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Mode I fracture toughness (KIC) is one of the most important parameters 

in rock fracture mechanics. KIC is an intrinsic material property that represents the 

ability of a material containing a pre-existing defect to resist tensile failure. The 

International Society for Rock Mechanics (ISRM) has proposed four suggested 

methods for determining KIC. However, these methods present some drawbacks. 

The main objective of this thesis is to develop a simple testing approach, called 

pseudo-compact tension (pCT) test, to measure KIC in rocks using cylindrical 

single edge-notched specimens loaded in pure tension. The study is based on 

the results of a large set of fracture toughness experiments performed with 

different rock types, sample sizes, and a range of notch length ratios. The KIC 

values derived with the pCT test are compared with those obtained with one of 

the suggested methods of the ISRM, the semi-circular bend (SCB) test. Some 

selected pCT and SCB tests were also complemented with the concurrent 

monitoring of the acoustic emission (AE) activity. With the obtained data, we 

compare and analyse both testing methods, the effects of specimen size, notch 

length and lithology, the mechanical evolution along the experiments and the 

significance of different AE parameters.  
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La tenacidad de fractura en modo I (KIC) es uno de los parámetros más 

importantes en la mecánica de fractura aplicada a rocas. KIC es una propiedad 

intrínseca del material que representa su capacidad para resistir su rotura a 

tracción en la presencia de un defecto preexistente. La Sociedad Internacional 

para la Mecánica de Rocas (ISRM) ha sugerido cuatro métodos para determinar 

KIC, pero todos presentan algunos inconvenientes. El principal objetivo de esta 

tesis es desarrollar un método de ensayo simple, llamado ‘pseudo-compact 

tensión’ (pCT), para determinar KIC en rocas mediante muestras cilíndricas 

ensayadas bajo condiciones de tracción pura. El estudio se basa en los 

resultados de un número de ensayos llevados a cabo con distintos tipos de roca, 

tamaños de probeta y longitudes de entalla. Los valores de KIC obtenidos con el 

ensayo pCT se comparan con los obtenidos con el ensayo ‘semi-circular bend’ 

(SCB), uno de los métodos sugeridos por la ISRM. En algunos de estos ensayos 

también se registró la emisión acústica (AE). Con los datos obtenidos, 

comparamos y analizamos ambos métodos, los efectos del tamaño de probeta, 

longitud de entalla y litología, la evolución mecánica y la importancia de 

diferentes parámetros de AE durante los ensayos. 

Resumen 
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A tenacidade de fractura en modo I (KIC) é un dos parámetros máis 

importantes na mecánica de fractura aplicada a rochas. KIC é unha propiedade 

intrínseca do material que representa a súa capacidade para resistir a súa rotura 

a tracción na presenza dun defecto preexistente. A Sociedade Internacional para 

a Mecánica de Rochas (ISRM) suxeriu catro métodos para determinar KIC, mais 

todos presentan algúns inconvenientes. O principal obxectivo desta tese é 

desenvolver un método de ensaio simple, chamado ‘pseudo-compact tensión’ 

(pCT), para determinar KIC en rocha mediante mostras cilíndricas ensaiadas 

baixo condiciones de tracción pura. O estudo baséase nos resultados dun 

número de ensaios levados a cabo con distintos tipos de rocha, tamaños de 

probeta e lonxitudes de entalla. Os valores de KIC obtidos co ensaio pCT 

compáranse cos obtidos co ensaio ‘semi-circular bend’ (SCB), un dos métodos 

suxeridos pola ISRM. Nalgúns destes ensaios tamén se rexistrou a emisión 

acústica (AE). Cos datos obtidos, comparamos e analizamos ambos métodos, 

os efectos do tamaño de probeta, lonxitude de entalla e litoloxía, a evolución 

mecánica e a importancia de diferentes parámetros de AE durante os ensaios. 

Resumo 
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Defects such as voids or cracks are inherent in every material. These 

features can either pre-exist in a component or develop during operation. The 

simplest failure criteria assume that materials are perfectly homogeneous, 

isotropic, and free from defects, so that a specimen fails when the stress attains 

the ultimate strength. However, this is seldom true for real materials, which 

usually contain discontinuities or defects that may act as stress risers, reducing 

the overall strength and leading to premature, unexpected failure. The need for 

in-depth understanding of failure processes triggered the development of fracture 

mechanics. In contrast to the traditional approach, fracture mechanics assumes 

the presence of discontinuities in the material, and considers the crack size in 

failure assessment. The main objective of fracture mechanics is, therefore, to 

quantify the critical relationship between the applied stress and the size of a 

defect that would cause catastrophic failure under service. The property that links 

these two parameters (i.e. stress and crack size), and measures the resistance 

of a material to crack initiation and propagation is known as the fracture 

toughness (KC). Fracture mechanics distinguishes three basic modes of loading 

that a crack can experience: a) mode I, or opening/tensile mode; b) mode II, or 

shearing in-plane; and c) mode III, or shearing out-of-plane. 

The prediction of failure is one of the main concerns in rock mechanics. 

However, it is essential to consider that rock materials are discontinuous at all 

scales. At the micro-scale, rocks contain inherent discontinuities in the form of 

pores, grain boundaries or microcracks, which can produce high stress 

concentrations under loading. Since the tensile strength of a rock material is 

comparatively lower than its compressive and shearing stresses, the mode I 

fracture toughness (KIC) arises as the most relevant and studied parameter in 

rock fracture mechanics: the higher the value of KIC, the larger the resistance to 

Extended abstract 
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the propagation of tensile cracks. Fracture toughness may have paramount 

importance in engineering projects involving rock materials, such as thermal 

(e.g., geothermal and high-level radioactive waste disposal projects), mechanical 

(e.g., pillar/cave stability in mining), hydraulic/chemical (e.g., hydraulic fracturing, 

geological storage of CO2 and underground coal gasification) and process 

engineering (e.g., drilling, cutting and ore crushing). In recent years, the 

investigation of crack initiation and propagation in geological materials has 

become relevant due to the necessity of solving fracture problems in geophysics. 

In particular, the increasing demand for hydrocarbons has promoted the need for 

more research on the fracture mechanics of certain lithologies (e.g., tight sands 

and shales). For this reason, developing appropriate testing methods, with the 

resulting improvement in accuracy of fracture toughness values, has attracted 

significant interest. The International Society for Rock Mechanics (ISRM) has 

proposed four suggested methods for determining KIC using core-based 

specimens, namely the short rod (SR), chevron bend (CB), cracked chevron 

notched Brazilian disc (CCNBD), and semi-circular bend (SCB) methods. Some 

of these methods may be difficult to apply on a routine basis due to a number of 

issues, such as: a) the small failure initiation and propagation loads require 

excellent test control; b) a relatively large sample volume is needed (CB); c) 

cumbersome or difficult sample preparation (SR, CB, and CCNBD); d) 

imprecisions in the computation of the stress intensity factor (CCNBD); e) the 

indirect generation of tensile loads via sample compression (especially in SCB 

and CCNBD); and f) the celerity of crack propagation after the peak strength is 

attained.  

To overcome some of these limitations, the main objective of this thesis is 

to develop an alternate simple testing approach, referred to as pseudo-compact 

tension (pCT) test, to measure KIC in rocks using cylindrical single edge-notched 

specimens loaded in pure tension. The pCT test is based on a modification of the 

compact tension (CT) specimen described in the E399-90 ASTM (1997) standard 

method for testing metals. The pCT specimen is a disc-shaped (diameter-to-

thickness ratio of ~2) sample that can be cut from rock cores. The two loading 

holes of the CT specimen are replaced in the pCT test by a U-shaped groove. In 
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addition, a thin radial notch is cut to act as a stress concentrator and provide the 

location for crack initiation. The geometry of the pCT specimen is favourable due 

to its simplicity, low amount of material needed, and minimal machining 

requirement. Once the specimen is ready for testing, the test follows a simple and 

straightforward procedure. The specimen is mounted on a centring cradle and 

put in contact with a pair of high-strength, high-stiffness steel jaws that fit into the 

U-shaped groove and transmit the tensile load to the sample. While one of the 

jaws remains in a static position, the other one is pulled away at a constant 

displacement rate. The tensile load within the thin notch tends to split the 

specimen into two symmetrical halves. The crack initiates at the notch tip and 

propagates along the vertical diameter of the specimen (i.e., the ligament plane).  

The KIC values derived with the pCT test were validated by comparing the 

results with those obtained with one of the suggested methods of the ISRM, the 

SCB test. The SCB specimen geometry is a semi-cylinder with a single thin notch 

located at the middle of its flat face. We have selected the SCB as benchmark 

due to its popularity, simplicity (in terms of sample preparation), and 

straightforward testing configuration. Four different rock types, namely Corvio, 

Arcera, and Pinacas sandstone and Blanco Mera granite, were used to assess 

their corresponding KIC using both testing methods. All these rocks are nearly 

isotropic but differ in strength and mechanical performance. Corvio and Arcera 

sandstones have a relatively low strength, reduced grain size (< 1mm), high 

porosity and low elastic moduli. However, the Pinacas sandstone, while having a 

similar grain size, is significantly tougher and has lower porosity and higher elastic 

modulus. The Blanco Mera granite is a homogeneous rock of medium grain size 

(1-6 mm), low porosity and moderate strength. 

In the present study, we cored the tested samples from homogeneous rock 

blocks using diamond drill bits. The plugs obtained were then sliced into discs 

with a diameter-to-thickness ratio of 2 using a circular diamond blade. For the 

SCB specimens we diametrically halved the discs with a modified tile saw. In the 

case of the pCT specimens, we carved the U-shaped groove using a 2 mm-thick 

diamond disc, making several saw-passes while displacing horizontally the 
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sample after each pass. The vertical position of the disc, which determines the 

depth of the notch, was set with the aid of a vertical spindle. Good alignment of 

the sample with respect to the saw was ensured with the aid of reference marks 

(laser level, set square) and the use of a grip fixed to a horizontal movable stand 

connected to a horizontal spindle. In both pCT and SCB specimens, we used a 

similar approach to cut the thin straight notch. However, in this case the notch 

was cut in one single blade pass using a 1 mm-thick disc. Once prepared, the 

samples were oven dried at 60ºC for a minimum of 24 hours.  

A specially- designed experimental device was built to perform the pCT 

tests. The requirements considered in the design include portability (which 

imposed significant size, weight and robustness constraints), mounting simplicity 

and mechanical stability of specimens with different sizes during testing, easy 

installation of the measurement devices and replacement of the failed parts, and 

quickness of non-testing operations (specimen positioning, cleaning, etc.). The 

testing device consists of a high-stiffness frame equipped with a 50 kN push/pull 

load cell, two linear variable differential transducers (LVDTs), and two crack 

opening displacement (COD) gauges. Electric signals from all the measurement 

devices are integrated into a dedicated data acquisition system. The movement 

of the steel jaw is accomplished by means of a 5 mm- lead spindle, which 

converts the rotatory motion of an electric stepper motor with a step angle of 1.8º 

(i.e., 200 steps per revolution) into linear displacement. To improve its 

performance, the motor is connected to a planetary gearhead with a reduction 

ratio of 1:100. This simple configuration provides a high degree of accuracy in 

positioning (0.018º/step), equivalent to 0.25 µm/step in terms of linear movement 

of the shaft, which can be maintained from 0 to 50 kN. The two LVDTs, placed 

symmetrically on both sides on the specimen, measure the load point 

displacement (LPD), which corresponds to the displacement of the mobile jaw. 

Simultaneously, a clip-on gauge mounted on a pair of bolt-on knife-edges 

attached to the steel jaws measures the same magnitude for redundancy. An 

additional COD gauge can be mounted directly on the surface of the specimen to 

measure the crack mount opening displacement (CMOD). Steel knife-edge 

blades were glued to the samples to make possible this arrangement. While we 
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have recorded the load vs displacement (P-LPD) curves for all the specimens 

tested with the pCT methodology, CMOD has been measured only in 11 of them. 

SCB specimens were tested under three-point bending on a stiff servo-

electric frame equipped with a 4.448,22 N load cell. In this configuration, we used 

an upper steel roller to transfer a linear load on the top of the sample, while two 

additional lower rollers supported the sample. In this case, LPD corresponds to 

the vertical displacement of the loading roller. To assess CMOD, we have used 

a pair of LVDTs installed perpendicularly to the notch plane and facing each other 

along the diametric plane of the specimen. This configuration was selected in 

order to the problems inherent to the use of clip-on gauges with small size 

samples. Due to the curved nature of the top surface and the magnification of 

contact errors associated with the rotation of this surface as the test progresses, 

we glued 3D printed T-plates to the corresponding edges. For this testing method, 

we have recorded for all the specimens the load-CMOD (P-CMOD) and load-

displacement (P-LPD) curves. 

We analysed the pCT and SCB testing methods considering a number of 

relevant properties, all of them potentially affecting KIC. Although fracture 

toughness is considered an intrinsic material property and should be reasonably 

independent of the specimen geometry and loading configuration, experimental 

KIC values previously reported suggest the contrary. For this reason, pCT and 

SCB specimens 38, 50 and 100 mm in diameter were tested in order to determine 

size effects. Different notch length ratios were also adopted to explore the effect 

of notch length on fracture toughness. All the tests were performed at a constant 

slow displacement rate of 0.1 mm/min (to avoid dynamic effects) under ambient 

conditions. In this contribution, only Level I (or screening level) tests are reported. 

Although in this level only the maximum load (Pmax) needs to be measured to 

compute KIC, we continuously monitored the load, the load point displacement 

(LPD) and the crack mouth opening displacement (CMOD) to gain further insight 

into material behaviour. From the energy balances viewpoint, a crack will 

propagate when the energy available for crack growth exceeds the resistance of 

the material. Accordingly, fracture toughness can also be regarded as the energy 
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release rate needed to create new crack surfaces, and the load-displacement 

curves for each test were also used to characterize the energy content of the 

fracturing process. In pCT testing, the good control during the experiments even 

beyond Pmax allowed splitting the total energy (Etot) into two portions: the pre-peak 

(Epre, that is the work done on the specimen to induce the initiation of the crack) 

and the post-peak (Epost, that is the work done on the specimen to propagate the 

crack) energies. To compute KIC, it is necessary to know not only the peak load 

(Pmax) and the notch length (a) but also the expression of the dimensionless stress 

intensity factor (Y’) for each particular specimen geometry and loading conditions. 

For the SCB test, the corresponding expression (Y’SCB) has been previously 

reported in the literature. However, for our pCT configuration no closed-form 

expression was found. In this case, the finite element method was used to derive 

a fourth-order polynomial function for each specimen size in terms of various 

notch length ratios (Y’pCT). 

The acoustic emission (AE) technique was used to acquire further insights 

about the processes of crack initiation, propagation and coalescence. AE is a 

non-destructive testing technique widely used to monitor the evolution of damage 

in rocks. When a fracture growths, crack energy is released in the form of elastic 

waves that travel through the material and can be recorded in real time by AE 

sensors placed on the specimen surface. In some specimens up to eight AE 

sensors were located at different distances from the starter notch to monitor the 

AE activity during testing. The recorded AE parameters (e.g., counts, amplitude, 

duration, or peak frequency) allowed the assessment of stages and processes, 

failure advent and cracking modes (e.g., AF:RA ratio and the improved b-value). 

In addition, using the multi-sensor array, we have computed the location of the 

AE hypocentres as a function of testing time, what was useful to analyse the 

evolution and propagation of cracks along the ligament length. Based on the AE 

information, we also explored the relationship between the energy release 

associated to the fracture process and that captured by AE (EAE). Although the 

energy magnitudes associated with fracturing and local emission of AE are 

broadly different (AE can be unevenly scattered and/or attenuated in the sample 

and interfaces), it may be possible to identify a formal relationship between both 
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properties so that EAE can be regarded as a proxy for the energy dissipated during 

the fracture process. In fact, considering that the AE activity is proportional to the 

number and magnitude of growing cracks, it is reasonable to assume that there 

might be a relation between AE energy (EAE) and fracture energy.  

With the obtained data, we compared the pCT and SCB methods from the 

perspectives of the mechanical evolution along the experiments, and the 

significance of different AE parameters at different stages of the tests. Our results 

show that the combination of small displacement (allowing extremely small strain 

rates), high load capacity and high stiffness of the testing system makes the pCT 

test convenient for the analysis of the toughness of rocks (either fragile or ductile). 

Moreover, the simpler sample preparation methodology of the pCT test compared 

to other tests makes it an interesting candidate for routine fracture toughness 

testing. According to our experimental results, it would be advisable to use 

medium-sized (D = 50 mm) pCT specimens with a relatively large notch length 

ratio (a/b > 0.25) to obtain more consistent KIC values. For the tested rocks, crack 

growth was slow during the entire duration of the pCT experiments, and further 

crack extension required the continuous movement of the steel jaw. 

Consequently, the process of crack propagation could be controlled even after 

the peak strength was reached. The load-displacement (P-d) curves were well 

defined beyond Pmax, providing insight into the post-peak behaviour. In general, 

the loading process could be divided into three major stages: (1) a period during 

which the curve linearly increased (elastic behaviour); (2) a non-linear period 

during which new microcracks were formed and the slope of the curve gradually 

decreased until fracture onset at Pmax; and (3) a period of softening during which 

the load decreased as a macroscopic crack propagated along the ligament plane. 

Contrary, and with the exception of some specimens of Corvio sandstone (that is 

a soft rock), the loading curves for the SCB tests showed a nearly linear increase 

path until the specimen abruptly failed at the peak load (Pmax). This evidences 

that the SCB methodology does not allow a good control beyond Pmax and the 

fracture, once initiated, propagates unstably up to the outer face of the specimen. 

It can be argued that improving control electronics and system stiffness (to avoid 

elastic energy storage in the testing device) may improve the quality of the SCB 
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results. However, in our opinion the key point determining its poorer performance 

in the post-peak region is that the energy storage in the sample takes place in a 

volume significantly larger than that surrounding the crack tip (e.g., at the contact 

point of the rollers and along the ligament up to the starter notch). When load 

attains Pmax, all this energy stored in the sample is released suddenly and the 

crack propagates unstably. However, in the case of the pCT test, the load is 

transferred to the sample along the contact lines of the pulling jaws and from 

there directly to the starter notch.  

Based on the results 146 experiments (81 and 65 pCT and SCB tests, 

respectively), we checked the mutual consistency of the KIC values obtained 

using both testing methodologies, and assessed the influence of features such 

as the specimen size or the notch length ratio. With a wide perspective, we 

observe that for both testing methods the results are broadly compatible in 

magnitude for each tested rock. Mode I fracture toughness derived from pCT 

testing for Corvio (~0.06-0.12 MPa m1/2) and Arcera sandstones (~0.24-0.60 MPa 

m1/2) is low, what is consistent with their condition of weak rocks. However, the 

KIC values for both Pinacas sandstone and Blanco Mera granite are appreciably 

higher (~1.05-1.4 MPa m1/2). For the same rocks, the SCB testing method results 

in values slightly larger for the Corvio Sandstone (~0.07-0.18 MPa m1/2), but lower 

for the Arcera sandstone (~0.26-0.46 MPa m1/2). In the case of the Pinacas 

sandstone and the Blanco Mera granite, KIC results are more scattered than for 

pCT testing (~0.69-1.64 and ~0.72-1.51 MPa m1/2, respectively). The smaller 

theoretical fracture process zone (FPZ, that is the microcracked volume located 

in the neighbourhood of the crack tip) associated with the SCB specimens should 

led to a potentially lower scatter in the KIC results. However, what we observe is 

the contrary, what suggests that the FPZ would not be playing a significant role 

in the pCT testing mode. We conjecture that this is associated with the larger 

ligament length of pCT compared with the SCB specimens (~3 times). 

For pCT tests, the tensile strength and KIC were found to be strongly 

correlated. Although the values obtained are internally consistent (i.e., small 

range), KIC was found to be positively related to the specimen size and negatively 
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related to the notch length in both testing methods. It is interesting to note that 

lithology seems to magnify the influence of these geometrical features on KIC, 

and this circumstance can be determinant for the harder (strong cemented) 

materials (Pinacas sandstone and Blanco Mera granite). In our opinion, in 

addition to geometric constrains, the characteristics of the rock tested must be 

considered in order to set up minimum requirements for specimen dimensions in 

fracture toughness testing. Regarding the testing method, the size effect has a 

lesser impact in the pCT testing methodology, while the SCB test provides less 

consistent and sensitive information with respect the dependence on notch 

length.  

For the pCT test, the good correlation found between LPD and CMOD 

makes possible the direct assessment of CMOD without employing direct contact 

transducers such as clip gauges (what is advantageous with small size samples). 

In turn, this is not possible with the SCB. The relationships among Epre and Epost 

with Etot suggest that, irrespective of lithology, sample size and notch length, the 

same energy level is required to initiate the fracture or controllably propagate it 

once initiated. The energy balances obtained have made also possible to support 

the conjecture of the size-dependent fracture energy value given at a constant 

notch length. However, our results indicate a more complex dependency, with 

lithology playing a significant role.  

In general, the qualitative evolution of EAE illustrates well the mechanical 

processes occurring in the tested samples, with net rate changes 

(acceleration/deceleration) coinciding well with the mechanical transitions. 

However, the assessment of EAE to try to identify functional relationships with 

fracture energy has been unsuccessful in the present survey, although we cannot 

discard eventual relationships with a more comprehensive AE database. 

The location of the AE hypocentres was useful to analyse the evolution 

and propagation of the crack along the ligament length. As expected, at peak load 

the events were mainly located around the notch tip for both testing methods. In 

the post-peak region of the pCT tests, the distribution conforms a vertical crack, 

which slightly deviates or increases lateral spread (depending on the material) as 
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the rock loses cohesion in the later stage of the experiments. These observations 

are consistent with the macrocracks observed in the specimens after testing. 

Micro X-ray computed tomography of pCT specimens revealed that the 

macroscopic crack did not always initiate at the notch tip and that the point of 

generation even varies along the specimen thickness. The semi-circular shape 

of the notch tip allows crack initiation to occur at any point along the circular 

geometry of the tip. This factor, together with the particle arrangement of the rock, 

may determine the deviation of the fracture from the expected propagation path, 

towards the left or the right side of the specimen. In the SCB tests, the location 

of the AE hypocentres for the hardest material (Pinacas sandstone) evidence the 

upwards migration of the AE events from the notch tip up to the top roller at 

specimen failure. However, for the softest material (Arcera sandstone) we 

observe a progressive damage in the area next to the loading end that originates 

an oblique macrocrack. This evidences the potential of the AE technique to better 

understand the processes associated with fracture toughness testing. In addition, 

from the location of the AE events it was possible to determine the approximate 

dimensions of the FPZ. 

The analysis of peak frequencies (fpeak) revealed apparent inconsistencies 

with generally accepted behaviour (i.e. high values are expected in connection 

with microcrack development and low values with fracturing). However, 

considering the effect of acoustic attenuation it was possible to relate the 

appearance/disappearance of signals with specific fpeak and normalized 

amplitude (Anorm) with the facture processes occurring at different stress levels. 

In addition, the increased scattering at certain frequency ranges could be linked 

to the size of the growing defects. 

The tensile mode was predominant in the pre-peak and late post-peak 

stages of the pCT tests according to the parametric analysis based in the AF vs. 

RA ratios. Only in the early post-peak region, where the macroscopic cracks grow 

due to the convergence of micro-mesocracks, a mixed-mode (tensile/shear) 

appeared in a limited extent. The appearance of a non-tensile cracking mode may 

be explained by the type or rock and properties (e.g., mineralogy, grain size, 
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cementation or homogeneity) which determine the orientation of the crack. 

According to this, if cracking requires less energy to advance through the cement 

than across grains, the crack plane might not be orthogonal to the tensile load 

and may conduct to local shearing due to the increase in tortuosity. This is 

supported by the geometrical features (deviation and branching in the crack 

plane) observed in the location of the AE events, as well as in the micro X-ray 

computed tomography. Finally, the analysis of the Ib-values let us identify a 

relevant potential to discern the onset separating the stable and unstable crack 

growth. Anyhow, more specific filtering techniques are required to perform a more 

detailed analysis. 

In summary, and considering the conclusions derived from this work, the 

pCT test presents some advantages over other fracture toughness testing 

methods: a) reduced rock requirement (disc-shaped specimen with a diameter-

to-thickness ratio of 2); b) simpler sample preparation (straight groove and thin 

starter notch); c) enhanced control of crack propagation (especially beyond peak 

strength); d) pure tensile loading; and e) more comprehensive and detailed 

results both in terms of mechanical (e.g., fracture energy evolution) and AE data 

due to the possibility of capturing the post-peak behaviour. In addition, the testing 

configuration of the pCT test also allows keeping the samples immersed into a 

fluid bath, and therefore saturated, all along the experiments. This feature makes 

the pCT test suitable for studying the potential impact of saturating fluids on KIC.  

From a methodological point of view, a good sample alignment is essential 

in the SCB method to avoid mixed modes (I / II) in fracture toughness 

determinations. Furthermore, we also caution about the propensity of this 

configuration to lateral sliding when applying a linearly distributed force due to the 

circular nature of the loading surface. None of the two problems is significant with 

the pCT technique.  
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1. Introduction 
  

 

1.1. Motivation 

The prediction of failure is one of the main concerns in rock mechanics. 

Since tensile failure is the most common and most important failure mode 

encountered in brittle materials, the assessment of the tensile strength of rock 

has attracted special attention. However, performing direct tensile tests in rocks 

presents some inherent difficulties due to factors such as cumbersome testing 

arrangements, stress concentration at the loading ends, or tedious sample 

preparation. As a consequence, the study of tensile failure of rock remains 

incomplete due to the scarce complete stress-strain curves obtained from direct 

tensile tests (Tang and Hudson 2010). 

The simplest criterion to predict failure is based on the assumption that a 

material fails when the stress (or strain) reaches its critical value, i.e., the strength 

of the material. However, this approach disregards the inherent existence of 

defects such as cracks or voids. Alternatively, the fracture mechanics approach 

considers the presence of these defects by introducing the crack size as an 

additional parameter in failure assessment (Anderson 2005). In fact, brittle 

materials such as rock contain flaws (e.g. voids, pores, microcracks, grain 

boundaries, etc.) that can increase the stress locally and induce premature failure 

before the strength of the material is reached. What is more, rock failure is 

essentially related to the processes of crack initiation and propagation, so the 

concept of fracture toughness (i.e. the resistance of a material to the propagation 

of pre-existing defects, KC) is of special importance in rock mechanics. The study 

of rock fracture toughness has significant implications in the field of 

geomechanics and geotechnical engineering, not only in activities like tunnelling 

or underground excavation but also in energy production. 
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In the oil and gas industry, fracture toughness has a crucial importance. In 

recent years, unconventional resources such as shale gas or tight oil have 

attracted increasing attention due to the downward productivity of conventional 

reservoirs, which can no longer meet the demand (Taghichian et al. 2018). In 

unconventional reservoirs, the low permeability of the materials (e.g. tight 

sandstone or shale) prevents oil and/or gas to flow from the rock formation to the 

well. A stimulation approach aimed at increasing permeability and enhance 

extraction consists of injecting fluids under high pressure into the bedrock. This 

process, known as hydraulic fracturing, induces the creation of new fractures in 

the rock (in the direction of least resistance) and increases the size and 

connectivity of the pre-existing cracks. To initiate and propagate tensile fractures 

under controlled conditions, the fracture toughness of the rock, together with the 

closure pressure of the formation, have to be overcome (Skomorowski 2016). It 

is therefore evident that fracture toughness, and in particular mode I (tensile) 

fracture toughness (KIC), is one of the key parameters that must be considered 

when designing hydraulic fracturing projects.  

In recent years, the contribution of greenhouse gases (e.g., CO2 emissions 

associated with burning fossil fuels) to global warming has been a growing 

concern. Different approaches have been proposed to reduce the levels of CO2 

in the atmosphere and slow down the greenhouse effect. In some of them, such 

as the use of energy sources with low CO2 emissions (e.g., geothermal or nuclear 

energies) or the capture and geological storage of CO2, the Earth’s subsurface 

plays a major role (Canal-Vila 2016). In order to ensure safe operation and 

optimize the performance of these technologies, it is essential an in-depth 

understanding of the processes occurring in the subsurface, as well as the 

geochemical and mechanical properties of the host rock. For instance, the 

efficiency of enhanced geothermal systems (EGS), which highly depends on the 

dimensions of the heat exchange surfaces between the rock and the circulating 

fluid (Pellet 2018), is conditioned by the precise design and control of hydraulic 

fractures in the system and therefore, by the proper determination of KIC 

(Stoeckhert et al. 2016). Similarly, the assessment of fracture toughness is also 
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essential for safe CO2 storage in saline aquifers (Xiankai et al. 2018). However, 

the objective in this case is precisely the opposite, i.e. to avoid the propagation 

of fractures during fluid injection. In fact, the success of large-scale CO2 

geosequestration and long-term storage highly depends on the capacity of the 

reservoir to avoid potential leakage of CO2 along underground pathways such as 

fractures (Muñoz-Ibáñez et al. 2020). This is also crucial in nuclear energy 

production, where one of the main concerns is the large levels of hazardous 

radioactive waste that are disposed in the subsurface (Feng et al. 2019). In order 

to prevent tensile fracturing of the rock, the geomechanical properties of the 

reservoirs, including fracture toughness, must be properly defined.  

Several experimental studies have been developed in order to gain insight 

into the fracture behaviour of rocks, including fast brittle fracture, and subcritical 

(stable) crack growth (Takahashi 1983). A number of experimental procedures 

have been proposed for the determination of KIC in rocks, and the International 

Society for Rock Mechanics (ISRM) has endorsed four of them as suggested 

methods. However, these methods present some drawbacks. In this contribution 

we propose a new method (pseudo-compact tension or pCT test) useful to assess 

the KIC of rocks using disc-shaped specimens loaded under pure tension 

conditions. In contrast to the methods proposed by the ISRM, the pCT method 

has several advantages like simple sample preparation, small sample 

requirement, limited size effects, and steady propagation of crack beyond peak 

load. All of these attributes are valuable to fulfil the necessities of the industry. 

1.2. Objectives 

The main objectives of the present work are: i) to deepen into the 

knowledge of the processes that determine the subcritical (i.e. low speed) 

development of cracks in rock materials; and ii) to develop a new method (pCT) 

for the assessment of mode I fracture toughness (KIC) in rocks. 

The previous main objectives can be split into the more specific elements 

enumerated next: i) based on available information, to design a new experimental 

device useful to determine KIC by considering simple mechanical concepts and 
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sufficient performance, simple sample preparation and good reproducibility; ii) to 

build and to test the functionality of the testing device under prescribed 

conditions; iii) to develop a methodological framework for the new testing 

approach, and to compare the obtained results with other recommended 

techniques aimed at determining KIC; and iv) to apply the new experimental 

method to different rock-types and to assess the influence of geometrical factors 

such as specimen size or notch length on KIC. 

1.3. Thesis organization 

This dissertation is organized around three journal articles (Chapters 3 to 

5) which are published or submitted to peer-reviewed journals for publication. The 

main results of this research are presented in these three chapters. In addition, 

this thesis includes an introduction, a literature review, conclusions, and future 

work, and two appendices.  

• Chapter 1 is an introduction to the present dissertation, states the 

objectives of this thesis, and provides with a list of publications arisen 

from this work. 

• Chapter 2 encompasses a short literature review of fracture 

mechanics, focusing on mode I fracture toughness. 

• Chapter 3 presents the new testing approach, called the pseudo-

compact tension (pCT) method, to measure mode I fracture 

toughness (KIC) in rock. We present the experimental results of a 

series of tests performed using four different lithologies, and we 

provide an expression for the mode I dimensionless stress intensity 

factor for the particular specimen geometry and loading conditions. 

We conclude that the pCT test is an interesting candidate for routine 

fracture toughness testing, either in fragile or ductile rocks. This 

chapter is published in ‘Rock Mechanics and Rock Engineering’. 

• In Chapter 4, we check the mutual consistency of the KIC values 

obtained with the pCT test and those obtained with one of the 

methods suggested by the International Society of Rock Mechanics 
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(ISRM), the semi-circular bend (SCB) method. We discuss the 

results of 146 tests, while considering a number of relevant 

properties. We conclude that both specimen size and notch length 

influence KIC, although the magnitude of their impact is closely 

related to lithology. In addition to yielding more consistent results that 

the SCB test, the pCT method also provides with a greater wealth of 

fracture mechanics information, such as the fracture evolution. This 

chapter has been submitted to ‘International Journal on Rock 

Mechanics and Mining Sciences’. 

• Chapter 5 extends the work presented in Chapters 3 and 4 by

presenting the acoustic emission (AE) data recorded during the pCT

and SCB tests. We compare the mechanical evolution and the

significance of different AE parameters in both testing methods. We

also analyse the hypocentre location of AE events and the Ib-value,

and assess the crack modes using a parameter-based strategy. We

conclude that the pCT test provides more comprehensive and

detailed information in terms of AE data. This chapter will be

submitted to ‘Journal of Petroleum Science and Engineering’.

• Chapter 6 summarizes the main conclusions of this study, provides

methodological recommendations for performing fracture toughness

tests, and suggests future research lines.

• Appendix A contains the extended abstract of this thesis in Spanish

and Galician languages.

• Appendix B provides a detailed description of the specially-designed

testing device used to perform pCT tests.

• Appendix C presents briefly the results of a series of pCT tests

performed under saturated conditions. We used two different rock

types and seven wetting and non-wetting fluids with geological and/or

industry related applications. We conclude that fluids have an impact

on the KIC, the stiffness, and the energy needed for the generation

and propagation of the cracks.
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1.4. Publications 

A number of publications, including peer-reviewed papers and conference 

contributions, have arisen from this investigation. These publications, together 

with other closely related work, are listed below:  

1.4.1. Scientific journal papers 

• Muñoz‐Ibáñez, A., Delgado‐Martín, J., Grande‐García, E. (2019) 

Acoustic emission processes occurring during high‐pressure sand 

compaction. Geophysical Prospecting, 67: 761-783. 

• Muñoz-Ibáñez, A., Falcon-Suarez, I. H., Marín-Moreno, H., Delgado-

Martín, J., Mackin, P. (2020) Transport properties of saline CO2 

storage reservoirs with unconnected fractures from brine-CO2 flow-

through tests. Journal of Petroleum Science and Engineering, 184: 

106551. 

• Muñoz-Ibáñez, A., Delgado-Martín, J., Costas, M., Rabuñal-Dopico, 

J., Alvarellos-Iglesias, J., Canal-Vila, J. (2020) Mode I Fracture 

Toughness Determination in Rocks Using a Pseudo-Compact 

Tension (pCT) Test Approach. Rock Mechanics and Rock 

Engineering, 53(7): 3267-3285 

• Falcon-Suarez, I. H., Papageorgiou, G., Jin, Z., Muñoz-Ibáñez, A., 

Chapman, M., Best, A.I. (2020) CO2-brine substitution effects on 

ultrasonic wave propagation through sandstone with oblique 

fractures. Geophysical Research Letters.  

• Muñoz-Ibáñez, A., Delgado-Martín, J., Juncosa-Rivera, J. (subm.) 

Experimental investigation on the size and other effects on mode I 

fracture toughness in selected rock types using the pCT and SCB 

testing methods. International Journal of Rock Mechanics and Mining 

Sciences. 

• Muñoz-Ibáñez, A., Herbón-Penabad, M., Delgado-Martín, J., 

Alvarellos-Iglesias, J. (to be subm.) Acoustic emission monitoring of 
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mode I fracture toughness tests on sandstone rocks. Journal of 

Petroleum Science and Engineering. 

1.4.2. Conference contributions 
• Delgado‐Martín, J., Muñoz‐Ibáñez, A., Grande‐García, E., 

Rodríguez-Cedrún, B. (2016) Phenomenological Description of 

Acoustic Emission Processes Occurring During High-Pressure Sand 

Compaction. In: EGU General Assembly 2016, 17-22 April, Vienna, 

Austria. [Poster] 

• Muñoz‐Ibáñez, A., Grande‐García, E., Rodríguez-Cedrún, B., 

Delgado‐Martín, J. (2016) Descripción fenomenológica de procesos 

de emisión acústica durante la compactación de arena a alta presión. 

In: Sociedad Española de Mecánica del Suelo e Ingeniería 

Geotécnica, Sociedade Portuguesa de Geotecnia, Sociedad 

Española de Mecánica de Rocas (eds.) Reconocimiento, tratamiento 

y mejora del terreno: 10º Simposio Nacional de Ingeniería 

Geotécnica, 19th - 21st October, A Coruña, Spain. 175-182. 

[Proceedings & Presentation] 

• Muñoz‐Ibáñez, A., Delgado‐Martín, J., Grande‐García, E. (2017) 

Acoustic emission processes occurring during high‐pressure sand 

compaction. In: 4th International Workshop on Rock Physics, 29th 

May - 2nd June, Trondheim, Norway. [Presentation] 

• Muñoz-Ibáñez, A., Falcon-Suarez, I. H., Marín-Moreno, H., Delgado-

Martín, J. (2018) Transport properties of saline reservoirs with non-

connected fractures during CO2 injection. In: IEAGHG Summer 

School 2018, 25th - 29th June, Trondheim, Norway. [Poster] 

• Muñoz-Ibáñez, A., Falcón-Suárez, I. H., Marín-Moreno, H., Delgado-

Martín, J. (2018).  Experimental insights into the sealing and storage 

capacity of fractured saline reservoirs during CO2 injection. In: AGU 

Fall Meeting 2018, 10th - 14th December, Washington, EEUU. 

[Presentation] 

https://dialnet.unirioja.es/servlet/libro?codigo=713303
https://dialnet.unirioja.es/servlet/libro?codigo=713303
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• Falcón-Suárez, I. H., Muñoz-Ibáñez, A. (2018). Pore fluid distribution

in saline sandstone CO2 storage reservoirs with aligned fractures:

Experimental geophysical assessment. In: AGU Fall Meeting 2018,

10th - 14th December, Washington, EEUU. [Poster]

• Muñoz-Ibáñez, A., Delgado-Martín, J. (2019). Assessment of

fracture toughness in rock using a new pseudo-compact tension

(pCT) test and acoustic emission. In: 5th International Workshop on

Rock Physics, 23rd – 26th April, Hong Kong. [Presentation]

• Muñoz-Ibáñez, A., Delgado-Martín, J., Costas-Piñó, J., Rabuñal-

Dopico, J., Alvarellos-Iglesias, J., Canal-Vila, J. (2019). KIC

measurement of rocks using a pseudo-compact tension (pCT) test.

In: Fontoura, S.A.B., Rocca, R.J., Pavón-Mendoza, J.F. Rock

Mechanics for Natural Resources and Infrastructure Development.

Proceedings of the 14th International Congress on Rock Mechanics

and Rock Engineering (ISRM 2019), 13rd - 18th September, Foz do

Iguassu, Brazil. 1005-1013 [Proceedings & Presentation]

• Muñoz-Ibáñez, A., Delgado-Martín, J. (2019). Experimental

investigation on the size effects of KIC in selected rock types. In:

Fontoura, S.A.B., Rocca, R.J., Pavón-Mendoza, J.F. Rock

Mechanics for Natural Resources and Infrastructure Development.

Proceedings of the 14th International Congress on Rock Mechanics

and Rock Engineering (ISRM 2019), 13rd - 18th September, Foz do

Iguassu, Brazil. 1173-1179 [Proceedings & Presentation]

• Muñoz-Ibáñez, A., Delgado-Martín, J., Juncosa-Rivera, R., Romera-

Rodríguez, L., Alejano-Monge, L., Canal-Vila, J., González-Molano,

N., Avarellos-Iglesias, J., López-Puiggene, E., Lakshmikantha, M.R.

(2019). Development of a true triaxial device for hydraulic fracturing

experiments. In: Fontoura, S.A.B., Rocca, R.J., Pavón-Mendoza,

J.F. Rock Mechanics for Natural Resources and Infrastructure

Development. Proceedings of the 14th International Congress on

Rock Mechanics and Rock Engineering (ISRM 2019), 13rd - 18th
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September, Foz do Iguassu, Brazil. 1195-1202 [Proceedings & 

Poster] 

• Muñoz-Ibáñez, A., Delgado-Martín, J. (2019). Acoustic emmission

monitoring of cracking processes in rock using semi-circular bend

and pseudo-compact tension tests. In: 12th International Congress on

Mechanics, 22nd - 25th September, Thessaloniki, Greece.

[Presentation]

• Muñoz-Ibáñez, A., Herbón-Penabad, M., Delgado-Martín, J. (2019).

Impact of Saturating Fluids on Mode-I Fracture Toughness of a

Porous Siliceous Sandstone and a Granitic Rock. In: AGU Fall

Meeting 2019, 9th - 13th December, San Francisco, EEUU. [Poster]

1.5. References 
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2. State of the art: 
rock fracture mechanics 

  
 

 

2.1. Introduction 

Defects such as voids or cracks are inherent in every material. These 

features can either pre-exist in a component or develop during operation. The 

traditional failure criteria state that failure occurs when the stress level overcomes 

the ultimate strength of the material, disregarding the existence of discontinuities 

(Serrano and Olalla 1998). However, far from being harmless, flaws can act as 

local stress risers, reducing the overall strength and leading to premature, 

unexpected failure of a component or structure well below its design stress (Perez 

2004). The need for in-depth understanding of failure processes in materials such 

as glass, metal and engineering ceramics triggered the development of fracture 

mechanics (Erdogan 2000). In contrast to the traditional approaches, fracture 

mechanics assumes the presence of discontinuities in the material, and 

introduces the crack size as an additional parameter in failure assessment 

(Anderson 2005). The main objective of fracture mechanics is, therefore, to 

quantify the critical relationship between the applied stress and the size of a 

defect that would cause catastrophic failure under service. The property that links 

these two parameters (i.e. stress and crack size), and measures the resistance 

of a material to crack initiation and propagation is known as the fracture 

toughness (Anderson 2005). 

Irwin (1958) introduced the three different loading modes that a crack can 

experience (Figure 2.1). In mode I (opening or tensile mode), the crack is 

subjected to a normal stress (σ) and the crack faces open perpendicular to the 

crack plane. In mode II (sliding mode), an in-plane shear stress (τi) slides the 

crack faces relative to each other in the crack plane and perpendicular to the 
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crack front. In mode III (tearing mode), an out-of-plane shear stress (τo) moves 

the crack surfaces in the crack plane but parallel to the crack front. In the case 

that both normal and shear stresses act over a crack at the same time, the 

fracture state (i.e. stress and displacement components) can be described as a 

combination of the three previous basic modes of loading by applying the 

principle of superposition. 

 

 
Figure 2.1: Three basic modes of loading. Figure adapted from Anderson (2005). 

Rock materials are discontinuous at all scales. At the micro-scale, rocks 

contain inherent discontinuities in the form of pores, grain boundaries, or 

microcracks, which can produce high stress concentrations under loading 

(Whittaker et al. 1992). In recent years, the investigation of crack initiation and 

propagation in geological materials has become relevant due to the necessity of 

solving fracture problems in geophysics. In particular, developing appropriate 

testing methods, with the resulting improvement in accuracy of fracture 

toughness values, has attracted significant interest. Due to the presence of 

defects, brittle materials such as rocks are characterized by having lower tensile 

than compressive or shear strength (Beer et al. 2012). For this reason, one of the 

main objectives of rock fracture mechanics is to obtain a representative value of 

the mode I fracture toughness (KIC): the higher the value of KIC, the larger the 

resistance to the propagation of tensile cracks.  
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2.2. Fracture toughness 

Crack growth can be predicted from two different perspectives that will be 

discussed in the following: the energy balance criterion, and the stress intensity 

approach. 

2.2.1. The energy-balance approach 
The base of fracture mechanics started with the experimental studies of 

Griffith (1920), who assessed the fracture strength of a brittle solid (glass) 

containing a pre-existing sharp crack. His work is based on the previous studies 

of Inglis (1913) focused on determining the stress concentrations around an 

elliptical hole in a plate. Griffith proposed the first energy criterion for fracture, 

which is valid for perfectly brittle linear elastic solids and states that fracture 

occurs when the energy available for crack growth (i.e., for generating two new 

crack surfaces) is sufficient to overcome the resistance of the material (Lawn 

1993). This thermodynamics approach is based on the principle of energy 

conservation: Griffith’s theory assumes that the energy added to and released 

from the body must be same as the dissipated energy during crack extension 

(Sun and Jin 2012). For an infinite plate subjected to a tensile stress (σ) which 

contains a through-thickness crack of length 2a (Figure 2.2a), the critical stress 

at failure (σf) is given by: 

𝜎𝜎𝑓𝑓 = �2𝛾𝛾𝑠𝑠𝐸𝐸′
𝜋𝜋𝜋𝜋

(2.1) 

where γs is the surface energy of the material (and consequently 2γs is the 

work of fracture), and E’ = E for plane stress, and E’ = E/(1-ν2) for plane strain, 

being E  the Young’s modulus, and ν the Poisson’s ratio. Equation (2.1) provides 

a relationship between failure stress and crack length, and gives the criterion for 

crack growth: the crack will advance if the energy stored in the system is equal 

or larger to the critical energy (i.e. σ ≥ σf in terms of stress).  
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Irwin (1957) modified Griffith’s theory and defined the concept of energy 

release rate (G), which represents the energy per unit area required for crack 

propagation: 

𝐺𝐺 = 2𝛾𝛾𝑠𝑠 =
𝜋𝜋𝜎𝜎2𝜋𝜋
𝐸𝐸′

 
(2.2)   

According to the previous expression, crack growth will occur when G 

reaches the critical energy release rate (Gc), which is considered a material 

property: 

𝐺𝐺𝑐𝑐 =
𝜋𝜋𝜎𝜎𝑓𝑓2𝜋𝜋
𝐸𝐸′

 
(2.3)   

 

 

Figure 2.2: (a) Infinite plate subjected to a remote tensile stress (σ) and containing 

through-thickness crack of length 2a. (b) Definition of the coordinate axes and the 

stresses near the crack tip. (c) Stress distribution ahead of the crack tip, and location 

of the fracture process zone (FPZ). (d) Contour around the crack tip. Note: All the 

figures have been adapted from Anderson (2005). 
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As previously mentioned, Griffith’s theory was limited to linear elastic 

materials (e.g., glass or ceramics). In order to extended his approach by 

considering the inelastic deformation at the crack tip observed for ductile (and 

even brittle) materials, Irwin (1948) and Orowan (1949) added a term 

representing the plastic energy dissipation (Anderson 2005): 

𝐺𝐺 = 2�𝛾𝛾𝑒𝑒 + 𝛾𝛾𝑝𝑝� (2.4)   

where γe is the elastic surface energy, and γp is the plastic surface energy. 

2.2.2. The stress intensity approach 
Linear elastic fracture mechanics (LEFM) is based on the description of 

the stress field near the crack tip developed by Irwin (1957), who introduced the 

concept of the stress intensity factor (K). For an infinite plane with a sharp, 

through-thickness crack of length 2a subjected to a tensile stress (σ) acting 

perpendicular to the crack plane (mode I), the stress distribution ahead of the 

crack tip is given by: 

�
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𝜎𝜎𝑧𝑧𝑧𝑧 = 𝜈𝜈�𝜎𝜎𝑥𝑥𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑦𝑦�, for plane strain 

𝜎𝜎𝑧𝑧𝑧𝑧 = 0,𝑓𝑓or plane stress 

𝜏𝜏𝑥𝑥𝑧𝑧 = 𝜏𝜏𝑦𝑦𝑧𝑧 = 0 

(2.5) 

where σii and τij are the normal and shear stress components, respectively 

(the subscripts i and j indicate the x, y and z directions in the Cartesian coordinate 

system), and r and θ are the cylindrical polar coordinates of a point with respect 

to the crack tip (Figure 2.2b). KI is defined as the mode I stress intensity factor, 

usually expressed in MPa m1/2 in the S.I. system. Once KI is known it is possible 

to obtain all the components of stress (as well as strain and displacement; see 

Anderson (2005)) as a function of r and θ. The expression of KI for an infinite 

body with a central crack of length 2a is shown in Equation (2.6). 
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𝐾𝐾𝐼𝐼 = 𝜎𝜎√𝜋𝜋𝜋𝜋 (2.6)   

The stress intensity factor, which describes the stress field at the crack tip 

region, turns out to be one of the most important concepts in fracture mechanics. 

However, the expression of KI given in Equation (2.6) is only valid for an infinite 

body, and needs to be modified to consider the presence of free finite surfaces. 

This is accomplished by introducing a correction factor, known as dimensionless 

stress intensity factor (Y’), which accounts for different specimen geometries and 

loading configurations: 

𝐾𝐾𝐼𝐼 = 𝑌𝑌′ 𝜎𝜎√𝜋𝜋𝜋𝜋 (2.7)   

From the general expression of KI given in Equation (2.7), it is seen that 

the stress intensity factor can be computed for any combination of σ and a as 

long as Y’ is known. Y’ is usually expressed in the form of an algebraic, 

trigonometric, or polynomial function. For simple geometries and loading 

conditions, the expression of Y’ can be derived analytically, and several closed-

form solutions for KI and Y’ can be found in the literature for common 

configurations (Whittaker et al. 1992; Lawn 1993). However, more complex 

situations require using numerical techniques, such as the finite element method 

(FEM), to derive Y’ (Lawn 1993).  

Just as the energy balance criterion, the stress intensity approach can be 

used to assess eventual crack growth or failure of a specimen containing a pre-

existing defect: for mode I loading, crack initiation and propagation will occur 

when KI reaches its critical value, called mode I fracture toughness (KIC), in the 

region of the crack tip. KIC, which reflects the ability of a component containing a 

flaw to resist tensile fracture, is defined as the value of the mode I stress intensity 

factor at which the crack starts to develop. Taking the expression of the stress 

intensity factor given in Equation (2.7), KIC can be computed as a function of the 

external peak load (i.e., the maximum applied stress, σmax), the crack length (a), 

and the specimen geometry and loading configuration (implicit in the expression 

of Y’) as follows:  
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𝐾𝐾𝐼𝐼𝐼𝐼 = 𝑌𝑌′𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥√𝜋𝜋𝜋𝜋 (2.8)   

Fracture mechanics assumes that the fracture toughness is a material 

property and, therefore, it should be independent of the size and geometry of the 

specimen tested. However, this assumption is only valid as long as the conditions 

for LEFM are met (see section 2.2.4 for further discussion). 

2.2.3. Equivalence of G and K 
As previously discussed, a crack (in mode I loading) will propagate when 

the stress intensity factor (KI) or the energy release rate (GI) exceed their critical 

value (KIC or GIC, respectively). Therefore, GI and KI (and likewise GIC and KIC) 

cannot be completely independent of each other. As long as the crack extends 

along its own plane (i.e., no mixed mode conditions) and the material is linear 

elastic, Irwin (1957) demonstrated that the energy and stress intensity 

approaches can be related through the following expression: 

𝐺𝐺𝐼𝐼 =
𝐾𝐾𝐼𝐼2

𝐸𝐸′
 

(2.9)   

The same relationship holds for GIC and KIC. 

2.2.4. Non-linear fracture mechanics 
According to the linear elastic stress solution (Equation (2.5)), a singularity 

occurs when r → 0, or in other words, the stress approaches infinity at the crack 

tip (Figure 2.2c). However, this situation is physically impossible, and the 

assumption of linear elasticity might not be valid for the region around the crack 

tip. This zone of inelastic material behaviour is called the fracture process zone 

(FPZ), and is characterized for plastic yielding for ductile materials (e.g., metal) 

or microcracking in brittle (e.g. rock) materials (Hoagland et al. 1973). For the 

latter, the radius of the inelastic zone (rFPZ) can be determined from the mode I 

fracture toughness and the tensile strength (σt) of the material as follows (Schmidt 

1980): 

𝜋𝜋𝐹𝐹𝐹𝐹𝐹𝐹 =
1

2𝜋𝜋 �
𝐾𝐾𝐼𝐼𝐼𝐼
𝜎𝜎𝑡𝑡
�
2

 
(2.10)   
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Since the stress intensity factor is a linear-elastic concept, it can only be 

applied if the size of the FPZ is sufficiently small compared to the dimensions of 

the specimen (Whittaker et al. 1992). Otherwise, LEFM concepts are no longer 

valid, and other parameters used in elastic-plastic fracture mechanics (EPFM) 

are needed to describe the stress state at the crack tip (Anderson 2005). 

Different approaches have been developed to characterize the nonlinear 

behaviour of the material ahead of a crack (Zhu and Joyce 2012). Among them, 

it is worth mention the concept of J-integral (Rice 1968) for computing the energy 

release rate associated with crack extension. The parameter J is equivalent to G 

for linear elastic conditions and, consequently, to the stress intensity factor (K). 

The J-integral, which can therefore be used in both LEFM and EPFM, is path 

independent: its value remains constant for any continuous path (Г) within the 

body that includes the crack tip and connects the bottom and top crack surfaces 

(Figure 2.2d):  

𝐽𝐽 = � �𝑊𝑊 𝑑𝑑𝑑𝑑 − 𝒕𝒕
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

𝑑𝑑s�
Г

 
(2.11) 

In Equation (2.11), W is the strain energy density, t is the traction vector, 

u is the prescribed displacement vector, and s is the arc length along the arbitrary 

contour Г (Anderson 2005). The traction vector is given by t = σn, with n being 

the normal vector on Г. 

2.3. Mode I fracture toughness in rock 

Mode I fracture toughness (KIC) is a useful parameter that has been widely 

applied in many engineering fields related to rock failure, such as slope stability 

analysis, tunnel boring, rock drilling, blasting and rock fragmentation, hydraulic 

fracturing, and oil exploration (Whittaker et al. 1992; Feng 2017). In rock 

mechanics, fracture toughness is used as: (a) a parameter for classification of 

rock material; (b) a fragmentation index; and (c) a material property in rock 

modelling and stability analysis (ISRM Testing Commission 1988).  
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2.3.1. Considerations for KIC testing 
KIC can be determined experimentally by testing a rock specimen that 

contains a pre-existing notch, which can be either straight or chevron-shaped. 

Straight notches require the fabrication of a sharp notch tip, which can be 

accomplished either by using a sufficiently thin saw disk or by pre-cracking under 

cyclic fatigue loading (Anderson 2005). Since none of these two approaches is 

easy to carry out in practice for materials such as rocks (Ayatollahi et al. 2016; 

Wei et al. 2016a), chevron notches have emerged as an alternative. The V-shape 

of the chevron notch allows crack onset at the ligament tip, where the highest 

tensile stress develops (Newman 1984). As the crack grows along the ligament, 

the width of the crack front increases so that crack propagation can be initially 

stable for a relatively long period under increasing load (Guo et al. 1993). 

Afterwards, when the crack reaches its critical length, sudden failure occurs. The 

peak load (used to compute KIC) occurs at the transition between the stable and 

unstable behaviours. The chevron notch can have some advantages over the 

straight one, such as low loads for crack initiation due to the high stress 

concentration (Ayatollahi et al. 2016). For the chevron geometry, it is assumed 

that the crack initiates at the notch tip, and then propagates forming a perfect 

straight-through, planar symmetric crack front along the ligament plane. If this 

condition is met, data scattering would be reduced. However, numerical models 

have revealed that the local stress concentrations in the chevron notch causes 

the main fracture to grow not only from the notch tip but also from both sides of 

the notch (Wei et al. 2015). In addition, far from being straight, the actual crack 

front is considerably curved irrespective of the degree of heterogeneity of the 

material, inducing errors for fracture toughness measurement.  

Although it can be easily accomplished for ductile materials such as 

metals, the application of pure tensile stresses to materials with a brittle or quasi-

brittle behaviour (e.g., ceramics, rocks, and concrete) entails difficulties related 

to testing arrangements and sample preparation (Perras and Diederichs 2014). 

For this reason, most of the experimental methods developed to measure KIC in 

rocks are indirect, that is, the tensile failure is induced by subjecting the 
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specimens to a compressive load. As a result, there may appear concentrated-

load effects as well as shear force components (Li and Wong 2013). The main 

drawback is that the tensile strength obtained from indirect testing is generally 

larger than that derived from direct methods (Perras and Diederichs 2014). Since 

it is expected that KIC is overestimated when derived from indirect testing, there 

is need of a simple direct method to determine KIC of rock in order to reduce 

uncertainty in results. 

As previously discussed, limitations such as the difficult specimen 

preparation and the brittle nature of the material have to be considered in rock 

testing. In the literature, several specimen geometries and testing techniques can 

be found to determine mode I fracture toughness in rocks. According to the 

loading configuration, we can group these methods in four major categories: i) 

compressive tests (e.g., Brazilian disc (Guo et al. 1993), cracked straight through 

Brazilian disc (Awaji and Sato 1978), flattened Brazilian disc (Wang and Xing 

1999), diametral compression (Szendi-Horvath 1980), and modified ring 

(Thiercelin and Roegiers 1988) tests); ii) three-point bending tests (e.g., chevron 

notched semi-circular bend (Kuruppu 1997), single edge crack round bar bend 

(Ouchterlony 1981), single edge notched bending (Tutluoglu and Keles 2011; Ko 

and Kemeny 2013), straight-notch disc bending (Tutluoglu and Keles 2011) tests; 

iii) tensile tests (e.g., compact tension (Ouchterlony 1982), round compact 

tension (Sun and Ouchterlony 1986), or edge notched disc (Donovan and 

Karfakis 2004) tests); iv) torsion (e.g., double torsion test (Nara et al. 2011)) tests.  

2.3.2. ISRM suggested methods 
Although there are no standard tests for measuring KIC in rocks, the ISRM 

has proposed four suggested methods that make use of cylindrical (core-based) 

specimens: a) chevron bend (CB); b) short rod (SR); c) cracked chevron notched 

Brazilian disc (CCNBD); d) and semi-circular bend (SCB) tests (Figure 2.3).  

Among them, the SR is the only direct testing method. In the CB method, 

a long cylindrical specimen with a chevron notch perpendicular to the core axis 

is subjected to three point bending (ISRM Testing Commission 1988). The 
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CCNBD specimen is a Brazilian disc with a chevron notch in the plane of 

maximum induced tensile strength which is loaded under compression (ISRM 

1995). The SCB method uses semi-circular disc specimens with a straight notch 

subjected to three point bending (Kuruppu et al. 2014). Finally, the SR is a short 

cylindrical specimen with a chevron notch cut in the long-axis direction, which 

leaves a triangular ligament between the two halves (ISRM Testing Commission 

1988). In contrast with the three previous testing techniques, in the SR a pure 

tensile load is applied perpendicularly to the ligament plane. The SR uses the 

remaining halves of the CB method, enabling to study the effect of anisotropy, 

and determine KIC parallel and perpendicular to the core axis. While the CCNBD 

and the SCB methods only offer one level of testing (i.e. level I, which assumes 

LEFM conditions and only requires the measurement of the peak load), the CB 

and the SR methods offer an additional testing level (level II). Level II corrects for 

inelastic effects by considering a degree of nonlinearity and requires the 

continuous measurement of load and displacement during loading-unloading 

cycles. 

 
Figure 2.3: ISRM suggested methods: short rod (SR), chevron bend (CB), cracked 

chevron notched Brazilian disc (CCNBD), and semi-circular bend (SCB). 
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2.3.3. KIC testing in rock-like materials 
Within the realm of concrete and cementitious materials research, a 

convenient alternative to the bending or tensile tests mentioned previously is the 

wedge splitting test (WST), which was firstly proposed by Linsbauer and Tschegg 

(1986) and latter improved by Brühwiler and Wittmann (1990). In the WST, the 

compressive load applied to the notched sample is transformed into tensile 

opening via a special testing arrangement based on the wedge mechanism. 

Among the advantages offered by this method, it is worth mention that an ordinary 

electromechanical testing machine with a constant actuator displacement rate 

can be used, and that no sophisticated test stability control apparatus (i.e. closed 

loop control unit with e.g. crack tip opening displacement as a feedback signal) 

is necessary.  

2.3.4. Factors influencing KIC 
As a material property, fracture toughness is expected to be independent 

of the testing method, specimen geometry, or loading conditions. However, the 

previous assumption is not valid for inhomogeneous and anisotropic materials 

such as rock. In fact, a number of researchers have reported different KIC for the 

same rock type tested under different testing conditions (Khan and Al-Shayea 

2000; Iqbal and Mohanty 2007; Kataoka et al. 2015). In addition, factors such as 

the loading rate (Backers et al. 2003; Ko and Kemeny 2007), the specimen size 

(Matsuki et al. 1991; Yi et al. 1992; Ayatollahi and Akbardoost 2012; Ueno et al. 

2013), confining pressure (Matsuki and Aoki 1990; Stoeckhert et al. 2016; 

Kataoka et al. 2017), anisotropy (Nasseri and Mohanty 2008; Ghamgosar et al. 

2015; Chandler et al. 2016), water content (Nara et al. 2012; Maruvanchery and 

Kim 2019), or temperature (Funatsu et al. 2004) have been found to influence the 

values of fracture toughness derived experimentally.  

2.3.5. Stable/unstable crack propagation 
The process of fracture propagation can be defined from two different 

perspectives: (i) considering the velocity, so it is possible to distinguish between  

static and dynamic propagation; or (ii) taking into account the magnitude of the 
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stress intensity factor, so the distinction is made between stable (KI < KIC) and 

unstable (KI ≥ KIC) propagation (Backers 2004). A stable crack grows slowly under 

increasing load so it can be controlled and stopped at any moment (i.e. it is 

necessary an increase in stress for further propagation). This process is called 

subcritical crack growth (Atkinson 1984), and it is usually observed in the period 

of non-linear behaviour close to the peak load during which microcracks grow 

stably. In general, the propagation of an unstable crack is usually fast (dynamic) 

and uncontrollable due to the energy surplus (the process is no longer governed 

by the relationship between the applied stress and the crack length (Bieniawski 

1967)). In this case, once the maximum strength of the material is reached, there 

is a sudden drop of load right after Pmax, and the specimen fails releasing a large 

amount of energy instantaneously. This is the behaviour, and one of the main 

drawbacks, observed for the testing methods proposed by the ISRM (i.e. the lack 

of control on the post-peak region). However, unstable crack propagation can be 

also slow (static) if the energy needed to produce further crack grow can be 

controlled by increasing the magnitude of the test control parameter 

(displacement of the actuator or deformation of the specimen). If the testing 

conditions are favourable in this respect, a complete load-displacement (P-d) 

curve with a descending branch after peak load can be recorded.   

2.3.6. Energy assessment 
As discussed by Griffith (1920) and later by Irwin (1948) and Orowan 

(1949), crack propagation is caused by a transfer into surface energy of the 

energy delivered from an external load to the specimen, and/or from strain 

energy. Consequently, fracture toughness can be regarded as a measure of the 

energy required to create new surface area in a material, that is, to produce crack 

extension. From this point of view, rock deformation and failure would be 

irreversible processes in which elastic energy is dissipated and released. During 

loading, elastic energy is stored both in the specimen and in the testing device. 

At Pmax, this energy is released and becomes available for the formation of 

fracture area in the specimen. After this moment, the possibility of controlling the 

test in the post-peak region will be determined by factors such as the stiffness of 
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the testing device, the stiffness of the specimen (i.e. the material properties), and 

the testing method itself. Uncontrolled fracture propagation will occur when the 

elastic energy stored in the testing device is larger than the fracture energy 

necessary to fracture the specimen (Brühwiler and Wittmann 1990). In this case, 

rock failure will result from the rapid release of the energy stored in the specimen 

when the critical limit (i.e. KIC) is reached (Liu et al. 2016).  

In the field of concrete, the International Union of Laboratories and Experts 

in Construction Materials, Systems and Structures (RILEM) has suggested using 

the area below the load-deformation diagram of a three point bending test (TPBT) 

to determine the specific fracture energy (GF) (RILEM 1985). In order to do so, it 

is necessary a controlled (stable) crack propagation beyond Pmax. i.e., a well-

defined descending branch. Similar approaches have also been defined for the 

compact tension (Wittmann et al. 1988) and the wedge splitting (Brühwiler and 

Wittmann 1990) tests. In rock fracture toughness testing, the area under the P-d 

curve has also been used to evaluate the fracture energy (Chong et al. 1987). 

However, if the testing conditions favour dynamic crack growth beyond Pmax (i.e. 

no post-peak branch), the assessment of the energy associated to the fracture 

propagation process is significantly limited. Contrary, if the uncontrolled crack 

propagation is stable, the complete (i.e. pre- and post-peak) P-d diagram can be 

obtained, making  it is possible to compute not only the energy related to the 

process of crack initiation (i.e. taking the area up to peak load) but also to crack 

propagation (i.e. the area in the post peak region).    

2.4. Acoustic emission 

Acoustic emission (AE) is a powerful non-destructive testing (NDT) 

technique to warn of impeding structural damage. AE can be described as the 

rapid release of elastic energy occurring inside a material that is being deformed 

of fractured. AE signals travel from the source in the form of stress waves and 

can be detected by coupling AE sensors (which convert the mechanical waves 

into an electrical signals) to the surface of the specimen being tested. AE is 

frequently used for monitoring structures such as bridges, tunnels, pipes or tanks, 

but it has also become popular in laboratory testing. AE has some advantages 
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over other methods used to assess damage. In contrast to optical or scanning 

electron microscopy, AE analyses the whole volume of interest and it is not only 

restricted to the inspection of the specimen surface. The simplest approach 

consists in acquiring AE data using a single channel and counting the number of 

events generated: the higher the AE rate, the larger the inelastic strain rate. 

However, if an array of at least four sensors is available and the wave velocity 

through the material is known, it is possible detect and even locate in real time 

the growing defects inside the specimen. In order to do this, the relative arrival 

times and the position of each sensor need to be measured with enough accuracy 

(Lockner 1993). The attenuation of the signals increases as the distance from the 

source of the events also increases. The maximum distance at which an AE 

sensor can detect the acoustic signals depends on factors such as the properties 

of the material or the geometry of the sample. 

AE signals can be classified into two major types: (i) transient (burst) 

signals with clearly defined starting and ending points, usually associated with 

growing defects; and (ii) continuous (noise) signals, which never vanish and must 

be minimized to enhance AE monitoring. When the sources that produce 

background noise (such as electrical interferences or movements of the testing 

equipment) cannot be completely removed, it is usual to set a certain detection 

amplitude threshold (in dB) and frequency bandpass filters (in kHz) in order to 

eliminate unwanted signals.  

2.4.1. AE parameters 
Typical parameters of an AE waveform (Figure 2.4) are: (a) counts, or the 

AE crossing-threshold signals; (b) energy, that is the integral of the squared 

voltage signal divided by the 10 kΩ reference resistance over the duration of AE 

waveform (aJ); (c) duration, that is the time interval between the first and the last 

threshold crossing (μs); (d) peak amplitude, the maximum amplitude of the 

waveform (dB), which is usually related to the intensity of the source producing 

the event; (e) rise time, that is the time from the first threshold crossing to the 

peak amplitude (μs). 
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Using the previous AE parameters, it is possible to compute additional 

features such as the average frequency (AF, the ratio between the AE counts 

and duration, in kHz) or the rise angle (RA, the ratio between the rise time and 

the amplitude, in ms/V), which are usually used to classify the modes of cracking 

(tensile, shear, etc.).  In addition, the frequency centroid (the frequency of the 

spectral centroid of the waveform, kHz) and the peak frequency (frequency of 

maximum power, in kHz) can be reported by applying fast Fourier transforms 

(FFTs) to the waveforms recorded. 

Figure 2.4: AE waveform and related time-domain parameters. Adapted from Shigeishi 

et al. (2001). 

2.4.2. AE in rock mechanics 
AE technique has been widely used in rock mechanics studies and 

engineering applications. In rocks, AE is always a consequence of any type of 

displacement occurring inside the material (Molenda 2015). Therefore, AE 

monitoring can provide insight on the brittle rock fracture process, including 

information about the size and location of the source of events. AE has been 
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proved to be sensitive to phenomena such as crack initiation and coalesce 

(Stanchits et al. 2009; Tsangouri et al. 2015). Due to its close relation with 

specimen failure, special attention has been given to the process of crack growth, 

which is usually related to acoustic events of high amplitude (He et al. 2010; 

Molenda 2015). However, less energetic events such as those related to 

microcracking can even produce transient elastic waves that can be recorded 

using acoustic emission. This is especially useful for tracking the development 

(i.e. the size and shape) of the fracture process zone (FPZ) around the notch tip 

(Xing et al. 2017).  

Recently, the ISRM has proposed a suggested method for AE monitoring 

in laboratory (Ishida et al. 2017). At the lab scale, the sources of the AE events 

are usually in the order of the grain size (< 1 mm), so the frequency range is 

usually between 100 kHz and 2 MHz (Lockner 1993). In the rock mechanics field, 

AE technique has been successfully used to identify fracture propagation and 

specimen failure in uniaxial compression tests (Zhao et al. 2013; Jie et al. 2015), 

triaxial tests (Lei et al. 2000; Fortin et al. 2011; Chen et al. 2020), or hydraulic 

fracturing experiments (Stanchits et al. 2012; Stanchits et al. 2014; Molenda 

2015). For the latter, the location of the AE events can be useful to map the 

orientation of the fracture and infer the propagation rate.  

Similarly, different authors have studied the AE signals recorded in fracture 

toughness tests to provide insight into the fracture process. Nasseri et al. (2006) 

accurately tracked the development of the FPZ in granitic samples using the 

CCNBD method. The experimental results reported by Xu et al. (2016) are also 

illustrative of this process, in which five different stages (from microcracking onset 

to macrocrack propagation) can be distinguished from the location of the AE 

events. Using the same testing technique, Kaklis et al. (2017) could identify 

macrocrack onset and specimen failure of marble samples from the increase in 

time-based AE parameters such as amplitude or rise time. Also for CCNBD 

specimens, Wei et al. (2018) observed severe stress concentrations at the 

loading ends using the experimental distribution of the AE events, which was in 

agreement with their numerical simulations. In a previous contribution, Wei et al. 
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(2016) reported a large FPZ at the crack tip of SCB specimens of sandstone. 

According to these authors, this would be the reason for SCB specimens 

providing lower values of KIC in comparison with other suggested methods. 

Taking advantage of the location of events, Yu et al. (2018) identified three 

different failure modes (i.e. tensile, shear and mixed-mode) around the notch tip 

during failure of three-point bending tests specimens of granite. Zhou et al. (2018) 

found that the presence of water not only reduced the KIC of chevron notched 

semi-circular bend specimens of sandstone, but also the cumulative AE counts, 

which related with a less energetic and more ductile fracture behaviour. An 

alternative approach to compute fracture toughness was carried out by Hashida 

(1993), who used the ratio J-integral/AE energy to identify the onset of 

macrocrack extension and compute the KIC of granite specimens at this critical 

point.  
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3. Pure mode I fracture toughness determination in
rocks using a pseudo-compact tension (pCT) test 

approach 

This chapter has been published in ‘Rock Mechanics and Rock 
Engineering’ 

Andrea Muñoz-Ibáñez1, Jordi Delgado-Martín1, Miguel Costas2, Juan Rabuñal-
Dopico3, Jose Alvarellos-Iglesias4, and Jacobo Canal-Vila4

3.1. Abstract 
Mode I fracture toughness (KIC) quantifies the ability of a material to 

withstand crack initiation and propagation due to tensile loads. The International 

Society for Rock Mechanics (ISRM) has proposed four suggested methods for 

determining KIC. However, these methods present some drawbacks such as 

insufficient post-peak control, complex sample preparation, and considerable 

material requirements. Here we present an alternative approach, the called 

pseudo-compact tension (pCT) method, to measure KIC in rocks using disc-

shaped specimens loaded in pure tension. The pCT specimen has favourable 

features such as a simple geometry, small sample volume, and minimal 

machining requirement. The tensile load is transmitted to the specimen through 

two high-strength, high-stiffness steel jaws that fit into a U-shaped groove cut in 

the specimen. An additional thin straight notch is introduced to act as a stress 

concentrator. The crack propagates from the notch tip along the ligament plane, 

splitting the specimen into two halves. The effects of specimen size and notch 

length on KIC are determined by testing specimens 100, 50 and 38 mm in 

1 School of Civil Engineering, University of A Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain 
2 Structural Impact Laboratory (SIMLab) and Centre for Advanced Structural Analysis (CASA), Department 
of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, NO-7491, 
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diameter with different notch length ratios (0.1 ≤ a/b ≤ 0.4). Tests were performed 

under ambient conditions and a slow loading rate (0.1 mm/min). Our results show 

that the pCT method is convenient for the assessment of KIC of both fragile and 

ductile rocks. The method offers good control even beyond the maximum load, 

making it possible to study the post-peak behaviour of the material. 

3.2. Introduction 
Most static failure theories assume that materials are perfectly 

homogeneous, isotropic, and free from defects that can increase stress (Perez 

2004). This is seldom true for real materials, which usually contain geometrical 

discontinuities (i.e., indentations, scratches or gouges) or defects (i.e. voids, 

cracks or inclusions) that may grow in size and result in global failure of the 

specimen (Jameel and Harmain 2015). Since these features produce a change 

in the inherent properties of materials, their presence must be taken into account 

(Khayal 2017; Sato and Takahashi 2018; Takahashi et al. 2018). By accepting 

that defects are unavoidable, fracture mechanics deals with the behaviour of 

cracked materials and structures subjected to stress (Anderson 2005). 

Fracture toughness (KC) quantifies the capability of a material to resist the 

stresses causing the propagation and growth of pre-existing cracks or flaws 

(Whittaker et al. 1992). Fracture toughness may have paramount importance in 

engineering projects involving rock materials, in which cracks are omnipresent 

(Funatsu et al. 2004; Nasseri et al. 2007; Ko and Kemeny 2013; Major et al. 2014; 

Erarslan 2016; Talukdar et al. 2018), such as thermal (e.g., geothermal and high-

level radioactive waste disposal projects), mechanical (e.g., pillar/cave stability in 

mining), hydraulic/chemical (e.g., hydraulic fracturing, geological storage of CO2, 

and underground coal gasification) and process engineering (e.g., drilling, 

cutting, and ore crushing). Fracture mechanics distinguishes three basic modes 

of loading that a crack can experience: a) mode I, or opening/tensile mode; b) 

mode II, or shearing in-plane; and c) mode III, or shearing out-of-plane (Irwin 

1958). Since the tensile strength of a rock material is comparatively lower than 

its compressive and shearing stresses, the mode I fracture toughness (KIC) arises 
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as the most relevant and studied parameter in rock fracture mechanics (Whittaker 

et al. 1992).  

In recent years, the increasing demand for hydrocarbons has promoted 

the need for more research on the fracture mechanics of certain lithologies (tight 

sands, shales, etc.). For this reason, several methods have been proposed to 

determine KIC using core-based specimens. The International Society for Rock 

Mechanics (ISRM) endorses four suggested methods, namely the short rod (SR), 

chevron bend (CB), cracked chevron notched Brazilian disc (CCNBD), and semi-

circular bend (SCB) methods (ISRM Testing Commission 1988; Fowell et al. 

1995; Kuruppu et al. 2014). Some of these methods may be difficult to apply on 

a routine basis due to a number of issues, such as: a) the small failure initiation 

and propagation loads require excellent test control; b) a relatively large sample 

volume is needed (CB); c) cumbersome or difficult sample preparation (SR, CB, 

and CCNBD); d) imprecisions in the computation of the stress intensity factor 

(CCNBD; Wang, 1998); e) the indirect generation of tensile loads via sample 

compression (especially in SCB and CCNBD); and e) the celerity of crack 

propagation after peak strength is attained. To overcome some of these 

limitations, in this contribution we present an alternate simple approach, referred 

to as pseudo-compact tension (pCT), to measure KIC in rocks using cylindrical 

single edge-notched specimens loaded in pure tension.   

3.3. Materials and methods 

3.3.1. Materials 
Four different rock types, namely Corvio sandstone (C), Arcera sandstone 

(AR), Pinacas sandstone (PN), and Blanco Mera granite (GR), were used to 

assess their corresponding KIC. Arcera sandstone is a medium- to coarse-grained 

rock whose mineralogy is dominated by quartz (~92%) with lesser kaolinite (~5%) 

(Canal-Vila 2016). Pinacas sandstone is a grey sandstone with lower quartz 

content (~54%). Corvio sandstone can be classified as a grain-supported 

quartzarenite with microcrystalline silica cement (Falcon-Suarez et al. 2017). 

Blanco Mera granite is a bright white coarse-grained (1-6 mm) rock of moderate 
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strength (Arzúa and Alejano 2013). The porosity, ultrasonic velocities, uniaxial 

compressive strength (UCS), and indirect tensile strength were determined for 

AR, PN and GR under ambient conditions. Data for Corvio sandstone were 

reported by Falcon-Suarez et al. (2017). The average values of the rock 

properties obtained from the non-destructive and destructive tests are listed in 

Table 3.1 and 3.2, respectively. 

Table 3.1: Rock properties obtained from non-destructive tests: effective porosity (ne), 

bulk density (ρbulk), and ultrasonic velocities (Vp and Vs). 

 Rock type ne (%) ρbulk (g/cm3) Vp (m/s)  Vs (m/s) 

 C* 18.4 - 23.5 2.0 - 2.1 2920 1510 

 AR 17.3 -18.2 2.2 2634 ± 186 1818 ± 324 

 PN 5.5 - 6.5 2.5 3686 ± 253 2563 ± 453 

 GR 1.2 - 1.3 2.6 4100 ± 215 2562 ± 438 

 * Data reported in Falcon-Suarez et al. (2017). 

Table 3.2: Rock properties obtained from destructive tests: compressive strength (σc), 

tensile strength (σt), Young’s modulus (E), and Poisson’s ratio (ν). σc and σt were 

normalized with respect to diameter, length, and thickness according to Thuro et al. 

(2001) and Yu et al. (2006), respectively. 

Rock type σc (MPa) σt (MPa) E (GPa) ν 

C* 35.4 - 44.4 1.9 - 3.1 9.7 - 19.7 0.3 - 0.4 

AR 40.2 4.1 - 4.9 12.2 0.4 

PN 129.5 11.2 - 11.9 35.0 0.2 

GR 60.4 – 83.5 9.7 33.0 0.3 

* Data reported in Falcon-Suarez et al. (2017). 
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3.3.2. Experimental concept 
The pseudo-compact tension (pCT) test is based on a modification of the 

compact tension (CT) specimen described in the E399-90 ASTM (1997) standard 

method for testing metallic materials. The testing principle is outlined in Figure 

3.1. The pCT specimen is a cylindrical, disc-shaped sample that can be cut from 

rock cores. The two loading holes of the CT specimen are replaced in the pCT 

test by a U-shaped groove. In addition, a thin radial notch is cut to act as a stress 

concentrator and provide the location for crack initiation. Once the specimen is 

ready for testing, the test follows a simple and straightforward procedure. The 

specimen is mounted on a centring cradle and put in contact with a pair of high-

strength, high-stiffness steel jaws that fit into the U-shaped groove and transmit 

the tensile load to the sample. While one of the jaws remains in a static position, 

the other one is pulled away at a constant displacement rate. The tensile load 

within the thin notch tends to split the specimen into two symmetrical halves. The 

crack initiates at the notch tip and propagates along the vertical diameter of the 

specimen (i.e., the ligament plane). With this basic configuration, the bottom of 

the sample is not affected by loads other that its own self-weight and that of the 

sensors used (in our case, acoustic emission sensors and a crack opening 

displacement gauge). 

At this point, it is worth considering that in our research, we have focused 

on the methods currently in use by rock mechanics practitioners. In concrete 

research, there exist two methods worth considering due to their geometrical 

similarity with the method proposed here: the wedge-splitting (WS) test 

(Linsbauer and Tschegg 1986; Guan et al. 2018) and the modified disk-shaped 

compact tension (MDCT) test (Cifuentes et al. 2017). The WS test cannot be 

considered a pure-tension test because it induces significant compressive loads 

at the bottom side of the tested specimens. The MDCT test geometry is similar 

to the geometry of the pCT approach, but the pulling action is provided by a 

cemented steel bar, which would be very difficult to install in rock. 
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Figure 3.1: Experimental setup of the pseudo-compact tension (pCT) test. The pCT

specimen is placed on the cradle; while the left jaw remains still, the right jaw is pulled 

away. When the stress intensity factor, KI, reaches its critical value KIC (i.e., mode I 

fracture toughness), crack initiates at the notch tip and propagates along the ligament 

length. 

3.3.3. Sample preparation and conditioning 
The pCT specimen may be obtained from a slice of core that has a 

thickness to diameter ratio (B/D) of 0.5. This value was set by taking into account 

the recommendations for indirect tensile (“Brazilian”) strength tests (ISRM 1978; 

ASTM D3967-05 2008). The geometry of the pCT specimen is favourable due to 

simplicity, low amount of material needed, and minimal machining requirement.  

Since fracture toughness represents a material property, KIC should be 

reasonably independent of the size of the specimen. However, it has been found 

that it decreases significantly when the diameter of the specimen decreases 

below 50 mm (ISRM Testing Commission 1988). For sufficiently large specimens, 

fracture toughness is expected to remain constant. The minimum specimen 

diameter that provides consistent KIC results may be identified by testing samples 

of different sizes (Kuruppu et al., 2014). To determine size effects on KIC, pCT 

specimens 100, 50 and 38 mm in diameter were tested in this study. The 
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dimensions of the steel jaws that transfer the pulling action to the specimen 

determine the width (Gw) of the U-shaped groove. For this reason, Gw was set to 

10 mm irrespective of specimen size. However, the depth (Gd) of the groove was 

set to 10 mm for 100 mm diameter samples and reduced to 5 mm for the smaller 

samples (50 and 38 mm diameters). For crack initiation and propagation, an 

additional thin (~1 mm), radial, straight notch (a) is also cut from the middle of the 

bottom of the U-shaped groove. The effect of notch length on fracture toughness 

was accounted for by testing specimens with different notch length ratios (0.1 ≤ 

a/b ≤ 0.4). In this case, b is the distance from the base of the groove to the bottom 

of the specimen. A schematic diagram of the pCT specimen is illustrated in Figure 

3.2, and the corresponding dimensions are listed in Table 3.3. 

Core plugs 100, 50 and 38 mm in diameter were cut with the aid of a Weka 

DK32 drill (WEKA Elektrowerkzeuge e.K.) associated with a DM 350 BC mast. 

Disc-shaped specimens were then sliced using a circular diamond blade. Sample 

preparation included the careful carving of the groove and the thin notch. Both 

features were prepared with a customized tile saw using different diamond saw 

discs (2 mm- thick for the groove, and 1 mm- thick for the notch) and fixtures to 

control the precise displacement of the disc in the horizontal and vertical 

directions. A positioning laser helps to align the rotating plane of the saw disc with 

the vertical diameter of the specimen. Cuts were made by moving the rotating 

disc through the complete thickness of the specimen. Cutting the groove required 

several passes of the disc while keeping its depth of cut constant. In contrast, the 

thin notch was cut in one single blade pass. Once prepared, the samples were 

oven dried at 60ºC for 24 hours. Then, a couple of knife- edges were epoxy-glued 

to the specimen surface to attach a clip-on gauge at the level of the notch tip 

during testing to measure the crack-mouth opening displacement (CMOD). In 

addition, four magnets with 6 mm- diameter, 3 mm- thickness were glued on the 

surface of the specimen to hold the same number of acoustic emission (AE) 

sensors (VS700-D, Vallen). 
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Table 3.3: pseudo-compact tension (pCT) specimen dimensions: D = diameter; B = 

thickness; Gd = U-shaped groove depth; Gw = U-shaped groove width; a/b = notch length 

ratio. 

D (mm) B (mm) Gd  (mm) Gw (mm) a/b 

100 50 10 10 0.1-0.4 

50 25 5 10 0.1-0.4 

38 19 5 10 0.1-0.4 

Figure 3.2: Schematic illustration of the geometry and loading configuration of the 

pseudo-compact tension (pCT) specimen: D and B are the diameter and the thickness 

of the specimen, respectively; a is the notch length; Gd and Gw are the depth and width 

of the U-shaped groove, respectively; b is the distance from the base of the groove to 

the bottom of the specimen; and P is the applied tensile load. 

3.3.4. Testing equipment 
A specially- designed experimental device was built to perform the pCT 

tests. The requirements considered in the design include portability (which 

imposed significant size, weight and robustness constraints), mounting simplicity 

and mechanical stability of the specimens of different sizes during testing, ease 
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of installation of the measurement devices and replacement of the failed parts, 

and the quickness of non-testing operations (specimen positioning, cleaning, 

etc.).  

The testing device consists of a high-stiffness frame (AA7075-T6; E = 71.7 

GPa, ν = 0.33, σyield = 503 MPa) equipped with a 50 kN push/pull load cell, two 

linear variable differential transducers (LVDTs), and two crack-opening 

displacement (COD) gauges (Figure 3.3). Electric signals from all the 

measurement devices are integrated into a dedicated data acquisition system 

(GW Inst. instruNet 3.6). The two LVDTs, placed symmetrically on both sides on 

the specimen, measure the load point displacement (LPD). Simultaneously, a 

clip-on gauge mounted on a pair of bolt-on knife-edges attached to the steel jaws 

measures the same magnitude for redundancy. An additional COD gauge can be 

mounted directly on the surface of the specimen to measure the CMOD.  

The movement of the steel jaw is accomplished by means of a 5 mm- lead 

spindle (VFU 40005 DIN 69051 FORM B, NBS), which converts the rotatory 

motion of an electric stepper motor (DST56EL61A, Teco Electro Devices Co.) 

with a step angle of 1.8º (i.e., 200 steps per revolution) into linear displacement 

(Figure 3.4).  

Figure 3.3: Testing equipment designed and built to perform pCT tests. 
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Figure 3.4: Main elements associated with the fracture toughness experimental 

device. 

To improve its performance, the motor is connected to a planetary 

gearhead (IP-57-M2-100, McLennan Servo Supplies) with a reduction ratio of 

1:100. This simple configuration provides a high degree of accuracy in positioning 

(0.018º/step), equivalent to 0.25 µm/step in terms of linear movement of the shaft, 

which can be maintained from 0 to 50 kN. The control system consists of: (i) an 

Arduino-based microcontroller (which commands the motor with a specific 

program, and keeps track of the displacements and safety signals delivered by 
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the endstops) and (ii) dedicated software (that makes it possible to set up a 

testing path). Control commands are transmitted in real time to the 

microcontroller, which executes them and returns state and displacement data. 

A stainless steel bellow coupling with a clamping hub (WK4/60-89-SX 49/15, StS 

Coupling) connects the motor and the spindle. A fixed-side round type support 

bearing (FK30-C5, Hiwin) provides both axial and rotational support for the 

spindle.  

The stiffness of the loading frame was investigated to assess its elastic 

energy storage during operation. To this aim, a neoprene layer was compressed 

between the two steel jaws to a load far above the usual working loads (~25 kN). 

A total of eight 350 ohm strain gauges were glued with epoxy onto the frame at 

critical points regarding its geometry (Figure 3.3). For the load applied, the 

maximum stress recorded at any point of the frame was 10.36 MPa, well below 

the endurance limit stress (100-150 MPa) provided by the fatigue design curves 

of AA7075-T6 (Zalnezhad et al. 2012). To further investigate the performance of 

the device, a 3D finite element model was created in Abaqus/Standard version 

6.14 (ABAQUS 2014) to simulate the previous test. The system was modelled as 

ten separate parts, including the frame, the two steel jaws, and the spindle. The 

bolted connections in the device were modelled by applying rigid body constraints 

in the holes, assuming that no relative displacement arises between the parts at 

the connecting points. The two materials in the machine, namely F1270 steel and 

AA7075-T6 aluminium, were modelled with a hypoelastic– perfectly plastic 

constitutive model, assuming elastic moduli of 210 and 71.7 GPa, and Poisson’s 

ratios of 0.3 and 0.33, respectively. The von Mises yield surface was adopted in 

both cases with associated plastic flow, and the initial yield stresses were 503 

MPa for AA7075-T6 aluminium and 700 MPa for F1270 steel. Notice that this 

rather simple plasticity model was adopted only to verify that no plastic 

deformation took place in the machine during normal operation; therefore, a 

detailed description of the work- hardening and the plastic flow was not 

necessary. The mechanical properties are summarized in Table 3.4. The frame 

and the jaws were meshed with 10-node quadratic tetrahedrons, while the spindle 

was modelled with hexahedral elements with 8 nodes and reduced integration, 
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with the customary hourglass control. The displacement and stress distributions 

are presented in Figure 3.5. Due to the high stiffness of the device, we observe 

that the displacement in any of the three principal directions is very small. The 

largest displacement (~56 µm) appears in the mobile block where the right jaw is 

attached. The maximum stress (~160 MPa) is found at the steel jaws, and is well 

below the yield stress of the material (700 MPa).  

Table 3.4: Material properties for the FE model of the pCT testing equipment. Mass 

density (ρ), Young’s modulus (E), Poisson’s ratio (ν), and yield stress (σyield). 

ID Material ρ (g/cm3) E (MPa) ν σyield (MPa) 

AA7075-T6 Aluminium 2.81 71700 0.33 503 

F1270 Steel 7.85 210000 0.3 700 

3.3.5. Experimental setup 
Figure 3.6 shows a typical loading fixture. The specimen is placed on the 

positioning cradle and then lifted until the steel jaws fit into the groove. The height 

of the cradle is manually controlled using a positioning spindle. The verticality of 

the specimen is checked using a self-levelling cross-line laser. Once the 

specimen is correctly positioned, the clip-on gauge and the AE sensors are 

mounted on the specimen surface. In addition, a digital camera is placed in front 

of the specimen to films crack growth during testing. 

3.3.6. Testing procedure 
For fracture toughness investigations in rocks, two testing levels are 

commonly reported in the literature (Ouchterlony, 1988). Level I (or screening 

level) provides fast and relatively simple access to material properties. In this 

level, only the maximum load (Pmax) needs to be measured. Level II (or advanced 

level) takes into account the non-linear behaviour of typical rocks, allowing a more 

detailed insight of material behaviour by continuously monitoring both the load 

and displacement beyond Pmax. Although the features and characteristics of the 
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testing equipment developed here are also compatible with level II, for the sake 

of brevity, only level I tests are reported in this contribution. 

Figure 3.5: Displacement (top) and von Mises stress (bottom) distributions at the 

maximum compressive load (25 kN) applied during the stiffness assessment of the 

experimental device. 
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Figure 3.6: Experimental setup of a pCT test for a 50 mm in diameter specimen before 

(left) and after (right) testing. An additional support is required to lift the sample 

between the steel jaws. Four AE sensors (two on each side) are glued to the specimen 

surface. A COD gauge is also placed at the level of the crack tip. 

Load-displacement graphs can be used to determine the success of a test: 

a continuous and strength-increasing curve should be observed until specimen 

failure, when the applied load is expected to drop as the crack propagates 

through the sample (Kuruppu et al. 2014). Here, the magnitudes of the load (P), 

LPD and, in some experiments, also CMOD were recorded continuously. Testing 

was continued beyond Pmax (i.e., specimen failure) to investigate the post-peak 

behaviour. 

Loading rate affects fracture toughness (Backers et al. 2003). However, at 

low rates, dynamic effects are negligible and KIC barely changes according to 

reported evidence (Khan and Al-Shayea 2000; Backers 2004). For this reason, 

the use of a slow displacement rate (< 0.2 mm/min) is advisable (Backers and 

Stephansson 2012; Kuruppu et al. 2014). In this study, all the tests were 
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performed at a constant displacement rate of 0.1 mm/min under ambient 

conditions. At this loading rate, fracture occurs after a couple of minutes.  

A valid fracture toughness test should result in failure of the specimen 

along the ligament length. The crack is expected to propagate vertically from the 

notch tip towards the bottom of the sample, splitting the specimen into two similar 

halves. However, planes of weakness within the sample or highly stressed areas 

far from the notch tip may cause premature failure in unexpected locations 

(Veselý et al. 2012). Here, we considered a pCT test as valid if the crack started 

at the notch tip and deviated from the ligament plane by less than 10º. This angle 

is in accordance with the maximum allowable deviation of 5 mm (~9.1º) proposed 

by Chandler et al. (2016) for the SR method.  

3.3.7. Calculations 
The general expression of mode I fracture toughness (KIC) is given in 

Equation (3.1), where σmax is the applied stress at the critical load (σmax = Pmax/bB) 

and Y’ is the dimensionless stress intensity factor (Anderson 2005). 

𝐾𝐾𝐼𝐼𝐼𝐼 = 𝑌𝑌′𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥√𝜋𝜋𝜋𝜋 (3.1) 

For simple specimen geometries and loading configurations, several 

authors have proposed different analytical solutions of Y’ (Liu 1996; Fett and 

Munz 1997; FITNET 2006). Most of these expressions are polynomial equations 

that extend to the third or fourth order. However, more complex geometries 

require the use of numerical methods to derive an expression of Y’ (Ingraffea 

2007). The finite element (FE) method is one of the most popular approaches 

used for this purpose (Wang et al. 2003; Wang et al. 2013; Han et al. 2015; Qian 

et al. 2016; Wei et al. 2016a). A number of FE packages can perform an analysis 

of fracture behaviour (Iesulauro 2009; ANSYS 2012; ABAQUS 2014). Since no 

closed-form expression was found in the literature for our pCT geometry, 

Abaqus/Standard version 6.14 was used to derive Y’. Abaqus computes the 

mode I stress intensity factor (KI) by using the J-integral method around the crack 

tip in a region known as the contour integral region (Qian et al. 2016). Although 

KI should be independent of the radius of the contour domain where it is 
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calculated, the high stress concentrations at the crack tip produce large variations 

in KI for the first contours (Levén and Rickert 2012). As the number of contours 

increases, the KI values tend to converge, and the associated error decreases 

(Oliveira 2013). The size of the contour integral region (i.e., the number of 

contours) should be sufficient to allow KI convergence at a certain distance from 

the crack tip (Alkiliçgil 2010). Once a consistent KI value is obtained from the finite 

element analysis, Y’ is derived as follows: 

𝑌𝑌′ =
𝐾𝐾𝐼𝐼

𝜎𝜎0√𝜋𝜋𝜋𝜋
(3.2) 

where σ0 is the nominal stress acting over the ligament plane for an applied 

unitary load (P): 

𝜎𝜎0 =
𝑃𝑃
𝑏𝑏𝑏𝑏

 (3.3) 

pCT specimens 100, 50 and 38 mm in diameter and with diverse notch 

length ratios were modelled in 2D and 3D. 2D modelling offers the advantage of 

obtaining an optimized solution within a short computational time. However, 2D 

modelling requires assuming the state of stress that controls the specimen: the 

plane stress state prevails in the case of very thin specimens, while the plane 

strain state is valid for only thick “structures” (Perez 2004). Here, a plane strain 

condition was assumed for 2D modelling. For specimens with intermediate 

thickness, 3D finite elements are usually required (Kozak et al. 2003). Although 

3D modelling requires a major computation effort to obtain any fracture 

parameter, the results obtained are generally more accurate. Furthermore, for the 

2D models, a single value of KI is obtained, whereas in 3D modelling, the stress 

intensity factor varies along the crack front (Ayatollahi et al. 2016). Here, its 

average value was taken as KI.  

For geometries with one or more planes of symmetry, the partial analysis 

of a portion of the model reduces the computational burden. The geometrical 

symmetry of the pCT specimen allows the modelling of only one half of the 

sample. However, we preferred to model the whole specimen due to the 

asymmetry of both the loading and boundary conditions. The thin notch was 
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introduced into the 2D and 3D models as a seam and an embedded face, 

respectively. During mesh generation, the nodes along this edge are duplicated 

and are allowed to open in the analysis, following the crack extension direction 

specified by the q-vector (Simulia 2007; Simulia 2009). The contour integral 

region was defined by a circular mesh centred around the crack tip. In this region, 

the stress and strain fields become singular, and the mesh density needs to be 

refined to obtain accurate results. Following Tutluoglu and Keles (2011), the ratio 

of the contour integral region radius over the specimen radius was set to 0.1 for 

all the specimen sizes. To account for the r-1/2 strain singularity, the region 

adjacent to the crack front was meshed with special elements with nodes 

displaced at quarter-point positions (Anderson 2005; Schreurs 2012). As the 

distance from the crack boundary increases, stress and strain distributions 

become less crucial. To reduce the computational cost, a coarser mesh was used 

in the rest of the FE model. 2D and 3D models were meshed with 8-node plane 

strain elements and 20-node 3D elements, respectively. In the region defining the 

crack front, these elements were collapsed and transformed into triangular (2D 

models) or wedge-shaped (3D models) elements to consider the 

abovementioned stress singularity (ABAQUS 2014; Ayatollahi et al. 2016). 

Details of the 2D and 3D model meshes are illustrated in Figure 3.7. 

Figure 3.7: Finite element meshes for 2D (left) and 3D (right) used for simulating the 

pCT specimen in KI calculations, and detail of the refined mesh around the crack tip. 

Contour integral output was requested for eight concentric contours 

surrounding the crack tip. Constant values were obtained after the fourth contour. 
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The variation in material characteristics had a slight effect on KI, but these 

differences were found to be irrelevant for computing Y’, as also reported by 

Tutluoglu and Keles (2011). KI values obtained from 2D models were slightly 

lower than those from 3D models, where the plane strain condition is not totally 

realized along the crack front due to constraint loss (Qian et al. 2016). The 

sensitivity of Y’ to different specimen thicknesses was evaluated by considering 

different B- values (~±50% of the nominal recommended thickness of B = 0.5D) 

while keeping the diameter and notch length constant. The results show that 

within the range indicated, B has no significant impact on Y’. This allows us to 

simplify Equation (3.3) by ignoring B. However, it is important to stress that this 

simplification applies only to the particular pCT geometry and loading conditions 

described in the paper. Based on the previous assumptions, KI was obtained for 

each specimen size and a wide range of notch length (a/b) ratios. Y’ was then 

derived using Equations (3.2) and (3.3). The results derived from the 2D models 

are plotted as a function of the a/b ratio in Figure 3.8. An expression for Y’pCT was 

then obtained for each specimen size by fitting the results with a fourth-order 

polynomial function in terms of various a/b ratios (Equation (3.4)). The coefficients 

Ci (i = 0 to 4) are listed in Table 3.5.  

𝑌𝑌′𝑝𝑝𝐼𝐼𝑝𝑝 = 𝐶𝐶0 + 𝐶𝐶1 �
𝜋𝜋
𝑏𝑏
� + 𝐶𝐶2 �

𝜋𝜋
𝑏𝑏
�

2
+ 𝐶𝐶3 �

𝜋𝜋
𝑏𝑏
�

3
+ +𝐶𝐶4 �

𝜋𝜋
𝑏𝑏
�

4 (3.4) 

Table 3.5: Coefficients (Ci) of the dimensionless stress intensity factor (Y’pCT) expression 

(Equation (3.4)) derived for the pCT specimen. Coefficients are given for each specimen 

diameter (D). 

D (mm) C0 C1 C2 C3 C4

38 10.278 -24.069 82.329 -136.67 127.89 

50 12.651 -47.054 158.72 -247.17 185.22 

100 15.341 -74.551 260.03 -404.52 273.19 
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Figure 3.8: Variation of dimensionless stress intensity factor (Y’pCT) as a function of 

notch length ratio (a/b) and specimen diameter (D). 

3.4. Results 

3.4.1. Test validity 
A total of 81 pseudo-compact tension (pCT) tests were performed in this 

study. Tensile splitting was the dominant failure mode in most of the pCT 

specimens tested. As a result, a macroscopic crack grew along the ligament 

plane (Figure 3.6). However, a number of tests were considered invalid for one 

of the following reasons: (1) the crack significantly deviated from the ligament 

plane (>10º), causing asymmetric specimen failure; (2) failure occurred at a 

different (highly stressed) location than the notch tip, such as at the contact 

between the specimen and the steel jaws; (3) the data acquisition system failed 

during testing. 

3.4.2. Load-displacement and load-CMOD curves 
The testing results show that the two LVDTs, the clip-on gauge attached 

to the steel jaws, and the stepper motor offer redundant displacement control. To 

compute the magnitude of the displacement (d), the values recorded by the two 

LVDTs and the clip-on gauge were normalised and then averaged. A few typical 

load-displacement (P-d) curves obtained during the pCT testing are plotted in 

Figure 3.9. The curves are well defined far after the peak load is attained. We 
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observe that the loading process can be divided into three major stages: (1) a 

period during which the curve linearly increases (elastic behaviour); (2) a non-

linear period during which new microcracks are formed and the slope of the curve 

gradually decreases until fracture onset at Pmax; and (3) a period of softening 

during which the load decreases as a macroscopic crack propagates along the 

ligament plane. For the tested rocks, crack growth is stable during the entire 

duration of the experiment, and further crack extension requires the continuous 

movement of the steel jaw. The load at the critical turning point (Pmax, dpeak) 

between stages (2) and (3) can be used to compute KIC. For the hardest materials 

(i.e., Pinacas sandstone and Blanco Mera granite), the curves show a sharper 

increase to Pmax than that of the weakest materials (i.e., Corvio and Arcera 

sandstones). The post-failure branch also decreases more abruptly for harder 

materials. In general, the curves of PN and GR are characterized by higher 

maximum loads when than those of AR or C (~70-80% lower). 

As seen in Figure 3.10, the slopes of the P-CMOD curves are higher than 

those of the P-d curves during loading. At the peak load, the CMOD is 

comparatively smaller than d, especially for harder materials such as Pinacas 

sandstone.  

3.4.3. Mode I fracture toughness results 
KIC was computed using Equation (3.1), where Y’ is the expression derived 

for the dimensionless stress intensity factor (Y’pCT) given in Equation (3.4). A 

summary of KIC values obtained in this study for each rock type and specimen 

size is given in Table 3.6. The magnitude of KIC is larger for Pinacas sandstone 

and Blanco Mera granite (~1.0-1.4 MPa m1/2) than for the Corvio (~0.06-0.12 MPa 

m1/2) and Arcera (~0.2-0.6 MPa m1/2) sandstones. The KIC results obtained from 

valid and invalid (crack deviation > 10º) tests are plotted in Figure 3.11 as a 

function of the notch length ratio (a/b) and specimen diameter (D). As seen from 

this plot, KIC decreases with decreasing specimen size at a given notch length 

ratio a/b. Larger a/b ratios also result in lower KIC results for the same specimen 

diameter. 
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Table 3.6: Mode I fracture toughness (KIC) results as a function of pCT specimen 

diameter (D). Number of valid tests is given into brackets. 

Rock type 
KIC (MPa m1/2) 

D = 38 mm  D = 50 mm D = 100 mm 

Corvio sandstone (C) 0.06 – 0.08 (5) 0.07 – 0.12 (8) - 

Arcera sandstone (AR) 0.24 – 0.28 (3) 0.28 – 0.40 (8) 0.26 – 0.60 (9) 

Pinacas sandstone (PN) 1.05 – 1.43 (4) 1.13 – 1.46 (9) 1.21 – 1.36 (4) 

Blanco Mera granite (GR) 1.05 – 1.09 (2) 1.06 – 1.34 (6) 1.19 – 1.42 (3) 

3.5. Discussion 

3.5.1. Test validity 
From the total of 81 pCT tests performed in this study, 61 (~75%) were 

considered valid in a first approximation. The main reason for considering a test 

as non-valid was excessive crack deviation from the ligament plane (55% of the 

non-accepted tests). However, as seen in Figure 3.11, most of the KIC results 

discarded for this reason are reasonably close to those considered valid, and 

some of them even fall into the confidence intervals plotted for the 50 mm-

diameter specimens. In view of these results, the criterion of validity imposed 

here (crack deviation < 10º) may be too restrictive, at least for level I testing where 

only Pmax is taken into account. Apparently, the deviation of the crack planes 

towards one side of the samples tested did not follow any discernible pattern, with 

approximately half of the specimens presenting cracks deviating to each side. 

Figure 3.12 shows the relation between the notch length ratio (a/b) and the angle 

of deviation of the macrocrack with respect to the ligament plane. Regarding 

specimen size, 50 mm-diameter specimens have the most reduced angle of 

spread. This is interesting because these specimens also exhibit the highest rate 

of success (~89% of tests were valid). In contrast, ~38% of the tests performed 

with specimens 100 mm in diameter were discarded according to the given 

criterion. With respect to notch length, no marked trend in deviation angle can be 

distinguished. However, the majority of non-valid tests (75%) occurred with 
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samples with a/b ≤ 0.25. Taking into account the previous observations, we 

recommend using medium-sized (D = 50 mm) pCT specimens with large notch 

length ratios (a/b > 0.25) to improve the success of a test. In addition, we should 

expect that using pCT specimens with a/b ratios larger than those tested here 

would result in a higher rate of success of the experiments. Further testing is 

necessary in this regard. 

Figure 3.11: Mode I fracture toughness (KIC) results from pCT testing as a function of 

notch length ratio (a/b) and specimen diameter (D): 38 mm (triangles), 50 mm 

(squares), and 100 mm (circles). Valid results are shown with filled symbols and invalid 

results (crack deviation > 10º) are shown with unfilled symbols. Dashed lines represent 

the linear fits for the valid results (n = 8 for Corvio and Arcera sandstones, n = 9 for 

Pinacas sandstone, and n = 6 for Blanco Mera granite) obtained from 50 mm-diameter 

specimens. The shaded areas show the confidence intervals (95%) in each case. 
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Figure 3.12: Notch length ratio (a/b) vs crack deviation angle of 38 (top), 50 (centre), 

and 100 (bottom) mm diameter pCT specimens. 

On the other hand, 40% of non-valid tests were produced by specimen 

failure at highly stressed areas located in points away from the notch tip. This 

could be related to some inaccuracy in the alignment of the specimen in the 

loading fixture or to defects within the specimen (such as pre-existing 

discontinuities or even imperfections arising from the sample preparation 

process) that could act as stress riser. To reduce the stress concentration in the 

contact between the flat side of the steel jaws and the specimen, a simple 
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modification may be performed to include a pair of thin high-strength steel rollers 

along the jaws. With this configuration, the applied load would be distributed 

linearly along the U-shaped groove throughout the test. 

3.5.2. Mode I fracture toughness 
Fracture toughness is considered an intrinsic material property and should 

be independent of the specimen geometry and loading configuration. However, 

experimental KIC values derived by a number of authors do not support this 

statement. Indeed, notable discrepancies in KIC were found when using the same 

rock type but different testing methods (Alkiliçgil 2010; Aliha et al. 2012; Kataoka 

et al. 2015). For the sake of standardization, the ISRM has endorsed four 

suggested methods (SR, CB, CCNBD, and SCB). However, experimental KIC 

results obtained using these recommendations are not consistent (Iqbal and 

Mohanty 2007; Aliha et al. 2017). 

The KIC results obtained using pCT testing for the Corvio and Arcera 

sandstones are of the same magnitude as published values for similar lithologies 

but different testing methods, such as CCNBD (Dwivedi et al. 2000), SCB (Singh 

and Sun 1990), and CB (Brown and Reddish 1997). The results of the Pinacas 

sandstone compare well with the available data for the Flechtinger (Backers 

2004) and Ruhr sandstones (Müller and Rummel 1984) using the CB test. For 

the Blanco Mera granite, the magnitude of KIC is in agreement with reported data 

of different granites using the CCNBD (Chang et al., 2002) and CB (Müller and 

Rummel, 1984) tests. It is worth emphasizing that the experimental values for the 

same material, specimen geometry and testing method are scattered, both in the 

literature and in our experiments. This is likely related to the heterogeneous 

nature of rocks. 

3.5.3. Influence of specimen diameter 
Mechanical properties of rock, such as its compressive and tensile 

strength, vary with specimen size (Thuro et al. 2001; Al-Rkaby and Alafandi 

2015). Rock strength tends to decrease with increasing specimen size because 

the larger the specimen is, the higher the probability of including flaws such as 
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pores, microcracks, or grain boundaries (Hoek and Brown 1997). A number of 

authors have reported a size effect on KIC in quasi-brittle materials such as rock 

and concrete (Iqbal and Mohanty 2007; Ueno et al. 2013; Brevik 2016). However, 

the tendency observed in this case is opposite. Ueno et al. (2013) found that KIC 

increased with increasing SCB specimen radius for both the Isahaya and Kimachi 

sandstones. For the latter material, Kataoka and Obara (2015) also reported a 

positive relation between KIC and the SCB specimen diameter up to D = 140 mm, 

although fracture toughness tended to converge beyond this value. Similarly, 

Jeong et al. (2017) observed an increase in KIC with increasing specimen size for 

SCB samples of Iksan granite. 

In this study, pCT specimens of different sizes (38, 50, and 100 mm in 

diameter) were tested. Although the values obtained are internally consistent 

(i.e., small range), KIC seems to increase with increasing specimen diameter at a 

given notch length ratio (a/b). The size effect is stronger for the smaller (D = 38 

mm) and intermediate-sized (D = 50 mm) samples (Figure 3.13). Regarding 

lithology, the impact of specimen size on KIC is more notable for weaker materials 

(Corvio and Arcera sandstones) than for stronger materials (Pinacas sandstone 

and Blanco Mera granite). 

 

Figure 3.13: Mode I fracture toughness (KIC) as a function of specimen diameter (D) 

for pCT testing. The subscripts in the legend indicate the specimen diameter (38, 50, 

and 100 mm). 
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One reason for larger specimens yielding higher fracture toughness values 

could be related to the presence of the fracture process zone (FPZ) (Wei et al. 

2016b). If the FPZ around the crack tip is sufficiently small compared to the 

specimen size, the KIC values may be expected to be independent of this feature 

(Brevik 2016). In addition, flaws within the rock are comparatively larger for 

smaller specimens, reducing crack resistance. In sufficiently large specimens, the 

resistance would not be affected by the size of the flaws, and KIC should converge 

to a constant value (Kataoka and Obara 2015a). In this regard, the ISRM 

recommends using cores with a diameter much greater than 50 mm to avoid size 

effects on fracture toughness assessment (ISRM Testing Commission 1988). In 

the case of the SCB test, Kuruppu et al. (2014) proposed a minimum diameter of 

76 mm, or 10 times the grain size. Our experimental results suggest that testing 

specimens with a diameter of 50 mm could result in underestimation of KIC. In 

addition, the differences in the mineral species and grain arrangements among 

different rock types also seem to influence the magnitude of the size effect. Since 

the KIC results did not converge in the range studied, it cannot be concluded which 

is the minimum specimen size that provides consistent KIC results. Further 

investigation is required in this sense. 

3.5.4. Influence of notch length 
Previous studies indicate that the length of the notch affects KIC. Zhang et 

al. (2017) found that KIC tends to decrease with increasing notch length for SCB 

specimens of stabilized soils. Similarly, Chang et al. (2002) also reported this 

effect using SCB specimens of Keochang granite and Yeosan marble. 

Conversely, Lim et al. (1994) conducted three-point bending on semi-circular 

specimens of a synthetic mudstone but did not report an appreciable effect of 

specimen size or notch length on fracture toughness. Similarly, Funatsu et al. 

(2015) obtained KIC values that were independent of the notch length (a/R = 0.3-

0.5) for SCB specimens of Kimachi sandstone. 

Our results show that there is some dependency of mode I fracture 

toughness on notch length, and we observe that KIC slightly decreases with 

increasing notch length ratio in pCT specimens. Sun and Ouchterlony (1986) 
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attributed this behaviour to the reduction in the ligament area available for fracture 

propagation. Our results also suggest that there may be some lithology- or fabric-

dependence: the stronger the degree of cementation of the rock (as in the case 

of the Blanco Mera granite or Pinacas sandstone), the stronger the dependency 

of KIC is on the notch length. 

3.5.5. Grain size effect 
The formation of a fracture is closely related to the grain size and particle 

arrangement of the rock. Consequently, fracture toughness can be expected to 

depend on the mineral composition and porous structure (Gao et al. 2018). In our 

work, grain size data are only available for Corvio sandstone (0.15 - 0.3 mm) and 

Blanco Mera granite (1 - 6 mm). With this limitation, our experimental results 

suggest that KIC would increase with increasing grain size, as observed by 

Backers (2004). Conversely, Huang and Wang (1985) reported the opposite 

behaviour, which they attributed to the effect of the grain boundary contact on the 

stress intensity factor at the notch tip. 

Micro X-ray computed tomography was used for visual observation of the 

fractures produced in one 38 mm-diameter pCT specimen of each rock type after 

testing. Micro-CT imaging was performed with the MicroXCT-400 apparatus from 

XRadia at the Petroleum Engineering Department of Colorado School of Mines. 

As an example, grey-level computed tomography images of the Pinacas 

sandstone and Blanco Mera granite specimens are shown in Figure 3.14. In the 

figure, two images are given for each sample: at 1/3 and 2/3 of the thickness of 

the specimen. The attenuation contrast allows us to visually distinguish the 

straight notch from the background on the left. The grain boundaries and the 

macroscopic fracture that initiated from the notch tip can also be identified in the 

rock matrix. For the specimen of Blanco Mera granite, the geometry of the crack 

is irregular, predominantly following the grain boundaries. Although the crack also 

fractures some grains, it tends to avoid those with higher density. This behaviour 

was also observed by Kataoka and Obara (2015), who attributed this effect to the 

high resistance to fracture initiation of high density grains, compared to the 

resistance of grain boundaries. On the other hand, the crack propagation in the 
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specimen of Pinacas sandstone is comparatively straighter, probably due to its 

smaller grain size. 

From the set of images obtained for each sample, it can be seen that the 

macroscopic crack did not always initiate at the notch tip and that the point of 

generation even varies along the specimen thickness. In a first approximation, 

this behaviour may be attributed to the shape of the notch tip, which is not sharp 

but semi-circular. Tutluoglu and Keles (2011) reported that the sharpness of the 

notch tip is not a crucial factor in crack propagation for rock-like materials and 

that a certain roundness may even be favourable. However, under these 

circumstances, crack initiation is allowed to occur at any point along the circular 

geometry of the tip. This factor, together with the particle arrangement of the rock, 

may determine the deviation of the fracture from the expected path, towards the 

left or the right side of the specimen.  

Figure 3.14: Micro X-ray computed tomography images of fractured 38 mm-diameter 

specimens of Pinacas sandstone (left) and Blanco Mera granite (right) at two different 

planes along the specimen thickness. 
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3.5.6. Correlation with tensile strength 
Fracture toughness has been correlated with various rock properties, such 

as density, porosity, Young’s modulus, compressive strength, and ultrasonic 

velocity (Jian-An and Sijing 1985; Chang et al. 2002; Alber and Brardt 2003; 

Backers 2004; Zhang et al. 2016). In particular, tensile strength and fracture 

toughness seem to be strongly linked. Backers (2004) argue that tensile strength 

controls fracture toughness, irrespective of the failure mode, because crack 

extension first occurs in the plane perpendicular to the highest tension. In Figure 

3.15, the KIC values experimentally obtained from the pCT testing are plotted as 

a function of the tensile strength (σt). We performed a linear fit to the experimental 

data, forcing the result to pass through the origin, as suggested by Backers 

(2004). The regressions proposed by Chandler et al. (2019) for shale and non-

shale materials are also plotted in the same graph for comparison. Tensile 

strength and KIC are found to be linearly correlated (KICpCT = 0.11σt, R2 = 0.95), 

in agreement with the behaviour observed by Whittaker et al. (1992) and Zhang 

(2002) at room temperature. 

Figure 3.15: Mode I fracture toughness (KIC) as a function of tensile strength (σt) for 

pCT testing. The dashed lines are least square fits for shale (blue) and non-shale 

materials (red) from Chandler et al. (2019). The solid line is the fitting for our 

experimental data, which is forced to intercept the origin. 
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3.6. Conclusions 
A new method and experimental device designed for measuring the mode I 

fracture toughness (KIC) of rocks were proposed and described. The testing 

method, pseudo-compact tension (pCT), was used to determine KIC for four 

different lithologies: Corvio, Arcera and Pinacas sandstones and Blanco Mera 

granite. The experiments were performed under ambient conditions and the 

same loading rate. The effects of specimen size, notch length, and material 

properties were investigated. From this study, the following conclusions are 

drawn: 

1. The combination of small displacement (allowing extremely small strain

rates), high load capacity and high stiffness of the testing system makes

it convenient for the analysis of the toughness of rocks (either fragile or

ductile rocks). Moreover, the simpler sample preparation methodology

of the pCT test compared to other tests makes it an interesting candidate

for routine fracture toughness testing.

2. According to our experimental results, it is advisable to use medium-

sized (D = 50 mm) pCT specimens with a relatively large notch length

ratio (a/b > 0.25) to obtain more consistent results.

3. In this test, crack propagation is slow and can be controlled even after

the peak strength is reached. Load-displacement curves are well defined

beyond Pmax, providing insight into the post-peak behaviour.

4. In general, mode I fracture toughness was found to be positively related

to the specimen size and negatively related to the notch length.

However, the effect is less influential for weakly cemented rocks.

5. Rock properties such as grain size and particle arrangement, together

with the shape of the notch tip, determine the point of generation of the

crack and its propagation path during testing.

6. Fracture toughness and tensile strength were found to be strongly

correlated.

The pCT test seems to be a promising approach for assessing mode I 

fracture toughness in rock. However, it should be noted that the expression of the 
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dimensionless stress intensity factor derived here for this testing configuration 

was computed assuming an isotropic rock material. In addition, and as previously 

reported by different authors, a number of factors, such as moisture content, 

temperature, confining pressure, or pore pressure, are expected to affect KIC 

(Matsuki and Aoki 1990; Balme et al. 2004; Nara et al. 2012; Kataoka et al. 2017). 

Further work is needed to address the effect of rock anisotropy and testing 

conditions on fracture toughness. 
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4. Experimental investigation on the size and other
effects on mode I fracture toughness in selected

rock types using the pCT and SCB testing 
methods 

This chapter has been submitted to ‘International Journal of Rock 

Mechanics and Mining Sciences’ 

Andrea Muñoz-Ibáñez1, Jordi Delgado-Martín1, and Ricardo Juncosa-

Rivera1

4.1. Abstract 
Mode I fracture toughness (KIC) is an intrinsic material property that 

quantifies its resistance to initiation and propagation of tensile cracks. Among the 

different methods developed to determine KIC in rock, the International Society 

for Rock Mechanics (ISRM) has endorsed four suggested methods, namely Short 

Rod (SR), Chevron Bend (CB), Cracked Chevron Notched Brazilian Disc 

(CCNBD), and the Semi-Circular Bend (SCB) method. In this study, we use the 

SCB technique to compare the results obtained with the new pseudo-compact 

tension (pCT) test, which has proved to be convenient for the assessment of KIC 

on both fragile and ductile rocks. We have selected the SCB as a benchmark 

method due to its popularity, simplicity (in terms of sample preparation) and 

straightforward testing configuration. We discuss the results of 146 tests 

performed with four different lithologies (Arcera, Pinacas and Corvio sandstones, 

and Blanco Mera granite), sample size (100, 50 and 38 mm-diameter), and a 

range of notch lengths. Based on that we assess size-, notch length- and rock 

type-effects all of them potentially affecting KIC. Our results suggest that both 

1 School of Civil Engineering, University of A Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain 
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specimen size and notch length have an impact on KIC, although the magnitude 

of their influence is closely related to lithology. In general, pCT specimens yield 

more consistent values than those samples tested with the SCB method. It also 

allows for a greater wealth of fracture mechanics information (e.g., fracture 

energy evolution) and improved control before and after peak load. We discuss 

additional methodological considerations in the text. 

4.2. Introduction 
Fracture toughness (KC) represents the ability of a material to resist crack 

initiation and propagation. Although it is a strength-related property, testing 

requires specially conditioned samples in which cracks are geometrically 

constrained to develop in a prescribed direction (i.e. with a starter notch) in order 

to apply the fundamental approaches of fracture mechanics. Several testing 

methods with well-defined sample geometries are currently in use in rock 

mechanics to determine mode I fracture toughness (KIC) in rocks. The 

International Society for Rock Mechanics (ISRM) endorses four of them 

considering cores as the preform for the tested samples: Short Rod (SR), 

Chevron Bend (CB), Cracked Chevron Notched Brazilian Disc (CCNBD) and the 

Semi-Circular Bend (SCB) methods (ISRM Testing Commission 1988; 

Ouchterlony 1989; Fowell et al. 1995; Kuruppu et al. 2014). Recently Muñoz-

Ibáñez et al. (2020) have introduced the pseudo-compact tension (pCT) test as 

potential alternative to overcome some of the drawbacks associated with the 

mentioned suggested methods (e.g. large sample size and cumbersome 

preparation). The claimed advantages of pCT would include: a) reduced rock 

requirement (disc-shaped specimen with a diameter-to-thickness ratio of 2); b) 

simpler sample preparation (straight groove and thin starter notch); c) enhanced 

control of crack propagation (especially beyond peak strength); and d) pure 

tensile loading.  

Based on fracture mechanics premises, fracture toughness is an intrinsic 

material property. Accordingly, its experimental determination should render 

consistent results irrespective of the geometry of the specimen and configuration 

of loading. However, when applied to rocks, the experimentally determined KIC 
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values reported by many authors contend with such generally assumed 

behaviour. Indeed, significant discrepancies on the KIC values can be identified 

from publications using the same rock type but different testing methods (Alkiliçgil 

2010; Aliha et al. 2012; Kataoka et al. 2015; Erarslan 2018). The ISRM suggested 

methods are not exempt of this problematic (Iqbal and Mohanty 2007; Aliha et al. 

2017; Erarslan 2018) and further efforts are still needed to fill the gaps linking the 

intercomparability of fracture toughness testing methods in rocks. In this line and 

based on 146 tests, in this contribution we compare KIC values derived using the 

pCT approach with determinations performed according to the SCB method. We 

have selected SCB as benchmark due to its popularity, simplicity (in terms of 

sample preparation), and straightforward testing configuration. In the assessment 

we have considered lithology (four rock types: Corvio Sst, Arcera Sst, Pinacas 

Sst, and Blanco Mera Grt), and size effects, as well as other geometrical 

constrains like notch length. The objective of this study is to check the mutual 

consistency of the KIC values obtained using both testing methodologies while 

considering a number of relevant properties (sample size, notch length, and 

lithology). For each test, we use the corresponding load-displacement curves to 

characterize the energy content of the fracturing process. In selected tests we 

also monitored the acoustic emission (AE) activity. Based on that information, we 

explore the relationship between the energy release associated to the fracture 

process and that captured by AE. Finally, we also present some methodological 

considerations about the SCB testing method.  

4.3. Materials and methods 

4.3.1. Materials 
In order to provide a common ground for the comparison of KIC values 

derived from the SCB and pCT testing methods, we have employed four different 

rock types: Corvio (C), Arcera (AR), and Pinacas (PN) sandstones, and Blanco 

Mera granite (GR). All these rocks are nearly isotropic but differ in strength and 

mechanical performance. Corvio and Arcera sandstones have a relatively low 

strength, reduced grain size (< 1mm), high porosity and low elastic moduli. 

However, the Pinacas sandstone, while having a similar grain size, is significantly 
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tougher and has lower porosity and higher elastic modulus. The Blanco Mera 

granite is a homogeneous rock of medium grain size (1-6 mm), low porosity and 

moderate strength. Relevant properties of these rocks (mineralogy, porosity, 

uniaxial compressive strength, indirect tensile strength, VP & VS, etc.) have been 

reported in previous studies (Arzúa and Alejano 2013; Canal-Vila 2016; Falcon-

Suarez et al. 2017; Muñoz-Ibáñez et al. 2020) and only a short summary is 

compiled in Table 4.1. 

Table 4.1: Rock properties obtained from non-destructive tests: effective porosity (ne), 

bulk density (ρbulk), and ultrasonic velocities (Vp and Vs) Selected properties of the rocks 

used in the study. σc = Compressive strength; σt = Tensile strength; E = Young’s 

modulus; ν = Poisson’s ratio; ne = Effective porosity. Data for the Corvio Sst (C) is 

reported in Falcon-Suarez et al. (2017), while data for Arcera Sst (AR), Pinacas Sst (PN), 

and Blanco Mera Grt (GR) can be found in Muñoz-Ibáñez et al. (2020). 

Rock σc (MPa) σt (MPa) E (GPa) ν ne (%) 

C 35.4 – 44.4 1.9 – 3.1 9.7 – 19.7 0.3 – 0.4 18.4 – 23.5 

AR 40.2 4.1 – 4.9 12.2 0.4 17.3 – 18.2 

PN 129.5 11.2 – 11.9 35.0 0.2 5.5. – 6.5 

GR 60.4 – 83.5 9.6 – 9.7 33.0 0.3 1.2 – 1.3 

4.3.2. Sample preparation 
Figure 4.1 shows a schematic diagram of the specimens employed in the 

SCB and pCT testing as well as some relevant reference properties. We see that, 

while the geometry of the SCB specimen is that of a short semi-cylinder with a 

single thin notch located at the middle of its flat face, the pCT sample is a short 

full-cylinder with a U-shaped groove and a thin notch along its generatrix. In the 

present study, we cored the tested samples from homogeneous rock blocks using 

diamond drill bits to produce plugs of 38, 50, and 100 mm in diameter. The plugs 

were then sliced into discs with a diameter-to-thickness (D/B) ratio of 2. For the 

SCB specimens, we diametrically halved the discs with a modified tile saw. The 

thin straight notch in the centre of the flat face was cut with a 1 mm-thick diamond 
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disc whose vertical position (that determines the depth of the notch) can be set 

with the aid of a vertical spindle. Good alignment of the sample with respect to 

the saw is ensured with the aid of reference marks (laser level, set square) and 

the use of a grip fixed to a horizontal movable stand connected to a horizontal 

spindle. In order to systematize the fabrication process, we used 3D-printed 

special fixtures (Figure 4.2). In the case of the pCT specimens, we used the same 

approach but for the U-shaped groove, we carved it using a thicker diamond disc 

(2 mm) and making several saw-passes while displacing horizontally the sample 

after each pass (Figure 4.2). Then, we cut the thin notch using the same 1 mm-

thick disc described for the SCB specimens. The samples elaborated according 

with the previous description were oven-dried at 60ºC for a minimum of 24 hours. 

The reference dimensions of SCB and pCT specimens are reported in Table 4.2. 

Figure 4.1: Schematic illustration of specimen geometries and loading configurations 

for the SCB (1) and pCT (2) specimens. P = applied load; D = diameter; B = thickness; 

a = notch length; s = span length; Gd = groove depth; Gw = groove width; b = distance 

from the base of the groove to bottom of the specimen. 

In order to assess the crack mouth opening displacements (CMOD) we 

have used different displacement sensors (Figure 4.3) in some of the tests: a) 

For the SCB tests, a pair of horizontally-laid linear variable differential transducers 

(LVDTs); b) For the pCT tests, a crack opening displacement (COD) gauge 

clipped to a pair of glued steel knife-edge plates. In the case of the SCB test, 

LVDTs were selected to circumvent the problems inherent to the use of clip-on 

gauges with small size samples. We installed the LVDTs coplanar to the flat face 
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of the sample. However, due to the curved nature of the top surface and the 

magnification of contact errors associated with the rotation of this surface as the 

test progresses, we glued 3D printed T-plates to the corresponding edges. 

Additionally, 6 mm-diameter, 3 mm-thickness magnets were also glued on the 

surface of the specimens to hold acoustic emission (AE) sensors. 

Figure 4.2: Preparation of samples for SCB and pCT testing. A) Plug slicing; B) U-

shaped groove carving; C and D) Halving SCB specimens; E) Laser alignment for 

straight thin-notch cutting; F) SCB sample finished after a single pass of the diamond 

saw. 

Although the suggestions of the ISRM consider the use of a minimum 

sample diameter of 76 mm for SCB testing (Kuruppu et al. 2014), in order to 

assess eventual size effects on KIC, in this study we also consider bigger (100 

mm) and smaller sizes (50 and 38 mm). The same was done for pCT. In addition, 
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we have analysed the effect of notch length by testing specimens with a/R (a = 

notch length; R = radius of the specimen) and a/b (b = distance from the base of 

the groove to the bottom of the specimen) ratios of 0.4-0.6 and 0.1-0.4 for the 

SCB and pCT specimens, respectively. However, following different lines of 

evidences reported by several authors (Kobayashi et al. 1986; Singh and Sun 

1990; Khan and Al-Shayea 2000) we have not considered the effect of variable 

specimen thickness over KIC and we have prescribed a constant D/B ratio of 2 for 

all the experiments. 

Table 4.2: Geometrical dimensions of the SCB and pCT specimens. D = Diameter; B = 

Thickness; s/D = span length ratio; a/R = notch length ratio; Gd = U-shaped groove depth; 

Gw = U-shaped groove width; a/b = notch length ratio. 

SCB specimens pCT specimens 

D (mm) B (mm) s/D a/R Gd (mm) Gw (mm) a/b 

100 50 0.55 – 0.65 0.4 – 0.6 10 10 0.1 – 0.4 

50 25 0.55 – 0.65 0.4 – 0.6 5 10 0.1 – 0.4 

38 19 0.55 – 0.65 0.4 – 0.6 5 10 0.1 – 0.4 

4.3.3. Experimental setup 
The SCB test was selected due to its simplicity in terms of specimen 

geometry, sample preparation, loading configuration, and testing procedure (Wei 

et al. 2016). We tested these specimens under three-point bending on a stiff 

servo-electric frame equipped with a 4.448,22 N load cell (Figure 4.3A, C). In this 

configuration, we use an upper steel roller to transfer a linear load on the top of 

the sample, while two additional lower rollers, separated by a fixed distance (s), 

support the sample. When testing weak materials, Kuruppu et al. (2014) suggest 

a value for the span-to-diameter ratio (s/D) close to 0.5 while this value increases 

to 0.8 for the stronger ones. Based on that and considering the varied nature of 

the tested rocks, we selected a value of s/D of ~0.55 when testing the softer 

Arcera and Corvio sandstones, and ~0.65 for the tougher Pinacas sandstone and 

Blanco Mera granite.  
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Figure 4.3: SCB (left) and pCT (right) loading fixtures. The pictures illustrate two 

samples of 50 mm-diameter corresponding to the Arcera sandstone before (A, B) and 

after (C, D) the corresponding tests. The SCB samples (A, C) show the disposition of 

two horizontal displacement transducers (LVDT-type) and the pCT (B, D) a COD 

gauge. SCB and pCT samples illustrated are also equipped with six and four acoustic 

emission sensors, respectively. 

In the SCB tests, the load point displacement (LPD) corresponds to the 

vertical displacement of the loading roller. In that case, we assessed CMOD using 

the two LVDTs placed perpendicularly to the notch plane and facing each other 

along the diametric plane of the specimen. The 3D-printed T-plates glued to both 

sides of the specimen provide a flat contact surface for them and, considering the 

magnitude of LPD it is possible to correct the horizontal displacement for the 

effect of rotation of the T-plates and obtain an accurate estimate of CMOD. For 
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this testing method, we have recorded for all the specimens the load-CMOD (P-

CMOD) and load-displacement (P-LPD) curves. 

pCT specimens are loaded in pure tension using the specially-designed 

testing device described in detail by Muñoz-Ibáñez et al. (2020), which is 

equipped with a 50 kN load cell. The specimen is placed on a platform and 

attached to two steel jaws that penetrate into the U-shaped groove cut in the top 

of the sample (Figure 4.3B, D). With this setup, while one of the jaws remains 

static, the other one is pulled away at a constant displacement rate. We assess 

CMOD by means of a clip-on gauge mounted on the knife-edges glued to the 

surface of the specimen. Two LVDTs placed symmetrically on both sides of the 

specimen record LPD, that is, the displacement of the mobile steel jaw. While we 

have recorded P-LPD curves for all the specimens tested with the pCT 

methodology, CMOD has been measured only in 11 of them. For both pCT and 

SCB, the experiments were conducted at room temperature and displacement 

control at an identical rate of 0.1 mm/min.  

The data reported in the present study has been determined according to 

the Level I described in the ISRM suggested methods (ISRM Testing Commission 

1988), that is, including in the computations only the value of peak load (Pmax). 

Kuruppu and Chong (2012) consider that this is acceptable in many situations. 

However, due to the inherent complexity of certain matrices like rocks and other 

brittle engineering materials (e.g. concrete), we believe that it is advisable to take 

into consideration the properties considered in Level II testing, especially when 

more sophisticated non-linear fracture mechanics models are to be applied. 

Accordingly, we have tried to obtain data concerning the post-peak behaviour of 

the studied rocks by continuing the experiments beyond Pmax. 

Acoustic emission (AE) is a non-destructive testing technique than can 

provide interesting insights about the processes of crack initiation, propagation 

and coalescence. To this respect, in some selected specimens we have 

emplaced up to eight miniature Vallen VS700-D AE sensors (6.3 mm-diameter; 

10 mm-length) at different distances of the starter notch. Data acquisition has 

been performed with a multichannel AMSY-6 AE system (Vallen Systeme GmbH) 
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equipped with 8 ASIP-2 boards (2 channels per board) with capability of 

managing up to 16 independent signals. We recorded continuous waveforms at 

a sampling rate of 10 MHz and, in order to eliminate unwanted frequency 

components related to environmental or system noises, we set up a band-pass 

filter (95-850 kHz) and signal threshold level of 40 dB. We attached the AE 

sensors to the samples via 6 mm-diameter, 3 mm-height magnets that were glued 

with a thin layer of cyanoacrylate glue (Figure 4.3). A thin layer of multi-silicone 

grease (1110, OKS) was used as the coupling agent in the interface magnet-

sensor, providing good acoustic transmission between both surfaces (ASTM 

1997). The number of AE sensors employed was 4 for pCT samples (2 on each 

side of the specimen) and 6 or 8 in the case of 50- and 100-mm diameter SCB 

samples. Since it is expected that cracks start their propagation from the notch 

tip, some of the AE sensors were placed close to the ligament plane. 

The raw AE signals were enhanced with Vallen AEP5 preamplifiers set 

with 34 dB gain. With this AE setup, we recorded in real-time a wide number of 

AE parameters (e.g., counts, amplitude, duration, energy, and frequencies). 

However, in this study we focus on the assessment of AE energy, which is 

defined as the integral of the squared voltage signal divided by the 10 kΩ 

reference resistance over the duration of the AE waveform. We recorded 

mechanical and AE data separately, so it was necessary to synchronize both 

records using a common time-stamp for the two computers involved in data 

acquisition. 

4.3.4. Calculations 
According to Kuruppu et al. (2014), the computation of mode I fracture 

toughness (KIC) for the SCB test can be performed based on Equation (4.1): 

𝐾𝐾𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆 = 𝑌𝑌′𝑆𝑆𝐼𝐼𝑆𝑆
𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥√𝜋𝜋𝜋𝜋

2𝑅𝑅𝑏𝑏
(4.1) 

where Pmax is the peak load (in N), a is the notch length (in m), R and B 

are the specimen radius and thickness (in m), respectively, and Y’SCB is the 



4. Size and other effects on KIC using the pCT and SCB testing methods 91 

specific non-dimensional stress intensity factor associated with the SCB method. 

This is given by Equation (4.2): 

𝑌𝑌′𝑆𝑆𝐼𝐼𝑆𝑆 = −1.297 + 9.516 �
𝑐𝑐

2𝑅𝑅
� − �0.47 + 16.457 �

𝑐𝑐
2𝑅𝑅
��𝛽𝛽

+ �1.071 + 34.401 �
𝑐𝑐

2𝑅𝑅
��𝛽𝛽2 

(4.2) 

in which s is the span length (in m) and β the notch length ratio (β = a/R). 

In the case of the pCT method and following Muñoz-Ibáñez et al. (2020), 

KIC is derived using Equation (4.3): 

𝐾𝐾𝐼𝐼𝐼𝐼
𝑝𝑝𝐼𝐼𝑝𝑝 = 𝑌𝑌′𝑝𝑝𝐼𝐼𝑝𝑝𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥√𝜋𝜋𝜋𝜋 (4.3) 

where σmax is the applied stress at the critical load (σmax = Pmax / bB; in Pa) 

and B the specimen thickness (in m). For the computation of the specific non-

dimensional stress intensity factor Y’pCT, these authors provide Equation (4.4), 

whose coefficients Ci (i = 0 to 4) are given in Table 4.3. 

𝑌𝑌′𝑝𝑝𝐼𝐼𝑝𝑝 = 𝐶𝐶0 + 𝐶𝐶1 �
𝜋𝜋
𝑏𝑏
� + 𝐶𝐶2 �

𝜋𝜋
𝑏𝑏
�
2

+ 𝐶𝐶3 �
𝜋𝜋
𝑏𝑏
�
3

+ +𝐶𝐶4 �
𝜋𝜋
𝑏𝑏
�
4 (4.4) 

Table 4.3 Specimen size-dependent coefficients (Ci) for the computation of the 

dimensionless stress intensity factor expression corresponding to the pCT specimen 

(Y’pCT). 

D (mm) C0 C1 C2 C3 C4

38 10.278 -24.069 82.329 -136.67 127.89 

50 12.651 -47.054 158.72 -247.17 185.22 

100 15.341 -74.551 260.03 -404.52 273.19 

The total energy (Etot) has been computed taking the integral over the 

complete load-displacement (P-LPD) curve as follows:  
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𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝑃𝑃 𝑑𝑑(𝐿𝐿𝑃𝑃𝐿𝐿)
∞

0
 

(4.5) 

To get a deeper insight into the fracturing process, Etot has been split in 

two contributions: Epre and Epost (Etot = Epre + Epost). Epre represents the pre-peak 

energy and corresponds to the work done on the specimen to induce the initiation 

of the crack. It is calculated from the integral over the P-LPD curve up to the 

turning point (Pmax - dpeak; dpeak = displacement at the peak load). On the other 

hand, Epost corresponds to the post-peak energy and represents the work done 

on the specimen to propagate the crack up to the minimum load threshold value 

associated with the tail of the P-LPD curve. Likewise, we have also computed the 

energy given by the load-CMOD curve (Etot-CMOD). Although we have performed 

CMOD measurement in most of the SCB specimens, as previously mentioned, in 

the case of the pCT ones this information is only available for 11 specimens. 

Anyhow, with the data available we have studied the relationship existing 

between Etot-CMOD and Etot for both testing methods. 

4.4. Results 

In the present study, we report the results of 65 and 81 SCB and pCT tests, 

respectively. Figure 4.3 shows representative SCB and pCT specimens before 

and after the corresponding testing. We observe that, in general, the propagation 

of the fracture occurs along the ligament plane although sometimes it deviates. 

Following the criterion exposed in Kuruppu et al. (2014), some SCB experiments 

were given a lower confidence when fracture deviation exceeded a threshold 

value of >0.05D (~9.5º to 14.0º). Likewise, according to Muñoz-Ibáñez et al. 

(2020), the threshold value was set to >10º in the case of pCT specimens. While 

this limitation may be relevant for the Level II testing (ISRM Testing Commission 

1988) this is arguable for Level I, where peak load is the only experimental 

property considered.  

Figure 4.4 illustrates some examples of load-displacement (P-LPD) curves 

for 50 mm-diameter SCB (A to D) and pCT (E to H) specimens as a function of 

notch length ratio (a/R and a/b, respectively) and rock type. It is interesting to 
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observe that, in all the SCB tests performed, the loading curves always show a 

nearly linear increase path until the specimen abruptly fails at the peak load 

(Pmax). In the SCB tests performed with sandstones we also see that some of the 

specimens may develop small loading plateaus that are compatible with local 

failures likely occurring at the contact points of the steel rods. With the exception 

of some specimens of Corvio Sst (that is a soft rock), it is apparent that the SCB 

test does not allow a good control beyond Pmax and the fracture, once initiated, 

propagates quickly (dynamically) up to the outer face of the specimen. This 

behaviour contrasts with what happens with the pCT specimens, where the P-

LPD curves show evidences of good test control in an scenario of slow (static) 

propagation of the fracture after Pmax (Muñoz-Ibáñez et al. 2020). Furthermore, 

when looking to the evolution of Pmax for different conditions of notch length we 

see at first glance an ordered trend in the pCT results (i.e.  Pmax decreases when 

the notch becomes longer) but this is not obvious in the SCB tests. 

Figure 4.5 compares some of the P-LPD and P-CMOD curves obtained for 

50 mm-diameter specimens using the two testing methodologies. It is worth to 

note that the measurement of CMOD during the SCB tests as performed in this 

work is not as straightforward as it may appear. Some of the results obtained 

illustrate the sliding of the sample along its contact points with the rollers. In fact, 

the geometric configuration of the test requires a perfect vertical alignment 

between the edge of the notch and the loading line. That means that, unless the 

load is applied along the vertical radii of the specimen, a lateral displacement 

(and concomitant horizontal slide) will occur due to the circular nature of the 

sample. This problem may be circumvented by using clip gauges but this may be 

difficult when working with small-size specimens. Leaving apart its implications 

for the interpretation of Level II testing, the previous observation provides with 

two significant outcomes. First, an inadequate sample dressing (coring, cutting, 

notching) and/or its careless alignment in the testing jig may induce a mixed mode 

I/II (tensile/shear) fracture toughness behaviour instead of the expected mode I 

(tensile). Second, in whatever the case, sample misalignment problems may 

enhance data scattering. In this regard, Nsengiyumva and Kim (2019) also 
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reported the great influence that the loading fixtures used to test SCB specimens 

of asphalt can have on energy or peak load results. However, none of these 

problems should affect the pCT configuration what makes the access to CMOD 

data easier and more reliable. 

 

Figure 4.4: Load (P) versus load point displacement (LPD) curves obtained for 50 mm-

diameter samples tested according with the SCB (A, B, C, D) and pCT (E, F, G, H) 

methods with different rock samples and notch lengths. See Figure 4.1 for notation. 
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Figure 4.5: Load (P) versus load point displacement (LPD) and crack mouth opening 

displacement (CMOD) curves obtained from 50 mm-diameter samples of different rock types 

tested according with the SCB (A, B, C, D) and pCT (E, F, G) methods. The notch length ratio 

for all the illustrated experiments is ~ 0.4. 

The P-CMOD curves associated with the SCB tests performed with hard 

samples (Figure 4.5C and D) depict a characteristic constant steep-slope ascent 

followed by a gradual flattening as the load approaches Pmax. In fact, the slope of 

the P-LPD curve is noticeably shallower what results from the fact that CMOD is 
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much smaller than LPD. In the case of the weak Corvio Sst, the P-CMOD curve 

is highly non-linear since the beginning of the test. On the other hand, in the pCT 

tests (Figure 4.5E, F, G) we observe a better agreement between the two 

displacement measurements.  

Figure 4.6 shows a series of box&whisker plots with the aggregated results 

of KIC obtained for the four reference rock types and samples of 38-, 50- and 100-

mm diameter tested with the SCB and pCT methods. With a wide perspective, 

we observe that in both cases results are broadly compatible in magnitude for 

each tested rock. However, in the detail, the 38 mm-diameter samples have lower 

KIC value, especially in the case of SCB (see also Table 4.4). This clear size effect 

affects less the pCT testing methodology and it is likely related with the presence 

of heterogeneities in the tested rocks: For equal diameter, the smaller volume of 

the samples used in the SCB method make them more sensitive to this effect. 

The data of the previous figure has been disaggregated in Figure 4.7 and 

it is presented as a function of the corresponding notch length ratios (a/R and 

a/b). In the case of SCB, KIC depends on notch length in hard rocks (Pinacas 

sandstone and Blanco Mera granite) while this dependence becomes nearly 

negligible for the weaker ones (Acera and Corvio sandstones). However, it looks 

like the pCT method provides more consistent and sensitive information with 

respect to this dependence than the SCB. Regarding specimen size, KIC values 

tend to increase with diameter although results are more scattered for hard-rock 

small-size samples (D = 38 mm).  

We have computed Etot and Etot-CMOD from the complete P-LPD and P-

CMOD curves, respectively, and their relationship is illustrated in Figure 4.8 for 

the two testing methods. A through-origin linear best fit provides with satisfactory 

correlation coefficients in both cases (R2 = 0.85 for SCB and 0.92 for pCT). 

However, the slope of the correlation line is about 1/4th smaller than that 

associated with pCT (0.26 vs. 1.07). In fact, the nearly 1-slope in the pCT 

relationship suggest that, with this testing configuration, it is not necessary to use 

clip gauges or other transducers (a problem when space is restricted) since the 
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measured displacement is virtually equivalent to CMOD. In turn this is not 

possible with SCB.  

Figure 4.6: Box&whisker plots with the aggregated results of the mode I fracture 

toughness (KIC) tests of rock specimens of different diameter performed with the SCB 

and pCT methods. The number accompanying each group represents the number of 

samples and single dots correspond to outliers. 

In Figure 4.9  values of Etot are plotted as a function of the notch length 

ratios and diameter for SCB and pCT testing. In both cases, Etot is larger when 

the diameter of the specimen increases. However, this is more apparent for the 

pCT than for the SCB testing method, especially for large samples (D = 100 mm). 

Likewise, Etot is also larger for the shorter notch lengths but this effect is more 

prominent in the harder rock types (PN and GR).  
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Figure 4.8: Total energy obtained from the integration of the P-CMOD curves (Etot-CMOD) 

versus those computed from the P-LPD ones (Etot) associated with SCB (A) and pCT 

testing (B). 

Table 4.4: Mode I fracture toughness (KIC) results obtained for the SCB and pCT tests 

performed. Valid tests (see text) are reported for each group of samples within brackets. 

Method Rock 
KIC (MPa m1/2) 

D = 38 mm  D = 50 mm D = 100 mm 

SCB 

C 0.07 – 0.12 (8) 0.12 – 0.18 (6) - 

AR 0.26 (1) 0.28 – 0.35 (7) 0.32 – 0.46 (3) 

PN 0.69 – 1.08 (9) 1.12 – 1.64 (7) 1.11 – 1.29 (3) 

GR 0.72 – 0.90 (3) 1.01 – 1.51 (7) 1.17 – 1.27 (3) 

pCT 

C 0.06 – 0.08 (5) 0.07 – 0.12 (8) - 

AR 0.24 – 0.28 (3) 0.28 – 0.40 (8) 0.26 – 0.60 (9) 

PN 1.05 – 1.43 (4) 1.13 – 1.46 (9) 1.21 – 1.36 (4) 

GR 1.05 – 1.09 (2) 1.06 – 1.34 (6) 1.19 – 1.42 (3) 
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The good control during the execution of the pCT test allows splitting the 

total energy into two portions: That associated to the P-CMOD (or P-LPD) curve 

up to Pmax (Epre), and that from that point and beyond (Epost). These two portions 

separate the energy needed to initiate the crack and that required for its stable 

propagation and results are displayed in Figure 4.10.  

Figure 4.10: Distribution of the energies before (Epre) and after (Epost) peak load 

compared with total energy (Etot) (A and B), cross correlation of Epre and Epost (C) and 

Etot with respect sample diameter for a range of notch ratios of 0.2-0.35 and the 

different rock types tested (D). 
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Finally, we have taken advantage of the acoustic emission technique to 

acquire further insights about the fracturing process. A complete analysis of the 

results obtained in the AE survey is beyond the scope of this paper and we focus 

here in the analysis of the recorded acoustic emission energy (EAE) in order to 

check whether it is possible or not to observe a relationship between this property 

and Etot. We have summarized the data available in Figure 4.11. 

Figure 4.11: Total energy (Etot) versus acoustic emission energy (EAE) associated with 

tests performed with the SCB (A) and pCT (B) testing methods. 

4.5. Discussion 

4.5.1. Variability of results associated with the method of testing 
Mode I fracture toughness derived from pCT testing for Corvio (~0.06-0.12 

MPa m1/2) and Arcera sandstones (~0.24-0.60 MPa m1/2) is low, what is 

consistent with their condition of weak rocks. However, the KIC values for both 

Pinacas sandstone and Blanco Mera granite are appreciably higher (~1.05-1.4 

MPa m1/2). For the same rocks, the SCB testing method results in values slightly 

larger for the Corvio Sst (~0.07-0.18 MPa m1/2), but lower for the Arcera Sst 

(~0.26-0.46 MPa m1/2). In the case of the Pinacas Sst and the Blanco Mera Grt, 

KIC results are also more scattered than for pCT testing (~0.69-1.64 and ~0.72-
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1.51 MPa m1/2, respectively). The KIC values obtained using SCB tests for the 

Arcera sandstone are of the same magnitude of similar rocks tested with the 

same method (Singh and Sun 1990). Likewise, the magnitude of SCB results for 

the Blanco Mera granite compares well with available data reported for the 

Keochang granite (Chang et al. 2002) and an unidentified fine-grained granite 

(Donovan and Karfakis 2004). 

Different authors have already reported the variability effect induced by 

employing different testing methods for KIC. For instance, Chang et al. (2002) 

assessed the fracture toughness of the Keochang granite and the Yeosan marble 

using four different specimen geometries: uncracked Brazilian disc test (BDT), 

CCNBD, SCB, and cracked chevron-notched semi-circular bend (CCNSCB). The 

KIC values obtained in the case of SCB tests were more scattered and lower than 

those obtained from the CCNBD, CCNSCB, and BDT configurations, especially 

in the case of the granite. These findings have been supported by the 

observations of Wei et al. (2016) and Xu et al. (2016) with Dazhou sandstone 

specimens using SCB and CCNBD methods, respectively. Interestingly, in their 

work Wei et al. (2016) observed consistent KIC results for the SCB and CCNSCB 

methods (Dazhou sandstone: ~2% difference; Quingdao granite: ~6% 

difference). Among the reasons that could have favoured such consistency these 

authors quote the relative homogeneity of the samples (fine-grain sized), the lack 

of anisotropy, and the similarities existing between both testing methods (that 

reduce size or boundary effects). Aliha et al. (2012) have conducted SCB and 

centre-cracked Brazilian disc (BD) experiments using the Guiting limestone. They 

report higher KIC values when testing with SCB than with the BD method, and 

they argue that this difference may be related with the contribution of the high-

order, non-linear stress terms into the stress field at the crack tip level. In a more 

recent contribution, Aliha et al. (2017) have investigated the KIC of the Harsin 

marble using the four suggested methods of the ISRM (CB, SR, CCNBD, and 

SCB). Their results show a clear sensitivity of the KIC value obtained when 

considering the different methods, with SR and CCNBD resulting in the highest 

and lowest values, respectively. The authors attributed the variability to effects 
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associated with a non-singular T-stress, which is a property that depends on 

geometry and loading configuration of the specimen. Conversely, Iqbal and 

Mohanty (2007) report a negligible discrepancy between KIC values obtained with 

CB and CCNBD test, as long as the effects of specimen size and anisotropy are 

minimized. Tutluoglu and Keles (2011) point out significantly lower KIC values for 

SCB testing compared to CCBND when testing the Ankara andesite (~35%) and 

the Afyon marble (~47%). These authors interpret the difference as arising from 

the size of the fracture process zone (FPZ) around the crack tip. They conjecture 

that a larger FPZ compared with sample size (like in the case of the geometry of 

the SCB specimen) determines a greater impact over KIC. Funatsu et al. (2015) 

have also reported lower KIC for SCB specimens when comparing the same rock 

with the CB and CCNBD methods. In that case, the authors attribute the variability 

in the results to differences in the characteristics of the notch type (i.e. chevron 

or straight-type), but also to the influence of the FPZ.  

In order to satisfy the conditions for the application of the relationships of 

linear elastic fracture mechanics (LEFM) and to guarantee a linear-elastic 

behaviour of the material, the size of the FPZ ahead of the crack tip should be 

small-enough compared with the dimensions of the sample. According to Schmidt 

(1980), the radius of the FPZ (rFPZ) can be assessed as follows: 

𝜋𝜋𝐹𝐹𝐹𝐹𝐹𝐹 =
1

2𝜋𝜋 �
𝐾𝐾𝐼𝐼𝐼𝐼
𝜎𝜎𝑡𝑡
�
2 (4.6) 

where σt is the tensile strength of the rock. Due to the large number of 

samples tested in the present study, rather than single-value properties (namely 

KIC and σt), we have ranges of values describing them. Accordingly, we have 

computed a theoretical minimum (rmin) and maximum (rmax) radii for the FPZ for 

each specimen size, lithology and testing method. While we computed rmin using 

the minimum KIC and the maximum value of σt, we assessed rmax based on the 

maximum KIC and minimum σt. This maximizes the corresponding lengths of the 

FPZ. The values resulting from the computations are reported in Table 4.5. We 

see that, in general, the size of the FPZ increases with the size of the specimen. 

This has been also reported by Tarokh et al. (2017). With the exception of the 
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Arcera sandstone, for the 50-mm diameter samples the FPZ is larger in SCB than 

in the pCT. For smaller (D = 38 mm) and larger diameters (D = 100 mm) the 

trends are the opposite. The larger theoretical FPZ associated with the pCT 

specimens should led to a potentially greater scatter in the KIC results. However, 

what we observe is the contrary, what suggests that FPZ would not be playing a 

significant role in the pCT testing mode. We conjecture that this is associated with 

the larger ligament length of pCT compared with the SCB specimens (~3 times). 

In the case of SCB results, the greater experimental scattering may connect with 

the fact that the 38- and 50-mm diameter specimens fall below the minimum size 

suggested by Kuruppu et al. (2014) to satisfy the requirements of LEFM. 

However, Chang et al. (2002) have also found a significant dispersion in the 

experimental results of the SCB method (D = 75 and 100 mm), what was 

interpreted by the same authors as the result of the absence of a starter crack 

(i.e. pre-cracking) ahead the notch cut in the sample. Since our pCT specimens 

were not pre-cracked (in the previous sense) and still yield consistent results for 

the three sample sizes considered, we believe that this is not a critical issue to 

justify data variability.  

4.5.2. Specimen size and notch length effects 
We can accept as general that, within the bounds of the representative 

elementary volume, the mechanical properties of rocks derived from experiments 

should be independent of the specimen size. However, different authors have 

reported a lessening in certain properties (e.g. unconfined compressive and 

tensile strengths) when the size of the specimen increases (Hoek and Brown 

1980; Klanphumeesri 2010; Quiñones et al. 2017). However, in the case of 

fracture toughness, this property has been described to increase with increasing 

the size of the specimens for quasi-brittle materials, such as rock or concrete 

(Iqbal and Mohanty 2007; Ueno et al. 2013; Brevik 2016; Jeong et al. 2017).  

Our experimental database allows us to make some observations on 

eventual size effects on KIC derived from SCB and pCT testing methods. This is 

illustrated in Figure 4.6, where a first glance inspection reveals a more notorious 

size-effect associated with SCB than the pCT method. As we pointed out earlier, 
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KIC increases in general when the size of the specimen also increases. Although 

pCT testing results are consistent when considering the range of variability of 

each size, it is a fact that the largest KIC values correspond to the largest samples 

(D = 100 mm). This also happens with the SCB specimens of the weak Arcera 

and Corvio sandstones. But for the tougher Pinacas sandstone and Blanco Mera 

granite, the KIC maxima correspond to the intermediate-size samples (D = 50 mm) 

while minima belong to the smaller ones (D = 38 mm).  

Table 4.5: Estimated size of the FPZ expressed as minimum (rmin) and maximum radii 

(rmax), in mm, computed for SCB and pCT specimens of different diameter (D). 

Method Rock 

D = 38 mm D = 50 mm D = 100 mm 

rmin 

(mm) 

rmax 

(mm) 

rmin 

(mm) 

rmax 

(mm) 

rmin 

(mm) 

rmax 

(mm) 

SCB 

C 0.09 0.66 0.22 1.35 - - 

AR 0.44 0.64 0.53 1.17 0.68 1.96 

PN 0.53 1.47 1.40 3.41 1.39 2.10 

GR 0.88 1.40 1.72 3.92 2.32 2.79 

pCT 

C 0.05 0.30 0.08 0.71 - - 

AR 0.37 0.75 0.51 1.52 0.46 3.43 

PN 1.23 2.59 1.44 2.70 1.65 2.36 

GR 1.85 2.20 1.90 3.10 2.40 3.50 

 

In order to minimize size effects, the ISRM suggests the use of samples 

with a minimum diameter above 50 mm in the case of CB and SR testing methods 

(ISRM Testing Commission 1988), and that value rises to 76 mm in the case of 

SCB (Kuruppu et al. 2014). However, Kataoka and Obara (2015) have reported 

that a minimum diameter of 140 mm is needed to obtain consistent KIC values for 

SCB testing. Our findings are in the line of the previous contributions, cautioning 

against the use of small-size specimens with the SCB test method. In the case of 

Ueno et al. (2013), they have observed an increase in KIC with increasing the 
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diameter of the SCB specimens (D = 50-100 mm) of the Kimachi and Isahaya 

sandstones. These authors also report a greater impact of the fracture process 

zone when the size of the specimen was decreased, as seen from the 

enhancement of non-linearity in the P-LPD curves close to Pmax. In our case, 

experimental results suggest that the evolution of the slope of the P-LPD curves 

would depend more on the rock type than the size of the specimen. Thus, the 

weaker materials (e.g. Corvio Sst) show a greater degree of non-linearity even 

for large specimens. Lithology seems also to magnify the influence of specimen 

size on KIC, and this circumstance can be determinant for the harder materials 

(Pinacas Sst and Blanco Mera Grt). In our opinion, in addition to geometric 

constrains, the characteristics of the rock tested must be taken into account in 

order to set up minimum requirements for specimen size in fracture toughness 

testing. 

The influence of notch length on mode I fracture toughness has been 

assessed by different researchers. Although some authors point out a negligible 

impact (e.g., Lim et al. (1994); Funatsu et al. (2015)), others suggest that KIC 

tends to be smaller as the notch length increases (Rivera-Perez 2017; Zhang et 

al. 2017). Data elaborated by Muñoz-Ibáñez et al. (2020) for the pCT method 

support this conclusion. In the case of the SCB tests reported here, despite 

having used the range of a/R ratios (0.4 ≤ a/R ≤ 0.6) recommended by the ISRM 

(Kuruppu et al. 2014), we also observe dependency of KIC on the a/R ratio (see 

Figure 4.7). However, the effect is more pronounced in the case of the harder 

rocks (high relative KIC values) and almost imperceptible for the weaker ones 

(lower relative KIC). Once more, it is apparent that lithology may determine the 

degree of influence of a geometrical factor on mode I fracture toughness. 

4.5.3. Energy assessment 
In fracture mechanics, a crack grows when the stress intensity factor (KI) 

reaches a critical value that is referred as the fracture toughness (KIC) of the 

corresponding material (Anderson 2005). From the energy balances viewpoint, a 

crack will propagate when the energy available for crack growth exceeds the 

resistance of the material (Şener and Tutluoglu 2003). Accordingly, fracture 
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toughness can also be regarded as the energy release rate needed to create new 

crack surfaces, that is two surfaces per crack tip (ISRM Testing Commission 

1988). This energy can be accounted by computing the surface under the 

experimental P-CMOD curves that formally corresponds to the Etot-CMOD 

described with Equation 4.5. From the beginning of a test up to the point of failure 

(where the crack starts to propagate), the energy delivered by the testing device 

is mainly invested in subcritical crack growth (Atkinson 1984) while approaching 

KIC. Depending on the methodology, a fraction of this energy can be elastically 

stored in the sample and, under ideal testing conditions, the elastic storage 

should occur in a small volume around the starter notch of the sample. Once KIC 

is reached, the energy delivered is then consumed to unstably propagate the 

crack. In a test with a satisfactory control it is possible to obtain a continuous P-

CMOD curve allowing to split the total energy (Etot-CMOD) into the two described 

stages and we may refer them as Epre and Epost, respectively. However, the 

geometry of the tested specimen as well as the way in which the load is applied 

determine the success in obtaining a complete P-CMOD curve. To this respect, 

it is apparent that the pCT method provides with a good control of the process 

while the SCB not. It can be argued that improving control electronics and system 

stiffness (to avoid elastic energy storage in the testing device) may improve the 

quality of the SCB results. However, in our opinion the key point determining its 

poorer performance in the post-peak region is that the energy storage in the 

sample takes place in a volume significantly larger than that surrounding the 

crack tip (e.g., at the contact point of the rollers and along the ligament up to the 

starter notch). When load attains Pmax, all this energy stored in the sample is 

released suddenly and the crack propagates dynamically. However, in the case 

of the pCT test, the load is transferred to the sample along the contact lines of 

the pulling jaws (Muñoz-Ibáñez et al. 2020) and from there directly to the starter 

notch.  

The relationships among Epre and Epost with Etot are highly linear (Figure 

4.10A, B), with correlation coefficients (R2) of 0.95 and 0.92, respectively. The 

slopes of both lines are 0.482 (Epre) and 0.518 (Epost). These numbers suggest 
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that, irrespective of lithology, sample size and notch length, the same energy level 

is required to initiate the fracture or to propagate it once initiated. Figure 4.10C 

shows the relationship between Epre and Epost and, not surprisingly, they conform 

a nearly one-to-one correlation although in the detail Epost is ~4% larger than Epre. 

Zhang et al. (2017) have performed SCB tests to characterize the fracture 

properties of some stabilized soils. They found that ligament area-normalized 

fracture energy (Etot [(𝑅𝑅-a)∙B]⁄ ) tends to reduce as the notch length increases, 

and a similar tendency has been reported by Rivera-Perez (2017) when 

computing Etot based on the Illinois Flexibility Index Test (I-FIT), which is an 

adaptation for asphalt materials of the SCB test. In Figure 4.9 we illustrate our 

results and we conclude that they are consistent with observations of the previous 

authors: Less clearly in the SCB tests but with significant trends in the pCT. 

Rivera-Perez (2017) attributes this effect to the reduction of the ligament area 

available for fracture propagation. That would mean that, for a constant notch 

length, the change in size of the specimen should result in a quadratic distribution 

of Etot. We have check this assumption by plotting in Figure 4.10D Etot versus D 

for notch ratios (a/b) comprised between 0.2 and 0.35, and we confirm it because 

the best fit that can be obtained is quadratic what implies a non-constant rate of 

change. It is interesting also to observe that this relationship appears to be a 

function of lithology, what it is also observed from the slopes of Etot vs. a/b in 

Figure 4.9.  

4.5.4. Acoustic emission energy 
According to Landis and Baillon (2002), a certain fraction of the energy 

evolved during crack generation and propagation is amenable of monitoring 

taking advantage of AE techniques. Although the energy magnitudes associated 

with fracturing and local emission of AE are broadly different (AE can be unevenly 

scattered and/or attenuated in the sample and interfaces), it may be possible to 

identify a formal relationship between both properties so that AE energy can be 

regarded as a proxy for the energy dissipated during the fracture process. In fact, 

considering that the AE activity is proportional to the number and magnitude of 

growing cracks, it is reasonable to assume that there might be a relation between 
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AE energy (EAE) and fracture energy. Published results are, however, 

contradictory. For instance, Landis and Baillon (2002) have reported a good 

correlation for mortar specimens, although they could not provide with a 

functional relationship between EAE and fracture energy. Contrary, their results 

show no clear correlation in the case of concrete specimens. On the other hand, 

Han et al. (2018) have observed a linear correlation between both parameters in 

3-point bending tests made on samples of crumb rubber concrete.  

The values of the total emitted EAE obtained at the end of the SCB and 

pCT tests where such measurements are available have been plotted as a 

function of Etot in Figure 4.11. For that purpose, EAE was taken as the average 

value from all the AE transducers installed in the sample after summing up the 

AE energy released for each AE event. No clear relationship arises from the plots, 

in neither the SCB nor the pCT tests. In addition, it is worth to note that there is 

no direct correlation between EAE and specimen size. However, we believe that 

more work needs to be done in this line and we cannot discard non-apparent 

correlations that are not manifested from the available database. 

4.6. Conclusions 
We have experimentally investigated the mode I fracture toughness (KIC) 

of three sedimentary (Arcera, Pinacas and Corvio sandstones) and one igneous 

rock (Blanco Mera granite) by means of two different testing methods: the ISRM-

suggested SCB method, and the pCT technique.  

From a methodological point of view, a good sample alignment is essential 

in the SCB method to avoid mixed modes (I / II) in fracture toughness 

determinations. Furthermore, we also caution about the propensity of this 

configuration to lateral sliding when applying a linearly distributed force due to the 

circular nature of the loading surface. None of the two problems is significant with 

the pCT technique. 

The pCT method also provides a good post-peak control in all the 

experiments but this does not happen in the SCB experiments except for some 

specimens of Corvio Sst. The reason is not associated with a better/worse 
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electronic control or a high/low stiffness of the testing devices. It is likely 

connected to the way fracture energy is delivered to the tested specimen: Direct 

to the starter notch tip (pCT), or distributed along the ligament volume and around 

the contact points of the rollers (SCB). The second case is more prone to a 

significant elastic energy storage and its sudden release when approaching the 

critical stress value. This would induce the unstable propagation of the fracture. 

The difficulties encountered to control the propagation of the crack in the 

SCB tests makes impossible the access to Level II testing when using this 

technique, but this is feasible with the pCT method. In fact, the good correlation 

found between LPD and CMOD makes possible the direct assessment of CMOD 

without employing direct contact transducers (clip gauges or similar), what is 

advantageous with small size samples.  

Considering selected geometrical properties like sample size and notch 

length, we conclude that both variables have an influence in the derived fracture 

toughness values. Despite data scattering, KIC generally increases for larger 

samples and for smaller notch lengths. However, the size effect has a lesser 

impact in the pCT compared with the SCB method. In the case of the SCB testing, 

the variability induced over KIC by changing notch length ratios (a/R) is of less 

importance than the effect of sample size. However, both effects are subsidiary 

of rock type, with the harder materials showing higher dependency.  

Regarding the testing method, when the size of the specimen is large (D 

= 50 and 100 mm) we observe a significant similarity in the average KIC results 

obtained with the SCB and pCT configurations. For the smallest samples (D = 38 

mm) the values obtained with both methods differ more. In that case, pCT 

specimens yield more consistent fracture toughness values (which are 

comparable to those of the larger samples) compared with the SCB ones, 

especially for the harder materials for which the KIC difference may reach a 40% 

lower values than for the larger-size samples.  

The detailed analysis of the fracture energy derived from the pCT tests 

reveals a good linear correlation between the pre- (Epre) and post-peak (Epost) 
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fracture energies with respect total energy (Etot). The magnitude of both 

properties is very similar, what means that irrespective of lithology, sample size 

and notch length, the same level of energy is required to initiate the fracture and 

to stably propagate it. The energy balances obtained have made also possible to 

support the conjecture of the size-dependent fracture energy value given a 

constant notch length. However, our results indicate a more complex 

dependencies, with lithology playing a significant role.  

The assessment of EAE to try to identify functional relationships with 

fracture energy has been unsuccessful in the present survey. We cannot discard 

eventual relationships but a more comprehensive AE database is still needed. 
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5. Acoustic emission monitoring of mode I fracture
toughness tests on sandstone rocks 

This chapter will be submitted to ‘Journal of Petroleum Science and 
Engineering’ 

Andrea Muñoz-Ibáñez1, Jordi Delgado-Martín1, Miguel Herbón-Penabad1, 
and José Alvarellos-Iglesias2

5.1. Abstract 
A series of mode I fracture toughness test employing the semi-circular 

bend (SCB) and the pseudo-compact tension (pCT) methodologies have been 

performed with two sandstone types and specimens of 50- and 100-mm diameter. 

The tests were complemented with the monitoring of acoustic emission (AE) 

activity using a multi-sensor array. With the obtained data we compare and 

analyse the different testing methods, the mechanical evolution along the 

experiments and the significance of different acoustic emission parameters. The 

hypocenter location of AE events allows a better understanding of the processes 

occurring in the tests and the analysis of properties like amplitude or peak 

frequencies are valuable complements. Crack modes have been assessed using 

a parameter-based strategy (comparison of the average frequency, AF and rise 

angle, RA, as per RILEM), and the Ib-value has been explored to check its 

potential for cracking process discrimination in fracture toughness tests.  Results 

show that the pCT test provides more comprehensive and detailed results, both 

in terms of mechanical information and acoustic emission data. We discuss the 

applicability of the generally accepted models of small-strain brittle material 

1 School of Civil Engineering, University of A Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain 
2 Centro de Tecnología de Repsol, Ctra. Extremadura, N-V Km 18, 28935 Móstoles, Spain 
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failure typically applied to compressive tests (including or not AE data) and further 

methodological questions of interest when considering AE monitoring in fracture 

toughness tests.   

5.2. Introduction 
Fracture toughness (KC) represents the resistance of a material against 

the propagation of pre-existing cracks. According to fracture mechanics, a crack 

can experience three basic modes of loading: a) pure tension or mode I; b) sliding 

or shearing-in-plane or mode II; and c) tearing or shearing-out-of-plane or mode 

III (Irwin 1958). Among them, mode I (i.e. when the crack develops in a direction 

normal to the largest tensile load) is especially relevant in rocks due to their small 

tensile strength compared with the corresponding compressive or shear 

resistance.  

In the oil and gas industry fracture toughness has a crucial importance and 

the limited availability of in situ samples amenable of multiple laboratory testing 

is challenging. In the past years, a number of experimental procedures have been 

proposed for the successful determination of mode I fracture toughness (KIC) in 

rocks. Worth mentioning among them are the four suggested methods endorsed 

by the International Society for Rock Mechanics (ISRM). These are the short rod 

(SR), chevron bend (CB), cracked chevron notched Brazilian disc (CCNBD), and 

the semi-circular bend (SCB) (Ouchterlony 1989; Fowell et al. 1995; Kuruppu et 

al. 2014) test methods. 

Recently, Muñoz-Ibáñez et al. (2020) have proposed a new method 

(pseudo-compact tension or pCT test) useful to assess the KIC of rocks and other 

materials using disc-shaped specimens loaded under pure tension conditions. In 

contrast to the methods proposed by the ISRM, the pCT method has several 

advantages like simple sample preparation, small sample requirement, limited 

size effects, and steady propagation of crack beyond peak load. All of these 

attributes are valuable to fulfil the necessities of the industry. 

Acoustic emission (AE) is a non-destructive testing technique widely used 

to monitor the evolution of damage in rocks. When a fracture growths, crack 
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energy is released in the form of elastic waves that travel through the material 

and can be recorded in real time by AE sensors placed on the specimen surface 

(Mix 2005). However, the processes involved are far from simple and, as the 

fracturing process occurs, the AE activity exhibits significant variations (Moradian 

et al. 2016) mostly linked to the different processes occurring since crack initiation 

and propagation up to final coalescence and fracturing. For instance: The higher 

the number of growing cracks, the higher the number of AE hits. In fact, an 

impending failure is usually evidenced by the increase in the rate (i.e. speed-up) 

of the AE activity (Zang et al. 1998).  

In the past years several researchers have described on a qualitative basis 

the level of damage in rocks using AE parameters such as energy, amplitude or 

counts (Rodríguez 2016; Moradian et al. 2016; Zhang et al. 2019). Some others 

have found that the analysis of features in the frequency domain (e.g., peak and 

centroid frequencies) may be useful to discriminate among the signals induced 

by different damage mechanisms in concrete (Farnam et al. 2015).  

For the assessment of fracture kinematics and cracking modes (i.e. 

dilatational or tensile, shear, compression, or mixed-modes) different authors 

have applied a variety of analytical strategies. A first and simple approach is the 

analysis of the polarity of the first motion of the P-wave arrival. That allows to 

distinguish among tensile, compressional, or shear events (Zang et al 1998; Lei 

2000; Backers 2004; Stanchits et al. 2011; Molenda 2015). More elaborated 

approaches include moment tensor inversion, which provide a more general 

elastodynamic framework to describe seismic (or acoustic) forces acting at the 

source of movement (e.g., Feignier and Young 1992; Graham et al. 2010; 

Kwiatek et al. 2014; McLaskey and Lockner 2018).  An alternative method is to 

use two indices founded on time-based AE parameters: The average frequency 

(AF) and the rise angle (RA) value, which allow to discriminate between tensile 

and shear cracks in materials such as rock (Tsangouri et al. 2015; Wang et al. 

2017) or concrete (Ohno and Ohtsu 2010; Aldahdooh and Muhamad-Bunnori 

2013). Low RA - high AF values are typically associated with tensile cracks, while 

high RA - low AF values would be related with shearing. An additional property 
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grounded on seismological studies in the so-called b-value, which has been used 

to qualitative assess the level of damage in rock-like materials (Carpinteri et al. 

2013 and references therein). The variations in the b-value during a test are 

deemed to be indicative of different cracking mechanisms. For instance: A 

decrease in the b-value is generally interpreted as resulting from an increase in 

the stress level and accordingly, associated with an impending failure. Likewise, 

high b-values could be indicative of the growth and slow propagation of cracks 

while low b-values would suggest the opposite, that is unstable crack growth 

(Proverbio 2011).  

In this study we present and discuss the acoustic emission results 

associated with a series of mode I fracture toughness tests in rocks. In the 

experiments, we have applied two different testing approaches (SCB and pCT 

methods) over two different rock types. In the reported tests, which have been 

conducted at room conditions, we have applied a slow loading rate with the 

concurrent monitoring of AE signals. For each test we recorded a number of AE 

parameters (e.g., counts, amplitude, duration, or peak frequency) useful to 

compute properties of interest to assess stages and processes, failure advent 

and cracking modes (e.g., AF:RA ratio and the improved b-value). In addition, 

using a multi-sensor array, we have computed the location of the AE hypocentres 

as a function of testing time, what it is useful to analyse the evolution and 

propagation of cracks along the ligament length. 

5.3. Materials and methods 

5.3.1. Materials and specimen preparation 
In this study we have used two different rock types to perform the KIC tests: 

Arcera (AR) and Pinacas (PN) sandstones, of Cretaceous and Jurasic age, 

respectively. Properties such as porosity, uniaxial compressive strength, and 

indirect tensile strength have been reported previously in other works (Muñoz-

Ibáñez et al. 2020.; Muñoz-Ibáñez et al. subm.), and a summary is provided in 

Table 5.1. The pCT specimen is a cylindrical disc-shaped sample with a 

thickness-to-diameter ratio (B/D) of ~0.5 and a U-shaped groove to allow loading. 
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In the middle of the groove, a thin starter notch is also cut to provide the location 

for crack initiation (Muñoz-Ibáñez et al. 2020) .The SCB test employs a semi-

circular disc (B/D ~0.5) with a straight notch that acts as stress concentrator 

(Kuruppu et al. 2014). A schematic illustration of both pCT and SCB specimens 

as well as the corresponding reference dimensions (Table 5.2; D = diameter; B = 

thickness; R = radius; a = initial length of the starter notch; Gd = groove depth; Gw 

= groove width; b = distance from the base of the groove to the bottom of the 

specimen; s = span length) are shown in Figure 5.1. The specimens were 

carefully prepared using a customized tile saw in which long rock cores were 

sliced into thinner discs according to the prescribed B/D ratio of 0.5. Some of the 

discs were also halved for the SCB tests. In the case of the pCT test, the loading 

groove was carved using a 2 mm- thick diamond saw-blade and several passes. 

A thinner diamond blade (1 mm- thick) was used to cut the starter notch to the 

prescribed depth in both the SCB and pCT tests. The conditioned specimens 

were then dried at 60 ºC for a minimum of 24 hours in an electric oven and then 

stored at ambient conditions. Before testing, magnets with 6 mm-diameter, 3 mm-

thickness were glued on the surface of the specimens to hold the acoustic 

emission sensors (Figure 5.1).  

Table 5.1: Selected properties of the Arcera (AR) and Pinacas (PN) sandstones: σc = 

Compressive strength; σt = Tensile strength; E = Young’s modulus; ν = Poisson’s ratio; 

ne = Effective porosity. 

Material σc (MPa) σt, (MPa) E (GPa) ν ne (%) 

AR 40.2 4.1 - 4.9 12.2 0.4 17.3 - 18.2 

PN 129.5 11.2 - 11.9 35.0 0.2 5.5 - 6.5 
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Table 5.2: Geometrical dimensions corresponding to the SCB and pCT test specimens: 

D = diameter; B = thickness; s/D = span length ratio; a/R = notch length ratio (for SCB 

specimens); a/b = notch length ratio (for pCT specimens); Gd = groove depth; Gw = 

groove width. 

Method D (mm) B (mm) s/D  a/R Gd (mm) Gw (mm) a/b 

SCB 100 50 0.55 - 0.65 0.4 - 0.6 - - - 

SCB 50 25 0.55 - 0.65 0.4 - 0.6 - - - 

pCT 50 25 - - 5 10 0.1 - 0.4 

Figure 5.1: Schematic illustration of specimen geometries and loading configurations 

of the SCB (A) and pCT (B) tests and examples with 50 mm-diameter samples. Notes: 

P = applied load; D = sample diameter; B = sample thickness; a = notch length; s = 

span length; Gd = groove depth; Gw = groove width; b = distance from the base of the 

groove to the specimen bottom. 
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5.3.2.  Experimental setup 
Three-point bending SCB tests were performed in a stiff servo-electric 

frame equipped with a 4.448,22 N load cell. In this configuration, an upper steel 

roller transfers a linear load on the top of the specimen while two additional lower 

rollers, separated by a fixed distance (s), support the sample. On the other hand, 

the pCT specimens are loaded in pure tension using the specially-designed 

testing device described in detail in Muñoz-Ibáñez et al. (2020), which is equipped 

with a 50 kN load cell. The specimen is placed on a platform and attached to two 

steel jaws that penetrate into the U-shaped groove cut in the top of the sample. 

With this setup, while one of the jaws remains static, the other one is pulled away 

at a constant displacement rate. Further details of both systems can be found in 

Muñoz-Ibáñez et al. (2020) and Muñoz-Ibáñez et al. (subm.) 

Tests were performed at a slow rate of 100 µm/min to avoid dynamic 

effects. Load (P), load point displacement (LPD), and crack mouth opening 

displacement (CMOD) were continuously monitored in the tests. In the case of 

the SCB tests, LPD corresponds to the vertical displacement of the top roller, and 

CMOD is computed as the sum of the normalised displacements measured by 

two horizontal linear variable differential transducers (LVDTs) located at the level 

of the base plane of the SCB sample. In the case of the pCT, LPD corresponds 

to the displacement of the mobile jaw, and CMOD is measured using a clip-on 

gauge attached to the specimen surface at the level of the notch tip. Steel knife-

edge blades were glued to the samples to make possible this arrangement 

(Figure 5.1).  

5.3.3. AE equipment and methods 
Mode I fracture toughness tests performed with either the pCT or the SCB 

methods were instrumented for the concurrent monitoring of AE activity. The 

corresponding records were collected using a 16-channel monitoring system 

(AMSY-6; Vallen Systeme GmbH, Germany). We equipped the 50 mm-diameter 

pCT specimens with four wide band AE sensors (Vallen VS700-D; frequency 

range: 150-800 kHz; peak frequency: 600-800 kHz), while we used six and eight 

sensors for the SCB samples of 50 and 100 mm-diameter, respectively. The AE 
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sensors were mounted on magnets which were glued with cyanoacrylate to the 

surface of the specimen. The arrangement of AE sensors is illustrated in Figure 

5.2. Since it is expected that cracks initiate their propagation from the tip of the 

starter notch, some sensors of the AE array were placed in the neighbourhood of 

the ligament volume. 

Figure 5.2: In A: Location of the AE sensors in 50 and 100 mm-diameter SCB 

specimens (left and right, respectively). In B: Emplacement of the AE sensors 

in 50 mm-diameter pCT specimens with two different starter notch lengths (left: 

a/b ≤0.2; right: a/b >0.2). 
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To improve the coupling of the transducer with the magnet and to obtain 

adequate acoustic transmission, we used a thin layer of OKS 1110 silicone 

grease (ASTM 1997). The detected AE signals were amplified using AEP5 

preamplifiers set to a 34 dB-gain for each channel. We also prescribed a 

continuous waveform sampling frequency of 10 MHz, a threshold value of 40 dB, 

and a band-pass filter configuration of 95-850 kHz, what provides the full 

bandwidth of the sensors while still eliminating unwanted low and high frequency 

noise components.  

Time-resolved AE parameters including signal peak amplitude (A), counts, 

event duration, rise time, and energy (EAE) were recorded in real-time. EAE is 

computed in aJ (10-18 J) from the root-mean square of the integral of the squared 

voltage signal divided by a reference resistance (10 kΩ in the AE system used) 

over the duration of the recorded AE transient  (Vallen Systeme GmbH 2017). 

Due to the way it is estimated, EAE must be regarded as a practical energy 

indicator to analyse the cracking process rather than a true energy measurement 

amenable of accurate balances (Lin et al. 2020). 

Other properties like the average frequency (AF = counts/duration) and the 

rise angle values (RA = rise time/peak amplitude) were computed afterwards. 

Likewise, stored waveforms of the recorded events were post-processed in order 

to determine time-frequency descriptors (e.g., centroid and peak frequencies) 

based on an automatic Fast Fourier Transform (FFT) algorithm. We also used 

the data gathered with the multi-sensor array to compute the hypocenter location 

of the AE events. To do that it was first necessary to verify the cross-coupling 

quality of the sensors (i.e. the strength in the propagation of a synthetic pulse) as 

well as the average velocity (v) field in each tested specimens (v ~2000 and 

~1200 m/s for the Pinacas and Arcera sandstones, respectively). We performed 

both checks with the aid of the Vallen AE-Suite software package in pulsing-mode 

(Vallen Systeme GmbH 2017) with which it is possible to identify a 3D velocity 

field making more accurate event location (Molenda 2015).  

The b-value is a seismology-derived parameter based on the Gutenberg-

Richter relationship that has been proposed by the ISRM as an index value for 
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recognizing the onset of rock cracking (Ishida et al. 2017). The early expression 

of the b-value was used to estimate the likelihood of occurrence of an earthquake 

above a given magnitude but it has been adapted to the study of AE in rocks by 

applying the correction introduced in Equation (5.1): 

log10 𝑁𝑁 = 𝜋𝜋 − 𝑏𝑏
𝐴𝐴

20
(5.1) 

where N is the number of AE hits whose amplitude is greater than a given 

threshold value, a an empirical constant, b is the b-value, and A is the peak 

amplitude of the corresponding AE hit, in dB. To compute the b-value, we have 

grouped the experimental dataset into subsets including one hundred AE hits. 

Due to the variability in amplitude of the acoustic signals, Rao and Lakshmi 

(2005) suggest a weighting scheme based on the grouping of the experimental 

dataset into subsets of N hits (N = 100 in our case) and to take into account the 

mean amplitude (µ), standard deviation (σ) and a lower and upper amplitude 

bounds (α1 and α2, respectively) to obtain the so-called improved b-value, or Ib-

value: 

I𝑏𝑏 = [𝑙𝑙𝑐𝑐𝑙𝑙𝑁𝑁(𝜇𝜇 − 𝛼𝛼1𝜎𝜎)] − 𝑙𝑙𝑐𝑐𝑙𝑙𝑁𝑁(𝜇𝜇 + 𝛼𝛼2𝜎𝜎)
[(𝛼𝛼1 + 𝛼𝛼2)]𝜎𝜎�  (5.2) 

5.4. Results 

5.4.1. P-LPD curves and AE activity 
Some representative load-displacement curves (P-LPD, where LPD 

corresponds to the load point displacement) obtained with the two selected 

testing methods and rocks are illustrated in Figure 5.3. There we observe that the 

shape of the curves associated to each testing method are clearly different both 

before and after peak load (Pmax). Thus, while the pCT curve is smooth up to Pmax, 

the SCB curve in the same region is notoriously less homogeneous. Likewise, 

while in the SCB tests we observe a sharp strength drop right after Pmax, in pCT 

the strength reduction is more progressive, evidencing a significantly better test 

control in the post-peak region. These circumstances, which are not unusual, 

have been discussed in more detail in Muñoz-Ibáñez et al. (subm.). The 
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connection of the stress-strain evolution with that of the AE activity will be 

discussed in another section of this study. 

Figure 5.3: Cumulative AE energies (EAE) recorded during a SCB test with the Arcera 

sandstone (top) and a pCT test performed with the Pinacas sandstone (bottom). 

Curves illustrate the results of each available AE sensor. The load vs. displacement 

(P-LPD) curves are is also given for reference. 

Figure 5.3 also presents some typical cumulative AE energy (EAE) results 

associated with the two tested lithologies (Arcera and Pinacas Sst) and methods 

(pCT and SCB). We have represented in separated curves the results of each 

independent measuring channel. It is interesting to observe that, for all the 

sensors in the same experiment, the curves are parallel but the individual 

sensitivity is different so that, at the end of the test, the final cumulative EAE value 

differs. For the SCB test shown and, with the exception of the observation 
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channel C3 (whose lower values may obey to a poorer coupling), we verify the 

same effect. The reason for that is linked to the attenuation of the acoustic signal, 

which is inherent to the location of the corresponding sensor (spreading increases 

exponentially with the distance; Spasova et al. 2007) and the dispersive 

properties of the studied medium along wave path connecting them with the 

acoustic source (i.e. dispersion, inelastic interactions, scattering and diffraction).  

5.4.2. Frequency analysis of the AE signals 
Figure 5.4A illustrates the time evolution of peak frequency (fpeak) values 

recorded during typical SCB and pCT tests performed with the Pinacas 

sandstone. In the plot we have marked with a different color each monitoring 

channel. In general, three distinct peak frequency bands manifest: Band-I (fpeak 

~100-300 kHz, observed all along the test); Band-II (fpeak ~300-600 kHz, starting 

at ~0.5Pmax); and Band-III (fpeak ~600-800 kHz, starting at ~0.8Pmax for the SCB 

test, and above Pmax for the pCT test). Although these frequency bands are 

comparable for both testing methods, the pCT test provides a larger amount of 

information than the SCB test, which is especially noticeable at high peak 

frequency values. In fact, for the pCT test it seems that the high frequency band 

can even be split into two separate subgroups, taking the value of fpeak = 700 kHz 

as boundary. This is better illustrated in Figure 5.4B, in which the normalized 

amplitude (Anorm=A/Amax; where Amax is the maximum amplitude) is plotted as a 

function of the peak frequency (fpeak) for two AE channels involved in data 

acquisition: one corresponding to a sensor placed closer to the notch tip (C4 and 

C1 in SCB and pCT tests, respectively), and other placed farther from this 

location (C6 and C4 in SCB and pCT tests, respectively; see Figure 5.2). In 

general, we observe a progressive decrease in the number of AE events (and the 

associated Anorm) as fpeak increases. In addition, the location of the sensors in 

relation to the notch tip (where the major part of the AE signals is expected to 

occur) influences the frequency content recorded: as distance from the notch tip 

increases, lower fpeak values are detected for the same frequency band. The 

scarcity of data at fpeak ~500 kHz in all cases would be related with the limited 

acoustic response of the sensors at this frequency value.  
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Figure 5.4:  A: Time-distribution of peak frequencies (fpeak) obtained with Pinacas 

sandstone specimens. Results for each monitoring channel are illustrated with a 

different colour. B: Normalised amplitude (Anorm) vs. peak frequency (fpeak) for two AE 

channels. C: Time-distribution of peak frequencies (fpeak) as a function of data grouping 

into LL, LH, ML, HL, and HH (see text for explanation). D: Box & whisker plots 

illustrating the peak frequencies (fpeak) associated with three frequency bands. The box 

extends from Q1 to Q3, while the whiskers go from P5 to P95. The horizontal line in the 

middle of each box represents the corresponding median. Note: In all figures, results 

for the SCB and the pCT tests are given on the top and the bottom, respectively. In 

figures A, C, and D the load vs. time curves are also given for reference. 
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Figure 5.5: A: Time-distribution of peak frequencies (fpeak) obtained with Arcera 

sandstone specimens. Results for each monitoring channel are illustrated with a 

different colour B: Normalised amplitude (Anorm) vs peak frequency (fpeak) for two AE 

channels. C: Time-distribution of peak frequencies (fpeak) as a function of data grouping 

into LL, LH, ML, HL, and HH (see text for explanation). D: Box & whisker plots 

illustrating the peak frequencies (fpeak) associated with three frequency bands. The box 

extends from Q1 to Q3, while the whiskers go from P5 to P95. The horizontal line in the 

middle of each box represents the corresponding median. Note: In all figures, results 

for the SCB and the pCT tests are given on the top and the bottom, respectively. In 

figures A, C, and D the load vs. time curves are also given for reference. 
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Following a similar analysis to that performed by Chen et al. (2020), we 

have divided the AE signals recorded by one of the AE channels into five different 

groups according to their peak frequency and normalized amplitude (Figure 5.4C; 

Table 5.3): LL, LH, ML, HL, and HH. The first letter designates the low (L: 100-

300 kHz), medium (M: 300-600 kHz), or high (H: 600-800 kHz) fpeak range while 

the second one indicates the low (L: 0.4-0.6) or high (H: 0.6-1) Anorm range. 

Although LL signals are observed all along the experiments, LH signals 

noticeably occur as the load approaches Pmax. The trend is similar to that 

observed for ML signals, which suggests a relationship between both types of 

events. However, during the post-peak region in the pCT test, LH signals tend to 

vanish before ML signals do. High frequency signals (HL and HH) clearly appear 

after Pmax, which would be indicating the emergence of a different process that 

cannot be captured at low- and medium- frequency ranges. To gain a deeper 

insight into the evolution of the three frequency bands defined above, in Figure 

5.4D we show the average values and spread in fpeak at different stages of the 

tests. It must be noted that for the pCT test, at low frequencies (Band-I) we have 

only plotted the data for group LH. For this testing method, the average value of 

Band-III first increases and then decreases. With the exception of the last group, 

this trend is also observed for the Band-II and for the group LH, although in these 

cases the scattering enlarges as the test approaches its final stage. The poorer 

quality of data for the SCB hampers to perform a similar analysis. Although the 

mean value at low frequencies (Band-I) shows small fluctuations, the sensitivity 

is lower than in the pCT test. 

Table 5.3: AE signal grouping: fpeak = peak frequency; A = amplitude. 

LL LH ML HL HH 

fpeak (kHz) 100-300 100-300 300-600 600-800 600-800 

A (dB) 40-60 60-100 40-60 40-60 60-100 
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A similar analysis was also carried out for two specimens of Arcera 

sandstone, and results are plotted in Figure 5.5. Although the type of rock does 

not appear to have a significant impact in the fpeak (the frequency bands observed 

are comparable despite of being noisier), for the weaker Arcera Sst there is a 

major abundance of events in the range of 200-300 kHz, especially when 

approaching Pmax. For the pCT specimen, we also observe a lower amount of 

high frequency (Band-III) signals (Figure 5.5A). In addition, the values of Anorm 

remain high even for events in Band-II, and the effect of attenuation is only 

evident at high frequency ranges (Figure 5.5B). Here we also observe that, for 

each frequency band, the AE sensors placed closer to the notch tip (C3 for both 

testing methods) provide higher frequency values than those located farther (C6 

and C2 for SCB and pCT tests, respectively), although the effect is less clear than 

for the Pinacas Sst. In the pCT test of the Arcera Sst, the division of the low 

frequency signals into two separate groups (LL and LH) does not reveal any 

distinct pattern between them (Figure 5.5C). In fact, the mean values of fpeak in 

Band-I and Band-II, as well as the spread, are almost uniform all along the test, 

with the exception of the last group. For Band-III, we observe a slight decrease 

in the mean value during the post-peak region, and higher scattering as the 

specimen loses cohesion (Figure 5.5D). Results for the SCB specimen show 

large scattering at low frequencies, and a decrease and a subsequent recovery 

in the average fpeak during the linear and non-linear elastic stages of the test for 

Band-I. 

5.4.3. AE hypocenter location 
The location of the AE events is based on those signals whose amplitude 

is greater than 70 (pCT) or 60 (SCB) dB. These values are seldom found before 

Pmax and, therefore, they have not been included in the presentation. The given 

cut off values were set to filter weak signals and to improve the rate of successful 

event location.  

Figure 5.6 shows an aggregate panel with the P-time curves of the pCT 

tests performed with the Pinacas and Arcera sandstones together with a series 

of images illustrating the projection of acoustic events over the tested samples. 
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The coloured arrows highlighted in the P-time curve select six specific time-

windows (from Pmax onwards) for which the hypocentre location has been also 

windowed. The colour code of the arrows corresponds with that of the dots used 

to overlap the sample pictures. It is important to mention that, while the 

hypocentre location is performed in a 3D volume, the dots are projected in a flat 

surface. Thus, the depth-dimension is lost in this representation and, in the case 

that the developed fracture plane was not orthogonal to that of projection, an 

increased horizontal spread would appear. In fact, the lateral spread could be 

used as indicator of fracture waviness. We have not selected any time-window 

before Pmax. The reason for that is the scarcity of signals whose amplitude were 

above the minimum threshold value set.   

The careful observation of the event distribution in the tested rocks 

evidences that most of the events identified during Pmax and early post-Pmax are 

located in the theoretically expected region: the notch tip. The distribution of 

events up to a load value of ~0.3Pmax (~70% drop) conforms to a vertical crack 

with limited lateral spread. This is true for the hard, short-notched Pinacas Sst 

sample and the weak, long-notched Arcera specimen. For lower strengths (P < 

0.3Pmax) the located events deviate from the vertical (Pinacas Sst) or increase 

the lateral spread (Arcera Sst), both observations consistent with the observed 

macrocracks. This period corresponds with the later stage of experiments, when 

the failure process is dominated by the coalescence of the cracks already formed. 

One significant contrast observed when comparing the two sandstones tested 

with the pCT method is that, in the Arcera specimen and for the same time-

window, the AE events extend over a larger area of the ligament. For instance, 

at Pmax they reach approximately half of the length of the ligament. This is 

consistent with the lower energy requirement to propagate a fracture trough this 

weaker rock. 



5. AE monitoring of KIC tests on sandstone rocks 134 

Fi
gu

re
 5

.6
: S

pa
tia

l d
is

tri
bu

tio
n 

of
 A

E 
ev

en
ts

 w
ith

 a
m

pl
itu

de
 >

70
 d

B 
du

rin
g 

th
e 

di
ffe

re
nt

 s
ta

ge
s 

of
 p

C
T 

te
st

s 
pe

rfo
rm

ed
 w

ith
 P

in
ac

as
 (l

ef
t) 

an
d 

Ar
ce

ra
 (

rig
ht

) 
sa

nd
to

ne
 s

pe
ci

m
en

s.
 T

he
 la

be
ls

 in
 t

he
 p

ic
tu

re
s 

re
ffe

r 
to

 t
he

 %
dr

op
 in

 P
m

ax
. 

Th
e 

di
am

m
et

ra
l (

ve
rti

ca
l) 

lin
es

 d
ra

w
 o

n 
th

e 

re
co

ve
re

d 
ro

ck
 s

pe
ci

m
en

s 
re

pr
es

en
t t

he
 th

eo
re

tic
al

 c
ra

ck
 p

at
hs

 a
nd

 th
ey

 a
re

 c
om

pa
re

d 
w

ith
 th

e 
ac

tu
al

 tr
ac

e 
of

 th
e 

de
ve

lo
pe

d 
cr

ac
k.

 S
ee

 

te
xt

 fo
r e

xp
la

na
tio

n.
 



5. AE monitoring of KIC tests on sandstone rocks 135 

Fi
gu

re
 5

.7
: S

pa
tia

l d
is

tri
bu

tio
n 

of
 A

E 
ev

en
ts

 w
ith

 a
m

pl
itu

de
 >

60
 d

B 
du

rin
g 

th
e 

di
ffe

re
nt

 s
ta

ge
s 

of
 S

C
B 

te
st

s 
pe

rfo
rm

ed
 

w
ith

 P
in

ac
as

 (l
ef

t) 
an

d 
Ar

ce
ra

 (r
ig

ht
) s

an
ds

to
ne

 s
pe

ci
m

en
s.

 T
im

e-
w

in
do

w
 II

I (
P

m
ax

) h
as

 b
ee

n 
sp

lit
 in

to
 fo

ur
 s

ub
tim

es
 (t

1, 

t 2,
 t 3

 a
nd

 t 4
) w

hi
ch

 a
re

 p
re

se
nt

ed
 in

 th
e 

in
se

t. 
Th

e 
la

be
ls

 in
 th

e 
pi

ct
ur

es
 re

fe
r t

o 
th

e 
%

dr
op

 in
 P

m
ax

. T
he

 ra
di

al
 (v

er
tic

al
) 



5. AE monitoring of KIC tests on sandstone rocks 136 

Fi
gu

re
 5

.8
: 

Ev
ol

ut
io

n 
of

 t
he

 r
at

io
 A

F:
R

A 
ac

co
rd

in
g 

to
 s

el
ec

te
d 

tim
e-

w
in

do
w

s 
as

so
ci

at
ed

 w
ith

 p
C

T 
(le

ft)
 a

nd
 S

C
B 

(ri
gh

t) 
te

st
s 

pe
rfo

rm
ed

 w
ith

 s
pe

ci
m

en
s 

of
 th

e 
Pi

na
ca

s 
Ss

t. 
Th

e 
co

lo
ur

 c
od

e 
an

d 
ro

m
an

 n
um

er
al

s 
of

 th
e 

ar
ro

w
s 

ar
e 

th
e 

sa
m

e 
th

an
 in

 th
e 

pa
ne

l 

be
lo

w
. 



5. AE monitoring of KIC tests on sandstone rocks 137 

Figure 5.7 presents the same analysis approach for two tests performed 

with the same sandstones using the SCB method. As for the pCT specimens, the 

Pinacas Sst (Figure 5.7, left) reveals few AE signals before Pmax along the 

theoretical fracture plane. Then, when Pmax is attained and thereafter (in the short 

time period preceding full failure), a more significant number of events 

concentrate near the notch tip. The final stages of the test of the illustrated 

Pinacas sandstone evidence the upwards migration of the AE events, as 

expected from the theoretical considerations of the SCB method (Kuruppu et al. 

2014). Conversely the results for the Arcera Sst (Figure 5.7, right) differ 

significantly from those of the Pinacas. The most relevant difference is the high 

density of events located in the external upper section of the sample at early 

stages of the test. This location is next to the contact point of the top roller. In this 

case, we observe a progressive damage originated at the left side of the contact 

point of the roller (time-window i) that migrates rightwards (time-window ii) and 

originates the failure of the sample once Pmax is approached (time-window iii). In 

this situation, the orientation of the stress tensor determines that failure does not 

initiate at the expected point (the notch tip). It develops from the top surface of 

the sample to the notch tip originating an oblique macrocrack. While the results 

of this particular test are useless for mode I fracture toughness assessment, they 

are highly illustrative of: a) One of the troubles associated with the SCB testing 

method (see Muñoz-Ibáñez et al. (subm.) for a wider discussion), and b) The 

significant potential of AE monitoring to better understand fundamental processes 

associated to fracture toughness testing. 

5.4.4. AF vs. RA plots 
So far, a number of criteria based on the investigation of cracking modes 

have been published to characterize damage in engineering materials. In this 

study we focus on the parameter-based methodology proposed by the Federation 

of Construction Materials Industries of Japan (JCMS-III B5706 2003; Ohno and 

Ohtsu 2010), later incorporated as recommendation for concrete materials by the 

RILEM (Ohtsu 2010). This is grounded on an experimental database of four-point 

bending and direct shear tests performed with concrete-type materials, and 



5. AE monitoring of KIC tests on sandstone rocks 138 

indicates that it is possible to discriminate among tensile, shear or mixed-mode 

(tensile-shear) cracks according to the ratio existing between the average 

frequency (AF) and rise angle (RA) obtained from AE testing (see section 5.3.3): 

If the AF vs. RA ratio is >0.1 Hz·s/V, the AE events are considered to be 

originated by tensile stresses, while ratios <0.1 Hz·s/V would correspond to crack 

shearing. Those events with a ratio of ~0.1 Hz·s/V are likely to be occasioned by 

a mix-mode of cracking. 

Figure 5.8 illustrates the distribution of the AF:RA ratio in nine different 

time-windows of pCT and SCB tests performed with the same rock type (Pinacas 

Sst). In both cases we observe that, for loads <Pmax, the events locate in the 

assumed tensile field. As we approach Pmax, the AE activity extends towards (but 

does not reach) the border line of mixed-mode, while for post-peak conditions 

(time window v in pCT, and viii – ix in SCB) this boundary is clearly reached and 

significant AE activity develops in the shear field. Although both tests illustrate 

the same features, the pCT allows the identification of further details. In Figure 

5.9 we have tried to summarize as box & whisker plots the spread in RA for the 

selected time-windows presented before. For the SCB test we observe a nearly 

constant spread before Pmax and a significant increase onwards. However, in the 

pCT test we see a more complex pattern, including a progressive reduction in the 

absolute value of RA (and spread) at peak load, (what reinforces the perception 

of tensile mode of this stage), a notorious spread increase in the early post-peak 

(suggesting a greater contribution of mixed-mode and shear cracking) and a 

spread reduction in the late post-peak stages (i.e. a renewed tendency to tensile 

cracking). It is interesting to note that, while the average RA value at Pmax is higher 

than in pre-peak conditions for the SCB method, the situation is the opposite to 

the pCT (lower RA in Pmax than in pre-peak conditions). Leaving apart the wealth 

of information provided by the pCT methodology, the observed contrast suggests 

certain fundamental differences in the cracking processes operating when testing 

with the two methods. However, this parameter-based analysis has a limited 

scope (for instance, it does not include the assessment of compression modes) 

and lacks the analysis potential of other techniques (e.g., moment tensor 
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inversion of amplitudes of first motions; Graham et al. 2010) amenable of better 

characterization of source mechanisms.  

 

Figure 5.9: Box & whisker plots illustrating the RA-value associated with the different 

stages of a SCB (top) and pCT (bottom) tests. The box extends from Q1 to Q3, while 

the whiskers go from P5 to P95. The horizontal line in the middle of each box represents 

the corresponding median. Roman numerals are the same identified in Figure 5.8. The 

load vs. time curves are given for reference.  

5.4.5. Ib-value 
The evolution of the Ib-value during SCB and pCT tests performed with 

specimens of Pinacas sandstone is illustrated in Figure 5.10. In a first approach, 

we computed the Ib-value following the procedure of Rao and Lakshmi (2005), 

and using the same criterion for data grouping (N = 100) for both testing methods. 

The number of AE hits recorded in the SCB tests is significantly lower than in the 

pCT ones. This is mainly associated with the nearly complete absence of AE data 

associated with the post-peak region. For this reason, the SCB-derived Ib-value 

displays a smoother curve than the one of the pCT test, which is highly scattered 
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specially after Pmax. For better visualization of the main trend, the Ib-value 

computed at intervals of 20 seconds (Ib-value (t)) is also displayed in the same 

figure. The time window was reduced to 10 or even 5 seconds to improve 

accuracy of results at certain stages of the tests. Leaving apart these questions, 

it appears that the magnitude of the Ib-value rises along the elastic stage and 

attains its maximum in advance to Pmax in both cases. By when the load peaks in 

the pCT test, the Ib-value descends to a value ~1 and remains low and fluctuating 

as the fracture unstably propagates. The oscillation observed contrasts with the 

sharp drop to even lower values (~0.5-0.6) at and after failure in the case of the 

SCB test.  

Figure 5.10: Time evolution of the Ib-value computed for Pinacas Sandstone 

specimens during SCB (top) and pCT (bottom) tests: in light colour, Ib-value taking N 

= 100; and in dark colour, Ib-value for defined time windows (see text for explanation). 

The load vs. time curves are also given for reference. Dashed line refers to Ib-value = 

1.
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5.5. Discussion 
According to Carpinteri et al. (2013), specimen size and transducer 

spacing are critical features in quantitative AE analysis: The larger the distance 

between the source of the events and the sensors, the stronger the attenuation 

of the AE signals. In line with the data reported by the previous authors, our 

results reveal that higher EAE is recorded for those sensors placed close to the 

notch tip in pCT (sensors C1 and C3), where the major concentration of 

generated events is to be expected. However, for the SCB specimen of Arcera 

Sst the final cumulative EAE is larger for the sensors located near the contact point 

of the top roller (sensors C5 and C7). Signal attenuation may be frequency 

selective (Aggelis and Philippidis 2004), what makes difficult the proper scaling 

of EAE to compare with the values derived from mechanical tests (e.g., fracture 

energy). In our case, in spite of these differences, the main trends are similar for 

all sensors involved in data acquisition. That suggests that the acoustic 

characteristics of the rock located between each AE sensor and the generated 

foci are similar (i.e. isotropic and homogeneous media). This is consistent with 

the known properties of the tested rocks as well as the macroscopic observation 

of the specimens.  

5.5.1.  Stress-strain and damage evolution 
The shape of P-LPD curves includes information about fundamental 

processes occurring in the specimens as they are tested. To this respect, the 

general model of Martin and Chandler (1994) about the progressive failure of 

brittle rocks for small strains provides a workable framework with which to 

describe the fracturing process. This has been also used by Zhang et al. (2018) 

to describe damage in rocks during tensile tests. In the present study, we use two 

selected specimens of the Arcera Sst tested with the pCT and SCB methods to 

illustrate the failure process (Figure 5.11). Stage I represents the closure of pre-

existing flaws and microcracks and, to some extent, this preliminary stage may 

be overlapped by instrumental artefacts associated with the testing device, 

sample preparation, etc. Stage II develops the elastic component of the material 

tested and it is characterized by a linear path in the stress-strain space. In stage 
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III, existing or newly-formed microcracks (which are mainly constrained within 

single grains) develop into mesocracks (that extend beyond grain boundaries). 

This transition conducts to a loss of linearity that, depending on the rock type, 

may be more or less notorious. During this subcritical stage (i.e. load level is 

below that required to attain KIC) cracks propagate stably (i.e. they grow with the 

application of a greater load), mainly because of their isolation and spread. 

However, the progressive coalescence of mesocracks progressively speeds up 

the damaging process and, once the load attains its maximum corresponding to 

the critical KIC value, macrocracks form under accelerated growth conditions. 

Thus, the peak load (Pmax) marks the initiation of stage IV, where the material still 

has some cohesion but progressively lower strength. In an advanced level of 

stage IV, depending on the geometry and orientation of macrocracks, they may 

mutually interact providing a complementary shear component.  

The previous stages are clearly identified in the P-LPD curves of the pCT 

tests but this is not the case for the SCB, specially after overcoming the stress 

needed to attain KIC (i.e. Pmax): The lack of experimental control during the 

unstable crack propagation stage prevents it. This has been described and 

interpreted in greater detail by Muñoz-Ibáñez et al. (subm.). Besides, the shape 

of the P-LPD curve in the SCB tests also manifests jumps and plateaus whose 

explanation is difficult on a general basis. Taking into account the recent 

observations made by Zhao et al. (2019) in a series of Brazilian tests performed 

with sandstones, it is likely that these irregularities develop as a result of stress-

relief processes product of the oriented emergence of cracks/flaws induced 

during the compression inherent to the SCB testing method (see Figure 5.7, 

right). To this respect, the pCT method provides with sounder information. 

It is generally accepted that AE events developed in rock mechanics tests 

mainly respond to the manifestation of microcrack growth and propagation 

(Lockner 1993). The five-stage rock mechanics-based description of progressive 

failure given before is compatible with the AE data compartmentation proposed 

by Mogi (2007). This author identifies three progressive stages for AE generation 

in a rock fracture test. In the first one (stage A), there is no significant AE activity 
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and it can be related with the crack closing and elastic stages (I and II, 

respectively). In the second one (stage B), AE events occur often and there is no 

predominant location within the specimen. Finally, in the third stage (stage C), 

AE events tend to cluster around the crack plane region as failure advances. The 

last two Mogi’s stages do not differentiate stable (subcritical; stage III) from 

unstable crack growth (stage IV) or the late coalescence period leading to 

macroscopic fracturing (stage V). When analysing the hit rates illustrated in 

Figure 5.11 we observe a good general concordance with Mogi’s model. 

However, further details are also apparent. For instance, the sharp stage-limits, 

mainly identified from the start/end points of the linear portions of the P-LPD 

curves, are more diffuse (although consistent) when observing AE data. Looking 

to the pCT test (less clear in the SCB) we confirm that, even in the linear stage 

II, there is AE activity (i.e. non-localized subcritical crack growth takes place in 

that domain). Hit rate increases in stage III and peaks around peak load. Then, 

during the post-peak region we first observe a drop (beginning of the unstable 

mesocrack propagation), then a recovery (growing and interaction of 

mesocracks), and later a progressive diminution (due to the reduction of the 

ligament volume). 

5.5.2. AE energy 
The energy associated to the cracking process can be potentially 

determined through AE monitoring (EAE). However, this acceptably simplified 

concept is difficult to reconcile with other independent energy assessments like 

bulk (macroscopic) fracture energy (Muñoz-Ibáñez et al. subm.) or damage 

indices (Lin et al. 2020 and references therein). The reasons for that are complex 

and they encompass, at least, geometrical, mechanical and physical issues (see 

Carpinteri et al. 2016). Its analysis is beyond the scope of this contribution. 

However, if we accept that there exists a proportionality between rock damage 

and recorded EAE, it is still possible to gain some qualitative insights through the 

inspection of the recorded data. To this respect, the cumulative AE energy (EAE,) 

plots presented in Figure 5.11 also illustrate some interesting features that are 

discussed in more detail in the following sections.  
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Stage I 

As per the Mogi's (2007) model, the EAE at the beginning of the test is very 

small in the pCT test but more significant with the SCB method. Wei et al. (2016) 

have also reported similar observations using the same testing method and they 

suggest that this can be associated with the closure of preexisting microcracks, 

pores, and voids. We consider however that the compressional nature of the SCB 

test (for which high loads concentrate in small contact surfaces) is a more 

determining factor to explain the enhanced AE activity in this stage of the SCB 

test.  

Stage II 

EAE rises slowly during the linear elastic phase. Farnam et al. (2015) have 

related this feature to the formation of microcracks with relatively small new 

surface area. Their results are consistent with those of Nasseri et al. (2006), 

whom observed in associated thin sections the presence of microcracks around 

the notch tip. Due to the heterogeneous nature of most rocks, it is expected that 

microcracks may form at any point of their matrix (Wei et al. 2016). In fact, during 

the SBC tests we have detected AE activity not only along the ligament but also 

at a certain distance of this highly stressed volume. In the case of the Arcera 

sandstone specimen (Figure 5.7, right) we have already mentioned that a 

significant number of the early events cluster near the top roller, what suggest a 

high level of stress concentration close to the loading end. Comparable 

observations have been reported by Wei et al. (2018) for cracked chevron-

notched Brazilian disc specimens.  

Some discrete AE events occurring in stage II induce sudden jumps in the 

cumulative EAE. However, it is interesting to note that these jumps occur more at 

the beginning of this stage. That could be interpreted as the result of the 

readjustment of the sample due to the varying stress. Zhang et al. (2019) suggest 

that the presence of grain boundaries and microcracks in a rock may also trigger 

this phenomenon at the early stages of loading. 
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Stage III 

Going back to Figure 5.11, we observe that, with the onset of the stable 

crack growth stage, there is a progressive acceleration in the release of EAE and 

a turn point at Pmax. This highlights that the subcritical cracking speed is not 

constant. Lei et al. (2000) have made similar observations for rock specimens 

tested under triaxial conditions. On the other hand, based on a series of wedge-

splitting tests performed with concrete samples, Farnam et al. (2015) have 

interpreted the progressive increase of EAE before Pmax to result from the 

convergence of microcracks. The same explanation has been given by Nasseri 

et al. (2006), in this case for granite samples.  

Labuz and Biolzi (1998) describe the clustering of AE events near the 

notch at ~0.85Pmax for rock beams loaded in four-point bending. These authors 

have related this with the appearance of the fracture process zone (FPZ), that is, 

the microcracked volume located in the neighbourhood of the crack tip. The pCT 

hypocentre location illustrated in Figure 5.6 also supports this in our case.  

Stage IV 

After peak load (~0.8Pmax in the post-failure branch of the pCT test), the 

rate of change of the cumulative EAE becomes slower and virtually constant until 

the end of stage IV (unstable growth). However, the EAE contribution of these 

events is notoriously higher than the ones conducting to peak load. This is in 

agreement with the experimental data reported by Wei et al. (2016) for the 

Dazhou sandstone. In contrast, our data shows that the maximum EAE release is 

reached before Pmax. A similar observation is due to Nasseri et al. (2006), who 

attributed this behaviour to the overlapping of AE events before failure. 

Stage V 

Once approaching the crack coalescence stage V, there is progressive 

change in the slope of the cumulative EAE curve and it eventually reaches a 

maximum value. There are about two orders of magnitude difference between 

the sum EAE before and after peak load. Based on the works of Carpinteri et al. 

(2016) we interpret such difference as resulting from the variable amount of 

energy dissipated (i.e. absorbed to generate new crack surfaces, that is dominant 
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before peak load) or emitted (more efficiently recorded by AE, and linked to the 

elastic recoil instabilities ruling the post-peak phase) along the test.  

Li et al. (2007) have used the AE technique to investigate the crack path 

on asphalt mixtures using SCB specimens. They report the formation of the FPZ 

beyond 0.7Pmax and could identify its migration along the crack line in the post-

peak region of the test. In our case, based on the hypocentres location of pCT 

testing, we see that it is also possible to track the development of the fracture, 

which starts from the notch tip. The distribution of AE events suggests that the 

FPZ of Arcera sandstone is wider than the one of Pinacas (~5-7 mm wide for 

Pinacas Sst and ~6-10 mm for Arcera Sst) sandstone. Wide FPZ bands like the 

one reported for Arcera have been observed by different authors like Wei et al. 

(2016), who inform about a ~8-10 mm FPZ width for a SCB test of the Dazhou 

sandstone. To this respect, it is interesting to quote that the Arcera and Dazhou 

sandstones have similar fracture toughness values: KIC ~ 0.3-0.5 MPa m1/2 for 

Arcera, and KIC = 0.56 MPa m1/2 for Dazhou.  

5.5.3. Frequency assessment 
Peak frequencies of the AE events in stage I are mainly in the range ~100-

200 kHz, although some signals up to 300 kHz are also detected for the pCT 

tests. This low-frequency band (Band-I) is present along the whole duration of the 

tests and, as bulk, it has low process discrimination capability. However, futher 

insight can be gained by grouping the events in this first band according to their 

Anorm, as we will discuss below. In stage II we observe that, since ~0.5Pmax, a new 

range of intermediate frequency values (fpeak ~300-600 kHz) manifests. Because 

of the selectivity in its appearance, in a first approach we could attribute this 

frequency range to a true damage taking place in the rock. In stage III the analysis 

of fpeak in both pCT and SCB tests allows to identify the rise of a new bulk fpeak 

fringe (~600-800 kHz) that, like in the previous stage, is deemed to represent true 

rock damage. This fringe is located in the peak frequency flat-response band of 

the sensor, where sensitivity attains its maximum. In stages IV and V no new 

frequency bands manifest while the medium- and higher-end components tend 

to be attenuated as the test advances. In ultrasonic monitoring of uniaxial 
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compression tests, Shirole et al. (2020) reported the limited capability of the 

ultrasonic transducers with low dominant frequency (and large associated 

wavelength) to characterize the damage evolution in the rock. This would explain 

the low discrimination sensibility of Band-I in our experiments, and the enhanced 

sensibility with increasing fpeak.  

It is attractive to link frequency band ranges to specific values taking the P-

LPD model as reference (crack closing, microcrack stable growth, etc.). However, 

a careful observation reveals first order inconsistencies that prevent a trustworthy 

connection between these “bulk” ranges and the characteristic process operating. 

For instance: Although we conjecture that microcrack growth and propagation is 

the leading mechanism in stage III, the absence of high frequencies before Pmax 

in the pCT test challenges the well-known relationship that connects high 

frequency with microcracking (Ohnaka and Mogi 1982; Landis and Shah 1995; 

Carpinteri et al. 2016; Zhang 2018). What is more, the low frequency band, 

usually associated with macroscopic fracturing, develops not only during the post 

peak region (when it would be expected to appear) but along the whole duration 

of the test. In order to reconcile the expectations with the experimental 

observations, it is necessary to observe in detail the information provided by each 

specific sensor, since some slight differences in results were detected 

considering their location with respect to the notch tip (Figure 5.4A and Figure 

5.5A). For each frequency band, we see that, while the monitoring channels far 

from the notch tip display an average constant frequency all along the test, the 

ones closer to the AE sources do not. In fact, we notice that for the latter sensors 

signals loose higher frequency components inside Bands-II and III as the test 

advances and a higher damage level is attained (i.e. when unstable cracking and 

fracturing is taking place). Because the sensors used in all the tests have been 

always of the same brand and model, we can discard the heterogeneity in their 

response as a likely explanation for this inequality. 

The effect of acoustic attenuation, which intensifies at high frequency levels 

(Winkler and Murphy 1995), is clearly evidenced in the fpeak vs. Anorm plots (Figure 

5.4B and Figure 5.5B). Similarly, Shirole et al. (2020) also detected a progressive 

attenuation of the amplitude and mean frequency of the waves at high stress 
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levels, showing the sensibility of both parameters to detect the presence of 

damage in the rock, i.e. to track the initiation and propagation of cracks. In our 

experiments, attenuation is not only observed for sensors placed at different 

distances from the source of events, but also for the values recorded for each 

particular sensor: the higher the peak frequency, the lower the amplitude. From 

this perspective, we could expect that at low frequency levels it would be possible 

to detect the acoustic signals produced by any kind of process taking part in rock 

fracture. Contrary, at high (and even intermediate) fpeak values part of the events 

would remain hidden, and only the most energetic signals would be captured. 

This could explain the gradual appearance of the three frequency bands in our 

experiments: while Band-I, which would include both low and high energetic 

events, develops all along the tests, Band-II and Band-III, probably associated 

with events of higher energy (i.e. microcrack growth, coalescence, or macrocrack 

propagation), emerge at specific stages of the P-LPD curve. In the case of the 

pCT specimen of Pinacas sandstone, we see that the high amplitude events in 

Band-I (group LH) appear concurrently to those in Band-II (Figure 5.4C). This 

would suggest a close relationship between both types of events, and even with 

those in Band-III, considering that a similar trend is observed for the mean values 

and scattering of Band-II and Band-III, and even LH signals (Figure 5.4D). 

Another interesting feature observed in the previous test is the increase in 

scattering with time for events in group LH and Band-II, especially evident during 

the post-peak region. Scattering occurs when the size of the heterogeneities is 

within the range of the acoustic wavelength (λ = v / fpeak; v is the wave propagation 

velocity in the material) (Winkler and Murphy 1995). Considering that the rock 

matrices used in this study are homogeneous, and that their properties remain 

sufficiently constant during the tests (i.e., v ~ 1200 and 2000 m/s for Arcera and 

Pinacas Sst, respectively), we can compute the λ associated to each peak 

frequency band: for Arcera Sst, λ ~ 6, 3, and 2 mm for Band-I, Band-II, and Band-

III, respectively; for Pinacas Sst, λ ~ 10, 4, and 3 mm for Band-I, Band-II, and 

Band-III, respectively. We interpret the progressive increased scattering 

observed during the stages IV and V (i.e. unstable crack growth) for the 

intermediate- and low- frequency bands as the result of growing defects of 
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medium (3-4 mm) and large (6-10 mm) size. Interestingly, these values are within 

the range of the estimated dimensions of the FPZ from the AE location of events 

(see section 5.5.2). Similarly, the large scattering produced at high frequencies 

all along the post-peak region would reflect sustained small-size damage starting 

immediately right after Pmax. It is worth to remember that fpeak is a parameter that 

is automatically computed via Fast Fourier Transform of the raw transients 

recorded above a certain minimum amplitude threshold. However, transient 

waveforms may overlap like may also the processes originating the AE events. 

To this respect, when using it in complex matrices (like many rocks) we should 

expect a limited ability for process identification. The rock matrices used in this 

study are homogeneous and the nature of the processes involved in the tests 

focus the acoustic cracking phenomena in a narrow volume. That provides an 

adequate environment for the type of analyses made before.   

5.5.4. AF vs. RA ratios 
According to the AF:RA ratio, the AE events developed in stages I, II and III 

would be dominantly tensile. However, the growth of the macroscopic cracks 

would be characterised by a combination of tensile and shear modes. Backers et 

al. (2005), in a study using sandstones, classified the AE source types based in 

the average polarity of the acoustic signals (i.e. tensile, shear, or pore-collapse). 

Their results show that macrocrack propagation under pure tensile conditions 

includes the formation of tensile cracks but also shear cracks. This is in line with 

the work of Wang et al. (2017) that have reported that the generation of shear 

cracks also in a dominant tensile regime. In the fracture toughness tests 

performed, where the tensile component should be dominant according to the 

orientation of the major stress components, shearing appears in the post-peak 

region, when the fracture nucleates due to the convergence of micro-

mesocracks. It is interesting to note that, in sandstone rocks and under dry 

conditions, the orientation of cracks will depend on features such as mineralogy, 

grain size, cementation and homogeneity. If the energy needed to crack a single 

grain is greater than to fissure the cement, the cracking line will follow a tortuous 

path, mainly around the grain boundaries. Due to that, the orientation of the crack 
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plane will not be necessarily orthogonal to the tensile load what may conduct to 

local shearing. This out-off plane development may also conduct to geometric 

features like those illustrated in Figure 5.6: a) the progressive deviation of the 

crack plane (e.g., Pinacas Sst), and b) branching in the crack plane (e.g., Arcera 

Sst).  

5.5.5. Ib-value 
The evolution of the Ib-value along the test has significant oscillations when 

observed in high frequency. For instance: In the elastic stage of the SCB and pCT 

tests, we note a reduction of its value to near one followed by a recovery. 

Although values below unity are usually interpreted as resulting from the growth 

of macrocracks (Kaklis et al., 2017), neither the loading curve, the available AE 

parameters, or the macroscopic examination of the tested specimens support any 

severe damage during this stage. Although this fluctuation could be considered 

an artefact at first glance, Shah and Chandra Kishen (2012) reported a similar 

behaviour for concrete beams loaded under three-point bending, relating this 

decrease in the b-value to the friction between grains produced by crack opening 

at the notch tip. 

According to Rao and Lakshmi (2005), in the post-peak region (unstable 

crack growth) a decrease and a subsequent increase in the Ib-value would 

indicate microcrack formation and growth, respectively. Even before Pmax our 

results for the pCT test show a fluctuation of the Ib-value (between ~1.4-1.9) with 

a general trend to decrease, that may indicate a continuous generation and 

propagation of microcracks. Afterwards (stages IV and V), the sharp oscillations 

at even lower values (between ~0.7-1.4, the Ib-value is ~1 in average) could be 

reflecting a growing macrocrack scenario (Rao and Lakshmi, 2005). Similarly, in 

the SCB test we observe an increase (up to ~1.8) of the Ib-value a few seconds 

before Pmax. However, in this case it is followed by a sudden decrease (~0.5-0.6) 

that would be compatible with the unstable cracking that follows Pmax. This is 

supported by the high amount of energy released at this moment (Landis and 

Baillon 2002). 
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5.6. Conclusions 
Mode I fracture toughness tests performed with the pCT method and two 

different sandstone materials offer more consistent and comprehensive 

information than those made with SCB tests. That includes both the mechanical 

and acoustical aspects. From a methodological standpoint and, in line with the 

contributions made by other authors, we observe a significant dependence of the 

intensity of signals received and the location of the AE sensor. However, their 

evolution is consistent for all the sensors what suggest that the rock behaves 

homogeneously.  

 Damage evolution in the tested samples is compatible with the five-stage 

model of Martin and Chandler (1994) for brittle rocks under small-strain conditions 

as well as that of Mogi (2007) based on AE activity. The qualitative evolution of 

EAE illustrates well the mechanical process occurring in the tested samples, with 

net rate changes (acceleration/deceleration) coinciding well with the mechanical 

transitions observed. However, the sharp stage-limits identified from the linear 

portions of the P-LPD curves are more diffuse when looking to AE data. That 

suggests that boundaries such as that of crack initiation or crack damage should 

not envisaged as a constant or intrinsic property values. 

Likewise, the analysis of peak frequencies in the tests performed reveals 

apparent inconsistencies with generally accepted behaviour (i.e. high frequencies 

are expected in connection with microcrack development while low ones with 

fracturing). However, considering the effect of acoustic attenuation it is possible 

to relate the appearance/disappearance of signals with specific characteristics 

(fpeak and Anorm) with the facture processes occurring at different stress levels. In 

addition, the increased scattering at certain frequency ranges could be linked to 

the size of the growing defects. 

The parametric analysis based in the AF vs. RA ratios, although simple, 

provides interesting information regarding the cracking modes associated with 

the AE events. Based on this analysis we confirm that the dominant cracking 

mode in the pCT tests is tensile and only after Pmax has been overcome a mixed-

mode (tensile-shear) appears in a limited extent. This approach, that is very 
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useful for screening purposes, has a limited scope in general cases as it does 

not identify compressive events. The appearance of a non-tensile cracking mode 

in a quasi-pure tension test (pCT) may be explained by the type of the rock and 

properties. Thus, from an energetic point of view, if cracking requires less energy 

to advance through the cement than across grains, that will be the preferred 

cracking path. That determines a greater tortuosity in the development of the 

crack plane and to the easier development of shear components. Furthermore, 

this may also explain the observed deviation and branching features observed in 

some of the tested rocks. 

The analysis of the Ib-values also let us identify a relevant potential to 

discern the onset separating the stable and unstable crack growth. Anyhow, more 

specific filtering techniques are required to perform a more detailed analysis. 
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6. Conclusions and future work

6.1. Conclusions 

The main aim of this doctoral work was to deepen into the knowledge of 

stable crack propagation in rock materials by developing a new testing method 

(pseudo-compact tension, pCT) for the assessment of mode I fracture toughness. 

The pCT test uses disc-shaped specimens loaded under pure tensile conditions. 

Tests are performed at ambient conditions and slow loading rate in a specially 

designed testing device of high stiffness and high strength. Four different rock 

types (three sandstones and one granite) were used to assess their 

corresponding KIC. In order to check mutual consistency, results were compared 

with those obtained using one of the suggested methods proposed by the 

International Society for Rock Mechanics (ISRM), the semi-circular bend (SCB) 

test. We chose the SCB as a benchmark method due to its popularity, simple 

sample preparation, and straightforward testing configuration. Based on the 

results of 146 tests performed using the pCT and SCB methodologies, we 

assessed size-, notch length- and rock type-effects on KIC. For each test, we used 

the corresponding load-displacement curves to characterize the energy content 

of the fracture process. Some selected pCT and SCB tests were complemented 

with the concurrent monitoring of acoustic emission (AE) activity using a 

multichannel AE system. Based on that information, we explored the relationship 

between the energy release associated to the fracture process and that captured 

by AE (EAE), as well as the evolution of different AE parameters (e.g., amplitude 

or peak frequency) along the experiments. Using the AE data we also assessed 

the cracking modes (tensile/shear) using a parameter-based strategy (AF:RA 

ratio), and we explored the potential of the Ib-value to discriminate cracking 
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processes. Finally, the multi-sensor array allowed determining the location of the 

AE hypocentres and the evolution of the fracture process zone (FPZ) as a 

function of the testing time. From this study the following conclusions are drawn: 

- The pCT method is convenient for the assessment of KIC of both fragile 

and ductile rocks due to the combination of small displacement, high 

load capacity and high stiffness of the testing system. 

- In contrast with the four methods suggested by the ISRM for determining 

KIC, the pCT test has favourable features such as simple specimen 

geometry and minimal machining requirement (straight groove and thin 

starter notch), small sample volume, direct generation of tensile loads, 

and enhanced control of crack propagation even beyond the peak 

strength. All these features convert the pCT method in an interesting 

candidate for routine fracture toughness testing.  

- The pCT specimens yield more consistent KIC values than the SCB 

specimens, especially for harder materials, suggesting that the presence 

of the FPZ would be less influential in pCT testing due to the 

comparatively larger ligament length of the pCT specimens. 

- The pCT method offers good testing control before and even beyond the 

peak load, enabling to study the post-peak behaviour of the material and 

providing more comprehensive and detailed results. In this regard, a 

greater wealth of fracture mechanics information (e.g., energy evolution) 

and AE data can be obtained from a single test in comparison with the 

SCB test. For instance, not only the energy needed to initiate the crack 

(pre-peak energy) can be determined but also the energy required for 

subsequent crack propagation (post-peak energy). 

- The simpler loading configuration of the pCT test makes the access to 

crack mouth opening displacement (CMOD) data easier, even for small-

size specimens. What is more, the good correlation found between LPD 

and CMOD makes possible the direct assessment of CMOD without 

employing direct contact transducers such as clip gauges. In turn, this is 

not possible with the SCB. 
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- Both specimen size and notch length have an impact on KIC although 

the magnitude of these effects is closely related to lithology, being less 

influential for weakly cemented rocks. In fact, rock properties such as 

the grain size and particle arrangement were found to determine the 

point of generation of the crack at the notch tip and its propagation path 

during testing. Although KIC was found to be positively related to the 

specimen size and negatively related to the notch length, the size effect 

has a lesser impact in the pCT compared with the SCB method. The 

variability induced by the notch length ratio over KIC is less important 

than the effect of sample size in SCB testing. However, the lithology may 

magnify both effects, with the harder materials showing higher 

dependency. 

- Tensile strength and mode I fracture toughness obtained from pCT 

experiments were found to be strongly correlated. 

- From the energy assessment of the pCT tests, a good linear correlation 

was found between the pre- and post-peak fracture energies with 

respect to the total energy. The similarity between pre- and post-peak 

energies suggests that the same level of energy is required to initiate the 

fracture and to propagate it with independence of the lithology, sample 

size, and notch length. 

- No clear relationship was found between fracture energy and AE energy 

(EAE) neither in the pCT nor in the SCB tests. 

- In general, the qualitative evolution of EAE illustrates well the mechanical 

processes occurring in the tested samples, with net rate changes 

(acceleration/deceleration) coinciding well with the mechanical 

transitions.  

- The location of the AE hypocentres was useful to analyse the evolution 

and propagation of the crack along the ligament length. As expected, at 

peak load the events were mainly located around the notch tip for both 

testing methods. In the post-peak region of the pCT tests, the distribution 

conforms a vertical crack, which slightly deviates or increases lateral 

spread (depending on the material) as the rock loses cohesion in the 
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later stage of the experiments. These observations are consistent with 

the macrocracks observed in the specimens after testing. In the SCB 

tests, the results for the harder material (Pinacas sandstone) evidence 

the upwards migration of the AE events from the notch tip up to the top 

roller at specimen failure. However, for the softer material (Arcera 

sandstone) we observe a progressive damage in the area next to the 

loading end that originates an oblique macrocrack. This evidences the 

potential of the AE technique to better understand the processes 

associated with fracture toughness testing. In addition, from the location 

of the AE events it was possible to determine the approximate 

dimensions of the FPZ. 

- The analysis of peak frequencies (fpeak) reveals apparent inconsistencies 

with generally accepted behaviour (i.e. high values are expected in 

connection with microcrack development and low values with fracturing). 

However, considering the effect of acoustic attenuation it is possible to 

relate the appearance/disappearance of signals with specific fpeak and 

normalized amplitude (Anorm) with the facture processes occurring at 

different stress levels. In addition, the increased scattering at certain 

frequency ranges could be linked to the size of the growing defects. 

- The tensile mode is predominant in the pre-peak and late post-peak 

stages of the pCT tests according to the parametric analysis based in 

the AF vs. RA ratios. Only in the early post-peak region, where the 

macroscopic cracks grow due to the convergence of micro-mesocracks, 

a mixed-mode (tensile/shear) appears in a limited extent. The 

appearance of a non-tensile cracking mode may be explained by the 

type or rock and properties (e.g., mineralogy, grain size, cementation or 

homogeneity) which determine the orientation of the crack. According to 

this, if cracking requires less energy to advance through the cement than 

across grains, the crack plane might not be orthogonal to the tensile load 

and may conduct to local shearing due to the increase in tortuosity. This 

is supported by the geometrical features (deviation and branching in the 

crack plane) observed in the location of the AE events, as well as in the 
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X-ray micro tomography. The analysis of the Ib-values let us identify a 

relevant potential to discern the onset separating the stable and unstable 

crack growth. Anyhow, more specific filtering techniques are required to 

perform a more detailed analysis. 

6.2. Methodological considerations 

Here we draw attention to some methodological considerations emerged 

during the experimental work. We present some recommendations for performing 

pCT and SCB methods, as well as two common evidences.  

6.2.1. pCT method 
i) It is advisable to use medium-sized (D = 50 mm) pCT specimens with

a relatively large notch length ratio (a/b > 0.25) to obtain more

consistent KIC results.

ii) It should be noted that the expression of the dimensionless stress

intensity factor derived for the pCT specimen geometry and loading

configuration was computed assuming an isotropic rock material.

Further work is needed to address the effect of rock anisotropy.

iii) A number of tests were considered as invalid due to specimen failure

at the contact between the flat side of the steel jaws and the

specimen. To reduce the stress concentration in this area, it would

be suggested to include a pair of thin high-strength steel rollers along

the jaws, so that the applied load would be distributed linearly along

the U-shaped groove throughout the test.

iv) The testing configuration of the pCT test allows keeping the samples

immersed into a fluid bath, and therefore saturated, all along the

experiments. This feature makes the pCT test suitable for studying

the potential impact of saturating fluids on KIC.

v) The good correlation between load point displacement (LPD) and

crack mouth opening displacement (CMOD) allows the direct

assessment of CMOD in pCT tests without employing clip gauges or

other direct contact transducers on the specimen. This is especially
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advantageous when the space is limited, such as in small-size 

samples or specimens immersed in fluid during testing. 

6.2.2. SCB method 
i) Imprecisions in sample preparation (coring, cutting, notching) and/or

inaccurate alignment of the specimen in the testing jig may induce a

mixed mode I/II (tensile/shear) fracture toughness behaviour instead

of the expected mode I (tensile). This was also evidenced by the

location of the AE hypocentres.

ii) We report the propensity of the SCB testing configuration to lateral

sliding of the specimen over the bottom (support) rollers as a

consequence of applying a distributed force on the circular loading

surface of the sample. To avoid this situation, it is crucial that the load

is applied exactly along the vertical radii of the specimen, that is, it is

needed a perfect vertical alignment between the notch tip and the

loading line (defined by the contact point of the top roller). Due to

sliding, the measurement of CMOD as performed in this work (i.e.,

with two LVDTs facing each other along the diametral plane of the

specimen, perpendicularly to the notch plane) is not straightforward.

The use of clip gauges would be an alternative to circumvent this

problem, but its use is limited to medium- or large-size samples.

iii) It is apparent that the performance of SCB methodology in the post-

peak region is poorer in comparison with the pCT test: at the peak

load, all the energy stored is released suddenly and fast crack growth

occurs. As a consequence, the SCB configuration makes it

impossible to access to Level II testing. Although it can be argued

that better quality results may be obtained by improving the

characteristics of the testing system (in terms of control electronics

and stiffness to avoid elastic energy storage in the device), we

consider that the key point is the way the fracture energy is delivered

to the tested sample. In the SCB specimen, energy is not only stored

in the area surrounding de crack tip but also at the contact point of
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the rollers and along the ligament length, involving a significantly 

larger sample volume than the pCT configuration, in which the load 

is transferred from the contact line to the pulling jaws directly to the 

starter notch. 

6.2.3. General considerations 
i) Our results show that the influence of specimen size or notch length

on KIC is subsidiary of the rock type. Consequently, we consider that

not only the geometric constrains but also the characteristics of the

rock tested must be considered for setting up the minimum

requirements for specimen size in fracture toughness testing.

ii) In line with previous contributions, we observed that the intensity of

the acoustic signals recorded highly depends on the location of the

AE sensors. The consistent evolution observed in this study for all

the sensors involved in data acquisition suggests that the two

sandstones (Arcera and Pinacas) could be considered isotropic and

homogenous. However, the effect of attenuation may be frequency

selective, what must be considered for the proper scaling of the AE

energy to compare with the values derived from mechanical tests.

6.3. Future work 

During the discussion of the results, some aspects could not be satisfyingly 

explained or remained unconsidered. In the following, possible future research 

topics are outlined: 

- In this study it was not possible to determine the minimum specimen size 

that provides consistent KIC results for the pCT method. In order to verify 

the convergence of KIC, it would be suggested to follow this line of work 

by testing specimens with diameters above 100 mm. Similarly, it is 

expected that using pCT specimens with notch length ratios larger than 

those tested here would result in a higher rate of success of the 

experiments. Further testing would be advisable in this sense. 
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- Although no apparent correlation between the fracture and the acoustic 

emission energies was identified in the present survey, we cannot 

discard eventual relationships. It is reasonable to assume that both 

magnitudes might be related since the AE energy is proportional to the 

number and magnitude of growing cracks (i.e. rock damage). Therefore, 

we consider necessary to carry out further research with a more 

comprehensive AE database. 

- In this contribution, only level I tests were reported. However, the 

features and characteristics of the testing equipment, which allow 

controlling crack propagation in the post-peak region, makes the pCT 

method also feasible for level II testing. Due to the inherent complexity 

of certain matrices like rocks and other brittle engineering materials (e.g. 

concrete), we believe that it is advisable to take into consideration the 

properties considered in level II testing, especially when more 

sophisticated non-linear fracture mechanics models are to be applied. 

- In this study, we assessed the influence of specimen size, notch length, 

and lithology on KIC, and a first approach to the effect of saturating fluids 

was also presented. In addition, it would be necessary to study the 

influence of other factors potentially affecting KIC such as loading rate, 

confining pressure, anisotropy or temperature,. 

- The use of high resolution digital image (micro CT scanning) during the 

fracture toughness experiments could be useful to better understand the 

fracture processes conducting to rock failure. 

- The applicability of the pCT methodology to other fields of potential 

interest (i.e. cementitious materials, bituminous mixtures, ceramics, 

plastics, etc.) could be explored. 
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APPENDIX A: Extended abstracts in Spanish and 
Galician 

A1. Resumen extendido 

Todos los materiales contienen defectos como poros o grietas, que 

pueden desarrollarse durante su vida útil o incluso ser inherentes a su 

naturaleza. Los criterios de rotura más simples asumen que todos los materiales 

son perfectamente homogéneos, isótropos y libres de defectos. Según esto, una 

muestra se romperá cuando la tensión supere la resistencia última del material. 

Sin embargo, esto no suele ocurrir en la realidad, ya que la inevitable presencia 

de discontinuidades o defectos que puede generar concentración de tensiones 

de manera localizada, reduciendo la resistencia general del material y 

conduciendo a una rotura prematura e inesperada. La necesidad de conocer 

estos procesos con mayor profundidad originó el desarrollo de la mecánica de la 

fractura. Al contrario que los enfoques más tradicionales, la mecánica de la 

fractura tiene en cuenta el tamaño de los defectos en la evaluación de la 

resistencia a la rotura. El objetivo principal de esta rama es, por tanto, cuantificar 

la relación crítica que existe entre la tensión aplicada y el tamaño del defecto que 

producirá la rotura antes de que se alcance la resistencia última del material. La 

propiedad que une estos dos parámetros (tensión y tamaño del defecto) y por 

tanto mide la resistencia de un material a la propagación de una fisura se conoce 

como tenacidad de fractura (KC). La mecánica de fractura distingue tres modos 

básicos de carga: a) modo I, o modo de apertura/tracción; b) modo II, o modo de 

cortante en el plano/deslizamiento; y c) modo II, o modo de cortante fuera del 

plano/cizalladura. 

En mecánica de rocas, predecir la rotura es una de las mayores 

preocupaciones. Sin embargo, es básico considerar que las rocas son materiales 
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discontinuos a todas las escalas. Por ejemplo, a escala microscópica, contienen 

discontinuidades como poros, granos o microfisuras, que pueden producir altas 

concentraciones de tensión bajo carga. En rocas, la resistencia a tracción es 

comparativamente más baja que la resistencia a compresión o cortante. Por 

tanto, la tenacidad de fractura en modo I (KIC) es uno de los parámetros más 

importantes y más estudiados en la mecánica de fractura aplicada a rocas: 

cuanto más alto sea el valor de KIC, más alta será la resistencia a la propagación 

de fracturas a tracción. 

La tenacidad de fractura puede tener una importancia crucial en los 

proyectos que involucren materiales rocosos, como en ingeniería térmica (por 

ejemplo, la energía geotérmica o la gestión de residuos radioactivos), mecánica 

(por ejemplo, la estabilidad de estructuras mineras), hidráulica/química (por 

ejemplo, la fracturación hidráulica, el almacenamiento geológico de CO2 o la 

gasificación subterránea del carbón), o de procesos (por ejemplo, la perforación 

y corte de rocas, o la trituración de minerales). En los últimos años, la 

investigación de los procesos de inicio y propagación de fracturas en materiales 

geológicos ha ganado importancia debido a la necesidad de resolver problemas 

de fracturación en geofísica. En particular, la creciente demanda de 

hidrocarburos ha favorecido la investigación de los procesos de fracturación en 

ciertas litologías (por ejemplo, areniscas compactas o pizarras). Por este motivo, 

es esencial desarrollar métodos de ensayo apropiados que ayuden a mejorar la 

precisión en los valores de tenacidad de fractura. La Sociedad Internacional para 

la Mecánica de Rocas (ISRM) ha propuesto cuatro métodos de ensayo para 

determinar KIC usando muestras cilíndricas, llamados ‘short rod’ (SR), ‘chevron 

bend’ (CB), ‘cracked chevron notched Brazilian disc’ (CCNBD) y ‘semi-circular 

bend’ (SCB). Sin embargo, estos métodos pueden ser difíciles de aplicar de 

manera rutinaria debido a aspectos como: a) las bajas cargas a las que se 

produce la rotura, que obligan a tener un excelente control de ensayo; b) el 

tamaño de muestra que requieren es relativamente grande (CB); c) la 

preparación de las muestras es difícil y problemática (SR, CB y CCNBD); d) el 

cálculo del factor de intensidad de tensiones es impreciso (CCNBD); e) la 

generación de cargas de tracción se realiza de manera indirecta a través de la 
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compresión de la muestra (especialmente en SCB y CCNBD); y f) la propagación 

de la fractura se produce muy rápidamente una vez se ha alcanzado la 

resistencia pico. 

Para superar estas limitaciones, el objetivo principal de esta tesis es 

desarrollar un método de ensayo alternativo y simple, denominado ‘pseudo-

compact tensión’ (pCT), que permita medir KIC en rocas usando muestras 

cilíndricas bajo condiciones de tracción pura. El pCT se basa en una modificación 

de la probeta ‘compact tensión’ (CT) descrita en el método estandarizado E399-

90 de la ASTM (1997) para metales. La muestra pCT es un disco (con un ratio 

diámetro-espesor de ~2) que se puede obtener a partir de testigos de roca. Los 

dos agujeros que se usan en la muestra CT para aplicar la carga se han 

remplazado en el ensayo pCT por una muesca en forma de U. Además también 

se introduce una entalla fina que actúa como concentrador de tensiones, 

forzando a que ése sea el punto de inicio de la fractura. La geometría de la 

probeta pCT presenta ventajas sobre las que se utilizan en otros métodos debido 

a su simplicidad, pequeña cantidad de material necesario y mínima preparación. 

Una vez que la muestra está lista, el procedimiento de ensayo es simple y 

directo: la probeta se sitúa en una plataforma y se pone en contacto con un par 

de mordazas de acero de alta resistencia y rigidez que encajan en la muesca en 

U y transmiten la fuerza de tracción a la muestra. Mientras que una de las 

mordazas permanece inmóvil, la otra se aleja con un ritmo de desplazamiento 

constante. La tracción que se genera en la entalla provoca que la probeta se 

rompa en dos mitades simétricas. La fractura se origina en la punta de la entalla 

y se propaga a lo largo del diámetro vertical de la muestra, es decir, en el plano 

del ligamento.  

Los valores de KIC medidos con el ensayo pCT se validan comparándolos 

con los obtenidos con uno de los métodos sugeridos por la ISRM, el ensayo SCB. 

La probeta SCB es un semi-cilindro con una entalla recta cortada en el centro de 

su cara plana. Entre los métodos disponibles, se optó por el SCB como estándar 

de comparación debido a su popularidad, simplicidad (desde el punto de vista de 

preparación de la muestra) y configuración de ensayo directa. En este trabajo se 
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han usado cuatro tipos de roca distintos (areniscas de Corvio, Arcera y Pinacas, 

y granito Blanco Mera) para evaluar su correspondiente KIC usando los dos 

métodos de ensayo. Todas estas rocas son prácticamente isótropas pero difieren 

unas de otras en su resistencia y comportamiento mecánico. Las areniscas de 

Corvio y Arcera tienen una resistencia relativamente baja, un tamaño de grano 

pequeño (< 1 mm), elevada porosidad y bajo módulo elástico. Sin embargo, la 

arenisca de Pinacas, a pesar de tener un tamaño de grano similar, es 

significativamente más dura, tiene una porosidad más baja y un módulo elástico 

mayor. El granito Blanco Mera es una roca homogénea de tamaño de grano 

medio (1-6 mm), baja porosidad y resistencia moderada.  

Los testigos de roca necesarios para preparar las muestras se obtuvieron 

de bloques homogéneos usando una perforadora con corona de diamante. 

Después, los testigos se cortaron en discos con un ratio diámetro-espesor de 2 

usando un disco de diamante circular. Para las muestras SCB, los discos se 

cortaron diametralmente en dos mitades usando una sierra para cortar azulejos 

modificada. En el caso de las muestras pCT, la muesca en U se introdujo con 

esta misma sierra usando un disco de diamante de 2 mm de espesor, haciendo 

varios cortes mientras se desplazaba la muestra de manera horizontal después 

de cada pasada. La posición vertical del disco, que determina la profundidad de 

la entalla, se fija con un husillo vertical. Con la ayuda de unos elementos de 

referencia (nivel laser, escuadra) y un agarre horizontal móvil se asegura el 

correcto alineamiento de la muestra con respecto al disco de la sierra. Para cortar 

la entalla fina en los dos tipos de muestra (pCT y SCB) se siguió un 

procedimiento similar, aunque en este caso la entalla se cortó con un disco de 

diamante más fino (1 mm de espesor) en una única pasada. Una vez preparadas, 

las muestras se secaron en una estufa a 60ºC por un mínimo de 24 horas.  

Para llevar a cabo los ensayos pCT se construyó un dispositivo de ensayo 

especialmente diseñado para tal fin. Entre los requisitos que se tuvieron en 

cuenta en su diseño se incluyeron la portabilidad de la máquina (lo que supuso 

importantes restricciones de tamaño, peso y robustez), posibilidad de colocación 

de muestras de distintos tamaños garantizando la estabilidad mecánica durante 
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los ensayos, facilidad de instalación de los dispositivos de medida y reemplazo 

de los elementos dañados, y la rapidez de las operaciones complementarias 

(posicionamiento de la probeta, limpieza, etc.). El dispositivo de ensayo está 

formado por un marco de acero de alta rigidez equipado con una célula de carga 

de tracción/compresión de 50 kN, dos transductores diferenciales de variación 

lineal (LVDTs) y dos extensómetros de medición de apertura de fisura (COD). 

Las señales eléctricas de todos los dispositivos de medida se integran en un 

sistema destinado a la adquisición de datos. El movimiento de la mordaza de 

acero se consigue a través de un husillo que convierte en desplazamiento lineal 

el movimiento de rotación de un motor eléctrico paso a paso con un ángulo de 

paso de 1.8º (equivalente a 200 pasos por revolución). Para mejorar su 

rendimiento, el motor se conecta a una reductora planetaria con un ratio de 

reducción de 1:100. Esta configuración, aunque simple, proporciona un elevado 

nivel de precisión en el posicionamiento (0.018º/paso), equivalente a 0.25 

µm/paso desde el punto de vista del desplazamiento lineal del husillo, que se 

puede mantener desde 0 a 50 kN. Los dos LVDTs, situados simétricamente a 

ambos lados de la probeta, miden el desplazamiento del punto de carga (LPD), 

que en este caso se corresponde con el desplazamiento de la mordaza móvil. Al 

mismo tiempo, y de manera redundante, un extensómetro de clip montado sobre 

un par de cuchillas unidas a las propias mordazas mide la misma magnitud. 

Adicionalmente, es posible montar otro extensómetro directamente en la 

superficie de la muestra (también a través de unas cuchillas) para medir el 

desplazamiento de apertura de la punta de la fractura (CMOD). Mientras que las 

curvas carga-desplazamiento (P-LPD) se registraron en todos los ensayos pCT, 

CMOD se midió sólo en 11 de ellos. 

Las probetas SCB se ensayaron a flexión con tres puntos de apoyo en 

una prensa servo-controlada equipada con una célula de carga de 4.448,22 N. 

Con esta configuración, la carga se transfiere a la parte superior de la muestra a 

través de un cilindro de acero. Otros dos cilindros adicionales, colocados en la 

parte inferior, sirven para soportar la probeta. En este caso, el LPD se 

corresponde con el desplazamiento vertical del cilindro de carga superior. Con el 

objetivo de evitar los problemas inherentes a usar extensómetros de clip en 
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muestras de pequeño tamaño, CMOD se midió usando dos LVDTs enfrentados 

colocados perpendicularmente a la entalla en el plano diametral de la muestra. 

Hay que tener en cuenta que la geometría curva de la muestra magnifica los 

errores de contacto asociados con la rotación de la superficie superior durante el 

ensayo. Por ello, y para garantizar el contacto de los LVDTs con la muestra en 

todo momento, se adhirieron unas piezas en forma de T creadas con una 

impresora 3D en los dos extremos de la probeta. Con este método de ensayo se 

registraron para todos los ensayos tanto las curvas P-LPD como las P-CMOD. 

Los resultados de los dos métodos de ensayo (pCT y SCB) se analizaron 

teniendo en cuenta una serie de parámetros relevantes, todos ellos con alguna 

influencia potencial sobre KIC. Aunque la tenacidad de fractura se considera una 

propiedad intrínseca del material y por tanto debería ser razonablemente 

independiente de la geometría de las muestras y la configuración del ensayo, los 

valores experimentales de KIC obtenidos por numerosos autores contradicen 

este supuesto. Por este motivo, en este estudio se ensayaron probetas, tanto 

pCT como SCB, de 38, 50 y 100 mm de diámetro para determinar el efecto del 

tamaño de muestra. Del mismo modo, también se tuvo en cuenta la influencia de 

la longitud de la entalla ensayando muestras con distintas longitudes. Todos los 

ensayos se realizaron a una velocidad de desplazamiento constante de 0.1 

mm/min (la velocidad es baja para evitar efectos dinámicos) en condiciones 

ambientales de laboratorio. En este trabajo, sólo se ha considerado el Nivel I de 

ensayo (nivel básico). Aunque para poder calcular KIC a este nivel sólo se 

necesita medir la carga máxima (Pmax) durante el ensayo, para poder profundizar 

en el comportamiento del material se han registrado, además de la carga (P), las 

magnitudes de LPD y CMOD de manera continua. Desde la perspectiva de los 

balances de energía, la fractura se produce cuando la energía disponible para 

su crecimiento y propagación supera la resistencia del material. Por tanto, la 

tenacidad de fractura también puede verse como la tasa de liberación de energía 

necesaria para crear nuevas superficies de fractura en la muestra. En este 

estudio, las curvas carga-desplazamiento de cada ensayo se han usado para 

caracterizar el contenido energético del proceso de fracturación. En la 

metodología pCT, gracias al buen control del ensayo incluso después de Pmax, la 
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energía total (Etot) se pudo dividir en dos porciones: la energía pre-pico (Epre, es 

decir, el trabajo realizado para inducir el inicio de la fractura en la probeta), y la 

energía post-pico (Epost, es decir, el trabajo realizado para propagar la fractura). 

Para poder calcular KIC es necesario conocer no sólo la carga máxima (Pmax) y 

la longitud de la entalla (a), sino la expresión del factor de intensidad de tensiones 

adimensional (Y’) específico de cada geometría de muestra y condiciones de 

carga. Para el ensayo SCB, la expresión correspondiente (Y’SCB) se puede 

encontrar en la literatura. Sin embargo, para nuestra configuración pCT, no fue 

posible encontrar una expresión adecuada, y fue necesario usar el método de 

los elementos finitos para obtener una función polinómica de cuarto grado para 

cada tamaño de muestra y para un rango de longitudes de entalla (Y’pCT). 

Para conseguir profundizar todavía más en los procesos de inicio, 

propagación y coalescencia de las fracturas, se empleó la técnica de emisión 

acústica (AE). AE es una técnica de ensayo no destructiva ampliamente usada 

para registrar la evolución de daño en rocas. Cuando una fractura crece, se libera 

energía en forma de ondas elásticas que viajan a través del material y que 

pueden ser registradas en tiempo real usando sensores situados sobre la 

superficie de la probeta. En el desarrollo de esta tesis y para algunos ensayos, 

la actividad acústica se registró usando hasta 8 sensores situados a distintas 

distancias de la entalla. La adquisición de datos se realizó con un sistema 

multicanal AMSY-6 de Vallen Systeme GmbH. Los sensores se colocaron sobre 

la probeta usando unos imanes adheridos a su superficie. En cada ensayo se 

registraron una serie de parámetros de AE (como cuentas, amplitud, duración o 

frecuencia pico) útiles para evaluar las distintas etapas y procesos, la proximidad 

de la rotura de la probeta, y los distintos modos de rotura (por ejemplo, usando 

el ratio AF:RA y el ‘improved b-value’). Además, gracias al sistema multicanal, 

se pudieron localizar los hipocentros de los eventos de AE a lo largo de la 

duración del ensayo, lo que fue útil para analizar la evolución y la propagación 

de las fracturas en la muestra. Usando la información de AE, también se exploró 

la relación entre la liberación de energía asociada a los procesos de fractura y la 

capturada por los sensores de AE (EAE). Aunque ambas magnitudes son en 

líneas general diferentes (la AE puede tener dispersión y/o atenuación), aun así 
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podría ser posible identificar una relación formal entre las dos propiedades. De 

hecho, considerando que la actividad acústica es proporcional al número y 

magnitud de fracturas, es razonable asumir que debe haber alguna relación entre 

EAE y la energía de fractura.  

Con los datos obtenidos, se compararon los métodos pCT y SCB tanto 

desde el punto de vista de la evolución mecánica, como de la evolución de 

diversos parámetros de AE en distintas de etapas de ensayo. Nuestros 

resultados muestran que la combinación de pequeños desplazamientos 

(permitiendo tasas de deformación extremadamente pequeñas), elevada 

capacidad de carga y alta rigidez del dispositivo de ensayo hace que el ensayo 

pCT sea adecuado para el análisis de la tenacidad de fractura tanto en rocas 

frágiles como dúctiles. Además, la metodología de preparación de muestra más 

simple del pCT en comparación con otros métodos de ensayo lo convierte en un 

candidato interesante para la determinación de la tenacidad de fractura de 

manera rutinaria. Para las rocas ensayadas, el crecimiento de la fractura fue 

lento durante la duración total de los ensayos pCT. De hecho, para incrementar 

su extensión era necesario el movimiento continuo de la mordaza. Por tanto, el 

proceso de propagación de la fractura fue controlado en todo momento, incluso 

después de alcanzar la fuerza máxima, y las curvas carga-desplazamiento (P-d) 

se pudieron registrar de manera precisa incluso más allá de Pmax, 

proporcionando una gran información sobre el comportamiento post-pico. En 

general, el proceso de carga se divide en tres etapas diferenciadas: (1) un 

periodo de crecimiento lineal de la curva (comportamiento elástico); (2) un 

periodo no-lineal de formación de nuevas microfisuras en el que la pendiente de 

la curva gradualmente decrece hasta Pmax; y (3) un periodo de bajada durante el 

cual la carga disminuye mientras la fractura macroscópica se propaga a lo largo 

del plano del ligamento. Al contrario, y con la excepción de algunas muestras de 

arenisca de Corvio (una roca blanda), las curvas de carga para los ensayos SCB 

muestran un crecimiento casi lineal hasta la rotura repentina de la probeta a la 

carga pico (Pmax). Este comportamiento evidencia que la metodología SCB no 

permite un buen control de ensayo más allá de (Pmax) y que la fractura, una vez 

iniciada, se propaga rápidamente hacia la parte superior de la muestra. Podría 
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discutirse si mejorando el control electrónico y la rigidez del sistema (para evitar 

el almacenamiento de energía elástica en el equipo de ensayo) se podría mejorar 

la calidad de los resultados para el método SCB. Sin embargo, en nuestra 

opinión, el factor clave que determinaría su menor eficacia en la región post-pico 

sería el almacenamiento de energía en la muestra, que tiene lugar en un volumen 

significativamente más grande que el que rodea la punta de la entalla (por 

ejemplo, en el punto de contacto de los cilindros y a lo largo de todo el ligamento). 

Cuando la carga alcanza su valor máximo, toda esta energía almacenada en la 

muestra se libera instantáneamente y la fractura se propaga de manera 

incontrolada. Sin embargo, en el caso del ensayo pCT, la carga se transfiere a 

la muestra a lo largo de las líneas de contacto con las mordazas y desde ahí 

directamente a la entalla.  

Tomando como referencia los resultados de 146 ensayos (81 pCT y 65 

SCB), se ha comprobado la consistencia mutua de los valores de KIC obtenidos 

usando ambas metodologías. Del mismo modo, se ha evaluado la influencia de 

características como el tamaño de muestra o la longitud de la entalla. Con una 

perspectiva amplia, se observa que, para los dos métodos de ensayo, los 

resultados son compatibles para cada uno de los tipos de roca. La tenacidad de 

fractura en modo I obtenida para los ensayos pCT para las areniscas de Corvio 

(~0.06-0.12 MPa m1/2) y Arcera (~0.24-0.60 MPa m1/2) es baja, lo que es 

consistente con su condición de rocas blandas. Sin embargo, los valores de KIC, 

tanto para la arenisca de Pinacas como para el granito Blanco Mera, son 

apreciablemente más altos (~1.05-1.4 MPa m1/2). Para las mismas rocas, los 

resultados de los ensayos SCB son ligeramente superiores para la arenisca de 

Corvio (~0.07-0.18 MPa m1/2), pero más bajos para la de Arcera (~0.26-0.46 MPa 

m1/2). En el caso de la arenisca de Pinacas y el granito Blanco Mera, la dispersión 

en los resultados de KIC es más alta que para los ensayos pCT (~0.69-1.64 y 

~0.72-1.51 MPa m1/2, respectivamente). La zona de procesos de fractura (FPZ, 

que se corresponde con el volumen microfisurado alrededor de la punta de la 

entalla) es teóricamente menor en las muestras SCB, lo que debería implicar una 

menor dispersión en los resultados. Sin embargo se observa lo contrario, lo que 

sugiere que la FPZ no estaría jugando un papel determinante en los ensayos 
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pCT. Una explicación a este comportamiento podría ser la mayor longitud de 

ligamento (~3 veces) de las muestras pCT en comparación con las SCB. 

Para los ensayos pCT, se encontró una fuerte relación entre la resistencia 

a tracción y KIC. Aunque los valores obtenidos son internamente consistentes (es 

decir, el rango de variación es pequeño), se observa que KIC aumenta con el 

tamaño de la muestra y disminuye con la longitud de entalla. Es interesante 

destacar que la litología parece magnificar la influencia de estas dos 

características geométricas sobre KIC, siendo un factor determinante para los 

materiales más duros (fuertemente cementados), como la arenisca de Pinacas y 

el granito Blanco Mera. En nuestra opinión, a parte de los factores geométricos, 

deberían tenerse en cuenta las características de la roca ensayada para fijar los 

requerimientos mínimos desde el punto de vista dimensional en los ensayos de 

tenacidad de fractura. Aun así, según nuestros resultados experimentales, se 

recomendaría usar muestras pCT de tamaño medio (diámetro = 50 mm) y con 

una longitud de entalla normalizada relativamente grande (a/b > 0.25) para 

obtener valores de KIC más consistentes. En cuanto a la metodología de ensayo, 

la influencia del tamaño de muestra es menor en los ensayos pCT, mientras que 

los SCB proporcionan una información menos consistente y menos sensible con 

respecto a la dependencia de la longitud de la entalla.  

En los ensayos pCT, gracias a la buena correlación observada entre LPD 

y CMOD, sería posible determinar de manera directa CMOD sin utilizar 

transductores de contacto directo como extensómetros de clip, lo que es 

especialmente ventajoso en muestras de pequeño tamaño. Por el contrario, esto 

no es posible con el SCB. Las relaciones entre Epre y Epost con Etot sugieren que, 

independientemente de la litología, tamaño de muestra y longitud de entalla, se 

necesita el mismo nivel de energía para generar la fractura que para propagarla 

de manera controlada posteriormente. Los balances de energía obtenidos 

también apoyan la hipótesis de que la energía de fractura depende del tamaño 

de la muestra para un valor de longitud de entalla determinado. Sin embargo, 

nuestros resultados indican una dependencia más compleja, en la que la litología 

jugaría un papel importante. 
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En general, la evolución cualitativa de EAE ilustra de manera adecuada los 

procesos mecánicos que tienen lugar en las muestras ensayadas, con unas 

tasas de cambio netas (aceleración/desaceleración) coincidentes con las 

transiciones mecánicas. Sin embargo, con los datos disponibles no fue posible 

obtener una relación funcional entre la energía de fractura y EAE.. Aun así, no se 

descarta que se pueda obtener una relación en un futuro con una base de datos 

de AE más completa. 

La localización de los hipocentros de AE fue útil para analizar la evolución 

y propagación de la fractura a lo largo del plano del ligamento. Como se 

esperaba, los eventos se ubicaron alrededor de la punta de la entalla en ambos 

métodos de ensayo cuando la carga alcanzó su valor máximo. En la región post-

pico de los ensayos pCT, la distribución de los eventos conforma una fractura 

vertical, que ligeramente se desvía o aumenta la dispersión lateral (en función 

del material) a la vez que la roca pierde cohesión, siendo consistente con las 

fracturas observadas en las muestras tras los ensayos. 

La tomografía computarizada de micro rayos X realizada sobre algunas 

muestras pCT reveló que la fractura no siempre se inicia en la punta de la entalla, 

y que el punto de generación varía a lo largo del espesor de la probeta. La forma 

semicircular de la punta de la entalla permitiría que la fractura se iniciase en 

cualquier punto de su geometría circular. Este factor, junto con la disposición de 

partículas en el interior de la roca, podría determinar que la fractura se desvíe de 

la trayectoria vertical esperada, tanto hacia la izquierda como hacia la derecha. 

En los ensayos SCB y para el material más duro (arenisca de Pinacas), la 

localización de los hipocentros de AE evidencia una migración de los eventos 

acústicos desde la punta de la entalla hacia el cilindro de carga superior en el 

momento en que se produce la rotura de la muestra. Sin embargo, para un 

material más blando (arenisca de Arcera), se observa un daño progresivo en el 

área próxima al punto de aplicación de la carga, lo que finalmente origina una 

fractura oblicua. Estas observaciones ponen en evidencia el potencial de la 

técnica de AE para mejorar el conocimiento de los procesos de fractura 

asociados con los ensayos de tenacidad. Además, la localización de los eventos 

también permitió determinar de manera aproximada las dimensiones de la FPZ. 
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El análisis de las frecuencias pico (fpeak) revela inconsistencias aparentes 

con el comportamiento generalmente aceptado (es decir, valores altos 

relacionados con la aparición de microfisuras, y valores más bajos con 

fracturación). Sin embargo, si se tiene en cuenta el efecto de la atenuación 

acústica, es posible relacionar la aparición/desaparición de señales con valores 

específicos de fpeak y de amplitud normalizada con los procesos que ocurren a 

distintos niveles de tensión. Además, los mayores niveles de dispersión a ciertos 

rangos de frecuencias podrían estar relacionados con el tamaño de los defectos. 

En los ensayos pCT, la tracción es el modo de rotura predominante tanto 

en la región pre-pico como en las últimas etapas de la post-pico, según el análisis 

paramétrico realizado en base a los ratios AF vs. RA. Sólo en los primeros 

instantes de la etapa post-pico, donde la fractura macroscópica crece como 

resultado de la convergencia de mico y meso-fisuras, se produce, aunque de 

manera limitada, un modo mixto (tracción/cortante). La aparición de un modo de 

rotura distinto a la tracción podría explicarse por el tipo de roca y sus propiedades 

(es decir, mineralogía, tamaño de grano, cementación u homogeneidad) que 

determinarían la orientación de la fractura. Según esto, si se necesita menos 

energía para que la fractura avance a través del cemento que a través de los 

granos de la roca, el plano de fractura puede no ser perpendicular a la carga de 

tracción, resultando en un esfuerzo cortante localizado debido a la mayor 

tortuosidad. Esta hipótesis se refuerza con las características geométricas 

(desviación y ramificación) observadas tanto en la localización de los eventos de 

AE como en la tomografía de rayos X. Finalmente, el análisis del ‘improved b-

value’ permite identificar un potencial relevante para discernir entre propagación 

de fractura estable e inestable. De todos modos, se necesitarían unas técnicas 

de filtrado más específicas para llevar a cabo un análisis detallado. 

En resumen, y considerando las conclusiones de este trabajo, el ensayo 

pCT presenta ciertas ventajas sobre otros métodos de ensayo de tenacidad de 

fractura, entre las que se incluirían: a) pequeña cantidad de material requerido 

(probetas con forma de disco con un ratio diámetro-espesor de 2); b) proceso de 

preparación de muestra sencillo (muesca en U y entalla fina); c) control de 
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propagación de fractura mejorado, especialmente después de la carga pico; d) 

rotura a tracción pura; y e) gracias a la posibilidad de capturar el comportamiento 

post-pico, resultados más detallados y más completos tanto desde el punto de 

vista mecánico (por ejemplo, evolución de la energía de fractura) como de 

información de AE. Además, la configuración de ensayo permite mantener las 

muestras sumergidas en fluido, y por tanto saturadas, durante la total duración 

de los ensayos. Este aspecto hace que el pCT sea apropiado para el estudio del 

impacto potencial de los fluidos sobre KIC.  

Desde el punto de vista metodológico, se advierte de la importancia en el 

método SCB de garantizar un buen alineamiento de la muestra para evitar modos 

mixtos (I/II), así como de la tendencia de esta configuración al deslizamiento 

lateral cuando se aplica una fuerza distribuida en una superficie circular. Ninguno 

de estos problemas es relevante con la técnica pCT. 

A2. Resumo estendido 

Tódolos materiais conteñen defectos como poros ou gretas, que se poden 

desenvolver durante a súa vida útil ou incluso ser inherentes á súa natureza. Os 

criterios de rotura máis simples asumen que tódolos materiais son perfectamente 

homoxéneos, isótropos e libres de defectos. De acordo con isto, unha mostra 

romperase cando a tensión supere a resistencia última do material. Sen 

embargo, isto non adoita ocorrer na realidade, xa que a inevitable presenza de 

descontinuidades ou defectos que poden xerar concentración de tensións de 

xeito localizado, reducindo a resistencia xeral do material e conducindo a unha 

rotura prematura e inesperada. A necesidade de coñecer estes procesos con 

maior profundidade orixinou o desenvolvemento da mecánica da fractura. Ó 

contrario que os enfoques máis tradicionais, a mecánica da fractura ten en conta 

o tamaño dos defectos na avaliación da resistencia á rotura. O obxectivo principal

desta rama é, polo tanto, cuantificar a relación crítica que existe entre a tensión 

aplicada e o tamaño do defecto que producirá a rotura antes de que se alcance 

a resistencia última do material. A propiedade que une estes dous parámetros 
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(tensión e tamaño del defecto) e polo tanto mide a resistencia dun material á 

propagación dunha fisura coñécese como tenacidade de fractura (KC). A 

mecánica de fractura distingue tres modos básicos de carga: a) modo I, ou modo 

de apertura/tracción; b) modo II, ou modo de cortante no plano/escorredura; e c) 

modo II, ou modo de cortante fóra do plano/cizalla. 

En mecánica de rochas, predicir a rotura é unha das maiores 

preocupacións. Sen embargo, é básico considerar que as rochas son materiais 

descontinuos a tódalas escalas. Por exemplo, a escala microscópica, contén 

descontinuidades como poros, grans ou microfisuras, que poden producir altas 

concentracións de tensión baixo carga. En rochas, a resistencia a tracción é 

comparativamente máis baixa que a resistencia a compresión ou cortante. Polo 

tanto, a tenacidade de fractura en modo I (KIC) é un dos parámetros máis 

importantes e máis estudados na mecánica de fractura aplicada a rochas: cuanto 

máis alto sexa o valor de KIC, máis alta será a resistencia á propagación de 

fracturas a tracción. A tenacidade de fractura pode ter unha importancia crucial 

nos proxectos que involucren materiais rochosos, como en enxeñería térmica 

(por exemplo, a enerxía xeotérmica ou a xestión de residuos radioactivos), 

mecánica (por exemplo, a estabilidade de estruturas mineiras), 

hidráulica/química (por exemplo, a fracturación hidráulica, o almacenamento 

xeolóxico de CO2 ou a gasificación subterránea do carbón), ou de procesos (por 

exemplo, a perforación e corte de rochas, ou a trituración de minerais). Nos 

últimos anos, a investigación dos procesos de inicio e propagación de fracturas 

en materiais xeolóxicos gañou importancia debido á necesidade de resolver 

problemas de fracturación en xeofísica. En particular, a crecente demanda de 

hidrocarburos favoreceu a investigación dos procesos de fracturación en certas 

litoloxías (por exemplo, arenitas compactas ou lousas). Por este motivo, é 

esencial desenvolver métodos de ensaio apropiados que axuden a mellorar a 

precisión nos valores de tenacidade de fractura. A Sociedade Internacional para 

la Mecánica de Rochas (ISRM) propuxo catro métodos de ensaio para 

determinar KIC usando mostras cilíndricas, chamados ‘short rod’ (SR), ‘chevron 

bend’ (CB), ‘cracked chevron notched Brazilian disc’ (CCNBD) e ‘semi-circular 

bend’ (SCB). Sen embargo, estes métodos poden ser difíciles de aplicar de xeito 
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rutineiro debido a aspectos coma: a) as baixas cargas ás que se produce a 

rotura, que obrigan a ter un excelente control de ensaio; b) o tamaño de mostra 

que requiren é relativamente grande (CB); c) a preparación das mostras é difícil 

e problemática (SR, CB y CCNBD); d) o cálculo do factor de intensidade de 

tensións é impreciso (CCNBD); e) a xeración de cargas de tracción realizase de 

xeito indirecto a través da compresión da mostra (especialmente en SCB y 

CCNBD); e f) a propagación da fractura prodúcese moi rapidamente unha vez 

alcánzase a resistencia pico. 

Para superar estas limitacións, o obxectivo principal desta tese é 

desenvolver un método de ensaio alternativo e simple, denominado ‘pseudo-

compact tensión’ (pCT), que permita medir KIC en rochas usando mostras 

cilíndricas baixo condicións de tracción pura. El pCT baséase nunha 

modificación da probeta ‘compact tensión’ (CT) descrita no método 

estandarizado E399-90 de la ASTM (1997) para metais. A mostra pCT é un disco 

(cunha relación diámetro-espesor de ~2) que se pode obter a partir de cilindros 

de rocha. Os dous buratos que se usan na mostra CT para aplicar a carga 

substitúense no ensaio pCT por un corte en forma de U. Ademais tamén se 

introduce unha entalla fina que actúa como concentrador de tensións, forzando 

a que ése sexa o punto de inicio da fractura. A xeometría da probeta pCT 

presenta vantaxes sobre as que se utilizan noutros métodos debido á súa 

simplicidade, pequena cantidade de material necesario e mínima preparación. 

Unha vez a mostra está lista, o procedemento de ensaio é simple e directo: a 

probeta sitúase nunha plataforma e se pon en contacto cun par de mordazas de 

aceiro de alta resistencia e rixidez que encaixan no corte en U e transmiten a 

forza de tracción á mostra. Mentres que unha das mordazas permanece inmóbil, 

a outra afástase cun ritmo de desprazamento constante. A tracción que se xera 

na entalla provoca que a probeta se rompa en dúas metades simétricas. A 

fractura orixínase na punta da entalla e se propaga ó longo do diámetro vertical 

da mostra, é dicir, no plano do ligamento.  

Os valores de KIC medidos có ensaio pCT valídanse comparándoos cos 

obtidos cun dos métodos suxeridos pola ISRM, o ensaio SCB. A probeta SCB é 
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un semi-cilindro cunha entalla recta cortada no centro da súa cara plana. Entre 

os métodos dispoñibles, optouse polo SCB como estándar de comparación 

debido á súa popularidade, simplicidade (dende o punto de vista de preparación 

da mostra) e configuración de ensaio directa. Neste traballo usáronse catro tipos 

de rocha distintos (arenitas de Corvio, Arcera y Pinacas, y granito Branco Mera) 

para avaliar a súa correspondente KIC usando os dous métodos de ensaio. Todas 

estas rochas son practicamente isótropas pero difiren unhas das outras na súa 

resistencia e comportamento mecánico. As arenitas de Corvio e Arcera teñen 

unha resistencia relativamente baixa, un tamaño de gran pequeno (< 1 mm), 

elevada porosidade y baixo módulo elástico. Sen embargo, a arenita de Pinacas, 

a pesar de ter un tamaño de gran similar, é considerablemente máis dura, ten 

unha porosidade máis baixa e un módulo elástico maior. O granito Branco Mera 

é unha rocha homoxénea de tamaño de gran medio (1-6 mm), baixa porosidade 

e resistencia moderada.  

Os cilindros de rocha necesarios para preparar as mostras obtivéronse de 

bloques homoxéneos usando unha perforadora con coroa de diamante. Despois, 

os cilindros cortáronse en discos cunha relación diámetro-espesor de 2 usando 

un disco de diamante circular. Para as mostras SCB, os discos cortáronse 

diametralmente en dúas metades usando unha serra para cortar azulexos 

modificada. No caso das mostras pCT, o corte en U introduciuse con esta mesma 

serra usando un disco de diamante de 2 mm de espesor, facendo varios cortes 

mentres se desprazaba a mostra de xeito horizontal despois de cada pasada. A 

posición vertical do disco, que determina a profundidade da entalla, fíxase cun 

parafuso vertical. Coa axuda duns elementos de referencia (nivel láser, regra) e 

un agarre horizontal móbil asegúrase o correcto aliñamento da mostra con 

respecto ó disco da serra. Para cortar a entalla fina nos dous tipos de mostra 

(pCT e SCB) seguiuse un procedemento similar, aínda que neste caso a entalla 

se cortou cun disco de diamante máis fino (1 mm de espesor) nunha única 

pasada. Unha vez preparadas, as mostras secáronse nunha estufa a 60ºC por 

un mínimo de 24 horas.  
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Para levar a cabo os ensaios pCT construíuse un dispositivo de ensaio 

especialmente deseñado para tal fin. Entre os requisitos que se tiveron en conta 

no seu deseño incluíronse a mobilidade da máquina (o que supuxo importantes 

restricións de tamaño, peso e robustez), posibilidade de colocación de mostras 

de distintos tamaños garantindo a estabilidade mecánica durante os ensaios, 

facilidade de instalación dos dispositivos de medida e substitución dos elementos 

danados, e a rapidez das operacións complementarias (colocación da probeta, 

limpeza, etc.). O dispositivo de ensaio está formado por un marco de aceiro de 

alta rixidez equipado cunha célula de carga de tracción/compresión de 50 kN, 

dous transdutores diferenciais de variación lineal (LVDTs) e dous extensómetros 

de medición de apertura de fisura (COD). As sinais eléctricas de tódolos 

dispositivos de medida intégranse nun sistema destinado á adquisición de datos. 

O movemento da mordaza de aceiro conséguese a través dun parafuso que 

converte en desprazamento lineal o movemento de rotación dun motor eléctrico 

paso a paso cun ángulo de paso de 1.8º (equivalente a 200 pasos por 

revolución). Para mellorar o seu rendemento, o motor conéctase a unha redutora 

planetaria cun rato de redución de 1:100. Esta configuración, aínda que simple, 

proporciona un elevado nivel de precisión no desprazamento (0.018º/paso), 

equivalente a 0.25 µm/paso desde el punto de vista do desprazamento lineal do 

parafuso, que se pode manter desde 0 a 50 kN. Os dous LVDTs, situados 

simetricamente a ambos lados da probeta, miden o desprazamento do punto de 

carga (LPD), que en este caso se corresponde co desprazamento da mordaza 

móbil. Ó mesmo tempo, e de xeito redundante, un extensómetro de clip montado 

sobre un par de coitelas unidas ás propias mordazas mide a mesma magnitude. 

Adicionalmente, es posible montar outro extensómetro directamente na 

superficie da mostra (tamén a través dunhas coitelas) para medir o 

desprazamento de apertura da punta da fractura (CMOD). Mentres que as curvas 

carga-desprazamento (P-LPD) se rexistraron en tódolos ensaios pCT, CMOD 

mediuse só en 11 deles. 

As probetas SCB ensaiáronse a flexión con tres puntos de apoio nunha 

prensa servo-controlada equipada cunha célula de carga de 4.448,22 N. Con 

esta configuración, a carga transfírese á parte superior da mostra a través dun 
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cilindro de aceiro. Outros dous cilindros adicionais, colocados na parte inferior, 

serven para soportar a probeta. Neste caso, o LPD correspóndese co 

desprazamento vertical do cilindro de carga superior. Co obxectivo de evitar os 

problemas inherentes a usar extensómetros de clip en mostras de pequeno 

tamaño, CMOD mediuse usando dous LVDTs enfrontados colocados 

perpendicularmente á entalla no plano diametral da mostra. Hai que ter en conta 

que a xeometría curva da mostra magnifica os errores de contacto asociados 

coa rotación da superficie superior durante o ensaio. Por isto, e para garantir o 

contacto dos LVDTs coa mostra en todo momento, se adheriron unhas pezas en 

forma de T creadas cunha impresora 3D nos dous extremos da probeta. Con 

este método de ensaio se rexistraron para tódolos ensaios tanto as curvas P-

LPD como as P-CMOD. 

Os resultados dos dous métodos de ensaio (pCT e SCB) analizáronse 

tendo en conta unha serie de parámetros relevantes, todos eles con algunha 

influencia potencial sobre KIC. Aínda que a tenacidade de fractura se considera 

unha propiedade intrínseca do material e polo tanto debería ser razoablemente 

independente da xeometría das mostras e a configuración do ensaio, os valores 

experimentais de KIC obtidos por numerosos autores contradín este suposto. Por 

este motivo, neste estudo ensaiáronse probetas, tanto pCT como SCB, de 38, 

50 e 100 mm de diámetro para determinar o efecto do tamaño de mostra. Del 

mesmo modo, tamén se tivo en conta a influencia da lonxitude da entalla 

ensaiando mostras con distintas lonxitudes. Tódolos ensaios realizáronse a unha 

velocidade de desprazamento constante de 0.1 mm/min (a velocidade é baixa 

para evitar efectos dinámicos) en condiciones ambientais de laboratorio. Neste 

traballo, só se considerou o Nivel I de ensaio (nivel básico). Aínda que para poder 

calcular KIC a este nivel só se necesita medir a carga máxima (Pmax) durante o 

ensaio, para poder profundar no comportamento do material se rexistraron, 

ademais da carga (P), as magnitudes de LPD e CMOD de xeito continuo. Desde 

a perspectiva dos balances de enerxía, a fractura prodúcese cando a enerxía 

dispoñible para o seu crecemento e propagación supera a resistencia do 

material. Polo tanto, a tenacidade de fractura tamén se pode ve como a taxa de 

liberación de enerxía necesaria para crear novas superficies de fractura na 
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mostra. Neste estudo, as curvas carga-desprazamento de cada ensaio usáronse 

para caracterizar o contido enerxético do proceso de fracturación. Na 

metodoloxía pCT, grazas ó bo control do ensaio incluso despois de Pmax, a 

enerxía total (Etot) púidose dividir en dúas porcións: a enerxía pre-pico (Epre, é 

dicir, o traballo realizado para inducir o inicio da fractura na probeta), e a enerxía 

post-pico (Epost, é dicir, o traballo realizado para propagar a fractura). Para poder 

calcular KIC é necesario coñecer non só a carga máxima (Pmax) e a lonxitude da 

entalla (a), senón a expresión do factor de intensidade de tensións adimensional 

(Y’) específico de cada xeometría de mostra e condiciones de carga. Para o 

ensaio SCB, a expresión correspondente (Y’SCB) pódese atopar na literatura. Sen 

embargo, para a nosa configuración pCT, non foi posible atopar unha expresión 

adecuada, e foi necesario usar o método dos elementos finitos para obter unha 

función polinómica de cuarto grado para cada tamaño de mostra e para un rango 

de lonxitudes de entalla (Y’pCT). 

Para conseguir profundar aínda máis nos procesos de inicio, propagación 

e coalescencia das fracturas, empregouse a técnica de emisión acústica (AE). 

AE é unha técnica de ensaio non destrutiva amplamente usada para rexistrar a 

evolución de dano en rochas. Cando unha fractura crece, se libera enerxía en 

forma de ondas elásticas que viaxan a través do material e que poden ser 

rexistradas en tempo real usando sensores situados sobre a superficie da 

probeta. No desenvolvemento desta tese e para algúns ensaios, a actividade 

acústica rexistrouse usando ata 8 sensores situados a distintas distancias da 

entalla. A adquisición de datos realizouse cun sistema multicanal AMSY-6 de 

Vallen Systeme GmbH. Os sensores colocáronse sobre a probeta usando uns 

imáns adheridos á súa superficie. En cada ensaio rexistráronse unha serie de 

parámetros de AE (como contas, amplitude, duración ou frecuencia pico) útiles 

para avaliar as distintas etapas e procesos, a proximidade da rotura da probeta, 

e os distintos modos de rotura (por exemplo, usando a relación AF:RA e o 

‘improved b-value’). Ademais, grazas ó sistema multicanal, se puideron localizar 

os hipocentros dos eventos de AE ó longo da duración do ensaio, o que foi útil 

para analizar a evolución e a propagación das fracturas na mostra. Usando a 

información de AE, tamén se explorou a relación entre a liberación de enerxía 
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asociada ós procesos de fractura e a capturada polos sensores de AE (EAE). 

Aínda que ambas magnitudes son en liñas xerais diferentes (a AE pode ter 

dispersión e/ou atenuación), aínda así podería ser posible identificar unha 

relación formal entre as dúas propiedades. De feito, considerando que a 

actividade acústica é proporcional ó número e magnitude de fracturas, é razoable 

asumir que debe existir algunha relación entre EAE y a enerxía de fractura.  

Cos datos obtidos, comparáronse os métodos pCT y SCB tanto desde o 

punto de vista da evolución mecánica, como da evolución de diversos 

parámetros de AE en distintas de etapas de ensaio. Os nosos resultados amosan 

que a combinación de pequenos desprazamentos (permitindo taxas de 

deformación extremadamente pequenas), elevada capacidade de carga e alta 

rixidez do dispositivo de ensaio fai que o ensaio pCT sexa adecuado para a 

análise da tenacidade de fractura tanto en rochas fráxiles como dúctiles. 

Ademais, a metodoloxía de preparación de mostra máis simple do pCT en 

comparación con outros métodos de ensaio convérteo nun candidato interesante 

para la determinación da tenacidade de fractura de xeito rutineiro. Para as rochas 

ensaiadas, o crecemento da fractura foi lento durante a duración total dos 

ensaios pCT. De feito, para incrementar a súa extensión era necesario o 

movemento continuo da mordaza. Polo tanto, o proceso de propagación de la 

fractura foi controlado en todo momento, incluso despois de alcanzar a forza 

máxima, e as curvas carga-desprazamento (P-d) se puideron rexistrar de xeito 

preciso incluso máis alá de Pmax, proporcionando unha gran información sobre o 

comportamento post-pico. En xeral, o proceso de carga divídese en tres etapas 

diferenciadas: (1) un período de crecemento lineal da curva (comportamento 

elástico); (2) un período non-lineal de formación de novas microfisuras no que a 

pendente da curva gradualmente decrece ata Pmax; e (3) un período de baixada 

durante o cal a carga diminúe mentres a fractura macroscópica se propaga ó 

longo do plano do ligamento. Ó contrario, e coa excepción de algunhas mostras 

de arenita de Corvio (unha rocha branda), as curvas de carga para os ensaios 

SCB mostran un crecemento case lineal ata a rotura repentina da probeta á 

carga pico (Pmax). Este comportamento evidencia que a metodoloxía SCB non 

permite un bo control de ensaio máis alá de (Pmax) e que a fractura, unha vez 
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iniciada, se propaga rapidamente ata a parte superior da mostra. Poderíase 

discutir se mellorando o control electrónico e a rixidez do sistema (para evitar el 

almacenamento de enerxía elástica no equipo de ensaio) se podería mellorar a 

calidade dos resultados para o método SCB. Sen embargo, na nosa opinión, o 

factor clave que determinaría a súa menor eficacia na rexión post-pico sería o 

almacenamento de enerxía na mostra, que ten lugar un volume 

considerablemente máis grande que o que rodea a punta da entalla (por 

exemplo, no punto de contacto dos cilindros e ó longo de todo o ligamento). 

Cando a carga alcanza o seu valor máximo, toda esta enerxía almacenada na 

mostra libérase instantaneamente e a fractura se propaga de xeito incontrolado. 

Sen embargo, no caso do ensaio pCT, a carga se transfire á mostra ó longo das 

liñas de contacto coas mordazas e desde alí directamente á entalla.  

Tomando como referencia os resultados de 146 ensaios (81 pCT e 65 

SCB), comprobouse a consistencia mutua dos valores de KIC obtidos usando 

ambas metodoloxías. Do mesmo modo, avaliouse a influencia de características 

como o tamaño de mostra ou a lonxitude da entalla. Cunha perspectiva ampla, 

obsérvase que, para os dous métodos de ensaio, os resultados son compatibles 

para cada un dos tipos de rocha. A tenacidade de fractura en modo I obtida para 

os ensaios pCT para las arenitas de Corvio (~0.06-0.12 MPa m1/2) e Arcera 

(~0.24-0.60 MPa m1/2) é baixa, o que é consistente coa súa condición de rochas 

brandas. Sen embargo, os valores de KIC, tanto para a arenita de Pinacas como 

para o granito Branco Mera, son apreciablemente máis altos (~1.05-1.4 MPa 

m1/2). Para as mesmas rochas, os resultados dos ensaios SCB son lixeiramente 

superiores para a arenita de Corvio (~0.07-0.18 MPa m1/2), pero máis baixos para 

a de Arcera (~0.26-0.46 MPa m1/2). No caso da arenita de Pinacas e o granito 

Branco Mera, a dispersión nos resultados de KIC é máis alta que para os ensaios 

pCT (~0.69-1.64 e ~0.72-1.51 MPa m1/2, respectivamente). A zona de procesos 

de fractura (FPZ, que se corresponde co volume microfisurado ó redor da punta 

da entalla) é teoricamente menor nas mostras SCB, o que debería implicar unha 

menor dispersión nos resultados. Sen embargo se observa o contrario, o que 

suxire que a FPZ non estaría xogando un papel determinante nos ensaios pCT. 
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Unha explicación a este comportamento podería ser a maior lonxitude de 

ligamento (~3 veces) das mostras pCT en comparación coas SCB. 

Para os ensaios pCT, atopouse unha forte relación entre a resistencia a 

tracción e KIC. Aínda que os valores obtidos son internamente consistentes (é 

dicir, o rango de variación é pequeno), se observa que KIC aumenta co tamaño 

da mostra e diminúe coa lonxitude de entalla. É interesante destacar que a 

litoloxía parece magnificar a influencia destas dúas características xeométricas 

sobre KIC, sendo un factor determinante para os materiais máis duros (fortemente 

cementados), como a arenita de Pinacas e el granito Branco Mera. Na nosa 

opinión, a parte dos factores xeométricos, deberían terse en conta as 

características da rocha ensaiada para fixar os requirimentos mínimos desde o 

punto de vista dimensional nos ensaios de tenacidade de fractura. Aínda así, 

segundo os nosos resultados experimentais, se recomendaría usar mostras pCT 

de tamaño medio (diámetro = 50 mm) e con unha lonxitude de entalla 

normalizada relativamente grande (a/b > 0.25) para obter valores de KIC máis 

consistentes. En canto á metodoloxía de ensaio, a influencia do tamaño de 

mostra é menor nos ensaios pCT, mentres que os SCB proporcionan unha 

información menos consistente e menos sensible con respecto á dependencia 

da lonxitude da entalla.  

Nos ensaios pCT, grazas á boa correlación observada entre LPD e 

CMOD, sería posible determinar de xeito directo CMOD sen utilizar transdutores 

de contacto directo como extensómetros de clip, o que é especialmente 

vantaxoso en mostras de pequeno tamaño. Polo contrario, isto non é posible co 

SCB. As relacións entre Epre e Epost con Etot suxiren que, independentemente da 

litoloxía, tamaño de mostra e lonxitude de entalla, se necesita o mesmo nivel de 

enerxía para xerar a fractura que para propagala de xeito controlado 

posteriormente. Os balances de enerxía obtidos tamén apoian a hipótese de que 

a enerxía de fractura depende do tamaño da mostra para un valor de lonxitude 

de entalla determinado. Sen embargo, os nosos resultados indican unha 

dependencia máis complexa, na que a litoloxía xogaría un papel importante. 
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En xeral, a evolución cualitativa de EAE ilustra de xeito adecuado os 

procesos  mecánicos que teñen lugar nas mostras ensaiadas, cunhas taxas de 

cambio netas (aceleración/desaceleración) coincidentes coas transicións 

mecánicas. Sen embargo, cos datos dispoñibles non foi posible obter unha 

relación funcional entre a enerxía de fractura e EAE.. Aínda así, non se descarta 

que se poida obter unha relación nun futuro cunha base de datos de AE máis 

completa. 

A localización dos hipocentros de AE foi útil para analizar a evolución e 

propagación da fractura ó longo do plano do ligamento. Como se esperaba, os 

eventos se localizaron ó redor da punta da entalla en ambos métodos de ensaio 

cando a carga alcanzou o seu valor máximo. Na rexión post-pico dos ensaios 

pCT, a distribución dos eventos conforma unha fractura vertical, que lixeiramente 

se desvía ou aumenta a dispersión lateral (en función do material) á vez que a 

rocha perde cohesión, sendo consistente coas fracturas observadas nas mostras 

tras os ensaios. A tomografía computarizada de micro raios X realizada sobre 

algunhas mostras pCT revelou que a fractura non sempre se inicia na punta da 

entalla, e que o punto de xeración varía ó longo do espesor da probeta. A forma 

semicircular da punta da entalla permitiría que a fractura se iniciase en calquera 

punto da súa xeometría circular. Este factor, xunto coa disposición de partículas 

no interior da rocha, podería determinar que a fractura se desvíe da traxectoria 

vertical esperada, tanto á  esquerda como á dereita. Nos ensaios SCB e para o 

material máis duro (arenita de Pinacas), a localización dos hipocentros de AE 

evidencia unha migración dos eventos acústicos desde a punta da entalla ata o 

cilindro de carga superior no momento en que se produce a rotura da mostra. 

Sen embargo, para un material máis brando (arenita de Arcera), se observa un 

dano progresivo na área próxima ó punto de aplicación da carga, o que 

finalmente orixina unha fractura oblicua. Estas observacións poñen en evidencia 

o potencial da técnica de AE para mellorar o coñecemento dos procesos de

fractura asociados cos ensaios de tenacidade. Ademais, a localización dos 

eventos tamén permitiu determinar de xeito aproximado as dimensións da FPZ. 
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A análise das frecuencias pico (fpeak) revela inconsistencias aparentes co 

comportamento xeralmente aceptado (é dicir, valores altos relacionados coa 

aparición de microfisuras, e valores máis baixos con fracturación). Sen embargo, 

si se ten en conta o efecto da atenuación acústica, é posible relacionar a 

aparición/desaparición de sinais con valores específicos de fpeak e de amplitude 

normalizada cos procesos que ocorren a distintos niveles de tensión. Ademais, 

os maiores niveles de dispersión a certos rangos de frecuencias poderían estar 

relacionados co tamaño dos defectos. 

Nos ensaios pCT, a tracción é o modo de rotura predominante tanto na 

rexión pre-pico como nas últimas etapas da post-pico, segundo a análise 

paramétrica realizada en base ás relacións AF vs. RA. Só nos primeiros instantes 

da etapa post-pico, onde a fractura macroscópica crece como resultado da 

converxencia de mico e meso-fisuras, se produce, aínda que de xeito limitado, 

un modo mixto (tracción/cortante). A aparición dun modo de rotura distinto á 

tracción podería explicarse polo tipo de rocha e as súas propiedades (é dicir, 

mineraloxía, tamaño de gran, cementación ou homoxeneidade) que 

determinarían a orientación da fractura. Segundo isto, se se necesita menos 

enerxía para que a fractura avance a través do cemento que a través dos grans 

da rocha, o plano de fractura pode non ser perpendicular á carga de tracción, 

resultando nun esforzo cortante localizado debido á  maior tortuosidade. Esta 

hipótese se reforza coas características xeométricas (desviación e ramificación) 

observadas tanto na localización dos eventos de AE como na tomografía de raios 

X. Finalmente, a análise do ‘improved b-value’ permite identificar un potencial 

relevante para discernir entre propagación de fractura estable e inestable. De 

todos modos, precisaríanse unhas técnicas de filtrado máis específicas para 

levar a cabo unha análise detallada. 

En resumen, e considerando as conclusións deste traballo, o ensaio pCT 

presenta certas vantaxes sobre outros métodos de ensaio de tenacidade de 

fractura, entre as que se incluirían: a) pequena cantidade de material requirido 

(probetas con forma de disco cunha relación diámetro-espesor de 2); b) proceso 

de preparación de mostra sinxelo (corte en U e entalla fina); c) control de 
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propagación de fractura mellorado, especialmente despois da carga pico; d) 

rotura a tracción pura; e e) grazas á posibilidade de capturar o comportamento 

post-pico, resultados máis detallados e máis completos tanto desde o punto de 

vista mecánico (por exemplo, evolución da enerxía de fractura) como de 

información de AE. Ademais, a configuración de ensaio permite manter as 

mostras somerxidas en fluído, e polo tanto saturadas, durante a total duración 

dos ensaios. Este aspecto fai que o pCT sexa apropiado para o estudo do 

impacto potencial dos fluídos sobre KIC.  

Desde o punto de vista metodolóxico, advírtese da importancia no método 

SCB de garantir un bo aliñamento da mostra para evitar modos mixtos (I/II), así 

como da tendencia desta configuración á escorredura lateral cando se aplica 

unha forza distribuída nunha superficie circular. Ningún destes problemas é 

relevante coa técnica pCT. 
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APPENDIX B: Testing device for pseudo-compact 
tension tests 

B1. Components 

B1.1. Stepper motor 
The bipolar stepper motor selected (DST56EL61A, Teco Electro Devices 

Co; Figure B.1) provides precise positioning control and high torque within the 

low/mid-speed range. The motor has the following characteristics: a) step angle 

(Sa-motor): 1.8º; b) steps per revolution: 200; c) current: 2A/phase; d) shaft diameter 

(Ds-motor): 6.35 mm; e) holding torque: 1.35 Nm; f) format: NEMA 23. A full turn of 

the shaft represents a displacement of 19.95 mm (Lturn-motor = π*Ds-motor), so the 

corresponding step angle increment is 0.1 mm/step (Lturn-motor / nº steps).  

Figure B.1: Assembly of motor and gearhead. 

B1.2. Gearhead 
A planetary gearhead (IP57-M2-100, McLennan Servo Supplies; Figure 

B.1) with a reduction ratio of 1:100 was chosen to multiply the torque provided by 
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the motor. This gearhead has a shaft diameter (Ds-gearhead) of 12.69 mm, and can 

deliver a peak torque (Tp-gearhead) of 24 Nm. Once assembled to the motor, it 

provides a turn accuracy of 0.018º (Sa-motor / reduction ratio) per step.  

B1.3. Ball screw 
The rotatory motion of the motor is converted into linear displacement 

using a ball screw (VFU 40005 DIN 69051 FORM B, NBS) suitable for operating 

at medium load, low speed, and short distance. The main components of the ball 

screw are the shaft, the nut, and the bearing (Figure B.2). Dimensions and 

properties of these elements are listed in Table B.1. The turn accuracy of the 

motor/gearhead assembly (i.e. 0.018º per step) is equivalent to 0.25 µm in terms 

of linear movement of the shaft. 

Figure B.2: Ball screw (d0 = nominal diameter, droot = shaft root diameter; Ph = lead; L 

= bar length; dpw = primitive ball circle diameter; da = ball diameter) and nut (Lnut = 

length; Dnut = diameter; Anut = flange diameter; Bnut = flange thickness; Cnut = flange 

diameter at fixing points; Snut =  through hole diameter) components and dimensions. 
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In order to dimension a ball screw, a number of loads and torques have to 

be considered (see Table B.2 for equations). A preload (Fpreload) is usually 

required to eliminate the axial play between the screw shaft and the balls, to 

minimize the elastic deformation under axial load, to enhance stiffness, and to 

gain accuracy in positioning. The driving torque (Tdriving) and reverse torque 

(Treverse) convert the rotatory motion into linear displacement and vice versa, 

respectively. The motor drive torque (Tmotor) is the torque necessary to drive the 

ball screw at constant speed against an external load. This torque is maximized 

by a factor of two to ensure safety (Tmax). The maximum axial compressive 

(Fbuckling) and tensile (Ftensile) loads are also limited to avoid large deflections of 

the screw and to ensure operating below the yield stress, respectively. In addition, 

it is recommended to operate below the critical speed (rpmmax) to reduce 

vibrations and bending of the screw. Values for these loads and torques are 

presented in Table B.3. A ball screw support bearing fixed-side round type (FK30-

C5, Hiwin) was chosen to provide axial and rotational support for the ball screw. 

B1.4. Coupling 
A stainless steel bellow coupling with clamping hub (WK4/60-89-SX 49/15, 

StS Coupling) is used to connect the motor and the ball screw (Figure B.3). It 

provides with a torque of 60 Nm, and has an overall length of 89 mm.  

B1.5. Measuring devices 
A 50 kN load cell (TC4-AMP 5 ton, AEP Transducers) was mounted 

between the sample and the motor (Figure B.3). In order to measure the 

displacement of the steel jaw, two LVDTs (VG/10/S, Solartron Metrology) were 

symmetrically placed on both sides of the specimen, and a clip-on gauge (3541-

020M-040M-ST, Epsilon Technology Corp.) was mounted on a pair of bolt-on 

knife edges attached to the jaws (Figure B.4). An additional clip-on gage 

(632.03B-30, MTS) is mounted directly on the specimen at the level of the notch 

tip (Figure B.5) to measure crack mouth opening displacement (CMOD). 
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Table B.1.: Dimensions and properties of the ball screw. 

Material characteristics 

Young’s modulus (E) 205 GPa 

Tensile strength (σ) 147 MPa 

Specific weight (γ) 7850 
kg/m3 

Screw (SR 4005) dimensions 

Nominal screw diameter (d0) 40 mm 

Screw lead (Ph) 5 mm 

Ball diameter (da) 
3.175 

mm 

Screw bar length (Lscrew = L) 200 mm 

Screw shaft root diameter (droot ≈ d0 - da/2.8) 38.413 
mm 

Screw shaft cross sectional area at droot (A = 
πdroot2/4) 

1158.971 
mm2 

Primitive ball circle diameter (dpw ≈ d0) 40 mm 

Screw ball lead angle (φ = arctan (Ph/πdpw)) 2.3º 

Screw (SR 4005) mechanical properties 

Dynamic load capacity of the screw bar (Ca) 16100 N 

Static load capacity of the screw bar (C0a) 53300 N 

Screw axial stiffness (K) 490 
N/µm 

Friction coefficient (µ) 0.01 

Friction angle (ρ = arctan µ) 57.3º 

Mounting method factor for buckling (C1) 0.25 
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Mounting method factor for rotational speed (C2) 1.875 

Nut (VFU 4005) dimensions 

Nut flange thickness (Bnut) 14 mm 

Nut length (Lnut) 55 mm 

Nut diameter (Dnut) 63 mm 

Nut flange diameter (Anut) 93 mm 

Nut diameter at flange fixing points (Cnut) 78 mm 

Nut through hole diameter (Snut) 9 mm 

Lubrication hole – ISO metric screw thread (P) M8 

Number of ball circuits (n) 4 

Table B.2.: Equations for ball screw dimensioning. 

Load Equations Parameters 

Preload (Fpreload) 𝐹𝐹𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡𝑚𝑚𝑝𝑝 =
𝐹𝐹𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚

2.8
Fmean = mean 
operation load 

Axial load (F) 𝐹𝐹 = 𝐹𝐹𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡𝑚𝑚𝑝𝑝 + 𝜇𝜇 ∙ 𝑊𝑊 
µ = friction coefficient 

W = work piece weight 

Drag torque (Tdrag) 
𝑇𝑇𝑝𝑝𝑝𝑝𝑚𝑚𝑑𝑑

=
0,05

�𝑡𝑡𝜋𝜋𝑠𝑠 (𝜑𝜑)
𝜕𝜕
𝐹𝐹𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡𝑚𝑚𝑝𝑝 ∙ 𝑃𝑃ℎ

2 ∙ 𝜋𝜋
𝜕𝜕10−3 

Ph = screw ball lead 

φ = screw ball lead 
angle 

Driving torque 
(Tdriving) 𝑇𝑇𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑 =

𝐹𝐹 ∙ 𝑃𝑃ℎ
2 ∙ 𝜋𝜋 ∙ 𝜂𝜂1

𝜕𝜕10−3 
η1 = system’s forward 
efficiency to convert 
rotatory to linear 
motion 

Forward efficiency 
(η1) η1 =

tan(φ)
tan(φ + ρ) ρ = friction angle 
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Reverse torque 
(Treverse) 𝑇𝑇𝑝𝑝𝑒𝑒𝑑𝑑𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒 =

𝐹𝐹 ∙ 𝑃𝑃ℎ ∙ 𝜂𝜂2
2 ∙ 𝜋𝜋

𝜕𝜕10−3 

η2 = system’s reverse 
efficiency to convert 
linear to rotatory 
motion 

Reverse efficiency 
(η2) η2 =

tan(φ − ρ)
tan(φ)

Motor drive torque 
(Tmotor) 

𝑇𝑇𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 = �𝑇𝑇𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑 + 𝑇𝑇𝑝𝑝𝑝𝑝𝑚𝑚𝑑𝑑

+ 𝑇𝑇𝑏𝑏𝑒𝑒𝑚𝑚𝑝𝑝𝑑𝑑𝑚𝑚𝑑𝑑�𝜕𝜕
𝐺𝐺𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑒𝑒𝑝𝑝
𝐺𝐺𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑒𝑒𝑚𝑚

Tbearing = friction torque 
of the supporting 
bearing 

Gdriver = number of 
teeth in the driver 
gear (=100) 

Gdriven = number of 
teeth of the driven 
gear (=1) 

Maximum torque 
(Tmax) 

𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑇𝑇𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 𝜕𝜕 𝐹𝐹𝐹𝐹 
FS = safety factor 

Buckling load 
(Fbcuckling) 𝐹𝐹𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏𝑝𝑝𝑑𝑑𝑚𝑚𝑑𝑑 =

𝐶𝐶1 ∙ 𝜋𝜋2 ∙ 𝐸𝐸 ∙ 𝐼𝐼
𝐿𝐿2

C1 = mounting method 
factor for buckling 

E = Young’s modulus 

I = minimum 
secondary moment of 
inertia of the screw 
shaft 

L = distance between 
support points 

Minimum secondary 
moment of inertia (I) 𝐼𝐼 =

𝜋𝜋 ∙ 𝑑𝑑𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡4

64
droot = screw shaft root 
diameter 

Maximum 
tensile/compressive 
load (Ftensile) 

𝐹𝐹𝑡𝑡𝑒𝑒𝑚𝑚𝑠𝑠𝑑𝑑𝑝𝑝𝑒𝑒 =
𝜎𝜎 ∙ 𝜋𝜋 ∙ 𝑑𝑑𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡2

4
σ = tensile strength 
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Critical speed 
(rpmmax) 𝜋𝜋𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 =

60 ∙ 𝐶𝐶22

2 ∙ 𝜋𝜋 ∙ 𝐿𝐿2
�
𝐸𝐸 ∙ 103 ∙ 𝐼𝐼
𝛾𝛾 ∙ 𝐴𝐴

∙ 0,8

C2 = mounting method 
factor for rotational 
speed 

γ = specific weigth 

A = screw shaft cross 
sectional area at droot 

Required drive 
power (Pdrive) 𝑃𝑃𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑒𝑒 =

𝑇𝑇𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑  ∙  𝜋𝜋𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥

9.55

Table B.3.: Loads, torques and efficiency of the ball screw. 

Load 

m 1 kg 

W 9.81 N 

Fmean 10 N 

F 10.1 N 

Fpreload 3.6 N 

Efficiency 

η1 0.80 

η2 0.75 

Torque 

Tdriving  1.01·10-2 Nm 

Treverse  6·10-3 Nm 

Tdrag  7·10-4 Nm 

Tbearing  0 Nm 

Tmotor  1.1 Nm 

Tmax (FS=2) 2.2 Nm 
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Maximum permissible loads 

Fbuckling 1351.4 kN 

Fmax (FS=2) 675.7 kN 

Ftensile  170.4 kN 

Pdrive  34.7 kW 

Figure B.3: Top view of the experimental device. 

Figure B.4: LVDTs and clip-on gage for measuring load point displacement. 
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Figure B.5: Clip-on gage mounted on the specimen surface. 

B1.6. Controlling and data acquisition systems 
A computer is used to control the back and forth movement of the device. 

A simple preliminary firmware allowed to manually operating the motor by setting 

the speed (in revolutions per minute, rpm), the number of steps, and the sense 

of rotation. These features were implemented in a software interface using USB 

protocol communications (Figure B.6). Afterwards, this version was improved by 

adding new characteristics (Figure B.7). As before, the motor can be operated 

manually (left side of the screenshot), but now it is also possible to reset the step 

value at any time by adjusting a new virtual zero movement, and directly moving 

the steel jaw to this position (“go to zero”) or to the left limit (“go to start”). In 

addition, the displacement accuracy can be increased from 0.25 µm/step to 0.125 

µm/step by performing “micro steps” and save the data into a file. However, the 

most remarkable novelty is the possibility of programming scheduled movements, 

i.e. setting a configuration of cycles to be automatically performed by the 

controller (center part of the screenshot). By defining four parameters (speed, 

magnitude of displacement in mm, sense of rotation, and delay time), the 

firmware allows performing load/unload cycles (for fatigue tests) or stepwise 

loading. In addition, there are additional safety elements, such as an emergency 

stop, or limit detectors (right side of the screenshot).  
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On the other hand, the computer is also used to acquire mechanical data 

during testing. To this aim, an instruNet data acquisition system 

(http://www.gwinst.com) records real-time values coming from the load cell, 

LVDTs, and clip-on gauges. 

Figure B.6: Screenshot of the basic software interface. 

Figure B.7: Screenshot of the advanced software interface. 

B2. Performance tests 

B2.1. Motor performance 
To carry out the first tests, the motor was controlled with a L298 dual-H 

bridge motor driver integrated circuit. With this configuration, the coils of the motor 

were tested by controlling the exposure time and its influence on the movement 

between phases. Since the constant load intensity is 2.5 A per coil and the point 

demand can reach to 5 A, a high-performance switching power supply of 12 V 

http://www.gwinst.com/
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and 12.5 A was used. In a preliminary approach, the motor was commanded 

using an AVR ATMEGA2560 series microcontroller, which was selected due to 

its versatility, available free software, and connectivity to an Arduino board. A 

number of preliminary tests were executed with the first version of the software 

(described in section B1.6) rendering satisfactory results: it was confirmed that 

the number of steps in a complete turn was 200, and that the maximum 

permissible speed was 150 rpm. Higher velocities resulted in overlapping pulses, 

loss of steps, and noisy behavior of the motor, which increased as more steps 

were skipped. 

B2.2. Motor/gearhead performance 
The performance of the motor/gearhead assembly was assessed under 

different loading conditions using the advanced version of the software (section 

B0). To this aim, the system was fixed to a steel frame and attached to a 9 cm 

radii pulley equipped with a steel wire (Figure B.8). This wire was used to hang a 

water tank that, filled with different water volumes, simulated different load 

conditions. The peak torque of the gearhead (24 Nm) limited the maximum load 

the system could lift under safe conditions (~22.07 Nm for a load of 25 kg and a 

9 cm radii pulley). The effect of water oscillations (dynamic bouncing) was also 

considered since it could eventually increase the load value and exceed the 

allowable torque limit of the gearhead. By lifting and descending the tank, and 

repeating the movement back and forth, it was possible to check positioning 

reproducibility. For a speed limit of 150 rpm, the results were satisfactory for the 

masses considered (5, 10, 15, 20 and 25 kg), even in simulations of load/unload 

cycles. However, the metal casing of the motor started to overheat after 20 

minutes of operation because the dual H-bridge configuration neither limits nor 

protects the motor coils, and neither controls the peak and proportional supplied 

intensity. For this reason, a stepping controller based on an A4983 integrated 

circuit was considered in later tests. This circuit, that includes a metal heat sink, 

can provide an intensity per phase of 2 A while controlling the operating limit and 

temperature. Although no overheating was detected on the motor coils with this 

new configuration, the controller, which was designed to work at lower intensity 



APPENDIX B. Testing device for pCT tests 206 

values, started to overheat after 15 minutes and was unable to properly perform 

the required retention capacity. The problem was circumvented by incorporating 

an air-operated refrigeration system (fan).  

Figure B.8: Elements used to perform preliminary load tests with the motor/gearhead 

assembly. 
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APPENDIX C: Impact of saturating fluids on mode 
I fracture toughness 

C1. Introduction 

Rock fracturing will occur when the stress conditions exceed the failure 

threshold (Fjaer et al. 2008). However, the presence of fluids in the rock matrix 

can reduce the energy needed to generate and propagate a fracture, resulting in 

failure at a stress level below the critical stress (Røyne et al. 2011; Ilgen et al. 

2018). This phenomenon, known as subcritical crack growth, is relevant in a 

variety of engineering applications dealing with fluid flow and transport, such as 

geothermal energy extraction, oil recovery, fluid transport, CO2 geosequestration, 

or radioactive waste management (Bergsaker et al. 2016). The physico-chemical 

processes arising from rock-fluid interaction will depend on the mineralogical 

composition and the microstructural properties of the rock (i.e. grain size, 

porosity, etc.), as well as on the fluid characteristics (Duda and Renner 2013). 

The chemical mechanisms controlling subcritical crack growth include stress 

corrosion (i.e. weakening of strained bonds at the crack tips produced by a 

chemical reaction) and dissolution (i.e. ionic bond breakage) (Atkinson 1984; 

Atkinson and Meredith 1987), while the physical processes are related to pore 

pressure increase, as well as capillary tension and surface energy reduction 

(Homand and Shao 2000; Cai et al. 2019; Maruvanchery and Kim 2019; Zhong 

et al. 2019). 

The properties of geomaterials under saturating conditions are expected 

to differ from those in a dry state. A number of experimental evidences have 

revealed the impact of fluids over relevant rock properties, such as uniaxial 

compressive strength or brittleness (Kim and Changani 2016; Anne Perera et al. 

2018). However, the effect over fracture toughness has not received much 
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attention so far. In this study, we have performed a series of mode I fracture 

toughness (KIC) tests on saturated rock specimens using the pseudo-compact 

tension test (pCT) approach. The pCT test configuration is advantageous to this 

respect because it allows the insertion of the sample into a fluid bath that keeps 

the sample saturated all along the experiment. Two rock types, a porous siliceous 

sandstone (Corvio), and a high-strength, low porosity granite (Blanco Mera), were 

selected to assess the influence of seven different fluids on KIC and related 

properties. Taking as reference the results obtained in dry tests, specimens of 

the two lithologies were tested under identical experimental conditions (diameter, 

thickness, depth of starter notch, temperature, loading rate, etc.). Here we 

present the experimental results obtained from the rock-fluid interplay and 

discuss the associated implications. 

C2. Materials and methods 

C2.1. Materials 
Two different rock types, namely Corvio sandstone (C) and Blanco Mera 

granite (GR), were used in this study. While quartz (~ 94 wt. %) with subordinated 

kaolinite (~ 3.5 wt. %) and K-feldspar (~ 1.7 wt. %) dominate in the mineralogical 

composition of Corvio sandstone (Falcon-Suarez et al. 2017), Blanco Mera 

granite is mainly composed of plagioclase (~ 35 wt. %), alkaline feldspar (~ 27 

wt. %), and quartz (~ 20 wt. %) (Arzúa 2015). Dry properties of these rocks have 

been reported previously in  Muñoz-Ibáñez et al. (2020). Due to its relevance in 

the present study, we emphasize the large effective porosity (ne) difference 

between both lithologies (ne~18-24% for Corvio sandstone, ne ~1% for Blanco 

Mera granite). 

We saturated the rock samples using seven different wetting and non-

wetting fluids with geological and/or oil industry related applications: 1) deionized 

water; 2) NaCl-saturated water; 3) HF95Y mineral oil; 4) B7 diesel fuel; 5) 

methanol; 6) 10% wt. HCl solution; and 7) 0.2M NaOH solution. 
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C2.2. Sample preparation 

Specimens were cut using a customized tile saw. Dimensions of the 

prepared specimens are listed in Table C.1. After preparation, all the samples 

were dried at 60ºC for 24 hours, and then immersed in the corresponding fluid 

during one week before testing. To do this, each sample was placed vertically on 

the bottom of a beaker, and fluid was added beyond the height of the notch tip 

(Figure C.1). Special care was taken to ensure that the ligament plane was 

permanently submerged in fluid, and so two measures were taken: (1) in order to 

avoid excessive fluid evaporation, each beaker was covered with a plastic film; 

and (2) when it was observed that the fluid level decreased below the height of 

the notch tip due to rock absorption, the beakers were refilled until the original 

level.  

In a second test series, four additional samples of slightly smaller size (see 

Table 5.1 for dimensions) were prepared and immersed in NaOH solution for a 

week. Two of them, one of each rock type, were later introduced into a second 

bath of HCl solution during an additional week before testing. 

Figure C.1: pCT specimens of Blanco Mera granite (left) and Corvio sandstone (right) 

immersed in diesel fuel and HCl solution, respectively. 
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Table C.1: Specimen dimensions: D = diameter; B = thickness; Gd = groove depth; Gw = 

groove width; a/b = notch length ratio. 

Testing series D (mm) B (mm) Gd (mm) Gw (mm) a/b 

1 53.8±0.2 27.7±0.2 5 10 0.34±0.01 

2 49.2±0.3 24.9±1.5 5 10 0.4 

C2.3. Experimental setup and procedure 
Specimens were loaded using the testing equipment specially designed to 

perform pCT tests, which allows measuring the energy associated with crack 

propagation. Tests were performed at room temperature at a constant 

displacement rate of 0.1 mm/min. The testing procedure is similar to that 

previously described for dry samples in Muñoz-Ibáñez et al. (2020), with the 

difference that the specimens were kept inside the fluid bath during testing. To 

perform the experiments, the saturated samples were moved to a shorter glass 

container filled with the corresponding fluid (Figure C.2). A custom-made 3D-

printed platform placed inside the container was used to provide stability to the 

sample during the experiment, and to lift it to a position such that the steel jaws 

could fit into the U-shaped groove while keeping the ligament plane submerged 

in the fluid at all times. In order to place the container in a suitable position for 

testing, it was necessary to replace the positioning cradle originally used to hold 

the dry samples with a flat thin platform. The modified experimental setup is 

shown in Figure C.3.  

Load (P) and load point displacement (d) were recorded continuously 

using a 50 kN load cell and two linear variable differential transformers (LVDT), 

respectively. Since the samples were immersed in a fluid bath during testing, it 

was no possible to measure the crack mouth opening displacement (CMOD). 
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Figure C.2: Prepared specimen of Blanco Mera granite immersed in diesel fuel before 

testing. 

Figure C.3: Experimental setup for immersed pCT test: Blanco Mera granite specimen 

immersed in mineral oil (left); and Corvio sandstone specimen immersed in deionized 

water (right). 
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C3. Results 

C3.1. Mode I fracture toughness (KIC) 
KIC was computed for each specimen using Equation (2.1), where Pmax is 

the peak load, B is the specimen thickness, a is the notch length, and b is the 

distance from the base of the U-shaped groove to the bottom of the specimen. 

𝐾𝐾𝐼𝐼𝐼𝐼 = 𝑌𝑌′ 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑆𝑆 √𝜋𝜋𝜋𝜋 (2.1) 

The dimensionless stress intensity factor (Y’) was calculated from the 

expression proposed by Muñoz-Ibáñez et al. (2020) for 50 mm-diameter pCT 

specimens: 

𝑌𝑌′ = 12.651 − 47.054 �
𝜋𝜋
𝑏𝑏
� + 157.72 �

𝜋𝜋
𝑏𝑏
�

2
− 247.17 �

𝜋𝜋
𝑏𝑏
�

3
+ 296.33 �

𝜋𝜋
𝑏𝑏
�

4

KIC values obtained for each rock type and saturating fluid are displayed 

in Figure C.4. Although in a first approach we performed one test of each type 

(i.e. for each combination of rock/saturating fluid), we considered necessary to 

repeat a few of them to confirm the validity of results (this situation is indicated in 

the figure as n=2). We observe a general trend for fracture toughness to decrease 

in the presence of fluids. Experimental results also illustrate an enhanced 

sensitivity of KIC to fluid immersion in the case of the sandstone than in the 

granite. Regarding the type of fluid, we observe that the largest reductions on KIC 

are found for deionized water and HCl solution. On the other hand, we observe 

that the presence of non-wetting fluids (mineral oil and diesel fuel) in the rock 

matrix, far from weakening the specimen, may even have a strengthening effect 

(i.e. KIC increases with respect to dry tests) in the case of granite. The results 

obtained from the second test series are also plotted in Figure C.4. Interestingly, 

the reduction in KIC after NaOH immersion is partially recovered after the 

subsequent saturation in HCl. What is more, the value of fracture toughness 

obtained for the granite specimen is within the range of values expected for dry 

specimens.  
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C3.2. Load-displacement curves 
In order to identify the onset of loading for each experiment, an Akaike 

Information Criterion (AIC) algorithm was applied to the average-normalized load 

vs time raw data. Figure C.5 illustrates raw (i.e. P vs time curves) and processed 

(i.e. P vs d curves) experimental results from pCT tests. At first glance, we 

observe that fluid effects are more prominent in the sandstone: while for this rock 

type the stiffness (i.e. the slope in the P-d curve) becomes reduced for the seven 

saturating fluids considered, this is not the case of granite. The only exception is 

for a highly alkaline fluid (NaOH solution), which makes even the granite less stiff. 

C3.3. Energy 
In a second-order approach, we considered the relative contribution of the 

subcritical crack growth and the stable crack propagation stages in the total 

energy balance of a single test. This is to split the initiation (Epre) and propagation 

(Epost) energies at the point of maximum load (Pmax) from the total fracture energy 

(Etot), as displayed in Figure C.6. Although for saturated samples we could not 

measure CMOD, we have previously observed a good agreement between the 

energy computed from P-d curves (Etot) and that from P-CMOD (Etot-CMOD) for dry 

pCT tests (Figure C.7). 

There is a significant correlation between Pmax and Etot in the sandstone 

but not so clear in the granite (Figure C.8). Interestingly, for the sandstone the 

correlation is better with respect to Epost than for Epre. For all the samples (dry and 

saturated specimens of either sandstone or granite), we also observe that Etot is 

strongly correlated to Epre and Epost (Figure C.9). However, the slope is larger for 

the relation between Etot and Epost than between Etot and Epre. Regarding the type 

of fluid, we observe that the energy needed to generate the fracture (Epre) in both 

rock types is lower for the samples immersed in deionized water, methanol, and 

HCl solution compared with dry specimens (Figure C.10). This is also true for 

sandstone samples saturated in diesel fuel and NaOH solution, and the granite 

samples immersed in NaCl solution. Curiously, the energy needed to propagate 

the fracture (Epost) is reduced in all cases in comparison with dry conditions, with 

the only exception of the combination of granite with non-wetting fluids (Figure 
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C.11). We also observe a partial recovery in both Epre and Epost for the 50 mm-

diameter specimens saturated in HCl solution that were firstly immersed in NaOH. 

Figure C.6: Initiation (Epre) and propagation (Epost) energies obtained from 

load versus displacement (P-d) curves. The maximum load (Pmax) marks the 

transition from from Epre to Epost. 

Figure C.7: Total energy obtained from load-CMOD curves (Etot-CMOD) versus total 

energy obtained from load-displacements curves (Etot) for pCT testing. The 

shaded region represents the confidence interval. 



APPENDIX C. Impact of saturating fluids on KIC 217 

 

 
 

 

Figure C.8: Maximum load (Pmax) versus total energy (Etot; top), initiation energy (Epre; 

middle), and propagation energy (Epost; bottom). 
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Figure C.9: Initiation energy (Epre; top) and propagation energy (Epost; bottom) versus 

total energy (Etot). 
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C4. Discussion 

Mechanical properties of rock (e.g. compressive or tensile strength) 

usually decrease in the presence of fluids. A water-weakening effect on rock 

strength has been previously reported for different rock types, including both 

porous sandstones (Rutter and Mainprice 1978) and low porosity granites (Lajtai 

et al. 1987). The rock-fluid interaction produces a microstructural damage in the 

cementing or rock matrix that would explain the strength loss (Maruvanchery and 

Kim 2019). Ojo and Brook (1990) found that the tensile strength of sandstone 

samples saturated in water was half of the value obtained in dry conditions. In 

three-point bending experiments performed on saturated granite specimens, 

Zhao (2018) reported a strength reduction in the presence of water (25%) but 

also of other fluids such as 10% w.t. HCl (32%), 10% w.t. NaOH (27%), and 

kerosene (24%). Han et al. (2016) also observed an overall weakening trend (in 

compression and tensile strengths, as well as in KIC) for granite specimens 

saturated in four different fluids, including 0.01 mol/L of NaOH solution and 

distilled water. Although they also reported the lowest resistance for samples 

immersed in acid solutions (0.01 mol/L Na2SO4, and 0.01 mol/L NaHCO3), they 

found that the degree of chemical deterioration was diminished under strong 

alkaline conditions (NaOH). Their results are in agreement with those reported 

here for pCT testing, in which the lowest fracture toughness is found for rock 

specimens saturated in an acid HCl solution. Although our experimental results 

also suggest a lower impact of NaOH on KIC when compared with other fluids 

such as distilled water, the effect is stronger in comparison with other fluids such 

as mineral oil, diesel fuel, or methanol. Curiously, the alkaline NaOH solution 

produces the most significant reduction in stiffness for both rock types, seeming 

to be the only fluid affecting the granite in this sense. In fact, fluid effects (KIC and 

stiffness reduction) are more notable in Corvio sandstone than in Blanco Mera 

granite. Under water saturated conditions, Cai et al. (2019) also reported a 

stronger reduction in the compressive strength for sandstone than for granite or 

marble. This behaviour is likely effect of the porosity and the source of strength 

in each lithology. The cohesion of mineral grains arises from different processes 
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for each rock type: while in sandstones the grains are bonded together by means 

of cement (silica and carbonates), the texture of granite is formed by intergrowth 

(i.e. grain interlocking due to crystallization). The easy access of fluids to the 

porous and highly pervious sandstone makes possible a more efficient 

fluid/cement interaction, which is dominated by dissolution processes. In this 

regard, the non-wetting fluids are not expected to contribute to dissolution 

although significant lowering of the stiffness and the fracture energy in the 

sandstone is still observed. 

Quartz (SiO2) is one of the most common minerals of the continental crust 

(Fjaer et al. 2008). While quartz is the main component (~94 wt. %) of Corvio 

sandstone, the proportion of this mineral is lower in the case of Blanco Mera 

granite (~20 wt. %). Initially, in the absence of load and fluids, the starter notch 

of the rock specimen is in stable equilibrium with the residual stress field around 

the crack tip (Lawn and Cook 2012). If the sample is immersed in fluid and loaded 

afterwards, subcritical crack growth will occur due to the breakage of chemical 

bonds at the fracture tip under tension (Ilgen et al. 2018). For the rock types 

considered here, this process would be related to the chemical reaction between 

the broken siloxane bonds (Si-O-Si) at the notch and the fluid under consideration 

(Nara et al. 2011). Under water saturated conditions, the strong silica-oxygen 

bonds in silicates would be replaced by much weaker hydrogen bonds, which 

would explain the reduction in the stress needed for rock fracturing in the 

presence of water (Dyke and Dobereiner 1991). Nevertheless, the effect would 

be less remarkable in the case of granite due to its significantly lower porosity 

(Cai et al. 2019). Rimsza et al. (2018) performed atomistic simulations to 

investigate the weakening effect of silica in the presence of water. They found 

that the aqueous solution decreased the mechanical/energetic requirement for 

Si-O bond breakage, favouring fracture propagation and lowering KIC. In a more 

recent contribution, Rimsza et al. (2019) carried out similar simulations 

considering four different environmental conditions, including water, 1M NaCl 

solution, and 1M NaOH solution. Although they found that any of these aqueous 

solutions weakened silica, the effect was more remarkable for the alkaline NaOH 

solution, which was attributed to increased interactions between Na+ ions and the 
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broken siloxane bonds at the crack surface. In our experiments, the enhanced 

sorption of Na at the crack tips due to deprotonation and breaking of siloxane 

bonds would explain the significant stiffness reduction observed for NaOH. 

However, the partial recovery of KIC and fracture energy after subsequent 

immersion of NaOH saturated samples in HCl solution suggests that this could 

be a reversible process. In a basic environment, the siloxane bonds of the crack 

surface attract the Na+ ions present in the solution. Then the later immersion in 

an acid solution with considerably larger H+ concentration (10-1 for a 0.1 M HCl 

solution; 10-13 for a 0.1 M NaOH solution) would induce the replacement of Na+ 

ions at the chemical bonds by H+.  

The surface energy needed to develop a crack may be reduced due to 

fluid adsorption on crack surfaces (Hudson 1993). The presence of a water layer 

would induce changes in the cohesion and friction of the grains, stabilising the 

heterogeneous mineral surfaces and decreasing the surface free energy (Arsalan 

et al. 2015). Ilgen et al. (2018) related the lower KIC obtained in cracks exposed 

to liquids to a reduction in: (i) the elastic potential energy of chemical bonds at 

the crack tip; or (ii) the energy from the added surface area of the fracture. In our 

tests, we also reported a decrease in the crack propagation energy for the two 

rock types tested here under saturating conditions (except for the granite samples 

immersed in non-wetting fluids), which may be related to reactions at the fluid-

mineral interfaces. 

C5. Conclusions 

The effect of fluid saturation on the initiation and propagation of tensile 

cracks in rocks was analysed. A series of pseudo-compact tension (pCT) 

experiments were carried out using an experimental device that allows the 

measurement of the energy associated with crack propagation. Specimens of two 

types of reference rocks (Corvio sandstone and Blanco Mera granite) were 

saturated prior to testing and kept immersed in the selected fluid during the 

experiments. The experimental conditions (temperature, loading rate, etc.) were 

identical to those used for dry tests in order to ensure that fluid saturation was 

the only factor affecting the results. We observed significant effects associated 
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with rock-fluid interaction. The saturating fluids have a more pronounced impact 

on the mode I fracture toughness (KIC) and the energy content (Epre and Epost) in 

the case of sandstone than in the granite. Although the stiffness is less affected 

in the case of granite, both types of rocks show significant stiffness reduction 

when the contact fluid is NaOH. However, the weakening effect produced by this 

alkaline solution could be recovered partially after subsequent immersion in HCl 

solution. For all the tests, we observe that the ratio of energy between crack 

initiation and propagation is constant but with a higher storage (~60% of total 

energy) during propagation. 
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