε(x) ∈ Ωε,
hε = (hi,ε)(xε) =: h(ε) = (hi(ε))(x) ∀x ∈ Γ+, where xε = πε(x) ∈ Γ ε+.

Regarding the normal damped response function, we define p(ε)(r(ε)) :=
pε(rε). Also, we define the spaces

V (Ω) = {v = (vi) ∈ [H1(Ω)]3;v = 0 on Γ0}, S(Ω) = {ϕ ∈ H1(Ω);ϕ = 0 on Γ0},

which are Hilbert spaces, with associated norms denoted by ‖·‖1,Ω . The scaled
variational problem can then be written as follows:

Problem 5 Find a pair t 7→ (u(ε)(x, t), ϑ(ε)(x, t)) of [0, T ] → V (Ω) × S(Ω)
verifying∫
Ω

ρ(üα(ε)gαβ(ε)vβ + ü3(ε)v3)
√
g(ε) dx+

∫
Ω

Aijkl(ε)ek||l(ε;u(ε))ei||j(ε;v)
√
g(ε)dx

−
∫
Ω

αT (3λ+ 2µ)ϑ(ε)(eα||β(ε;v)gαβ(ε) + e3||3(ε;v))
√
g(ε)dx− 1

ε

∫
ΓC

p(ε)(−u̇3(ε))v3

√
g(ε)dΓ

=

∫
Ω

f i(ε)vi
√
g(ε)dx+

1

ε

∫
Γ+

hi(ε)vi
√
g(ε)dΓ ∀v ∈ V (Ω), a.e. in (0, T ),

(62)∫
Ω

βϑ̇(ε)ϕ
√
g(ε)dx+

∫
Ω

k(∂αϑ(ε)gαβ(ε)∂βϕ+
1

ε2
∂3ϑ(ε)∂3ϕ)

√
g(ε)dx

+

∫
Ω

αT (3λ+ 2µ)ϕ(eα||β(ε; u̇(ε))gαβ(ε) + e3||3(ε; u̇(ε)))
√
g(ε)dx

=

∫
Ω

q(ε)ϕ
√
g(ε)dx ∀ϕ ∈ S(Ω), a.e. in (0, T ), (63)

with u̇(ε)(·, 0) = u(ε)(·, 0) = 0 and ϑ(ε)(·, 0) = 0.

Remark 6 Notice that the time-dependent version of the linearized strain ten-
sor above is well posed when we define

ei||j(ε;u(ε))(t) := ei||j(ε;u(ε)(t)).

See for example [9]. Further, as commented earlier, we usually omit the explicit
time dependence for the sake of a shorter notation.

Remark 7 The unique solvability of Problem 5 for ε > 0 small enough is
similar to Problem 4 and the regularity obtained for the solutions is analogue.
In particular, we find u̇(ε)(·, t) ∈ V (Ω) and ϑ̇(ε)(·, t) ∈ S(Ω) a.e. in (0, T ).

We now present some additional results which will be used in the next section.
In [3, Theorem 3.4-1], we find the following useful result:
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Theorem 2 Let ω be a domain in R2 with boundary γ, let Ω = ω × (−1, 1),
and let g ∈ Lp(Ω), p > 1, be a function such that

∫
Ω

g∂3vdx = 0, for all v ∈ C∞(Ω̄) with v = 0 on γ × [−1, 1].

Then g = 0 a.e in Ω.

We provide here, as a standalone theorem, a result which can be found
inside the proof of [3, Theorem 4.4-1].

Theorem 3 Let X(Ω) := {v ∈ L2(Ω); ∂3v ∈ L2(Ω)} (∂3v being a derivative
in the sense of distributions). Then, the trace v(·, z) of any function v ∈ X(Ω)
is well defined as a function in L2(ω) for all z ∈ [−1, 1] and the trace operator
defined in this fashion is continuous. In particular, there exists a constant
c1 > 0 such that

‖v‖L2(Γ+∪ΓC) ≤ c1
(
|v|20,Ω + |∂3v|20,Ω

)1/2
for all v ∈ X(Ω). As consequence there exists a constant c2 > 0 such that

‖v3‖L2(Γ+∪ΓC) ≤ c2

∑
i,j

|ei||j(ε;v)|20,Ω

1/2

∀v ∈ V (Ω). (64)

4 Formal asymptotic analysis

In this section we briefly describe the formal procedure to identify possible
two-dimensional limit problems, depending on the geometry of the middle
surface, the set where the boundary conditions are given, the order of the
applied forces and, of paramount interest in this paper, the order of the normal
damped response function (the general procedure is described in detail in [3]
and was used for shells in unilateral contact in [10] and normal compliance
contact in [11]). We consider scaled applied forces and heat source of the form

f(ε)(x) = εmfm(x), q(ε)(x) = εmqm(x) ∀x ∈ Ω, h(ε)(x) = εm+1hm+1(x) ∀x ∈ Γ+,

where m is an integer number that will show the order of the volume, heat
source and surface forces, respectively. We also define the scaled normal damped
response function p(ε)(r(ε)) = εm+1pm+1(r(ε)). We substitute in (62) to ob-
tain the following problem:
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Problem 6 Find a pair t 7→ (u(ε)(x, t), ϑ(ε)(x, t)) of [0, T ] → V (Ω) × S(Ω)
verifying∫
Ω

ρ(üα(ε)gαβ(ε)vβ + ü3(ε)v3)
√
g(ε) dx+

∫
Ω

Aijkl(ε)ek||l(ε;u(ε))ei||j(ε;v)
√
g(ε)dx

−
∫
Ω

αT (3λ+ 2µ)ϑ(ε)(eα||β(ε;v)gαβ(ε) + e3||3(ε;v))
√
g(ε)dx−

∫
ΓC

εmpm+1(−u̇3(ε))v3

√
g(ε)dΓ

=

∫
Ω

εmf i,mvi
√
g(ε)dx+

∫
Γ+

εmhi,m+1vi
√
g(ε)dΓ ∀v ∈ V (Ω), a.e. in (0, T ),

(65)∫
Ω

βϑ̇(ε)ϕ
√
g(ε)dx+

∫
Ω

k(∂αϑ(ε)gαβ(ε)∂βϕ+
1

ε2
∂3ϑ(ε)∂3ϕ)

√
g(ε)dx

+

∫
Ω

αT (3λ+ 2µ)ϕ(eα||β(ε; u̇(ε))gαβ(ε) + e3||3(ε; u̇(ε)))
√
g(ε)dx

=

∫
Ω

εmqmϕ
√
g(ε)dx ∀ϕ ∈ S(Ω), a.e. in (0, T ), (66)

with u̇(ε)(·, 0) = u(ε)(·, 0) = 0 and ϑ(ε)(·, 0) = 0.

Assume that θ ∈ C3(ω̄;R3) and that the scaled unknowns u(ε), ϑ(ε) admit
asymptotic expansions of the form

u(ε) = u0 + εu1 + ε2u2 + . . . , (67)

ϑ(ε) = ϑ0 + εϑ1 + ε2ϑ2 + . . .

where u0 ∈ V (Ω), uj ∈ [H1(Ω)]3, ϑ0 ∈ S(Ω), ϑj ∈ H1(Ω), j ≥ 1. The
assumption (67) implies an asymptotic expansion of the scaled linear strain as
follows

ei||j(ε) ≡ ei||j(ε;u(ε)) =
1

ε
e−1
i||j + e0

i||j + εe1
i||j + ε2e2

i||j + ε3e3
i||j + ...

where,
e−1
α||β = 0,

e−1
α||3 =

1

2
∂3u

0
α,

e−1
3||3 = ∂3u

0
3,


e0
α||β =

1

2
(∂βu

0
α + ∂αu

0
β)− Γσαβu0

σ − bαβu0
3,

e0
α||3 =

1

2
(∂3u

1
α + ∂αu

0
3) + bσαu

0
σ,

e0
3||3 = ∂3u

1
3,


e1
α||β =

1

2
(∂βu

1
α + ∂αu

1
β)− Γσαβu1

σ − bαβu1
3 + x3(bσβ|αu

0
σ + bσαbσβu

0
3),

e1
α||3 =

1

2
(∂3u

2
α + ∂αu

1
3) + bσαu

1
σ + x3b

τ
αb
σ
τu

0
σ,

e1
3||3 = ∂3u

2
3.
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Besides, the functions ei||j(ε;v) admit the following expansion,

ei||j(ε;v) =
1

ε
e−1
i||j(v) + e0

i||j(v) + εe1
i||j(v) + ...

where,
e−1
α||β(v) = 0,

e−1
α||3(v) =

1

2
∂3vα,

e−1
3||3(v) = ∂3v3,


e0
α||β(v) =

1

2
(∂βvα + ∂αvβ)− Γσαβvσ − bαβv3,

e0
α||3(v) =

1

2
∂αv3 + bσαvσ,

e0
3||3(v) = 0,


e1
α||β(v) = x3b

σ
β|αvσ + x3b

σ
αbσβv3,

e1
α||3(v) = x3b

τ
αb
σ
τ vσ,

e1
3||3(v) = 0.

Upon substitution on (65) and (66), we proceed to characterize the terms
involved in the asymptotic expansions by considering different values for m
and grouping terms of the same order. In this way, taking in (65) the order
m = −2 and particular cases of test functions, we reason that f−2 = h−1 = 0
and p−1 = 0, which leads to ∂3u

0 = 0. From (66), we reason that q−2 = 0 and
find that ∂3ϑ

0 = 0. Thus the zeroth order terms of both unknowns would be
independent of the transversal variable x3. Particularly, u0 can be identified
with a function ξ0 ∈ V (ω), and ϑ0 can be identified with a function ζ0 ∈ S(ω)
where

V (ω) := {η = (ηi) ∈ [H1(ω)]3; ηi = 0 on γ0}, S(ω) := {ϕ ∈ H1(ω);ϕ = 0 on γ0}.

Taking m = −1, and using particular cases of test functions, we reason that
f−1 = h0 = 0 and p0 = 0 and we find that

e0
α||3 = 0, λaαβe0

α||β + (λ+ 2µ)e0
3||3 = αT (3λ+ 2µ)ϑ0, e0

α||β = γαβ(ξ0),

where

γαβ(η) :=
1

2
(∂βηα + ∂αηβ)− Γσαβησ − bαβη3, (68)

denote the covariant components of the linearized change of metric tensor
associated with a displacement field ηia

i of the surface S. From (66) we reason
that q−1 = 0 and find that ∂3ϑ

1 = 0.

Having these results in mind, for m = 0, developing Aijkl(0) and taking
v = η ∈ V (ω) and ϕ ∈ S(ω) leads to the following two-dimensional problem,
to which we may refer as thermoelastic membrane contact problem with normal
damped response:
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Problem 7 Find a pair t 7→ (ξ0(y, t), ζ0(y, t)) of [0, T ] → V (ω)× S(ω) veri-
fying

2

∫
ω

ρ(ξ̈0
αa

αβηβ + ξ̈0
3η3)
√
ady +

∫
ω

aαβστγστ (ξ0)γαβ(η)
√
ady − 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζ0aαβγαβ(η)

√
ady

−
∫
ΓC

p1(−ξ̇0
3)η3

√
adΓ =

∫
ω

F i,0ηi
√
ady ∀η = (ηi) ∈ V (ω), a.e. in (0, T ),

2

∫
ω

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
ζ̇0ϕ
√
ady + 2

∫
ω

k∂αζ
0aαβ∂βϕ

√
ady

+ 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕaαβγαβ(ξ̇

0
)
√
ady =

∫
ω

Q0ϕ
√
ady ∀ϕ ∈ S(ω), a.e. in (0, T ),

with ξ̇
0
(·, 0) = ξ0(·, 0) = 0 and ζ0(·, 0) = 0.

Above, we have introduced F i,0 :=
∫ 1

−1
f i,0dx3 +hi,1+ , with hi,1+ (·) = hi,1(·,+1),

and Q0 :=
∫ 1

−1
q0dx3. Also, aαβστ denotes the contravariant components of the

fourth order two-dimensional elasticity tensor, defined as follows:

aαβστ :=
4λµ

λ+ 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ). (69)

The problem above will be analyzed in more detail in the following section.
There, we shall study the existence and uniqueness of solution under additional
hypotheses of geometric nature and a more suitable set of functional spaces,
and provide a rigorous convergence result. To that end, the following ellipticity
result for the elasticity tensor will be used. There exists a constant ce > 0
independent of the variables and ε, such that∑

α,β

|tαβ |2 ≤ ceaαβστ (y)tστ tαβ , (70)

for all y ∈ ω̄ and all t = (tαβ) ∈ S2 (vector space of 2 × 2 real symmetric
matrices).

5 Elliptic membrane case. Convergence

In what follows, we assume that the family of three-dimensional linearly ther-
moelastic shells consist of elliptic membrane shells, that is, the middle surface
of the shell S is uniformly elliptic and the boundary condition of place is con-
sidered on the whole lateral face of the shell, that is, γ0 = γ. Further, from
the formal asymptotic analysis made in the preceding section, we assume the
hypotheses which led to Problem 7, namely,

f(ε)(x) = f0(x), q(ε)(x) = q0(x) ∀x ∈ Ω, h(ε)(x) = εh1(x) ∀x ∈ Γ+,

p(ε)(r(ε)) = εp1(r).
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Since there is no possible ambiguity, in what follows we drop the superindices
indicating the order of the different functions.

We also recall that for elliptic membranes it is verified the following two-
dimensional Korn’s type inequality (see, for example, [3, Theorem 2.7-3]): there
exists a constant cM = cM (ω,θ) > 0 such that

(∑
α

‖ηα‖21,ω + |η3|20,ω

)1/2

≤ cM

∑
α,β

|γαβ(η)|20,ω

1/2

∀η ∈ VM (ω), (71)

where

VM (ω) := H1
0 (ω)×H1

0 (ω)× L2(ω),

is the right space for the well-posedness of Problem 7. In this section and in
the sequel, C represents a positive generic constant whose specific value may
change from line to line, independent of ε and the unknowns. Besides, for the
sake of simplicity, we assume that all the parameters involved are constant.

Also, the notation v̄ stands for the average on x3, i.e., v̄ := 1
2

∫ 1

−1
v(x3)dx3.

To favour a clearer exposition, let us reformulate Problem 7:

Problem 8 Find a pair t 7→ (ξ(y, t), ζ(y, t)) of [0, T ] → VM (ω) × H1
0 (ω)

verifying

2

∫
ω

ρ(ξ̈αa
αβηβ + ξ̈3η3)

√
ady +

∫
ω

aαβστγστ (ξ)γαβ(η)
√
ady − 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζaαβγαβ(η)

√
ady

−
∫
ΓC

p(−ξ̇3)η3

√
adΓ =

∫
ω

F iηi
√
ady ∀η = (ηi) ∈ VM (ω), a.e. in (0, T ),

(72)

2

∫
ω

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
ζ̇ϕ
√
ady + 2

∫
ω

k∂αζa
αβ∂βϕ

√
ady

+ 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕaαβγαβ(ξ̇)

√
ady =

∫
ω

Qϕ
√
ady ∀ϕ ∈ H1

0 (ω), a.e. in (0, T ),

(73)

with ξ̇(·, 0) = ξ(·, 0) = 0 and ζ(·, 0) = 0.

Above, we have used F i :=
∫ 1

−1
f idx3 + hi+ with hi+(·) = hi(·,+1) and Q :=∫ 1

−1
qdx3. The following shows that there is a unique solution for this problem.

Theorem 4 Let ω be a domain in R2, let θ ∈ C2(ω̄;R3) be an injective map-
ping such that the two vectors aα = ∂αθ are linearly independent at all points
of ω̄. Let f i and q ∈ H1(0, T ;L2(Ω)), hi ∈ H2(0, T ;L2(Γ+)) and assume (12).
Then the Problem 8, has a unique solution (ξ, ζ) such that

ξ ∈ L∞(0, T ;VM (ω)), ξ̇ ∈ L∞(0, T ; [L2(ω)]3) ∩ L∞(0, T ;VM (ω)), ξ̈ ∈ L∞(0, T ; [L2(ω)]3),

ζ ∈ L∞(0, T ;L2(ω)) ∩ L2(0, T ;H1
0 (ω)), ζ̇ ∈ L∞(0, T ;L2(ω)) ∩ L2(0, T ;H1

0 (ω)).
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Proof. Like in Theorem 1, we will use a Faedo-Galerkin approach to prove
the existence part. Then, a proof by contradiction will show uniqueness.

Existence: Since VM (ω) is a separable space, there exists a countable base
{vm} ⊂ VM (ω) such that

VM (ω) =
⋃
m≥1

Vm, where Vm = span{v1,v2, . . . ,vm}.

Similarly, there exists a countable base {χm} ⊂ H1
0 (ω) such that

H1
0 (ω) =

⋃
m≥1

Sm, where Sm = span{χ1, χ2, . . . , χm}.

We now formulate Problem 8 for the finite dimensional subspaces:

Problem 9 Find a pair t 7→ (ξm(y, t), ζm(y, t)) of [0, T ]→ Vm×Sm verifying

2

∫
ω

ρ(ξ̈mα a
αβηmβ + ξ̈m3 η

m
3 )
√
ady +

∫
ω

aαβστγστ (ξm)γαβ(ηm)
√
ady − 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζmaαβγαβ(ηm)

√
ady

−
∫
ΓC

p(−ξ̇m3 )ηm3
√
adΓ =

∫
ω

F iηmi
√
ady ∀ηm = (ηmi ) ∈ Vm, ∀ t ∈ [0, T ],

(74)

2

∫
ω

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
˙ζmϕm

√
ady + 2

∫
ω

k∂αζ
maαβ∂βϕ

m
√
ady

+ 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕmaαβγαβ( ˙ξm)

√
ady =

∫
ω

Qϕm
√
ady ∀ϕm ∈ Sm, ∀ t ∈ [0, T ],

(75)

with ξ̇
m

(·, 0) = ξm(·, 0) = 0 and ζm(·, 0) = 0.

Now, the classical theory of systems of ordinary differential equations guaran-
tees the existence and uniqueness of solution for Problem 9. Taking ηm = ξ̇

m

in (74) and ϕm = ζm in (75), adding both expressions and integrating the
time variable in [0, t] gives

ρ|ξ̇
m

(t)|2a,ω +
1

2
‖ξm(t)‖2a,ω +

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζm(t)|20,ω + 2k

∫ t

0

‖|ζm(r)‖|2a,ω dr

−
∫ t

0

∫
ΓC

p(−ξ̇m3 (r))ξ̇m3 (r)
√
adΓ dr =

∫ t

0

∫
ω

Q(r)ζm
√
ady dr

+

∫ t

0

∫
ω

∫ 1

−1

f i(r)dx3ξ̇
m
i (r)

√
ady dr +

∫ t

0

∫
Γ+

hi(r)ξ̇mi (r)
√
adΓ dr, (76)

where we have introduced the following norms:

|η|2a,ω :=

∫
ω

(ηαa
αβηβ + (η3)2)

√
ady ∀η ∈ [L2(ω)]3,
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which is equivalent to the usual norm | · |0,ω because of the ellipticity of (aαβ)
and the regularity of θ. Also,

‖η‖2a,ω :=

∫
ω

aαβστγστ (η)γαβ(η)
√
ady ∀η ∈ VM (ω),

which is a norm in VM (ω) because of the Korn inequality (71) and the ellip-
ticity of aαβστ (see (70)). Finally,

‖|ϕ‖|2a,ω :=

∫
ω

∂αϕa
αβ∂βϕ

√
ady,

which is a norm in H1
0 (ω) equivalent to the usual ‖ · ‖1,ω because of the

ellipticity of (aαβ), the regularity of θ and the Poincaré inequality.
By using the monotonicity of p, then the Hölder inequality in the right-

hand side terms of (76), then using Theorem 3 for the terms on Γ+ followed by
the use of Gronwall inequality, we obtain that the following weak convergences
take place for subsequences indexed by m as well:

ξm
∗−−−⇀

m→∞
ξ in L∞(0, T ;VM (ω)), ξ̇

m ∗−−−⇀
m→∞

ξ̇ in L∞(0, T ; [L2(ω)]3), (77)

ζm
∗−−−⇀

m→∞
ζ in L∞(0, T ;L2(ω)), ζm −−−⇀

m→∞
ζ in L2(0, T ;H1

0 (ω)), (78)

p(−ξ̇m3 )
∗−−−⇀

m→∞
χ in L∞(0, T ;L2(ω)). (79)

Notice that (79) is a consequence of the Lipschitz continuity of p, the fact that
p(0) = 0, and the boundedness of its argument. Using these convergences back
in (74)–(75), we can formulate the following limit problem:

Problem 10 Find a pair t 7→ (ξ(y, t), ζ(y, t)) of [0, T ] → VM (ω) × H1
0 (ω)

verifying

2

∫
ω

ρ(ξ̈αa
αβηβ + ξ̈3η3)

√
ady +

∫
ω

aαβστγστ (ξ)γαβ(η)
√
ady − 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζaαβγαβ(η)

√
ady

−
∫
ΓC

χη3

√
adΓ =

∫
ω

F iηi
√
ady ∀η = (ηi) ∈ VM (ω), a.e. in (0, T ),

2

∫
ω

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
ζ̇ϕ
√
ady + 2

∫
ω

k∂αζa
αβ∂βϕ

√
ady

+ 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕaαβγαβ(ξ̇)

√
ady =

∫
ω

Qϕ
√
ady ∀ϕ ∈ H1

0 (ω), a.e. in (0, T ),

with ξ̇(·, 0) = ξ(·, 0) = 0 and ζ(·, 0) = 0.

Now we will use an argument of monotonicity (see, for example, [8]). We first
define for any given φ ∈ H1(0, T ;L2(ω)), with φ(0) = 0, the following quantity:

Xm = −
∫ t

0

∫
ΓC

(
p(−ξ̇m3 (r))− p(−φ̇(r))

)
(ξ̇m3 (r)− φ̇(r))

√
adΓ dr ≥ 0.
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From (76) we find that

Xm =

∫ t

0

∫
ω

F i(r)ξ̇mi (r)
√
ady dr − ρ|ξ̇

m
(t)|2a,ω −

1

2
‖ξm(t)‖2a,ω

+

∫ t

0

∫
ω

Q(r)ζm
√
ady dr −

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζm(t)|20,ω − 2k

∫ t

0

‖|ζm(r)‖|2a,ω dr

−
∫ t

0

∫
ΓC

p(−ξ̇m3 (r))(−φ̇(r))
√
adΓ dr −

∫ t

0

∫
ΓC

−p(−φ̇(r))(ξ̇m3 (r)− φ̇(r))
√
adΓ dr.

Thus, on one hand

0 ≤ lim sup
m→∞

Xm ≤
∫ t

0

∫
ω

F i(r)ξ̇i(r)
√
ady dr − ρ|ξ̇(t)|2a,ω −

1

2
‖ξ(t)‖2a,ω

+

∫ t

0

∫
ω

Q(r)ζ
√
ady dr −

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζ(t)|20,ω − 2k

∫ t

0

‖|ζ(r)‖|2a,ω dr

−
∫ t

0

∫
ΓC

χ(r)(−φ̇(r))
√
adΓ dr −

∫ t

0

∫
ΓC

−p(−φ̇(r))(ξ̇3(r)− φ̇(r))
√
adΓ dr,

where he have used the weak upper semicontinuity of various terms. On the
other hand, doing in Problem 10 the substitutions η = ξ̇, ϕ = ζ, then the
summation of both equations, followed by the integration in [0, t], and using
the resulting identity into the inequality above, we find that

0 ≤ −
∫ t

0

∫
ΓC

χ(r)ξ̇3(r)
√
adΓ dr −

∫ t

0

∫
ΓC

χ(r)(−φ̇(r))
√
adΓ dr −

∫ t

0

∫
ΓC

−p(−φ̇(r))(ξ̇3(r)− φ̇(r))
√
adΓ dr

= −
∫ t

0

∫
ΓC

(χ(r)− p(−φ̇(r)))(ξ̇3(r)− φ̇(r))
√
adΓ dr.

Therefore, by using arguments adapted from those in [4, p. 55], we deduce
that χ = p(−ξ̇3). Indeed, this is because we can always take φ = ξ3 − ςϕ with
ς > 0 and ϕ ∈ H1(0, T ;L2(ω)), with ϕ(0) = 0, to find

0 ≤ −
∫ t

0

∫
ΓC

(χ(r)− p(−ξ̇3(r) + ςϕ̇(r)))ϕ̇(r)
√
adΓ dr,

and take ς → 0, thus

0 ≤ −
∫ t

0

∫
ΓC

(χ(r)− p(−ξ̇3(r)))ϕ̇(r)
√
adΓ dr,

from where χ = p(−ξ̇3). Therefore, we find that Problem 10 is indeed the same
as Problem 8.

We will now prove the additional regularities for ξ̇, ξ̈ and ζ̇. First, we add
equations (74) and (75) and write the resulting equation at times t̃ = t + h
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and t, with h > 0 and 0 < t ≤ T − h. Then subtract these last two equations
and take ηm = ξ̇

m
(t̃)− ξ̇

m
(t) ∈ Vm and ϕm = ζm(t̃)− ζm(t) ∈ Sm to obtain

2

∫
ω

ρ((ξ̈mα (t̃)− ξ̈mα (t))aαβ(ξ̇mβ (t̃)− ξ̇mβ (t)) + (ξ̈m3 (t̃)− ξ̈m3 (t))(ξ̇m3 (t̃)− ξ̇m3 (t)))
√
ady

+

∫
ω

aαβστγστ (ξm(t̃)− ξm(t))γαβ(ξ̇
m

(t̃)− ξ̇
m

(t))
√
ady

−
∫
ΓC

(p(−ξ̇m3 (t̃))− p(−ξ̇m3 (t)))(ξ̇m3 (t̃)− ξ̇m3 (t))
√
adΓ

+ 2

∫
ω

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
( ˙ζm(t̃)− ˙ζm(t))(ζm(t̃)− ζm(t))

√
ady

+ 2

∫
ω

k∂α(ζm(t̃)− ζm(t))aαβ∂β(ζm(t̃)− ζm(t))
√
ady

=

∫
ω

(F i(t̃)− F i(t))(ξ̇mi (t̃)− ξ̇mi (t))
√
ady +

∫
ω

(Q(t̃)−Q(t))(ζm(t̃)− ζm(t))
√
ady, ∀t ∈ [0, T − h],

which, because of the monotonicity of p gives

d

dt
ρ|ξ̇

m
(t̃)− ξ̇

m
(t)|2a,ω +

1

2

d

dt
‖ξm(t̃)− ξm(t)‖2a,ω +

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
d

dt
|ζm(t̃)− ζm(t)|20,ω

+ 2k‖|ζm(t̃)− ζm(t)‖|2a,ω ≤
∫
ω

(F i(t̃)− F i(t))(ξ̇mi (t̃)− ξ̇mi (t))
√
ady

+

∫
ω

(Q(t̃)−Q(t))(ζm(t̃)− ζm(t))
√
ady, ∀t ∈ [0, T − h].

Next, we integrate in [0, t] to get

ρ|ξ̇
m

(t̃)− ξ̇
m

(t)|2a,ω − ρ|ξ̇
m

(h)− ξ̇
m

(0)|2a,ω +
1

2
‖ξm(t̃)− ξm(t)‖2a,ω −

1

2
‖ξm(h)− ξm(0)‖2a,ω

+

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζm(t̃)− ζm(t)|20,ω −

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζm(h)− ζm(0)|20,ω

+ 2k

∫ t

0

‖|ζm(r + h)− ζm(r)‖|2a,ωdr ≤
∫ t

0

∫
ω

(F i(r + h)− F i(r))(ξ̇mi (r + h)− ξ̇mi (r))
√
a dy dr

+

∫ t

0

∫
ω

(Q(r + h)−Q(r))(ζm(r + h)− ζm(r))
√
a dy dr, ∀t ∈ [0, T − h],

and dividing the equation by h2 and taking limits when h→ 0 we obtain

ρ|ξ̈
m

(t)|2a,ω +
1

2
‖ξ̇
m

(t)‖2a,ω +

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζ̇m(t)|20,ω + 2k

∫ t

0

‖|ζ̇m(r)‖|2a,ωdr

≤ ρ|ξ̈
m

(0)|2a,ω +
1

2
‖ξ̇
m

(0)‖2a,ω +

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζ̇m(0)|20,ω +

∫ t

0

∫
ω

Ḟ i(r)ξ̈mi (r)
√
a dy dr

+

∫ t

0

∫
ω

Q̇(r)ζ̇m(r)
√
a dy dr, ∀t ∈ [0, T ],
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from which, by Young’s inequality, we obtain

ρ|ξ̈
m

(t)|2a,ω +
1

2
‖ξ̇
m

(t)‖2a,ω +

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζ̇m(t)|20,ω + 2k

∫ t

0

‖|ζ̇m(r)‖|2a,ωdr

≤ ρ|ξ̈
m

(0)|2a,ω +
1

2
‖ξ̇
m

(0)‖2a,ω +

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζ̇m(0)|20,ω

+ C(ḟ , ḣ, q̇) + C̄

∫ t

0

{
|ξ̈
m

(r)|20,ωdr +

∫ t

0

|ζ̇m(r)|20,ω
}
dr, ∀t ∈ [0, T ].

(80)

In order to obtain bounds for |ξ̈
m

(0)|2a,ω and |ζ̇m(0)|20,ω we first notice that
equations (74) and (75) hold for t = 0 due to the compatibility required
between initial and boundary conditions. Therefore, taking t = 0 and ηm =
ξ̈
m

(0) ∈ Vm in (74) and ϕm = ζ̇m(0) ∈ Sm in (75) and, taking into account
the initial conditions, we obtain

ρ|ξ̈
m

(0)|2a,ω =

∫
ω

F i(0)ξ̈
m

i (0)
√
ady ≤ 1

δ
C + δ|ξ̈

m
(0)|20,ω(

β +
α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζ̇m(0)|20,ω =

∫
ω

Q(0)ζ̇m(0)
√
a dy ≤ 1

δ̃
C̃ + δ̃|ζ̇m(0)|20,ω,

where δ and δ̃ are sufficiently small positive constants.
Now, back to (80), taking into account the initial conditions and the bounds
above we have

ρ|ξ̈
m

(t)|2a,ω +
1

2
‖ξ̇
m

(t)‖2a,ω +

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζ̇m(t)|20,ω + 2k

∫ t

0

‖|ζ̇m(r)‖|2a,ωdr

≤ C + C̄

∫ t

0

{
|ξ̈
m

(r)|20,ωdr +

∫ t

0

|ζ̇m(r)|20,ω
}
dr, ∀t ∈ [0, T ].

Next, we use the equivalence between then norms | · |a,ω and | · |0,ω and we
apply Gronwall’s Lemma to conclude that

|ξ̈
m

(t)|20,ω + |ζ̇m(t)|20,ω ≤ C, ∀t ∈ [0, T ],

and further

‖ξ̇
m

(t)‖2a,ω + 2k

∫ t

0

‖|ζ̇m(r)‖|2a,ωdr ≤ C ∀t ∈ [0, T ].

Therefore, the following weak convergences take place for subsequences still
indexed by m.

ξ̇
m ∗−−−⇀

m→∞
ξ̇ in L∞(0, T ;VM (ω)), ξ̈

m ∗−−−⇀
m→∞

ξ̈ in L∞(0, T ; [L2(ω)]3), (81)

ζ̇m
∗−−−⇀

m→∞
ζ̇ in L∞(0, T ;L2(ω)), ζ̇m −−−⇀

m→∞
ζ̇ in L2(0, T ;H1

0 (ω)). (82)
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Uniqueness: We proceed by contradiction. We first assume that there exist
two solutions (ξ1, ζ1) and (ξ2, ζ2). Define ξ̄ = ξ1 − ξ2 and ζ̄ = ζ1 − ζ2. Now,

take η = ˙̄ξ in the version of (72) for ξ1 and η = − ˙̄ξ in the version of (72) for
ξ2. We then sum both expresions to find that

2

∫
ω

ρ( ¨̄ξαa
αβ ˙̄ξβ + ¨̄ξ3

˙̄ξ3)
√
ady +

∫
ω

aαβστγστ (ξ̄)γαβ( ˙̄ξ)
√
ady − 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζ̄aαβγαβ( ˙̄ξ)

√
ady

−
∫
ΓC

(p(−ξ̇1
3)− p(−ξ̇2

3)) ˙̄ξ3
√
adΓ = 0.

Similarly, take ϕ = ζ̄ in the version of (73) for ζ1 and ϕ = −ζ̄ in the version
of (73) for ζ2. Then, we sum both expresions to find that

2

∫
ω

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
˙̄ζζ̄
√
ady + 2

∫
ω

k∂αζ̄a
αβ∂β ζ̄

√
ady + 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζ̄aαβγαβ( ˙̄ξ)

√
ady = 0.

Then, we add both expressions above and integrate with respect to the time
variable in [0, t], to find

ρ| ˙̄ξ(t)|2a,ω +
1

2
‖ξ̄(t)‖2a,ω +

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
|ζ̄(t)|20,ω + 2k

∫ t

0

‖|ζ̄(r)‖|2a,ω dr

=

∫ t

0

∫
ΓC

(p(−ξ̇1
3(r))− p(−ξ̇2

3(r)))(ξ̇1
3(r)− ξ̇2

3(r))
√
adΓ dr ≤ 0, (83)

where we have used the monotonicity of p. We deduce from (83) that ξ̄ = 0
and ζ̄ = 0, thus showing uniqueness.

tu

Now, we present here the main result of this paper, namely that the scaled
three-dimensional unknowns (u(ε), ϑ(ε)) converge, as ε tends to zero, towards
a limit (u, ϑ) independent of the transversal variable, and that this limit can
be identified with the solution (ξ, ζ) of the Problem 8, posed over the two-
dimensional set ω.

In what follows, and for the sake of simplicity, we assume that for each
ε > 0 the initial condition for the scaled linear strain is

ei||j(ε)(0, ·) = 0, (84)

this is, the domain is on its natural state with no strains on it at the beginning
of the period of observation.

Theorem 5 Assume that θ ∈ C3(ω̄;R3). Consider a family of elastic elliptic
shells with thickness 2ε approaching zero and all sharing the same elliptic
middle surface S = θ(ω̄). For all ε, 0 < ε ≤ ε0 let (u(ε), ϑ(ε)) be the solution
of the associated three-dimensional scaled Problem 6 for m = 0. Assume also
that (12) is satisfied. Then, there exist functions ϑ, uα ∈ H1(Ω) satisfying
ϑ = 0, uα = 0 on γ × [−1, 1] and a function u3 ∈ L2(Ω), such that
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(a) ϑ(ε)→ ϑ, uα(ε)→ uα in H1(Ω) and u3(ε)→ u3 in L2(Ω) when ε→ 0
a.e. in (0,T),

(b) ϑ and u = (ui) are independent of the transversal variable x3.

Furthermore, the pair (u, ϑ) can be identified with the solution of Problem 8.

Proof. We follow the structure of the proof given in [3, Theorem 4.4-1]
for the case of elastic elliptic membrane shells. Hence, we shall reference some
steps which apply in the same manner and omit some details. Also, for the
sake of readability we may use the shorter notations ei||j(ε) := ei||j(ε;u(ε)).
In addition to that, all references to (65) or (66) have to be considered as
for m = 0 and drop the superindices. The proof is divided into several parts,
numbered from (i) to (vi).

(i) A priori boundedness and extraction of weak convergent sequences. For
ε > 0 sufficiently small, there exist bounded sequences, also indexed by ε,
and weak limits as specified below:

uα(ε)
∗−−−⇀
ε→0

uα in L∞(0, T ;H1(Ω)), u3(ε)
∗−−−⇀
ε→0

u3 in L∞(0, T ;L2(Ω)),

u̇(ε)
∗−−−⇀
ε→0

u̇ in L∞(0, T ; [L2(Ω)]3), ei||j(ε)
∗−−−⇀
ε→0

ei||j in L∞(0, T ;L2(Ω))

ϑ(ε)
∗−−−⇀
ε→0

ϑ in L∞(0, T ;L2(Ω)), ∂αϑ(ε) −−−⇀
ε→0

ϑα in L2(0, T ;L2(Ω)),

ε−1∂3ϑ(ε) −−−⇀
ε→0

ϑ3,−1 in L2(0, T ;L2(Ω)).

Moreover, ϑ, uα = 0 on Γ0.

For the proof of this step we take v = u̇(ε) in (65) (see Remark 7) and
ϕ = ϑ(ε) in (66) and sum both expressions to find∫
Ω

ρ(üα(ε)gαβ(ε)u̇β(ε) + ü3(ε)u̇3(ε))
√
g(ε) dx+

∫
Ω

Aijkl(ε)ek||l(ε)ėi||j(ε)
√
g(ε)dx

+

∫
Ω

βϑ̇(ε)ϑ(ε)
√
g(ε)dx+

∫
Ω

k(∂αϑ(ε)gαβ(ε)∂βϑ(ε) +
1

ε2
∂3ϑ(ε)∂3ϑ(ε))

√
g(ε)dx

−
∫
ΓC

p(−u̇3(ε))u̇3(ε)
√
g(ε)dΓ

=

∫
Ω

f iu̇i(ε)
√
g(ε)dx+

∫
Γ+

hiu̇i(ε)
√
g(ε)dΓ +

∫
Ω

qϑ(ε)
√
g(ε)dx.

(85)

We now introduce the following norms:

|v|2g(ε),Ω :=

∫
Ω

(vαg
αβ(ε)vβ + (v3)2)

√
g(ε)dx ∀v ∈ [L2(Ω)]3,

which is equivalent to the usual norm | · |0,Ω because of the ellipticity of
(gαβ(ε)) and the regularity of Θ. Also,

‖v‖2A(ε),Ω :=

∫
Ω

Aijkl(ε)ek||l(ε;v)ei||j(ε;v)
√
g(ε)dx ∀v ∈ V (Ω),
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which is a norm in V (Ω) because of the Korn inequality (see [3, Theorem
4.4-1]) and the ellipticity of Aijkl(ε). Finally,

‖|ϕ‖|g(ε),Ω :=

∫
Ω

∂αϕg
αβ(ε)∂βϕ

√
g(ε)dx,

which is a seminorm in S(Ω). Because of the uniform ellipticity of the
tensors and matrices involved, and the properties of g(ε), we are going to
be able to use constants independent of ε in the estimates below. Indeed,
going back to (85), we obtain

ρ

2

d

dt
{|u̇(ε)|2g(ε),Ω}+

1

2

d

dt
{‖u(ε)‖2A(ε),Ω}+

β

2

d

dt
{|ϑ(ε)|20,Ω}+ k‖|ϑ(ε)‖|2g(ε),Ω +

k

ε2
|∂3ϑ(ε)|20,Ω

=

∫
ΓC

p(−u̇3(ε))u̇3(ε)
√
g(ε)dΓ +

∫
Ω

f iu̇i(ε)
√
g(ε)dx+

∫
Γ+

hiu̇i(ε)
√
g(ε)dΓ +

∫
Ω

qϑ(ε)
√
g(ε)dx.

Integrating in [0, t] with respect to the time variable, using the equiva-
lences mentioned above, together with the uniformity with respect to ε
of the constants involved in those equivalences, integrating by parts the
term with the tractions hi, using Theorem 3 and Young’s inequality, we
find that there exist a constant C > 0 independent of ε such that

|u̇(ε)(t)|20,Ω + |ei||j(ε)(t)|20,Ω + |ϑ(ε)(t)|20,Ω +

∫ t

0

(|∂αϑ(ε)|20,Ω +
1

ε2
|∂3ϑ(ε)(r)|20,Ω)dr

−
∫ t

0

∫
ΓC

p(−u̇3(ε)(r))u̇3(ε)(r)
√
g(ε)dΓ dr ≤ C(

∫ t

0

|u̇(ε)(r)|20,Ωdr +

∫ t

0

|ϑ(ε)(r)|20,Ωdr +

∫ t

0

|ei||j(ε)(r)|20,Ωdr

+

∫ t

0

|f(r)|20,Ωdr +

∫ t

0

|q(r)|20,Ωdr +

∫ t

0

|ḣ(r)|20,Γ+
dr + |ḣ(t)|20,Γ+

)

Hence, by using Gronwall’s inequality and the three-dimensional Korn’s
inequality that can be found in [3, Theorem 4.4-1], all the assertions of
(i) follow.

(ii) The limits of the scaled unknowns, ui, ϑ found in Step (i) are independent
of x3.

The part corresponding to ui is analogous to the Step (ii) in [3, Theorem
4.4-1], so we omit it. Regarding ϑ, its independence on x3 is a consequence
of the boundedness of {ε−1∂3ϑ(ε)}.

(iii) Extracting weakly convergence subsequences on the contact boundary. The
norms |u3(ε)|0,ΓC

, |u̇3(ε)|0,ΓC
are bounded independently of ε, 0 < ε ≤

ε1 almost everywhere in (0, T ). Moreover, there exist subsequences, also

denoted (u3(ε))ε>0 and (u̇3(ε))ε>0 such that u3(ε)
∗
⇀ u3 and u̇3(ε)

∗
⇀

u̇3 in L∞(0, T ;L2(ΓC)).

The first part is an straightforward consequence of Step (i) and (64). For
v = u3(ε) we find that

|u3(ε)|0,ΓC
≤ C|ei||j(ε)|0,Ω a.e. in (0, T ).
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Then, there exists ψ ∈ L∞(0, T ;L2(ΓC)) such that for a subsequence

keeping the same notation, it holds u3(ε)
∗
⇀ ψ in L∞(0, T ;L2(ΓC)). Since

we are in the conditions of [11, Theorem 3.6], we can identify ψ = u3.
For the second part, we first recall that u̇(ε) ∈ V (Ω) and ϑ̇(ε) ∈ S(Ω)
(see Remark 7). Next, we use the technique of incremental coefficients in
the time variable, then integrate on [0, t] to obtain the expression similar
to (30) in the scaled framework and without tractions. Indeed,

1

2
ρ |ü(ε)(t)|20 −

1

2
ρ |ü(ε)(0)|20 +

1

2
aV (u̇(ε)(t), u̇(ε)(t))− 1

2
aV (u̇(ε)(0), u̇(ε)(0))

+
1

2

∫
Ω

β(ϑ̇(ε)(t))2dx− 1

2

∫
Ω

β(ϑ̇(ε)(0))2dx+

∫ t

0

aS(ϑ̇(ε)(r), ϑ̇(ε)(r))dr

≤
∫ t

0

∫
Ω

ḟ i(r)ü(ε)i(r) dxdr +

∫ t

0

∫
Ω

q̇(r)ϑ̇(ε)(r) dxdr. (86)

Then, we use Korn’s inequality on the left-hand side and apply Gron-
wall’s inequality to obtain that |ei||j(u̇)(ε)|20,Ω is bounded independently
of ε. Then can proceed like in the first part using (64) for v = u̇3(ε) to

show that u̇3(ε)
∗
⇀ u̇3 in L∞(0, T ;L2(ΓC)).

(iv) The limits ei||j found in (i) are independent of the variable x3. Moreover,
they are related with the limits u := (ui) and ϑ by

eα||β = γαβ(u) :=
1

2
(∂αuβ + ∂βuα)− Γσαβuσ − bαβu3,

eα||3 = 0, (87)

e3||3 =
αT (3λ+ 2µ)

λ+ 2µ
ϑ− λ

λ+ 2µ
aαβeα||β . (88)

Indeed, first considering v = u(ε) in (52) and η = u in (68) (par abus
de langage, since u is independent of x3, but actually u ∈ [H1(Ω)]2 ×
L2(Ω)), taking into account Step (i) and the convergences Γσαβ(ε)→ Γσαβ
and Γ 3

αβ(ε)→ bαβ in C0(Ω̄) given by (58)–(60), we have that

eα||β(ε) =
1

2
(∂βuα(ε) + ∂αuβ(ε))− Γ pαβ(ε)up(ε) ⇀ eα||β = γαβ(u) in L2(Ω) a.e. in (0, T ).

Moreover, eα||β are independent of x3, as a straightforward consequence
of the independence on x3 of ui (Step (ii)). In addition, let v ∈ V (Ω).
As a consequence of the definition of the scaled strains in (52)–(54), we
find

εeα||β(ε;v)→ 0 in L2(Ω), εeα||3(ε;v)→ 1

2
∂3vα in L2(Ω),

εe3||3(ε;v) = ∂3v3 in L2(Ω), for all ε > 0.
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Now, for all v ∈ V (Ω), in (65) we can take as test function εv ∈ V (Ω).
Then, taking into account (50), we have

ε

∫
Ω

ρ(üα(ε)gαβ(ε)vβ + ü3(ε)v3)
√
g(ε) dx+ ε

∫
Ω

Aijkl(ε)ek||l(ε)ei||j(ε;v)
√
g(ε)dx

−
∫
Ω

αT (3λ+ 2µ)ϑ(ε)(εeα||β(ε;v)gαβ(ε) + εe3||3(ε;v))
√
g(ε)dx− ε

∫
ΓC

p(−u̇3(ε))v3

√
g(ε)dΓ

= ε

∫
Ω

f ivi
√
g(ε)dx.

Passing to the limit as ε→ 0, decomposing Aijkl(ε) into the components
with different asymptotic behaviour (see (55)–(56)), the properties of
g(ε) (see (61)) and the convergences in Step (i), we obtain the following
equality:∫
Ω

(
2µaασeα||3∂3vσ + (λ+ 2µ)e3||3∂3v3

)√
adx+

∫
Ω

λaαβeα||β∂3v3

√
adx

=

∫
Ω

αT (3λ+ 2µ)ϑ∂3v3

√
adx ∀v ∈ V (Ω), a.e. in (0, T ). (89)

By taking particular test functions and using Theorem 2, we deduce (87).
Then, we go back to (89) and use again Theorem 2 to deduce (88). The
independence of e3||3 on x3 is a consequence of this relation, as well.

(v) We find a limit two-dimensional problem verified by functions ū = (ūi)
and ϑ. In particular, since the solution of this problem is unique, the
convergences on Step (i) are verified for the whole families (u(ε))ε>0

and (ϑ(ε))ε>0. We have that ū(t) = (ūi(t)) ∈ VM (ω) and ϑ(t) ∈ S(Ω)
a.e. in (0,T).

By using [3, Theorem 4.2-1] (parts (a) and (b)), and Step (ii) we find
that ūα ∈ H1

0 (ω) and ϑ̄ ∈ H1
0 (ω). Therefore, ū ∈ VM (ω) a.e. in (0,T).

Now, let v = (vi) ∈ V (Ω) be independent of the variable x3. Then, the
asymptotic behaviour of the functions Γ pαβ(ε) and Γσα3(ε) (see (58)–(60))
implies the following convergences when ε→ 0 (see (52)–(54)):

eα||β(ε;v)→ γαβ(v) :=
1

2
(∂αvβ + ∂βvα)− Γσαβvσ − bαβv3 in L2(Ω),

(90)

eα||3(ε;v)→ 1

2
∂αv3 + bσαvσ in L2(Ω), e3||3(ε;v) = 0. (91)

Having this in mind, let now v = (vi) ∈ V (Ω) be independent of x3 in
(65) and take the limit when ε → 0. In the process, we make use of the
asymptotic behaviour of Aijkl(ε) (see (55)–(56)) and g(ε) (see (61)), take

into account the weak convergences ei||j(ε)
∗
⇀ ei||j in L∞(0, T ;L2(Ω)),
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simplify by using (87) and consider the precise limits of the functions
ei||j(ε;v) in (90)–(91). As a result, we obtain the equality∫
Ω

ρ(üαa
αβvβ + ü3v3)

√
adx+

∫
Ω

(
λaαβaστ + µ(aασaβτ + aατaβσ)

)
eσ||τγαβ(v)

√
adx

+

∫
Ω

λaαβe3||3γαβ(v)
√
adx−

∫
ΓC

χv3

√
adΓ −

∫
Ω

αT (3λ+ 2µ)ϑaαβγαβ(v)
√
adx

=

∫
Ω

f ivi
√
adx+

∫
Γ+

hivi
√
adΓ, a.e. in (0, T ), (92)

where we also used Step (iii) and (12) to find that there exists χ ∈
L∞(0, T ;L2(ΓC)) such that p(−u̇3(ε))

∗
⇀ χ. Using (88) and since u, v

and ϑ are all independent of x3 (see Step (ii)), we can identify them with
their averages and we obtain from (92) that

2

∫
ω

ρ(¨̄uαa
αβ v̄β + ¨̄u3v̄3)

√
ady +

∫
ω

aαβστγστ (ū)γαβ(v̄)
√
ady − 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϑ̄aαβγαβ(v̄)

√
ady

−
∫
ΓC

χv̄3

√
adΓ =

∫
ω

(∫ 1

−1

f idx3

)
v̄i
√
ady +

∫
Γ+

hiv̄i
√
adΓ, a.e. in (0, T ),

(93)

where aαβστ denotes the contravariant components of the fourth order
two-dimensional tensor defined in (69). Now, given η = (ηi) ∈ [H1

0 (ω)]3,
we can define v = (vi) such that v(y, x3) = η(y) for all (y, x3) ∈ Ω.
Then v ∈ V (Ω) and it is independent of x3; hence, as a consequence of
[3, Theorem 4.2-1], the variational problems above are satisfied for v̄ = η.
Since both sides of the equation above are continuous linear forms with
respect to v̄3 = η3 ∈ L2(ω) for any given v̄α ∈ H1

0 (ω), these expressions
are valid for all η = (ηi) ∈ VM (ω), since H1

0 (ω) is dense in L2(ω).
Similarly, let ϕ ∈ S(Ω) be independent of x3 in (66) and take the limit
when ε → 0. We take into account the weak convergences in Step (i),
simplify by using the time derivative of (88). As a result, we obtain the
equality

2

∫
ω

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
˙̄ϑϕ
√
ady + 2

∫
ω

k∂αϑ̄a
ασaβσ∂βϕ

√
ady

+ 4

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕaαβγαβ( ˙̄u)

√
ady =

∫
ω

Qϕ
√
ady ∀ϕ ∈ H1

0 (ω) a.e. in (0, T ),

(94)

hence obtaining (73), with ζ identified with ϑ̄.

(vi) The weak convergences are, in fact, strong.

For this step we first consider a case without tractions, that is, we take
h = 0. Then we will show the changes to be made for the case with
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tractions. In both cases we are using a monotonicity argument. We define
the quantity:

Λ(ε) :=

∫
Ω

ρ
(
(üα(ε)− üα)gαβ(ε)(u̇β(ε)− u̇β) + (ü3(ε)− ü3)(u̇3(ε)− u̇3)

)√
g(ε) dx

+

∫
Ω

Aijkl(ε)(ek||l(ε)− ek||l)(ėi||j(ε)− ėi||j)
√
g(ε)dx

−
∫
ΓC

(p(−u̇3(ε))− p(−u̇3))(u̇3(ε)− u̇3)
√
g(ε)dΓ

+

∫
Ω

β(ϑ̇(ε)− ϑ̇)(ϑ(ε)− ϑ)
√
g(ε)dx

+

∫
Ω

k{∂α(ϑ(ε)− ϑ)gαβ(ε)∂β(ϑ(ε)− ϑ) +
1

ε2
(∂3(ϑ(ε)− ϑ))2}

√
g(ε)dx.

On one hand, we integrate with respect to the time variable in [0, t] and
take into account (84) and the initial conditions in Problem 6 to obtain

2

∫ t

0

Λ(ε)dr =

∫
Ω

ρ
(
(u̇α(ε)− u̇α)gαβ(ε)(u̇β(ε)− u̇β) + (u̇3(ε)− u̇3)2

)√
g(ε) dx

+

∫
Ω

Aijkl(ε)(ek||l(ε)− ek||l)(ei||j(ε)− ei||j)
√
g(ε)dx

+ 2

∫ t

0

∫
ΓC

(p(−u̇3(ε))− p(−u̇3))(−u̇3(ε) + u̇3)
√
g(ε)dΓ dr +

∫
Ω

β(ϑ(ε)− ϑ)2
√
g(ε)dx

+ 2

∫ t

0

∫
Ω

k{∂α(ϑ(ε)− ϑ)gαβ(ε)∂β(ϑ(ε)− ϑ) +
1

ε2
(∂3(ϑ(ε)− ϑ))2}

√
g(ε)dxdr,

(95)

and as consequence of the monotonicity of p, (57) and (61), we find

∫ t

0

Λ(ε)ds ≥ C(|u̇(ε)− u̇|20,Ω + |ei||j(ε)− ei||j |20,Ω + |ϑ(ε)− ϑ|20,Ω

+

∫ t

0

|∂αϑ(ε)− ∂αϑ|20,Ωds+
1

ε2

∫ t

0

|∂3ϑ(ε)− ∂3ϑ|20,Ωds. (96)



Thermoelastic Shells Contact 35

On the other hand, from the expression of Λ(ε) and making use of (65)–
(66) for v = u̇(ε) and ϕ = ϑ(ε), we deduce that

Λ(ε) =

∫
Ω

f iu̇i(ε)
√
g(ε)dx− d

dt

∫
Ω

Aijkl(ε)ek||l(ε)ei||j
√
g(ε)dx+

∫
Ω

Aijkl(ε)ek||lėi||j
√
g(ε)dx

− d

dt

∫
Ω

ρu̇α(ε)gαβ(ε)u̇β
√
g(ε) dx+

∫
Ω

ρüαg
αβ(ε)u̇β

√
g(ε) dx

− d

dt

∫
Ω

ρu̇3(ε)u̇3

√
g(ε) dx+

∫
Ω

ρü3u̇3

√
g(ε) dx

+

∫
ΓC

p(−u̇3)(u̇3(ε)− u̇3)
√
g(ε)dΓ +

∫
ΓC

p(−u̇3(ε))u̇3

√
g(ε)dΓ

+

∫
Ω

qϑ(ε)
√
g(ε)dx− d

dt

∫
Ω

βϑ(ε)ϑ
√
g(ε)dx+

∫
Ω

βϑ̇ϑ
√
g(ε)dx

−
∫
Ω

k∂αϑg
αβ(ε)∂β(ϑ(ε)− ϑ)

√
g(ε)dx−

∫
Ω

k∂αϑ(ε)gαβ(ε)∂βϑ
√
g(ε)dx

− 1

ε2

∫
Ω

k∂3ϑ∂3(ϑ(ε)− ϑ)
√
g(ε)dx− 1

ε2

∫
Ω

k∂3ϑ(ε)∂3ϑ
√
g(ε)dx.

(97)

Integrating with respect to the time variable in [0, t] and taking into
account the initial conditions given in Problem 6 and (84) we obtain

∫ t

0

Λ(ε)dr =

∫ t

0

∫
Ω

f iu̇i(ε)
√
g(ε)dxdr −

∫
Ω

Aijkl(ε)ek||l(ε)ei||j
√
g(ε)dx+

∫ t

0

∫
Ω

Aijkl(ε)ek||lėi||j
√
g(ε)dxdr

−
∫
Ω

ρu̇α(ε)gαβ(ε)u̇β
√
g(ε) dx+

∫ t

0

∫
Ω

ρüαg
αβ(ε)u̇β

√
g(ε) dxdr

−
∫
Ω

ρu̇3(ε)u̇3

√
g(ε) dx+

∫ t

0

∫
Ω

ρü3u̇3

√
g(ε) dxdr

+

∫ t

0

∫
ΓC

p(−u̇3)(u̇3(ε)− u̇3)
√
g(ε)dΓdr +

∫ t

0

∫
ΓC

p(−u̇3(ε))u̇3

√
g(ε)dΓdr

+

∫ t

0

∫
Ω

qϑ(ε)
√
g(ε)dxdr −

∫
Ω

βϑ(ε)ϑ
√
g(ε)dx+

∫ t

0

∫
Ω

βϑ̇ϑ
√
g(ε)dxdr

−
∫ t

0

∫
Ω

k∂αϑg
αβ(ε)∂β(ϑ(ε)− ϑ)

√
g(ε)dxdr −

∫ t

0

∫
Ω

k∂αϑ(ε)gαβ(ε)∂βϑ
√
g(ε)dxdr

− 1

ε2

∫ t

0

∫
Ω

k∂3ϑ∂3(ϑ(ε)− ϑ)
√
g(ε)dxdr − 1

ε2

∫ t

0

∫
Ω

k∂3ϑ(ε)∂3ϑ
√
g(ε)dxdr.

Take into account that ∂3ϑ = 0, and let ε→ 0. Then, because of the weak
convergences studied in steps (i), (iii) and (v), the asymptotic behaviour
of the functions Aijkl(ε) and g(ε) (see (55)–(56) and (61)) and by using
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the Lebesgue dominated convergence theorem, we find that

lim
ε→0

∫ t

0

Λ(ε)dr =

∫ t

0

∫
Ω

f iu̇i
√
adxdr −

∫ t

0

∫
Ω

ρüαa
αβ u̇β

√
adxdr −

∫ t

0

∫
Ω

ρü3u̇3

√
adxdr

−
∫ t

0

∫
Ω

Aijkl(0)ek||lėi||j
√
adxdr +

∫ t

0

∫
ΓC

χu̇3

√
adΓdr +

∫ t

0

∫
Ω

qϑ
√
adxdr

−
∫ t

0

∫
Ω

βϑ̇ϑ
√
adxdr −

∫ t

0

∫
Ω

k∂αϑa
αβ∂βϑ

√
adxdr. (98)

Moreover, by the expressions of Aijkl(0) (see (55)–(56)) and using (87)
we have∫
Ω

Aijkl(0)ek||lėi||j
√
adx =

∫
Ω

(
λaαβaστ + µ(aασaβτ + aατaβσ)

)
eσ||τ ėα||β

√
adx

+

∫
Ω

λaαβe3||3ėα||β
√
adx+

∫
Ω

(
λaστeσ||τ + (λ+ 2µ)e3||3

)
ė3||3
√
adx.

Then, using (88), we find that (98) is actually null, since its expression
above coincides with the result of adding (93) for v̄ = u̇ to (94) for ϕ = ϑ
(both integrated in [0, t]). Indeed,

lim
ε→0

∫ t

0

Λ(ε)dr =

∫ t

0

(∫
Ω

f iu̇i
√
adx−

∫
Ω

ρüαa
αβ u̇β

√
adx−

∫
Ω

ρü3u̇3

√
adx− 1

2

∫
Ω

aαβστeσ||τ ėα||β
√
adx

+

∫
ΓC

χu̇3

√
adΓ +

∫
Ω

qϑ
√
adx−

∫
Ω

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
ϑ̇ϑ
√
adx−

∫
Ω

k∂αϑa
αβ∂βϑ

√
adx

)
dr = 0.

(99)

Now, for the case where tractions are not null, in (97) we have an addi-
tonal term ∫

Γ+

hiu̇i(ε)
√
g(ε)dΓ.

We integrate (97) in [0, t] and integrate by parts the terms with tractions
corresponding to the first two components, which can be displayed as

−
∫ t

0

∫
Γ+

ḣα(r)uα(ε)(r)
√
g(ε)dΓ dr+

∫
Γ+

hα(t)uα(ε)(t)
√
g(ε)dΓ+

∫ t

0

∫
Γ+

h3(r)u̇3(ε)(r)
√
g(ε)dΓ dr.

When passing to the limit ε → 0, the terms with uα(ε) above converge
by using compactness arguments, since uα(ε) ∈ H1(Ω × (0, T )) and the
trace into L2(Γ × (0, T )) is a compact operator (see [8, p. 416]). For the
term with u̇3(ε), we omit the details for the sake of briefness, refer the
interested reader to [1] and provide the following sketch the proof. We
proceed like in the second part of Step (iii), with the difference that
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now there are tractions on the right-hand side. Indeed, instead of (86)
we obtain

1

2
ρ |ü(ε)(t)|20 −

1

2
ρ |ü(ε)(0)|20 +

1

2
aV (u̇(ε)(t), u̇(ε)(t))− 1

2
aV (u̇(ε)(0), u̇(ε)(0))

+
1

2

∫
Ω

β(ϑ̇(ε)(t))2dx− 1

2

∫
Ω

β(ϑ̇(ε)(0))2dx+

∫ t

0

aS(ϑ̇(ε)(r), ϑ̇(ε)(r))dr

≤
∫ t

0

∫
Ω

ḟ i(r)ü(ε)i(r) dxdr +

∫ t

0

∫
Γ+

ḣi(r)ü(ε)i(r) dΓdr +

∫ t

0

∫
Ω

q̇(r)ϑ̇(ε)(r) dxdr.

On the right-hand side we integrate by parts the term on the boundary
Γ+, use Theorem 3 combined with Young’s inequality and use Korn’s
inequality on the left-hand side. Next, apply Gronwall’s inequality to
obtain that |ei||j(u̇)(ε)|20,Ω is bounded independently of ε. Then we rea-

son like in Step (iii) with ΓC replaced by Γ+ and find that u̇3(ε)
∗
⇀

u̇3 in L∞(0, T ;L2(Γ+)). Besides, we use Lebesgue Theorem where needed,
as well. Thus, the limit of the terms with traction is

−
∫ t

0

∫
Γ+

ḣα(r)uα(r)
√
adΓ dr+

∫
Γ+

hα(t)uα(t)
√
adΓ+

∫ t

0

∫
Γ+

h3(r)u̇3(r)
√
adΓ dr.

We can undo the integration by parts, then reason like in (99).
The strong convergences ei||j(ε) → ei||j in L∞(0, T ;L2(Ω)) also imply
the strong convergences for ui(ε), by following arguments not depending
on the particular set of equations, but on arguments of differential ge-
ometry and functional analysis which do not differ from those used in [3,
Theorem 4.4-1]. Therefore, we just omit them and refer the interested
reader to the book.
It only remains to show that χ = p(−u̇3). To do that we can reason like
in Step (x) in [11, Theorem 5.3].

tu

Remark 8 Notice that unlike what happens in the references [5,8], cited several
times in this work, we cannot use compactness arguments for the convergence
of all the contact boundary terms, since in our functional framework (that of
linearly elliptic membrane shells) we do not have enough regularity to conclude
that u3(ε) ∈ H1(Ω× (0, T )). Indeed, we have found no uniform upper bounds
for ∂αu3(ε). Furthermore, the trace defined in Theorem 3 is not a compact
operator.

6 Back to the physical framework

It remains to be proved an analogous result to the previous theorem but in
terms of de-scaled unknowns. We shall present the limit problem in a de-
scaled form. The scalings in Section 3 suggest the de-scalings ξεi (y) = ξi(y)
and ζε(y) = ζ(y) for all y ∈ ω̄. This way, from Problem 8 we can derive
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Problem 11 Find a pair t 7→ (ξε(y, t), ζε(y, t)) of [0, T ] → VM (ω) × H1
0 (ω)

verifying

2ε

∫
ω

ρ(ξ̈εαa
αβηβ + ξ̈ε3η3)

√
ady + ε

∫
ω

aαβστ,εγστ (ξε)γαβ(η)
√
ady −

∫
Γ ε
C

pε(−ξ̇ε3)ηε3
√
adΓ

− 4ε

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ζεaαβγαβ(η)

√
ady =

∫
ω

F i,εηi
√
ady ∀η = (ηi) ∈ VM (ω),

2ε

∫
ω

(
β +

α2
T (3λ+ 2µ)2

λ+ 2µ

)
ζ̇εϕ
√
ady + 2ε

∫
ω

k∂εαζ
εaαβ∂εβϕ

√
ady

+ 4ε

∫
ω

αTµ(3λ+ 2µ)

λ+ 2µ
ϕaαβγαβ(ξ̇ε)

√
ady =

∫
ω

Qεϕ
√
ady ∀ϕ ∈ H1

0 (ω),

with ξ̇ε(·, 0) = ξε(·, 0) = 0 and ζε(·, 0) = 0.

Above, we have used F i,ε :=
∫ ε
−ε f

i,εdxε3 + hi,ε+ , with hi,ε+ (·) = hi,ε(·, ε), and

Qε =
∫ ε
−ε q

εdxε3. Moreover, the convergences uα(ε) → uα in H1(Ω) and

u3(ε) → u3 in L2(Ω) from the Theorem 5 and [3, Theorem 4.2-1] together
lead to the following convergences:

1

2ε

∫ ε

−ε
uεαdx

ε
3 → ξα inH1(Ω),

1

2ε

∫ ε

−ε
uε3dx

ε
3 → ξ3 in L2(Ω),

1

2ε

∫ ε

−ε
ζεdxε3 → ζ in L2(Ω) a.e. in (0, T ).

Furthermore, we can prove the convergences of the averages of the tangential
and normal components of the three-dimensional displacement vector field. To
this end, we can use the same arguments as in [3, Theorem 4.6-1].

7 Conclusions and Outlook

We have found and mathematically justified a two-dimensional limit model
for thermoelastic shells in contact with a deformable foundation, where the
contact is modeled by using a normal damped response function, in the par-
ticular case of the so-called elliptic membranes. To this end we used the insight
provided by the asymptotic expansion method and we have justified this ap-
proach by obtaining convergence theorems. We have also proved existence,
uniqueness and regularity results for both three and two-dimensional prob-
lems by combining Faedo-Galerking techniques, monotonicity and compacity
arguments.

Future work will be devoted to the study of alternative limit contact mod-
els, possibly thermoelastic flexural shells, which would be found under a dif-
ferent set of hypotheses for the order of the functions involved or the geometry
of the middle surface. Further, we are interested in cases when contact is not
frictionless, and further, models where it is coupled with other effects like wear,
adhesion or damage.
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