Facultade de Informatica

>‘ l< UNIVERSIDADE DA CORUNA

TRABALLO FIN DE GRAO
GRAO EN ENXENARIA INFORMATICA
MENCION EN COMPUTACION

Extending a property-based testing tool

with parallel and distributed execution

Estudante: Pablo Costas Sanchez
Direccion: Laura Milagros Castro Souto

Konstantinos Sagonas

A Corufia, setembro de 2020.

To Sam and to Diego

Acknowledgements

First of all I would like to express my most sincere gratitude to Laura and Kostis, my supervi-
sors of this project, as without them it would not have occurred. I would like to thank Laura
for her kindness, support and for being ever so patient with me, always helping me out when
in need and motivating me to push forward, whatever the circumstances. I would like to
thank Kostis not only as his is the tool this project is about, but also for his good feedback
and interest in our work, besides the help he has given during this year.

I would like to also thank my family and friends, those of old and those that I met during
this degree, for putting up with me everyday and throughout these years.

Finally, I would like to thank Diego for always making me smile and for all the happiness
that he has brought to my life.

Abstract

Software testing plays an important role in software development, as it not only helps find
bugs in the code, but also boosts the confidence of the developers that the program behaves
correctly, besides reducing the cost of fixing such errors or flaws if done in early stages.

One of the most common methods of software testing is unit testing, which tests individ-
ual components of the software by asserting whether for cherry-picked test cases (i.e., for a
given input), the component or unit produces the expected output. This approach to testing
has however its downsides, as it is a tedious time-consuming activity, prone to errors of the
developer, such as not covering every possible case.

Property-Based Testing is a method of testing that fixes the problems found in unit testing,
for it uses properties, which are simply logical statements that capture partial correctness of
the program, to generate random input to test whether the program satisfies those properties
or not. However, while automation allows for the execution of many more tests, increasing
their number also means longer test running times.

The main goal of this project is to extend PropEr, the most powerful property-based test-
ing tool written in Erlang, with parallel and distributed execution and measure the obtained

speedup from doing so.

Resumo

Probar o noso coédigo é unha das cousas mais importantes na disciplina do desenvolve-
mento do software, xa que non sé nos axuda a encontrar erros no noso coédigo, se non que
tamén aumenta a confianza das desenvoldedoras e desenvoldedores de que o seu programa se
comporta correctamente, ademais de reducir o custo de arranxar devanditos erros ou fallos
se se fai dende o inicio.

Un dos métodos mais comuns para facer probas ao software son as denominadas probas
de unidade, nas que para probar compoiientes individuais do software, mirase se para casos
especificos (ou sexa, para entradas concretas) o compofiente ou unidade produce a saida es-
perada. Esta forma de probar o cédigo ten, porén, as stias desvantaxes, xa que é unha tarefa
tediosa e pesada de facer que consume moito tempo, e a maiores é propensa e susceptibel a
erros das desenvoldedoras e desenvolvedores, coma non cubrir tédolos casos posibles.

As probas baseadas en propiedades son un método de probar software que soluciona estes
problemas das probas de unidade, xa que no seu lugar empregan o concepto de propiedade,
que é un predicado l6xico que captura a correccion parcial do programa. Estas propiedades

son usadas para xerar entradas aleatorias para comprobar se o programa satisface as stas

expectativas ou non. Porén ainda que a automatizacién permite realizar moitas mais probas,
os tempos de execucién tenden a incrementarse correlativamente.

O obxectivo principal deste proxecto é estender PropEr, a ferramenta de probas baseadas
en propiedades mais potente escrita en Erlang, para permitir a sia execucién paralela ou
distribuida.

Keywords: Palabras chave:
« Functional programming + Programacién funcional
« Property-Based Testing « Probas baseadas en propiedades
« Erlang « Erlang
« Concurrency « Concurrencia
+ Distributed execution + Execucion distribuida
+ Parallelization speedup + Aceleracion por paralelizacion

Contents

1 Introduction 1
1.1 Motivation e 1

1.2 Objectives 2

1.3 Methodology L 3

1.4 Workplan 4
1.4.1 Projectcost 5

1.5 Reportlayout 6

2 Background 7
2.1 Erlang/OTP e 7

2.2 Property-Based Testing 9
221 UnitTesting e 9

2.2.2 Property-Based Testing 11

23 PropEr e 12
2.3.1 Stateless vs. stateful properties 0oL, 15

3 Development 17
3.1 Design e e e e e 17
3.1.1 Proposeddesign 18

3.1.2 Test distribution among workers 19

3.2 APropErstudy 21

3.3 Implementation 28
331 Preamble 28

3.3.2 Projectstructure 28

3.3.3 APropErimplementation, 29

3.34 Problems faced during the Implementation stage 36

3.3.5 Implementing the different strategies of test distribution 37

Contents

4 Testing and benchmarking

4.1 Testing the implementation

4.2 Benchmarking
4.2.1 Picking a strategy to split the tests
4.2.2 Parallel execution benchmarking

423 Distributed execution benchmarking

4.3 Conclusions

5 Conclusions

5.1 Follow-up

5.1.1 Impact on the code

5.1.2 Lessons learned

5.2 Future work
List of Acronyms
Glossary

Bibliography

ii

63

............. 63
............. 63
............. 64
............. 65

69

71

73

List of Figures

1.1 Tterations of the project L 4
3.1 Even distribution of tests among the workers 19
3.2 Uneven distribution of tests among the workers 20
3.3 Batches distribution of tests among the workers 20
3.4 Nth sequence distribution of tests among the workers 21
3.5 Tracing visualized using the Event Tracer 22
3.6 Exported definitions (i.e., functions and types) of the tool’s main module . .. 23
3.7 Control flow of the tool originally 25
3.8 Control flow of the tool after implementing the design 26
4.1 Reports of Travis Cl in the project 40
44 Resultsof compile_prop:compile() 56
4.7 Results of beam_types_prop:associativity() 57
4.10 Resultsof crypto_ng_api:prop__crypto_one_time() 58

4.13 Resultsof crypto_ng_api:prop__crypto_init_update_final 59
416 Resultsof ssh_eqc_encode_decode:prop_ssh_decode_encode() 60
4.19 Results of shell_docs_prop:prop_render() 61

1ii

List of Figures

iv

List of Tables

1.1
1.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

Breakdown by iteration of the effort of the project 5
Total cost of the project 5
Cowlib: prop_str_huffman() parallel benchmarks. 43
Kazoo: prop_normalize () parallel benchmarks 44
Zotonic: prop_s_utf8a() parallel benchmarks 45
Diffy: prop_inner_diff () parallel benchmarks 46
Erlang/OTP: compiler, compile () parallel benchmarks 48
Erlang/OTP: compiler, associativity () parallel benchmarks 48
Erlang/OTP: crypto, prop__crypto_one_time() parallel bench-
markso e 49
Erlang/OTP: crypto,prop__crypto_init_update_final () par-

allel benchmarks L. L 49
Erlang/OTP: ssh, prop_ssh_decode_encode () parallel benchmarks 50
Erlang/OTP: stdlib, prop_render () parallel benchmarks 51
Erlang/OTP: compiler, compile () distributed benchmarks 52
Erlang/OTP: compiler, associativity() distributed benchmarks . . 52

Erlang/OTP: crypto,prop__crypto_one_time () distributed bench-

Erlang/OTP: crypto,prop__crypto_init_update_final () dis-

tributed benchmarks o oL 53
Erlang/OTP: ssh, prop_ssh_decode_encode () distributed bench-

markso 54
Erlang/OTP: stdlib, prop_render () distributed benchmarks. 54

List of Tables

vi

Listings

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
5.1
5.2

Example of a Hello World program in Erlang 8
Example of a concurrent programin Erlang L. 8
Program that reverses the orderof alist 9
Example of unit testing in Erlang o000 L 10
Example of a successful EUnit invocation 10
Example of property-based testing in Erlang 12
Example of a successful PropEr invocation 13
Example of a failed PropEr invocation 13
Example of property-based testing in Erlang 14
Example of calling proper:module/1 14
Exported definitions (i.e., functions and types) of the tool’s main module . .. 23
Code of original proper:inner_test/2 24
Simplified code of original proper:perform/3 27
Directory structure of thetool L. 28
Definition of the FORALL/3 macro, 30
Code of proper:quickcheck/1,2 30
Code of proper:test/2 31
Type definition of proper:opts() record 32
Code of proper:inner_test/2 with the modifications applied 33
Code of proper:perform_with_nodes/2 33
Code of proper:start_node/1 35
Code of proper:ensure_code_loaded/1 35
Code of proper:maybe_load_binary/2 37
Comparison of LOC (Lines of Code) PropEr had before and after our work . . 64
Total of additions and deletions done throughout our work 64

vii

Listings

viil

Chapter 1

Introduction

THROUGHOUT this first chapter of the report we will cover the motivations that pushed us
to do this project, a short summary of the current situation and the objectives the final

version of the application resulting from this project should satisfy.

1.1 Motivation

One of the most important parts of software development is testing. It has been stated multi-
ple times that not only the cost of not testing your software increases over time, but it is also
less expensive to find and fix problems in earlier stages of development than while in pro-
duction or, in other words, that the cost of finding those defects exceeds that of developing
the software originally. On the one hand, it boosts the developer’s confidence in their code
behaving the way it is supposed to; on the other hand, it can become a boring and tiresome
task to cherry-pick the cases to test and, as Dijkstra said, “program testing can be used very
effectively to show the presence of bugs but never to show their absence” [1]. Nonetheless it
is a necessity that should not be avoided: tests are critical to program quality, and even more
in long-lived projects.

All in all, even though software testing plays an important role in software development,
in practice it is almost always lacking in some aspect: be it because it is non existent, either
because when developing or maintaining the software it was not thought that necessary, or
because although present, it is not able to properly accomplish its function as an assessment
of the software’s functionality.

Software testing is also a quite large area of software development, having numerous
approaches (e.g., static testing, dynamic testing, passive testing, white-box testing, black-
box testing) and levels of testing (i.e., unit testing, integration testing, system testing and
acceptance testing), with unit testing being one of the most common methods used to perform
the job.

1.2. Objectives

This is where Property-Based Testing (PBT) [2] comes into play, as it is a type of testing
which uses generated data as input for the tests, enabling the developer to instead of manually
writing all the possible ways the code can be used, specify properties they want their program
to satisfy. Then, through the use of a generative-testing tool (i.e., a property-based testing tool)
of their liking (e.g., QuickCheck [2, 3], PropEr [4, 5], test.check [6], etc), randomized input data
is generated and used to test whether the properties are satisfied by the code. Furthermore,
the concept of a property is not a complex one: it is a logical statement that captures partial
correctness of the code. In other words, a rule that dictates that as long as the input the code
is given belongs in a certain set of values it should behave as expected (i.e., produce outputs
that fulfill certain condition(s), present certain traits, or belong, in turn, to a certain range).

However, this type of testing has its downsides: scaling up the number of tests to a large
number or checking if complex properties hold can take a quite significant amount of time.

There are other approaches to testing worth mentioning, such as formal verification and
theorem proving, since both techniques are quite helpful in verifying the correctness of soft-
ware. However, not only they suffer from having an excessively steep learning curve, but
also from being hard to scale up to current software programs because of issues as the state
explosion problem and the like.

Because of this and that with the ever-improving computer specifications over the years,
not only concurrent software programs have become a trend but also distributed programs
too (e.g., parallel computing, any kind of telecommunication software, network file systems,
etc) because of their advantages of being more performant than their sequential counterparts,
although at the cost of being harder to test; and the fact that most property-based testing tools
run sequentially (PropEr can do parallel testing but it only works in certain types of tests and
QuickCheck has an old driver that tries to expand it with parallel execution; however, no
Property-Based Testing tool has an officially included concurrent execution for all of their
runs), we thought that the execution times and performance had room for improvement by

expanding one to allow parallel an distributed execution.

1.2 Objectives

The main goal of this bachelor thesis is to design how to extend a property-based testing tool
to run tests in a parallel and distributed fashion, and to implement those changes in the tool
with as little as possible impact in the existing codebase.

The property-based testing tool we will expand and patch is PropEr, which not only was
inspired by QuickCheck, the original Property-Based Testing tool, but is also along with it
the most powerful PBT tool to date. In addition, it is written in Erlang/OTP and is the most

used within the community of the language to run property-based tests. We chose this tool

CHAPTER 1. INTRODUCTION

as the popularity of it can help get feedback easily on the changes that will be done and
because, as previously stated, it is built upon Erlang, an open-source battle-tested functional
programming language (with a permissive license that allows us to work with it) for fault-
tolerant and distributed systems, so we intend to bring these characteristics to this powerful
testing tool to increase its power even more.

Hence, the objective of this project is to bring the aforementioned new features (parallel
and distributed execution) to the tool using one of the language’s strongest points: its ac-
tor model, which eases the job of writing concurrent software. Thanks to it and because of
how time-consuming running many property-based tests can be, the extension of the tool
will speedup the execution times of testing those properties by running them in parallel or
distributed.

Once this primary objective is achieved we will run in a cluster this patched version of
PropEr to validate and improve it, in addition to measure the obtainable speedup when run-
ning property-based tests of relevant projects (i.e., those used by the community), as some
can take too long (e.g., Scalable Process Groups (spg) [7]).

Finally, once this project’s work has been tested and proved working properly, the com-
mits with the changes will be Pull Requested from the fork [8] where they have been published

to the original repository [9], to allow the modifications to go upstream.

1.3 Methodology

This project’s work and development has been approached following a modified version of the
well-known Scrum methodology, adapted to a single person environment as it is originally
team-oriented. It is an agile methodology built upon the concept of sprints, which are usually
short iterations to be done within a fixed time period, allowing to develop a product in a series
of incremental, more manageable, iterations that focus on certain aspects of the product and
that always deliver a working product at their end. This approach to managing software
development is also well-suited for situations of great uncertainty and risk, as it was this
project.

As previously mentioned, although we used Scrum, some modifications were done to
take into account that instead of a team developing a solution, the agile methodology was
being used by an student and his two supervisors. Rather than having daily meetings we
had weekly meetings were the objectives of each sprint and their progress was discussed.
However, as one of the supervisors was remote and he could not attend those meetings, those
were supplemented with being in constant communication with him, first by email and later
on through Skype calls and chats.

Some of the methods we used from Scrum to approach the work were setting up a to-

1.4. Work plan

do list and keeping track of it as the sprints progressed to change the priorities of the tasks
when deemed necessary, or besides the weekly meetings, having reviews of the progress and
objectives with one of the supervisors, whom was none other than one of the original creators

of PropEr.

1.4 Work plan

For the purpose of realizing this project, we divided it into self-contained iterations, each of

them having their own gist to deal with. Those iterations are listed below and shown in 1.1:

« It 1. Study of the application and research its current architecture.
« It 2. Design an initial draft of a concurrent approach in Erlang.
+ It 3. Locate the key components that should be changed or extended.

« It 4. Implementation of the parallel and distributed changes in the property-based

testing tool.

« It 5. Testing and validation of our work by running benchmarks of projects with
Property-Based Testing on both a cluster to test the distributed execution and in a pow-

erful computer with a high number of cores to test the parallel execution.

; ‘——ll(ITERATION 2 L oo
s “\v=r-;——J---v-—r—:—#IJ :

5

h, A—

| ITERATION 3]...._--'

o ra—E 2

Figure 1.1: Iterations of the project

CHAPTER 1. INTRODUCTION

1.4.1 Project cost

As previously discussed, we followed the Scrum methodology with sprints of a defined du-
ration of two weeks. By taking into account that and also the average work done per sprint,
we have calculated the effort spent on each iteration, based on 1 hour/day averaged over 44

weeks, to be as follows:

Iteration Effort (hours)
It 1. Study and research of the tool 45
It 2. Design stage 70
It 3. Location of key components in the tool 25
It 4. Implementation of the design 165
It 5. Testing, validation and benchmarking 145
Total 450

Table 1.1: Breakdown by iteration of the effort of the project

The total effort of this project therefore is 450 hours. However, it is important to note that
the calculated effort is only from the student; the hours and effort from both supervisors have
yet to be calculated. Based on the weekly meetings we had during the project, and adding
a small bit more of time to take into consideration any interaction that was not during said
meetings (i.e., Skype calls because of some questions, feedback, etc), each supervisor worked
in the project around 2.5 hours per iterations, which adds to 12.5 hours of total work each
supervisor through the iterations, or a total of 25 hours done by the two supervisors together
for the duration of the project.

Then, based on the average salary for a Software Engineer in Spain, and estimating the
hourly wage of each supervisor to be 60€/h, the cost of the student, both supervisors and

therefore of the project can be calculated, and is shown in 1.2.

Resource | Cost (€/h) | Hours | Total cost (€)
Student 25 450 11250
Supervisors 40 25 1000
12250

Table 1.2: Total cost of the project

As the rest of the tools used (e.g., Github, Travis CI) being free and because of both the
CITIC lending us access to the cluster of machines used in the project, and the Uppsala Uni-

versity giving us a machine to test with too, the final budget of the project is 12250€.

1.5. Report layout

1.5 Report layout
The rest of this report is structured as follows:

o Chapter 2 - Background. In this chapter we will explain some notions and ideas

needed to comprehend certain parts or aspects of this project’s work.

+ Chapter 3 - Development. In this chapter we will cover how we set off to research
the property-based testing tool to come up with a concurrent design for it and later

implement it.

« Chapter 4 - Testing and benchmarking. This chapter covers how we tested and
validated the aforementioned implementation, as well as the benchmarks of its new

execution times.

« Chapter 5 - Conclusions. In this chapter we present the conclusions reached, along

with possible future improvements that our work could benefit from.

Chapter 2

Background

IN this chapter we will explain certain concepts and/or notions that the reader should know
about to get a proper understanding of our work, such as what is all this fuss about Erlang
and why it is an incredible language to write concurrent software, and a quick introduction

into the world of Property-Based Testing.

2.1 Erlang/OTP

Erlang is a functional programming language, which means that as the rest of programming
languages based on the functional paradigm, its programs are structured as a set of, usually
pure, functions (i.e., functions that for a given input always return the same output), contrary
to the more commonly used imperative paradigm, where commands or instructions are used
to make up the programs. It was designed “from the bottom up to program concurrent, dis-
tributed, fault-tolerant, scalable, soft, real-time systems” [10] and developed by Ericsson; on
the other hand, OTP is a collection of design principles and Erlang libraries to help develop
these systems.

Some of Erlang features are that its data types (e.g., lists, functions, maps, strings, etc)
are immutable, variables can only be bound once (i.e., they cannot have their value changed
once assigned) and consequently any function defined in an Erlang program, also known
as a module, will always produce a new copy of its output. It also makes use of the pattern
matching mechanism, which in Erlang occurs when evaluating any function call, receive, case,
try expressions and match operators (=) expressions, by matching the left-hand side of an ex-
pression against its right-hand side; if the matching succeeded any unbound variables became
bound, if it failed a runtime error has been generated.

An example of a module that prints to the standard output “Hello, World!” is shown in 2.1

to give the reader a quick glance of what a simple program in Erlang would look like.

2.1. Erlang/OTP

-module(hello_word).
-export([greet/0]).

o

S

greet() -> io:format("Hello, World!~n").

Listing 2.1: Example of a Hello World program in Erlang

Nonetheless, the biggest strength and perhaps peculiarity of the language is its concur-

rency model, as Erlang uses the Actor model [11], modeling each actor as an Erlang process.

These processes are not Operating System processes but rather are lightweight, fast to create

and terminate, and isolated between themselves (i.e., they do not share memory) processes

whose scheduling and mapping to actual OS processes is made very efficiently and transpar-
ently by Erlang’s Virtual Machine, the BEAM, which also handles the distribution of Erlang

itself across multiples machines through the use of nodes, of which we will talk about more

in the next chapter.

These processes are created by calling erlang: spawn/3' function and are able to

share information among themselves by sending messages. An example of a program that

uses processes and message passing is shown in 2.2.

-module(processes_example).
2| —export([start/0, add/3]).

sadd(X, Y, From) ->
5 N =X+ Y,
6 From ! {addition, N, self()}.

s| start() ->

9 Pid = spawn(?MODULE, add, [40, 2, self()]),
10 receive

11 {addition, N, Pid} -> N == 42

12 end.

Listing 2.2: Example of a concurrent program in Erlang

For an easier understanding of the program, it has been broken down into its important

bits:

1. First, a function that adds two numbers and sends the result back to the PID of another

process, processes_example:add/3, is defined.

'In Erlang the number of arguments a function is passed to determines its arity. As functions are uniquely
defined by the combination of their module name, function name and arity, they are are usually denoted as

module_name:function_name/arity

CHAPTER 2. BACKGROUND

2. Then, a process that executes that function is spawned at line 10, in this case to add 40
and 2 and send the result back to the caller of the program. The PID of the process is

assigned to the Pid variable.

3. Finally, the result is sent back at line 7 and received and asserted during lines 11-
13. We can be sure that it is the correct message as we pattern matched it against
{addition, N, Pid} and since the Pid variable was already bound to the PID
of the Erlang process that is executing the function, no other message will match except

the one that was sent from the spawned process.

Some further examples of components from OTP that are worth highlighting are gen_servers,
generic server processes with standard interfaces, and supervisors, processes capable of su-
pervising and restarting if something goes wrong other child processes (which in turn can be

either a supervisor or any other kind of process).

2.2 Property-Based Testing

To highlight the value that Property-Based Testing brings to the world of software testing,
this section will start by summing up/talking about why software testing is important and

how it is usually done.

2.2.1 Unit Testing

The most common method of software testing is unit testing, where individual units or com-
ponents are validated by asserting whether for cherry-picked inputs the unit produces the
expected output. These units are can be functions, modules, etc. The problem that comes
with unit testing is

And so, if we wanted to test an Erlang program that reverses the order of a list, as shown
in 2.3.

1| -module(unit_testing_example).

reverse(L) -> reverse(L, []).

reverse([], Acc) -> Acc;
o/ reverse([H|T], Acc) -> reverse(T, [H|Acc]).

o

Listing 2.3: Program that reverses the order of a list

One would write unit tests that for handpicked lists the developer decided to choose, the

program will return them in reverse order (2.4).

2.2. Property-Based Testing

1| -module(unit_testing_example).
2| -include_lib("eunit/include/eunit.hrl").

+s|reverse(L) -> reverse(L, []).

ol reverse([], Acc) -> Acc;
7| reverse([H|T], Acc) -> reverse(T, [H|Acc]).

s| reverse_empty_list_test_() ->
10 ?_assert([] == reverse([])).

12| reverse_1_element_test_() ->
13 ?_assert([1] == reverse([1])).

15| reverse_2_elements_test_() ->
16 ?_assert([2, 1] == reverse([1l, 2])).

15| reverse_3_elements_test_() ->
19 ?_assert([3, 2, 1] == reverse([1l, 2, 3])).

Listing 2.4: Example of unit testing in Erlang

These unit tests, although grouped together into one function for this example, would be
counted individually when running them with Erlang’s unit testing framework, EUnit, and

display the following (2.5) output.

1| ======================== EUnit ========================
zimodule 'unit_testing_example'

3 unit_testing_example:10: reverse_empty_list_test_...ok
4 unit_testing_example:13: reverse_1_element_test_...ok
5 unit_testing_example:16: reverse_2_elements_test_...ok
6 unit_testing example:19: reverse_3_elements_test_...ok

7 [done in 0.012 s]

9| All 4 tests passed.

Listing 2.5: Example of a successful EUnit invocation

This example also helps to present and visualize the inherent problem of unit testing: as
the test cases have to be cherry-picked, this not only becomes a time consuming task, but also
a tiresome one to do. Furthermore, when writing a large number of test cases the chances
of making a mistake can only go up and, to boot, one cannot be positive that all these tests

demonstrate the correctness of the code.

10

CHAPTER 2. BACKGROUND

2.2.2 Property-Based Testing

This is where Property-Based Testing shines, as the the idea behind this type of testing is a
simple one: once properties we want our software to satisfy have been specified, the property-
based testing tool of choice will automatically generate random inputs that test whether our
software satisfies these previously mentioned properties or not.

In addition, properties are not a complex concept, but rather a simple one, as they are
simply logical statements that capture partial correctness of the code. Coming back to the
exampled used earlier to show what unit testing is about, one initial property” we could think
of our reversing program should satisfy is that the reverse of a reversed list should be equal

to the original list (2.2.2).

?FORALL(L, list(integer()), L == reverse(reverse(L))).

Or in other words, for all lists of integers L the reverse of its reverse order should be equal
to itself. Nonetheless, we will break down this property so that the reader can understand

what is happening when writing such line:

« When using PropEr, properties are checked by invoking the ?FORALL /3 macro®. This

macro expects the following arguments, and in this particular order:

1. The variable(s) where the values produced by the generator (i.e., the second argu-

ment) will be bound.
2. The type generator to use when producing values for the variable(s).

3. A boolean expression, be it either an already defined function or a definition of

one, that must return true when the property holds and false otherwise.

To sum it up, a property is no other thing that a combination of a list of variables to use
when writing it, a type generator to produce values for them and an expression using those
variables to check whether the property holds or not.

This approach on how tests are defined shifts the focus of the developers and/or testers
from thinking test cases and their expected output to finding the properties for the software,
which yields deeper understanding of the software’s behaviour and also works as a specifica-

tion of it.

*Whilst we haven’t covered yet PropEr itself, any examples of Property-Based Testing will be done with it, so
this example has its syntax.

’A macro definition in Erlang can either be a constant or a function definition, which is expanded at compila-
tion time.

11

2.3. PropEr

2.3 PropEr

PropErx (PROPerty-based testing tool for ERlang) is the only existing property-based testing
tool for Erlang with a free license that is still maintained. It was inspired by QuickCheck, the
first property-based testing tool, and along with it its the most powerful tool to date. It was
developed by Manolis Papadakis [12] (who mainly wrote the base system), Eirini Arvaniti [13]
(who wrote the stateful code subsystem) and Kostis Sagonas, and has a long list of features,

among them:

« It hastwo extra libraries to help deal with stateful code and its properties (i.e., properties
that have to take into account that the code will not always return the same output, as

it has state, and should test accordingly).
« As it is tightly integrated with Erlang’s type language, the tool is able to:

— Use custom defined types as generators instead of using PropEr’s built-in ones.

— Test functions automatically based on their specs* alone.

+ Automatically shrink the input of a property that did not hold to the actual minimal

input that would make it fail.

« It can narrow down the generated inputs so they are more relevant to the property

when doing Targeted Property-Based Testing.

More information regarding the features the tool has or about other macros that have not been
mentioned, as well as use cases, can be found in the the tool’s official documentation [14].
Continuing with our example of unit testing the Erlang program that reverses a list from
2.4, we will instead use PropEr with the previously shown property (2.2.2) to demonstrate
why and how Property-Based Testing is better. The code of the module with the property

defined is shown in 2.6.

-module(proper_testing_example).

S

-include_lib("proper/include/proper.hrl").

reverse(L) -> reverse(L, []).

-

%

reverse([], Acc) -> Acc;
reverse([H|T], Acc) -> reverse(T, [H|Acc]).

<

o

prop_reverse() ->
?FORALL(L, list(integer()), L == reverse(reverse(L))).

Listing 2.6: Example of property-based testing in Erlang

*Erlang’s type language comes with a notation for declaring sets of Erlang terms to form a particular type and
a specification system for functions based on these types and the built-in ones.

12

CHAPTER 2. BACKGROUND

To start with, doing Property-Based Testing reduces the visual cluttering found of having
a large number of unit tests, as the property to test whether the reverse function works is just
one line long. Next, some of the best features from PropEr can only be seen when executed”,
so we will show a successful execution (2.7) of it and then we will change the property to a
wrong one in order to demonstrate how PropEr behaves (2.8). Finally, we will add another
property to further show how simple is to test with PropEr even in modules with multiple
properties (2.9, 2.10).

Invoking PropEr is as simple as calling proper : quickcheck/1 with the property

function we want to to test.

1> proper:quickcheck(proper_testing_example:prop_reverse()).

4|OK: Passed 100 test(s).

Listing 2.7: Example of a successful PropEr invocation

During its execution PropEr will display a dot (.) for each passed test of the property.
But what happens when PropEr finds that a property does not hold? In order to see that, we
will change the old property (2.2.2) to a wrong one where we believe that the reverse of a list

should be equal to the list itself, as show in 2.3.

?FORALL(L, list(integer()), L == reverse(L)).

If we call PropEr again, we will see fail, as shown in 2.8.

1> proper:quickcheck(proper_testing example:prop_reverse()).
20 .. !

siFailed: After 4 test(s).

[-1,1]

-

Shrinking . (1 time(s))
[0,1]

~

Listing 2.8: Example of a failed PropEr invocation

What is interesting from this output, though, is that the moment PropEr found a failing
case not only does it display it, but also it goes even further and by shrinking the input it was
able to find the smallest possible input that would make the property not hold!

Now let us add two new properties and see how one can test a module that has multiple
properties. To demonstrate this, the first property will check whether the reversed list has the

same length as the original list or not, whereas the second property will check whether the

*PropEr can be executed two ways: one is to do it from inside Erlang’s interactive shell [15] and the other is
using rebar3 proper plugin [16, 17]. We will be doing all our examples using the former for the sake of consistency.

13

2.3. PropEr

reversed list and the original list are equal once both have been sorted. These new properties

are shown in the final revision of the example module (2.9).

-module(proper_testing_example).
-include_lib("proper/include/proper.hrl").

0

reverse(L) -> reverse(L, []).

-

reverse([], Acc) -> Acc;
reverse([H|T], Acc) -> reverse(T, [H|Acc]).

<

o| prop_reverse() ->
10 ?FORALL(L, list(integer()), L =:= reverse(reverse(L))).

12| prop_length() ->
13 ?FORALL(L, list(integer()), length(L) =:= length(reverse(L))).

15| prop_sort() ->
16 ?FORALL(L, list(integer()),
17 lists:sort(L) =:= lists:sort(reverse(L))).

Listing 2.9: Example of property-based testing in Erlang

This time, instead of quickchecking each property, we will use a function of PropEr that

does that for us for every property found in a module, proper :module/1 (2.10).

1> proper:module(proper_testing_example).

2| Testing proper_testing_ example:prop_reverse/0

5|OK: Passed 100 test(s).

7| Testing proper_testing_example:prop_length/0

10|OK: Passed 100 test(s).

12| Testing proper_testing_example:prop_sort/0

15| OK: Passed 100 test(s).

Listing 2.10: Example of calling proper :module/1

Now, the reader might have noticed from comparing the output of EUnit with the output
of PropEr, that one thing the former does that the latter does not is showing how long it took

to run the test suite. Sure, one could measure the time that takes running all the properties in

14

CHAPTER 2. BACKGROUND

the modules and it will be quite fast, but the point to be made here is that even though each
property could be run independently of the others, PropEr runs them sequentially. Further-
more, even EUnit allows executing tests in parallel, but, alas, PropEr has a limited scope of

parallel execution to only stateful properties. Hence, this thesis’ work.

2.3.1 Stateless vs. stateful properties

The reader might have noticed that, although stateful properties have been mentioned twice,
we have yet to discuss them further, instead of simply name-dropping them. This short sub-
section will serve as an introduction to the concept of stateful properties, due to them being a
key point of the design (3.1) and implementation (3.3) that will be discussed in the following
chapter.

Stateful properties are those that test stateful systems, which are programs that are not
purely functional® and have side-effects; in short, programs with state. Thus, the Erlang pro-
gram example we have been using up to this point is a stateless one and its properties, shown
earlier, have been stateless properties.

Akin to a stateless property, a stateful one has its own three main components: the system
to test, a model representing what the system does, and a generator for commands to repre-
sent the execution flow of the system. With these three pieces, PropEr is able to test stateful
codebases using state machines that have their state changed with the aforementioned gen-
erated commands while checking whether a series of preconditions and postconditions are
satisfied for that command or not.

As adding an example of Stateful Property-Based Testing to this report and explaining it
would take too many pages, we will instead point the reader to a great example of Stateful

Property-Based Testing from the official website of the tool [18].

SRemember, pure functions are those that always produce the same output for a given input.

15

2.3. PropEr

16

Chapter 3

Development

N this chapter we will talk about the initial design stage, how we approached PropEr and
found the right places to make these improvements, and later implement them, and what

challenges that brought and how we overcame them.

3.1 Design

One of the main goals we wanted to achieve during the design phase was to think of a simple
yet efficient way of making the property-based testing tool work concurrently while having
little impact on the existing codebase (i.e., changing as less code as possible). In order to do

so in a feasible fashion, we had to take into account the following issues:

1. PropEr is able to deal with stateless and stateful testing. Since the latter is usually found
in Erlang code in the form of gen_servers' and they can have unique identifiers for a
single node”, we needed to be able to ascertain whether a property was stateless or
stateful before running its tests so that we could prepare in case of having to isolate the

stateful ones among themselves.

2. If we make concurrent software, the chances of something going wrong increment. In
the event of an error, we did not want to crash the whole Virtual Machine and therefore

the runtime system running the property-based testing tool.

3. We also wanted to extend PropEr with both parallel and distributed execution, so we
needed a practical form of doing so without having to duplicate code. Ideally, the dis-
tributed execution would be merely having to run the code in parallel but in a dis-

tributed fashion, not its own implementation.

'A gen_server is an Erlang process used to keep state, execute code asynchronously, etc, through the use of
an standard set of functions.
®A node is an executing Erlang runtime system that has been named.

17

3.1. Design

As a result of raising these concerns early during the Design stage, we had time to think
them more carefully and come up with better ideas. We will discuss next the proposal we

ended up coming with to solve this issues and which are its key points.

3.1.1 Proposed design

The most important facet is how we thought and designed the concurrency we wanted PropEr
to have. We could have used a gen_server to handle performing the tests asynchronously and
any error that could happen because of them, but as we have already mentioned this was
not a valid solution as we did not like the idea of imposing on the users of PropEr not to
use any process or gen_servers with the same unique identifier as ours (in short, we did not
want to keep a name identifier for ourselves), and not having the imposition in the first place
would mean that we could end up clashing with registered processes in codebases that had
not looked into the source code of PropEr to notice the problem. Furthermore, even if we
went along with the gen_server option, we would end up having to coordinate several of
them when testing stateful properties (as we already discussed, stateful properties tests have
to be cut off from each other).

Because of this and the fact that we could not add more dependencies to the project (and
therefore use third party libraries) to help with this issue, what we ended up doing was work-
ing with the simplest concepts to do concurrent software in Erlang: spawning processes and
message passing.

Originally, PropEr would execute a number of tests (by default 100) sequentially for each
property, stopping only in the case of an error or a failed test and continuing otherwise. Our

design proposes the following changes to the property-based testing tool:

« PropEr should spawn as many processes as the user specifies (from hereon they will
be referred to as workers), assign to each of them a portion of the total of tests to run
(more on this will be discussed later in 3.1.2 and in the Implementation section in 3.3.5),
have the workers perform each their share in parallel and simply wait for all workers

to finish testing before reporting the aggregated results.

« To solve the issue number 2, we settled on starting a dedicated node where the workers
should be spawned thereafter. That way, in the case of a worker crash, only that node
would crash. This idea was taken from Nifty [19], another project from one of this
thesis’ supervisors, whom insisted on having the concurrent model be as fault-tolerant

as possible.

« In consequence of the previous point, and in order to address the issue number 1, the
number of dedicated nodes that will be started will vary according to the type of prop-

erty to test. Thus, stateless properties will spawn their workers on a single dedicated

18

CHAPTER 3. DEVELOPMENT

node started beforehand, whereas stateful properties will start as many nodes as work-
ers will be created, and spawn those workers each in their own node, so that they are
isolated them among themselves and to avoid any possible clash that otherwise could

happen when testing stateful properties in a single node.

« Finally, we addressed the issue number 3 with this design decisions. With them, run-
ning PropEr in a distributed fashion means that we only need to know the machine
where the node(s) and workers should be started and spawned, or a list of already

started node(s) in other machines where the workers will be created.

3.1.2 Test distribution among workers

Because of the fact that we have to divide the workload among multiple workers, there was
the need to think of a way of doing such distribution correctly, whilst taking into account

that, as previously stated, PropEr generates random increasing inputs as the tests pass.

Even distribution

For example, a simple approach that one might think of is to just split the total number of

tests evenly among the workers.

Tests

fll]
PN
ol lmi

Workers

Figure 3.1: Even distribution of tests among the workers

The problem that this strategy entails is that, although there is an even distribution of the
tests among the workers (as shown in 3.1), their actual load will be uneven — the last workers
will run tests of larger size.

As we did not want to end up with an unbalanced workload among the workers, we
devised three other different strategies, or approaches, to split the tests and give each worker

their corresponding share.

19

3.1. Design

Uneven distribution

This strategy is the least different in concept to the first one introduced. It aims to fix the
unbalanced workload problem the even distribution had by splitting the tests unevenly among
the workers in such a way that takes into account that the last tests are of larger size and offsets

this by giving more tests to the first workers (3.2).

Tests

YN

ar (]

Workers

Figure 3.2: Uneven distribution of tests among the workers

Batches distribution

One approach to keep the workload as balanced as possible is to produce batches of tests and
send them to the workers during a certain number of rounds. For instance, if PropEr is to run
N tests, with this approach the first batch would be made up of N/k tests, which then would
be split evenly among the workers into their respective shares (N/kn) — if no test fails, the

next batch should be sent to all workers; this should be continued for k rounds (3.3).

Tests

il
VN
a0 |all Dﬂ

Workers

Figure 3.3: Batches distribution of tests among the workers

Nth sequence distribution

The last of the strategies we thought of is one that benefits from being an “embarrassingly

parallel” one: instead of doing a single sequence of tests (i.e., having to run 100 tests is the

20

CHAPTER 3. DEVELOPMENT

same as doing a series of tests, starting at 0 and ending at 99), each worker only needs to
run their own succession of test that is made up of selecting every Nth test of the original

sequence (3.4).

Tests

OO\

didd

Workers

Figure 3.4: Nth sequence distribution of tests among the workers

Since we wanted PropEr to have the best of the described approaches, for us to be able to
determine which one was a better option we decided to implement all of the four strategies

and benchmark their performance, but that will be discussed later in 3.3.5.

3.2 A PropEr study

In order to carry out the design we had in mind, there was the need to study thoroughly
the tool in search of the key places where it would be feasible to start tinkering with. To
do this, we first got the code from the original repository [9] and started researching it after
we thought of an strategy to speed up this process: the quickest way to understand what
code was of more importance was to execute PropEr in different environments and look at its
control flow (i.e., the order in which the functions were being called).

And so, we set out to get as much information as possible in the shortest amount of time.
To do so, we initially used one of the tools for tracing and investigating distributed systems
that is included in Erlang’s Observer application, Trace Tool Builder. This tool allows tracing
applications during their runtime and, thanks to it, we were able to get a first glimpse into
how the control flow if PropEr looked like, as shown in 3.5.

As we also needed to understand the tool and its code, we approached it by first reading its
API documentation [14], where we discovered which module acted as the central component
of the system, and we simply inspected those module’s exported functions® (3.1) and started

off reading from those functions more exhaustively and in-depth.

*In Erlang, only the exported functions are visible from outside that module. In other words, exported func-
tions act as a public API of their module.

21

3.2. A PropEr study

150yougiepoucu
<06t 8>

(Tss#) T
YN ERET]
1/31sanbas:aapegy wrld 142 ut
/doo1:g11 ino
puas
aATa32l
EINERED]
z/dooy:q11 Ut
7/doo) :bgp 1no
z/doo1:6gp ut
1/1182:4dAJ35 23pod 1no
puss
puas
puas
aATa33l
1/bai:bgp ut
£4TUUTY peadalTy wid no
1/49ZT1BUTL LATU AZJTP:18lJa3uT S142 uT
r/doo1:Bgp 1no
uas
150YouP=poucU 3SOYOUPIPOUOU 1SOYOUFAPOUOU 1SOYOUFIPOUOU 1SOYOUPPOUCU 1SOYOUPIPOUOU 3SOYOUFSPOUCU 1SOUOUFRPOUOU 1SOYOUZRPOUOU
<0'6°0> <8 ¥1Z 0> <p"ZIZ 0> JaAdas apod g114apeo] wrad 143 bgp <0°870> <@ ETZ 0> NMONANA
00T 0
00T (s1010e papnjaxa) apiH

1243] B33 0] =woiq apiH

diay Buness pue siay4 Jop3od Jamaly A4

isualized using the Event Tracer

Tracing v

Figure 3.5

22

CHAPTER 3. DEVELOPMENT

-module{proper).

-export([quickchecks1, quickchecks2, counterexample/l, counterexample/2,
check/s2, check/3, modules1, modules/2, check_spec/1, check_spec/2,
check_specs/1, check_specs/2]).

-export([numtests/2, Tailsf1, on_output/2, conjunctions1]}.

-export([collects/2, collect/3, aggregate/2, aggregate/s/3, classify/3, measure/3,

with_titles1, equals/2]).
-export([counterexamples@, counterexamples/8]).
-export([clean_garbage/@, global_state_erase/8]).
-export([test_to_outer_test/1]).

-export([gen_and_print_samples/3]).
-export([get_size/1, global_state_init_size/1,
global state init size seed/2, report_error/2]).
-export([pure_check/1, pure_checks2]).
-export([forall/2, targeted/2, exists/3, implies/s2,
whenfail/2, trapexit/1, timeout/s/2, setup/2]).

-export_type([test/0, outer_test/®, counterexamples@, exception/e,
false_positive_mfas/8, setup_opts/8]).

Figure 3.6: Exported definitions (i.e., functions and types) of the tool’s main module

-

-module(proper) .

=)

-export([quickcheck/1, quickcheck/2, counterexample/1,

4 counterexample/2, check/2, check/3, module/1, module/2,

5 check_spec/1, check_spec/2, check_specs/1, check_specs/2]).
-export([numtests/2, fails/1, on_output/2, conjunction/1]).

o

~

-export([collect/2, collect/3, aggregate/2, aggregate/3,
classify/3, measure/3,

8 with_title/1, equals/2]).

-export([counterexample/0, counterexamples/0]).

©

5

-export([clean_garbage/0, global_state_erase/0]).
-export([test_to_outer_test/1]).
12| —export([gen_and_print_samples/3]).

13| —export([get_size/1, global_state_init_size/1,

14 global_state_init_size_seed/2, report_error/2]).

15| —export ([pure_check/1, pure_check/2]).

16| —export([forall/2, targeted/2, exists/3, implies/2,

17 whenfail/2, trapexit/1, timeout/2, setup/2]).

18| —export_type([test/0, outer_test/0, counterexample/0, exception/O0,
19 false_positive_mfas/0, setup_opts/0]).

Listing 3.1: Exported definitions (i.e., functions and types) of the tool’s main module

23

3.2. A PropEr study

From the list of exported functions is shown in 3.6, the most important functions that
can be found are quickcheck/1, 2 and module/1, 2, with the former being the entry
point to PropEr when calling a ?FORALL/ 3 property macro, and the latter a function that
invokes the former with each property that exists in a given module. The reader might notice
that both functions have a similar function that instead has arity 2, those simply take as their
second argument a list of user-defined options if present; as they end up converging with
their matching function in the end, it does not matter which of the two arities we decide to
pick as our starting point.

For an easier comparison of the tool’s control flow, before (3.7) and after (3.8) the design
was implemented, the annotated sequence diagrams are shown one after the other.

As seen in the old one, the most interesting key points of PropEr to start redesigning with
concurrency in mind were proper:inner_test/2 and proper:perform/3. The
former is the last function to be executed before performing the tests and the one to report
the result gotten from them; whereas the latter is the main function related to the execution
of the tests, counting how many tests have been done and are left to do, if a test needs to be

tried again, etc. Their code is shown in 3.2 and 3.3, respectively.

inner_test(RawTest, Opts) ->

2 %% Get the relevant user (or default) options
3 #opts{numtests = NumTests, long_result = Long,
4 output_fun = Print} = Opts,

5 %% Get the test to run

6 Test = cook_test(RawTest, Opts),

7 %% Perform it and get the results

8 ImmResult = perform(NumTests, Test, Opts),

9 Print("~n", []),

10 %% Report them

11 report_imm_result(ImmResult, Opts),

12 {ShortResult,LongResult} = get_result(ImmResult, Test, Opts),

13 case Long of

14 true -> LongResult;
15 false -> ShortResult
16 end.

Listing 3.2: Code of original proper:inner_test/2

24

CHAPTER 3. DEVELOPMENT

?

ﬁnmﬁo ﬁ_:mmeE_ﬁ_:mmﬂEEﬂton_wLu

_ 1+ passed

EEILITE)

papalal == ynsal

{Hieyg == unsau

{}ssed# == jns=u v

%

(s3dg 358 L)unt

Aﬁao ‘SIauLg ‘se|dwes Isa] "Ya1salL ‘SSedol ﬁmmmm&;._._ctmn_w

)

ﬁﬂmuno ‘153] ‘SIS

mFE:z.E._otmau

(51531 uny

(s3dQ ‘}saLmey)1say Jauul

(s1do “3saLmeypsal

53523 dniss

ﬁnmhm;:E.Q_ uny ‘uoseay u._c.:m\tcawku

(s3douasn)sido asied

suolldo Buisied

hﬁﬁo_mmj GEETN

mﬂ_o;um;uxu_:uu

(359 L4300 a3y Nk

(Juiod Aiqu3

_ (doug*adALmey X) TIvHO L

(uoijese|

pap Ajadoid

®

Control flow of the tool originally

Figure 3.7

25

3.2. A PropEr study

{}ssedg j uaued

LR i)

pa1aled j ualeq

o)
®

{ (53d0 “suound “sajdwes 331 T - YI1SIML "SSedoL .ummmm&gctmau ﬁﬁ_,mtﬂ i Em_mmu

uebe \Eﬁ

?

2ssed
Y ¢ pappalal == ynsau {Ineye == ynsas {}sseds == nsai >
A
(s3do 1531)uns
Aﬂﬂao ‘s13juLg ‘sa|dwes s3] ‘Yasau 'ssedo] ﬁwmmm&r,tutwnu @
% (51d0 "Ynsaywwynsat Wl podal
Allenuanbas uni aq pjnoys

(s3dQ “3saL "syseLwny)wiopiad :s3dQ wioly pauelqo sI jusled

13doud s1330M INOUIM

(51do 1531 "s153 L Wnyjulopad

51531 DUIUUNI 133J0M)

7 is1dg samey)is=y Jauun

O ==momam

hﬁ&o NSy EmwhlEE,ltoaw_u

h@:ﬁwémé:_ ISMUSIOM :mmﬁEE,umpmmemmmu
(51591 dniss

(53d0 ‘IsaLmen)isa)

AdUR.11N2U0D 3|pueH

Simnompaumeds

nnm:ms_& o1 uny eummwx:utwwtcnmo

(s3do ‘3521 “sisaiwnnjuwaopad

suoildo Buisied

(s3dou3sn 153 115IN0 333233k

(J@pom umeds

-~
(s=poN)papeo| 2pod aJnsua
‘{)sapouuels

(153 L1210 I3y pINb

(uiod Ajuz

(doud adALmey X TTvy0E

Aoualinduod dnyas 0

ing the design

26

Control flow of the tool after implement

Figure 3.8

CHAPTER 3. DEVELOPMENT

perform(NumTests, Test, Opts) ->
2 perform(0, NumTests, ?MAX_TRIES_FACTOR * NumTests, Test, none,
3 none, Opts).

5| %% No retries left for a test, base case
o/ perform(Passed, _ToPass, 0, _Test, Samples, Printers, _Opts) ->

7 case Passed of

8 0 -> {error, cant_satisfy};

9 _ -> #pass{samples = Samples, printers = Printers,
10 performed = Passed, actions = []}

11 end;

12| %% All tests have passed, base case
13| perform(ToPass, ToPass, _TriesLeft, _Test, Samples, Printers,

14 _Opts) ->
15 #pass{samples = Samples, printers = Printers,
16 performed = ToPass, actions = []};

17| %% Recursive case
18| perform(Passed, ToPass, TriesLeft, Test, Samples, Printers,

19 #opts{output_fun = Print} = Opts) ->

20 case run(Test, Opts) of

21 %% Test passed, do another one

22 #pass{reason = true_prop, ...} ->

23 perform(Passed + 1, ToPass, TriesLeft - 1,

2 Test, ..., Opts);

25 %% Test failed, stop and return the fail

26 #fail{} = FailResult ->

27 FailResult#fail{performed = Passed + 1};

28 %% Test was rejected, try again

29 {error, rejected} ->

30 perform(Passed, ToPass, TriesLeft - 1, Test,

31 Samples, Printers, Opts);

32 %% From hereon, return the error from running the test
33 {error, Reason} = Error when Reason =:= arity_limit
34 orelse Reason =:= non_boolean result
35 orelse Reason =:= type_mismatch ->
36 Error;

37 {error, {cant_generate, MFAs}} = Error ->

38 Error;

39 {error, {typeserver,_SubReason}} = Error ->

40 Error;

41 Other ->

42 {error, {unexpected,Other}}

43 end.

Listing 3.3: Simplified code of original proper:perform/3

27

3.3. Implementation

Most of the code of proper : perform/3, 4 has been simplified, as the internal work-
ings of the function is not that relevant to making the property-based testing tool concurrent
or fitting to leave written on this report; in short, we only care about the results obtained
from running a test.

At first, our idea was to make proper:perform/3, 4 concurrent, but in order for
this to be feasible we would end up creating as many processes as tests are to be ran. In
one of the discussions on this topic with Kostis, he suggested to start redesigning from the
other previously mentioned function, proper:inner_test/2, as at that level of code

we have more control over the way the tests are executed.

3.3 Implementation

The final revision of our work can be found in a fork of the original project (both on Github)
at the following link:
https://github.com/pablocostass/proper

3.3.1 Preamble

In this section we will talk about how we implemented the previously discussed design to
extend the property-based testing tool, PropEr, with parallel and distributed execution while
maintaining the existing functionality of the tool and following the best of coding practices,
such as Test Driven Development and type checking of functions, besides following the direc-
tions of one of the tool’s creators and maintainers.

Some of the points of the implementation will not be explained thoroughly as this report
has a maximum length allowed and many concepts from Erlang and from the tool itself should
be known beforehand in order to have a proper understanding of all the code, were it not to

be shown simplified or highlighted in snippets.

3.3.2 Project structure

As this is a fork, it has to follow the same license as the original repository does (GPL-3.0 [20])

and an equal project structure, which is shown in 3.4

1|$ tree -d
20 .
s| b— doc

— examples

— examples_test
— include

— scripts

s| b— src

'S

o

o

<

28

https://github.com/pablocostass/proper

CHAPTER 3. DEVELOPMENT

ol L— test
10

11| 7 directories

Listing 3.4: Directory structure of the tool

The project structure follows Erlang’s Directory Structure Guidelines for a Development
Environment [21]. As specified in those guidelines the project has the following directories,

some of which are required and some are optional:

« doc (optional). Contains the documentation of the tool.

include (optional). Contains public code that should be available in other applica-
tions, such as the macro definitions of the tool (e.g., ?FORALL/ 3).

« src (required). Contains the Erlang source code of the tool itself.
« test (optional). Contains the files regarding the tests of the tool.

The other two directories that have not been listed above, examples and examples_test,
are exclusive of this project and not related to the aforementioned guidelines. The former con-
tains files with examples of properties and the latter has a test suite to run them.
Furthermore, the project also has a few files that can be found on the top level directory
that are related to building and testing utilities for the project: a configuration file for re-
bar3 [16], the most widely adopted building tool in the Erlang community and a Makefile to
help compile, run type checking on the code and test the property-based tool itself using the

aforementioned building tool.

3.3.3 A PropEr implementation

We set off the implementation stage with the goal of first achieving a parallel execution of
the tool and then expanding it to a distributed execution also. Since the tool has received a
lot of support and feedback from the community and its creators and maintainers throughout
the years, one of the advantages our work has over other more traditional bachelor’s thesis is
that we have most of the groundwork already laid for us and we can make use of it to speed
up some tasks.

As we already discussed in the design section, to make PropEr into a concurrent tool
we need to change its control flow from proper: inner_test/2 onwards. To help the
reader properly perceive the changes that we have done, we will again walk through how the
tool used to work (although this time faster) and why that function is important.

Properties are defined with PropEr’s ?FORALL/ 3 macro (3.5)

29

3.3. Implementation

-define(FORALL(X,RawTIype,Prop),
proper:forall(RawType, fun(X) -> Prop end)).

o

Listing 3.5: Definition of the FORALL/ 3 macro

and they are parsed by the property-based testing tool either by calling
proper:quickcheck/1,2 when one wants to test one specific property, or
proper:module/1,2 when one wants to test all properties found inside a mod-
ule. Given that the latter calls the former for each property found in the module, and since
both functions end up converging at some point of the tool’s control flow, we will skip the
code of proper:module/1, 2 as it is a bit more complex and redundant for the purpose
of this section.

The usual entry point to the tool’s functionality is, as previously stated, one of the two
functions. They both accept a list of user defined options that will be used to either override
the default values the tool has (e.g., the default number of tests to be run is 100, but if one
wants to instead do a thousand tests that can be changed with the {numtests,1000} option)
or to add some that change how the tool behaves (e.g., if one wishes to not see a dot for
every passed test or an exclamation mark with failed ones; in short, the output of running
the tests, and only cares about the final result the quiet option can be added; or when there
is no need to shrink on the failing cases the noshrink option can be used). The code for
proper:quickcheck/1 and proper:quickcheck/2 is shown in 3.6 to illustrate

how the entry point works.

1| %% @doc Runs PropEr on the property “OuterTest'.
2| -spec quickcheck(outer_test()) -> result().
3| quickcheck (OuterTest) -> quickcheck(OuterTest, []).

5| %% @doc Same as {@link quickcheck/1}, but also accepts a list of
options.

o| -spec quickcheck(outer_test(), user_opts()) -> result().

7| quickcheck (OuterTest, UserOpts) ->

8 try parse_opts(UserOpts) of

9 ImmOpts ->

10 {Test,Opts} = peel_test(OuterTest, ImmOpts),

11 test({test,Test}, Opts)

12 catch

13 throw: {Err,_Opt} = Reason when Err =:= erroneous_option;
14 Err =:= unrecognized_option ->

15 report_error(Reason, fun jio:format/2),
16 {error, Reason}
17 end.

Listing 3.6: Code of proper:quickcheck/1, 2

30

CHAPTER 3. DEVELOPMENT

The function with arity 1 assumes that the user defined list of options is empty and calls its
analogous function of arity 2. None of this function’s code is of real significance whatsoever,
since it is quite trivial if one were to simplify the functions it invokes within its body: at line

9 the tool tries to parse the aforementioned user defined list of options and:

« If the parsing goes well and the list is valid, the tool then gets the property that needs

to be tested at line 11 and goes on to prepare to test it in the following line.

« If, however, the list of options could not be parsed, the tool will throw and error and

report the user of the failure.

The last function to be called on a successful parse, proper:test/2, is a setup func-
tion where the tool’s internal values needed for testing are initialized before running the tests

and erased afterwards, as shown in 3.7.

1| -spec test(raw_test(), opts()) -> result().
test (RawTest, Opts) ->

3 %% Initialize the state of the tool

4 global_state_init(Opts),

5 %% Set up the test

6 Finalizers = setup_test(Opts),

7 Result = inner_test(RawTest, Opts),

[N

8 %% Clean the test

9 ok = finalize_test(Finalizers),
10 %% Erase the state of the tool
11 global_state_erase(),

12 Result.

Listing 3.7: Code of proper:test/2

Finally, as the reader might have noticed, we have found proper: inner_test/2 at
line 5; at last we know where it is called during the tool’s control flow! It its also worth to
note that, from what has been shown throughout the past code listings, not that much code
have been executed to get to this point. Now we can start explaining the changes done to
the tool without worrying the reader might feel that we have missed out something while
illustrating what the tool has done till this point of execution.*

As we discussed earlier in the Design section (3.1), our proposal had four key changes

needed to make the property-based testing tool into a concurrent one:
« It has to use processes to run the multiple tests at the same time.

« It should use dedicated nodes to improve the fault-tolerance in the case of an unexpected

error or crash.

*For an easier comparison and to help the reader recall the details of how the function used to be, it was shown
in3.2.

31

3.3. Implementation

« The number of said nodes depends on the type of property to test (stateless vs. stateful).

« The distributed execution should just be carrying out the parallel one but on a cluster

of well-known beforehand machines or nodes.

We will now show and explain how we addressed all these four key points with both the
modifications that were carried out in the established code (i.e., already shown) and the newly
implemented functions needed to make the concurrent design work.

The tool manages all the information it needs of a property that is about to test, or in the
middle of testing, through a combination of the boolean function that represents the property
and, mainly, a record of the options to use during that testing. For us to integrate our design
easily into the tool as it was, we decided to modify said record definition to add two new fields,
num_workers and parent; the former to handle the number of processes or workers to make
use of and the latter to store the PID of the main process that will take care of aggregating

the results obtained from the workers. This newly updated record definition is shown in 3.8.

1| -record(opts, {

2 output_fun = fun io:format/2 :: output_fun(),

3 long_result = false :: boolean(),

4 numtests = 100 :: pos_integer(),

5 search_steps = 1000 :: pos_integer(),

6 search_strategy = proper_sa :: proper_target:strategy(),
7 start_size =1 :: proper_gen:size(),

8 seed = os:timestamp() :: proper_gen:seed(),

9 max_size = 42 :: proper_gen:size(),

10 max_shrinks = 500 :: non_neg_integer(),

1 noshrink = false :: boolean(),

12 constraint tries = 50 :: pos_integer(),

13 expect_fail = false :: boolean(),

14 any_type :: {'type', proper_types:type()} | 'undefined',
15 spec_timeout = infinity :: timeout(),

16 skip_mfas =[] i [mfa()],

17 false_positive_mfas :: false_positive_mfas(),
18 setup_funs =[] :: [setup_fun()],

19 num_workers =1 :: non_neg_integer(),

20 parent = self() 1 pid(),

21 nocolors = false :: boolean()

22).

23| -type opts() :: #opts{}.

Listing 3.8: Type definition of proper:opts () record

Then, as proper: inner_test/2 uses that record to get certain bits of information,

like the number of tests to be ran, how to print the output obtained, etc; we decided to modify

32

CHAPTER 3. DEVELOPMENT

it to check whether the number of workers is not zero, and therefore is going to be executed
concurrently, or is indeed zero and should be executed as usual. The modified code is shown
in 3.9.

1| -spec inner_test(raw_test(), opts()) -> result().
inner_test(RawTest, Opts) ->

™o

w

#opts{numtests = NumTests, long result = Long,

4 output_fun = Print, num_workers = NumWorkers} = Opts,
5 Test = cook_test(RawTest, Opts),

6 ImmResult = case NumWorkers > 0 of

7 %% Non-zero number of workers, perform concurrently

8 true ->

9 case NumWorkers > NumTests of
10 %% Weird case of having more workers than tests.
1 %% Use only NumTests workers in this situation.

12 true ->

13 perform_with_nodes(Test,

14 Opts#opts{num_workers = NumTests});
15 %% Use the specified number of workers.

16 false -> perform_with_nodes(Test, Opts)

17 end 5

18 %% 0 is the default value, perform as usual.

19 false -> perform(NumTests, Test, Opts)

20 end s

21 Print("~n", []),

22 report_imm_result(ImmResult, Opts),

23 {ShortResult,LongResult} = get_result(ImmResult, Test, Opts),
24 case Long of

25 true -> LongResult;

26 false -> ShortResult

27 end.

Listing 3.9: Code of proper: inner_test/2 with the modifications applied

This function goes hand in hand with a new one that handles everything re-
lated to setting up the dedicated nodes, splitting the tests among the workers and
stopping the nodes at the end, when running the tool in a concurrent fashion,

proper:perform_with_nodes/2 (3.10).

1| -spec perform_with_nodes(test(), opts()) -> imm_result().

™o

perform_with_nodes(Test, #opts{numtests = NumTests,
3 num_workers = NumWorkers} = Opts) ->

4 %% Split the tests among the workers

5 TestsPerWorker = tests_per_ worker(NumTests, NumWorkers),

6 NodeList =

7 case property_type(Test) of

8 {kind, Type} when Type =:= constructed; Type =:= wrapper ->

33

3.3. Implementation

9 %% Stateful property. Start as many nodes as workers are

10 Nodes = start_nodes(NumwWorkers),

11 ensure_code_loaded(Nodes),

12 lists:zip(Nodes, TestsPerWorker);

13 _ =

14 % Stateless property. Start a single node

15 [Node] = start_nodes(1),

16 ensure_code_loaded([Node]),

17 lists:map(fun(N) -> {Node, N} end, TestsPerWorker)
18 end,

19 %% Disable displaying log erros to the standard output
20 ok = ?disable_logging(),

21 %% Handle maybe starting the coverage tool of Erlang
22 {ok, _} = maybe_start_cover_server(NodeList),

23 SpawnFun = fun({Node, {Start, ToPass}}) ->

24 spawn_link_migrate(Node,

25 fun() -> perform(Start, ToPass, Test, Opts) end)
26 end,

27 %% Create the workers

28 WorkerList = lists:map(SpawnFun, NodeList),

29 InitialResult = #pass{samples = [], printers = [],

30 actions = []},

31 %% Wait for the results to be aggregated

32 AggregatedImmResult = aggregate_imm_result(WorkerList,
33 InitialResult),

34 %% Handle maybe stopping the coverage tool of Erlang
35 ok = maybe_stop_cover_server(NodeList),

36 %% Stop the dedicated nodes

37 ok = stop_nodes(),

38 %% Return the aggregated results

39 AggregatedImmResult.

Listing 3.10: Code of proper:perform_with_nodes/2

In those 37 lines of code a lot of things are happening, so we will break this function
down into smaller chunks of its logic, highlighting the most important ones that made the

concurrency possible.

1. At line 5 the tests are distributed among the workers. This is done following one of the

previously mentioned strategies (3.3.5).

2. A different number of dedicated nodes are started with proper:start_nodes/1
(either at line 11 or 16). That function simply starts as many nodes as needed calling

the following function:

34

CHAPTER 3. DEVELOPMENT

-spec start_node(node()) -> node().
start_node(SlaveName) ->

™o

3 %% Ensure the Erlang Port Mapper Daemon is started
4 [] = os:cmd("epmd -daemon"),
5 HostName = list_to_atom(net_adm:localhost()),

6 %% Start the main node, needed to start the other node(s)
7 _ = net_kernel:start([proper_master, shortnames]),

8 %% Start the worker node

9 case slave:start_link(HostName, SlaveName) of

10 {ok, Node} -> Node;

11 {error, {already_running, Node}} -> Node

12 end.

Listing 3.11: Code of proper:start_node/1

As a result of nodes in Erlang being runtime systems, we have to also ensure the rele-
vant code is loaded after the nodes have been started, or otherwise we will not be able
to spawn workers in them as they will not be able to execute the functions from the
modules being tested. That is done with the proper: ensure_code_loaded/1

function.

-spec ensure_code_loaded([node()]) -> 'ok'.
ensure_code_loaded(Nodes) ->

™o

3 %% Get all the files that need to be loaded from the current
directory

4 Files = filelib:wildcard("**/*.beam"),

5 Modules =

6 [erlang:list_to_atom(filename:basename(File, ".beam"))

7 || File <- Files],

8 %% Call the functions that ensure all modules are available on
the nodes

9 [maybe_load_binary(Nodes, Module) || Module <- Modules],

10 [rpc:multicall(Nodes, code, add_patha, [Path])

1 | | Path <- code:get_path()]

12 _ = rpc:multicall(Nodes, code, ensure_modules_loaded,
13 [Modules]),

14 ok.

Listing 3.12: Code of proper:ensure_code_loaded/1

3. After the workers have been spawned, the main process of the tool has to start

aggregating the results sent back from each worker, which is done by calling

35

3.3. Implementation

proper:aggregate_imm_result/2. This function relies on pattern match-
ing the message passing specified in the workers to combine those individual results

into one that has the format expected by the tool when reporting it.

4. Finally, the nodes are stopped when proper: stop_nodes () is called, which uses

functions already defined in Erlang to stop each node.

3.3.4 Problems faced during the Implementation stage

We thought it would be of significance to discuss some of the issues and/or technical chal-
lenges we faced while implementing the design in the property-based testing tool, as some
of them amounted for quite a lot of effort into finding their solution or fix and are worth a
mention.

The biggest problem we had to face was properly setting up the dedicated node(s) where
the workers are going to be spawned. When Erlang runs a program or its interactive shell is
started, what is happening behind the scenes is that an Erlang node is booted up, although
locally and hidden by default, which runs the ERTS. For an ERTS to work in a distributed
fashion it first has to start a named node, as those are the only ones that can communicate
with other nodes. Thankfully, as nodes are a key point in making distributed applications
in Erlang, the programming language has built-in functions that help manage distributed
applications (as shown in 3.11) and even modules in OTP to easily create and use main/worker
architectures in our programs.

However, for one to be able to smoothly use nodes certain criteria has to be met:

1. The nodes cannot differ in their Erlang version, as the distribution mechanism is not
backwards compatible. There is, however, an option that enables the compatibility
mode so that nodes that are within two releases (e.g., Erlang/OTP 19 and Erlang/OTP

21) can connect and communicate.

2. AsErlang is a programming built to face and solve concurrent problems, although each
node can have a different version of a module loaded, if they want to share functions

from that module among themselves, they must all have the same version loaded.

For this thesis’ work, the first condition was not an issue, as we were always using the
same version of Erlang across all nodes and, given that this condition is well-known, users of
the tool should not have any problem complying with it either.

The second condition, however, was a hardship we had to overcome due to two reasons:
first, we had to discern which were the relevant modules (i.e., modules related to the appli-

cation that has the properties we are about to test) that should be loaded across the nodes;

36

CHAPTER 3. DEVELOPMENT

second, we had to load those modules in the proper fashion, as otherwise Erlang would not
recognize their functions and would crash.

To solve the both issues, we implemented proper:ensure_code_loaded/1
(3.12) that, together with proper:maybe_load_binary/2 (3.13), finds all modules
that have been loaded by PropEr (and therefore the ones we need) and loads them in the

nodes.

1| -spec maybe_load_binary([node()], module()) -> 'ok' | 'error'.
2lmaybe_load_binary(Nodes, Module) ->
3 %% We check whether the module was preloaded or cover_compiled.

4 %% We ignore such modules.

5 case code:is_loaded(Module) of

6 {file, Loaded} when is_list(Loaded) ->

7 case code:get_object_code(Module) of

8 {Module, Binary, Filename} ->

9 %% Load the binary code of the module

10 %% in all the nodes.
11 _ = rpc:multicall(Nodes, code, load_binary,

12 [Module, Filename, Binary]),
13 ok;

14 error -> error

15 end;

16 _ -> ok

17 end.

Listing 3.13: Code of proper:maybe_load_binary/2

Finally, a small yet important issue we found in the Implementation stage was that, al-
though the tool is capable of growing the size of the random generated input used when
testing, it has no way of starting at a given size, meaning that we had to develop ourselves
a way of doing so. We came up with a function that is returns the expected size for the Nth
test in an execution. That way, we were able to make the workers start at a given test number

with the correct size.

3.3.5 Implementing the different strategies of test distribution

As we did previously mention in the Design section, we thought of four different ways, or
strategies, of dividing the tests and its workload among the workers, and decided to implement
each of them so that we could pick the best of the strategies after comparing their benchmarks.

Although all four strategies were implemented as described previously, we ran into a few

issues with two of them. We will briefly cover each of the strategies, or distributions, below:

« Even strategy (3.1). This was the easiest to implement, as the only edge case to take

into account is when the number of workers is odd.

37

3.3. Implementation

« Nth strategy (3.4). This strategy benefits from being an “embarrassingly parallel” one:
if the tool has to run 100 tests, that means there is a sequence of test numbers from 0
to 99 to be executed. Hence, N workers simply have to select (or compute) every Nth

tests from that sequence.

« Batches strategy (3.3). While testing this implementation we found out that it had two
main problems, both related to using a large numbers of workers: there was a problem
of latency due to sending more messages than in the other strategies and with this

strategy, the tool usually hit its limit of retries of a rejected test.

« Uneven strategy (3.2). Because of the lack of time, this strategy was sadly implemented
in a rushed way and it was not be feasible to really use this strategy in later stages of

this work.

As a result of this, the benchmarking comparison was done between the even strategy and

the Nth strategy, leaving the rest to be revisited in the future.

38

Chapter 4

Testing and benchmarking

N past chapters, we mentioned that one of the main motivations behind this thesis’ work
was to improve the times of a property-based testing tool by extending it with parallel and
distributed testing. Throughout this chapter we will explain how we tested this revamping of
the property-based testing tool and later measured its execution times, with properties from
different relevant projects of the Erlang community, as otherwise we could not detect under

which circumstances the speedups happened and if they did occur.

4.1 Testing the implementation

Due to the fact that we were working on an already established project, old enough to be
considered pretty matured, and that we were expanding it with new ways of executing the
tool, we had an extensive test suite to make use of. that would ensure that the tool did not
break any of its existing features because of any of our modifications.

Thanks to that we were always sure whether, over the many iterations the implementation
took place, that the changes done to the codebase did not break any of its existing features and
functionalities or if it indeed break some along the way, in which case a fix would be made.
This was easily checked, as the project used Travis CI to do Continuous Integration, and by
simply enabling it in our fork we would benefit from it too. After each push to the repository,
Travis would start an automated build to download the latest changes, build the project and
run the tool’s test suite (4.1).

Testing the parallel execution was as simple as running the test suite of the tool while
using workers. Although our patched tool was tested with different values for the number of
workers, the biggest indicator of it working properly was that with one (i.e., a worker does
the job for the tool) and two workers (i.e., two workers share the work) the test suite passed.

Furthermore, as one of our objectives was to built the distributed execution upon the

parallel one, as long as we tested the latter we could be sure the former worked.

39

4.2. Benchmarking

V' balanced _te
@ Pablo Costas

V' even_test_d
@ Pablo Costas

 develop
@® Prablo Costas

IJ develop

@ Pablo Costas

 develop
@ Pablo Costas

X develop
@® Pablo Costas

Use a balanced test sequence distributic

Use an even test distribution among wo

Add size_at_nth_test/2 and perform/4

Fix code loading and statistic samples n

Build PLT with “tools™ application too

Start a Cover server on each node if COV

-o- #27 passed

732543e

-o- #26 passed
8f8sdbe

-o- #25 passed
95d731d

-o- #24 passed
4c1b495

-o- #23 passed

2222a7a

-o- #22 failed
7142421

1hr 17 min 23 sec

2 months ago

1 hr21 min 27 sec

2 months ago

56 min 59 sec

2 months ago

1lhr4sec

2 months ago

1 hr 16 min 55 sec

2 months ago

39 min 17 sec

2 months ago

Figure 4.1: Reports of Travis CI in the project

4.2 Benchmarking

In the next subsections we will first talk about the results of benchmarking the strategies to

decide which one was a better fit to use through the rest of the work, secondly, about the

those from benchmarking both the parallel and the distributed execution and, finally, about

the conclusions we reached from examining those results.

However, before doing that, we think it is important to establish how we carried out said

benchmarks and under which execution environments were they done.

The specs of the systems that were used to benchmark the paralle and distributed execu-

tions are the following:

« For the parallel benchmarks, we used a single machine from the Uppsala University.
It has 128 GB of RAM, runs Debian 4.19 and has 64 cores with AMD Opteron(TM)
Processor 6276 (2.3 GHz).

« For the distributed benchmarks, we used a cluster from the CITIC. Each of the 10 ma-
chines from the cluster has 8 GB of RAM, runs Ubuntu 18.04.1 LTS and has 4 cores with
Intel Xeon E5-2650 v4 (2.20GHz).

« In both environments, we decided to use the same Erlang/OTP version’, in order to

"The sole exception to this was when running properties from tests in Erlang/OTP itself, as we first had to
compile the programming language from source and use that version to run the tests. In those cases, the version
used was Erlang/OTP 24.

40

CHAPTER 4. TESTING AND BENCHMARKING

reduce uncertainty that changes within the implementation of the language could pro-

duce. The version we used was Erlang/OTP 21.2.6.

In addition, we thought it would be more relevant to benchmark specific properties than
whole modules, as with the former it is possible to cherry-pick cases that were of interest,
either because of their time complexity or because of their computation cost; whereas with
the latter only the total speedup could be noted.

Nonetheless, both stateful and stateless properties have been benchmarked, as we were
interested in observing the cost of having to isolate the workers (when testing the former
kind of properties) or not (with the latter kind of properties).

Furthermore, as we knew from the beginning of the existence of the overhead derived
from having to start dedicated nodes, we were able to set up a modified environment that
took into account it from the get-go. In this environment we always first performed a light
round of one standard execution of the tool (i.e., 100 tests) at each number of workers we
wanted to test with (from 0 to 64 in the parallel machine and from 0 to 8 in the distributed
cluster) so that the nodes would have the code loaded beforehand. Nevertheless, we still
measured the time it took to handle the logic of the nodes, as although the overhead was

reduced it was still of significance to note.

4.2.1 Picking a strategy to split the tests

As previously stated, only two (even distribution, 3.1, and Nth sequence distribution, 3.4)
of the total of the four strategies were used and had their benchmarks compared with. In
addition, we picked the best strategy based on the parallel execution benchmarks, due to the
distributed execution being built upon the parallel one.s

The properties we decided to benchmark with will always be the same throughout the
following sections, and they all come from either notable or relevant projects of the Erlang
community. Every benchmark that will be shown has been obtained the same way: first, we
ran the light round to initialize the nodes and have the relevant code loaded in them, as we
previously mentioned; then, we ran for every combination of number of tests (usually from
100 to 1000000) and number of workers shown a total of ten executions and found the median
value of the execution times at each pair of values.

The benchmarks will be grouped by the project they are originated from and its type of
property will be noted (stateful vs. stateless), as its an important factor. The original imple-
mentation of PropEr (in other words, PropEr with zero workers being used) will considered
the baseline for the benchmarks. Furthermore, some time disparities will be seen in those
baselines when comparing the time of base PropEr between strategies; this is due to the ma-

chine where the parallel benchmarks were done not having all of its resources available for

41

4.2. Benchmarking

us as it was being used by other researchers of Uppsala University. All measurements are in

seconds.

Cowlib

Cowlib [22] is a support library for manipulating web protocols, optimized for completeness
rather than speed, which provides functionalities such as parsing and building messages for
multiple Web protocols (i.e., HTTP/1.1, HTTP/2, Websockets).

We used from this project an stateful property that checks whether it is possible for a
binary to be encoded and decoded with Huffman Coding [23]. The benchmark of the property,
cow_hpack:prop_str_huffman(), is shown in 4.1.

NumTests | NumWorkers | Median execution time (even strat.) ‘ Median execution (Nth strat.) ‘

100 0 0.0043085 0.0043485
100 1 1.1962975 1.1904545
100 2 1.215874 1.190575
100 4 1.2535485 1.2407425
100 8 1.2596395 1.2637315
100 16 1.312265 1.3470175
100 32 1.434364 1.4816925
100 64 0.7276165 0.75407
1000 0 0.04491 0.0452655
1000 1 0.218274 0.20159
1000 2 0.1971315 0.2035755
1000 4 0.478623 0.1987635
1000 8 0.3809485 0.244365
1000 16 0.4095365 0.3248635
1000 32 0.5010915 0.441245
1000 64 0.765738 0.761062
10000 0 0.449596 0.4540915
10000 1 0.8153415 0.8395805
10000 2 0.4802005 0.513207
10000 4 2.9868485 0.3788485
10000 8 1.626953 0.310093
10000 16 1.249897 0.3778095
10000 32 1.0791045 0.5139375
10000 64 1.158012 0.776513

42

CHAPTER 4. TESTING AND BENCHMARKING

100000 0 4.4230875 4.5214735
100000 1 4.4421215 4.718555
100000 2 2.9091925 2.4595815
100000 4 27.4280975 1.3656275
100000 8 13.594567 0.83403
100000 16 7.390055 0.741856
100000 32 5.200581 0.7272785
100000 64 3.9837955 0.9227425
1000000 0 42.527384 45.471653
1000000 1 44.112267 51.263478
1000000 2 27.835295 25.8550235
1000000 4 17.0330655 13.2980945
1000000 8 9.190302 6.840301
1000000 16 4.89988 3.893725
1000000 32 3.160499 3.338172
1000000 64 2.662097 2.816228
Table 4.1: Cowlib: prop_str_huffman() parallel benchmarks
Kazoo

Kazoo [24] is one of the most powerful open-source VoIP available, designed to provide robust
telecommunication services.

Despite the fact that this project has multiple properties written for PropEr, we could
not make use of most of them for benchmarking due to how the project itself is struc-
tured, making it really hard to load all the relevant code in the dedicated nodes, and be-
cause of some of those properties testing the architecture of the project (i.e., they test
how the software behaves in regards to the nodes they use), meaning that those prop-
erties could not be used either. Nonetheless, we found an interesting stateless property,
knm_converters_tests:prop_normalize (), thatchecks whether a pair of tele-

phone numbers within a range can be normalized or not (4.2).

NumTests | NumWorkers | Median execution time (even strat.) ‘ Median execution (Nth strat.) ‘

100 0 1.2298875 1.316535
100 1 1.2063575 1.355374
100 2 1.237179 1.0168675
100 4 1.2145395 1.047321

43

4.2. Benchmarking

100 8 1.2179455 1.060538
100 16 1.2148005 1.1055665
100 32 1.2582235 1.2755245
100 64 1.3320655 1.085785
1000 0 11.237414 13.3373095
1000 1 11.9686205 9.57503
1000 2 11.985622 9.8005445
1000 4 12.2558495 10.143767
1000 8 12.394612 10.251728
1000 16 12.268519 9.8840315
1000 32 12.509876 9.34092
1000 64 8.874254 10.6230795
10000 0 108.6293275 133.44307
10000 1 105.9389425 101.571297
10000 2 120.5917215 100.7109155
10000 4 119.7413025 98.762332
10000 8 122.252236 98.6406455
10000 16 121.5295695 98.6961375
10000 32 122.8359415 123.5200135
10000 64 81.589644 108.9131675
Table 4.2: Kazoo: prop_normalize () parallel benchmarks
Zotonic

Zotonic [25] is an open-source Erlang Web Framework and content management system, ca-

pable of providing flexible high speed applications.

It is a project made of various components, spawning over many repositories. The one of

interest for our work, however, is its standard library, as it has properties to check whether it

is capable of properly sanitize strings in UTF8. Again, we picked the one that took the most
to execute, z_string_sanitize_utf8_test:prop_s_utf8a() and show only

that one (4.3).

’ NumTests ‘ NumWorkers | Median execution time (even strat.) ‘ Median execution (Nth strat.) ‘

100 0 0.041248 0.0396525
100 1 0.998514 0.962967
100 2 0.995777 0.9567575

44

CHAPTER 4. TESTING AND BENCHMARKING

100 4 1.004187 0.959927
100 8 1.0137185 0.9836805
100 16 1.06197 1.0513905
100 32 1.2017605 1.1950655
100 64 0.6283005 0.644169
1000 0 0.414754 0.4121415
1000 1 0.569497 0.5867375
1000 2 0.501841 0.3746395
1000 4 0.3786765 0.27011
1000 8 0.3194805 0.2498845
1000 16 0.3214465 0.287736
1000 32 0.4200385 0.4035595
1000 64 0.6683985 0.651667
10000 0 4.309788 4.2923995
10000 1 10.36273 10.3820285
10000 2 5.681023 5.3670255
10000 4 2.9683095 2.7579885
10000 8 1.6316345 1.527821
10000 16 1.0153945 1.0510645
10000 32 0.9882455 0.957311
10000 64 1.0766025 1.0587965

Table 4.3: Zotonic: prop_s_utf8a () parallel benchmarks

Diffy

Diffy [26] is a project which implements in Erlang the Diff, Match and Patch [27] library and
is used by bigger and well-known projects, such as Zotonic itself.

Even though it is a small project, it has a few properties that test its implementation.
However, we decided to look for the property that took the longest to run and use that one
to benchmark for this report; that property, diffy_tests:prop_inner_diff(),is
an stateless one that checks whether the different algorithm is capable of properly diffing the
innermost part of an HTML document after having it modified (4.4).

NumTests | NumWorkers | Median execution time (even strat.) ‘ Median execution (Nth strat.) ‘

1000 0 3.2038845 3.193476
1000 1 3.313632 3.378731

45

4.2. Benchmarking

1000 2 1.7992555 1.7900135
1000 4 0.9959045 1.0011105
1000 8 0.6224575 0.634341

1000 16 0.4903785 0.5155705
1000 32 0.4742175 0.4984285
1000 64 0.591725 0.607396

10000 0 31.958289 31.9596165
10000 1 32.2683375 32.513183
10000 2 16.86818 16.7938955
10000 4 8.861493 8.8009345
10000 8 4.989744 4.8861055
10000 16 3.462057 3.3754105
10000 32 3.180591 2.973362

10000 64 3.0812605 2.8868445
100000 0 313.1051505 318.925156
100000 1 320.2353155 319.443231
100000 2 165.54899 162.098418
100000 4 86.138611 84.323321
100000 8 47.026769 46.433824
100000 16 31.986817 31.893608
100000 32 27.8032935 27.516021
100000 64 26.035407 25.8266085

Best strategy

Table 4.4: Diffy: prop_inner_diff () parallel benchmarks

Although we did more benchmarks, they have been left out of the report as otherwise we

would have too many pages wasted on only showing benchmarks, whereas it would be more

relevant to note what can be learnt from those that have been shown.

First of all, parallelization will not always bring a speedup, as seen in both of the strategies

at test runs that already took a short moment to finish (usually when using a small number of

tests). However, for test runs that would normally (i.e., with the original implementation of

PropEr) take five seconds or more, the benefits from parallelizing the tests can be perceived.

Whilst this is true for both stateless and stateful properties, this time barrier is lower on

the former type of properties than in the latter type, as those have to isolate the workers in

their own dedicated nodes to deal with stateful systems, instead of simply spawning more

46

CHAPTER 4. TESTING AND BENCHMARKING

workers in the existing node to increment the parallelism.

Allin all, between the two strategies that have been benchmarked (even distribution and
Nth sequence distribution), despite the fact that both have some hiccups at some number of
workers from time to time (probably related to the latency produced from having to send too
many messages), we think that the latter is a better fit for the rest of the benchmarks than the

former, as it handles better spreading the workload among the workers.

4.2.2 Parallel execution benchmarking

Due to time restraints at this point of our work, and because of the general lack of both projects
using PropEr and properties that were of interest those projects we found, we will hereafter
only show benchmarks of properties from different test suites of Erlang/OTP itself, as we
consider it the biggest existing open-source project actually doing Property-Based Testing in
Erlang. Erlang/OTP has in some of its applications, or components, a test suite of property-
based tests, of which a few can be run with the tool that this work extended, PropEr, whereas
others can only be run with the paid license of EQC.

Out of the total of six applications (compiler, crypto, ftp, ssh, ssl, stdlib)
that had property-based tests, just four of them (compiler, crypto, ssh,stdlib)had

tests that could be run and used to benchmark.

compiler

This compiler of Erlang/OTP itself has in its test suite a single stateful property,
compile_prop:compile(), to checks whether it is possible to compile generated Er-
lang abstract code with no errors or not (4.5) and a series of properties to check whether
some logical properties are always held for the existing types in the BEAM or not. Again, we
picked the most time consuming property, beam_types_prop:associativity(),

from the series of properties to show in the report (4.6).

Module:Property ‘ NumTests ‘ NumWorkers ‘ Median execution ‘
compile_prop:compile() 1000 0 9.1924835
compile_prop:compile() 1000 1 9.238612
compile_prop:compile() 1000 2 4.8878485
compile_prop:compile() 1000 4 2.659909
compile_prop:compile() 1000 8 1.580098
compile_prop:compile() 1000 16 1.0493715
compile_prop:compile() 1000 32 1.000874
compile_prop:compile() 1000 64 0.780156

47

4.2. Benchmarking

compile_prop:compile() 10000 0 91.5118675
compile_prop:compile() 10000 1 89.170889
compile_prop:compile() 10000 2 45.227779
compile_prop:compile() 10000 4 23.1776705
compile_prop:compile() 10000 8 11.8982525
compile_prop:compile() 10000 16 6.2006945
compile_prop:compile() 10000 32 4.612698

compile_prop:compile() 10000 64 3.5742405

Table 4.5: Erlang/OTP: compiler, compile () parallel benchmarks

Module:Property ‘ NumTests ‘ NumWorkers ‘ Median execution
beam_types_prop:associativity() 5000 0 13.022068
beam_types_prop:associativity() 5000 1 13.2373845
beam_types_prop:associativity() 5000 2 6.6338075
beam_types_prop:associativity() 5000 4 3.4362205
beam_types_prop:associativity() 5000 8 1.870995
beam_types_prop:associativity() 5000 16 1.122578
beam_types_prop:associativity() 5000 32 0.8995795
beam_types_prop:associativity() 5000 64 0.9441975

Table 4.6: Erlang/OTP: compiler, associativity () parallel benchmarks

crypto

As Erlang/OTP supports multiple cryptography ciphers and has support for the OpenSSL

cryptolib, and more importantly recently changed its API to deal with changes in the afore-

mentioned cryptolib, we think the properties from this application might be interesting to

benchmark. Both properties, crypto_ng_api:prop__crypto_one_time() (4.7)

and crypto_ng_api:prop__crypto_init_update_final () (4.8), are state-

ful and test the new implementation of the APL

Module:Property ‘ NumTests | NumWorkers ‘ Median execution ‘
crypto_ng_api:prop__crypto_one_time() 10000 0 110.628972
crypto_ng_api:prop__crypto_one_time() 10000 1 145.8276025
crypto_ng_api:prop__crypto_one_time() 10000 2 81.5819725
crypto_ng_api:prop__crypto_one_time() 10000 4 41.218044

48

CHAPTER 4. TESTING AND BENCHMARKING

crypto_ng_api:prop__crypto_one_time() 10000 8 21.464494
crypto_ng_api:prop__crypto_one_time() 10000 16 11.1920615
crypto_ng_api:prop__crypto_one_time() 10000 32 9.095284

crypto_ng_api:prop__crypto_one_time() 10000 64 7.3540885

Table 4.7: Erlang/OTP: crypto, prop__crypto_one_time () parallel benchmarks

Module:Property ‘ NumTests ‘ NumWorkers ‘ Median execution
crypto_ng_api:prop__crypto_init_update_final() 10000 0 110.2280835
crypto_ng_api:prop__crypto_init_update_final() 10000 1 167.8912475
crypto_ng_api:prop__crypto_init_update_final() 10000 2 83.8977575
crypto_ng_api:prop__crypto_init_update_final() 10000 4 42.5350435
crypto_ng_api:prop__crypto_init_update_final() 10000 8 22.124254
crypto_ng_api:prop__crypto_init_update_final() 10000 16 11.623337
crypto_ng_api:prop__crypto_init_update_final() 10000 32 8.7799665
crypto_ng_api:prop__crypto_init_update_final() 10000 64 7.294942

Table 4.8: Erlang/OTP: crypto, prop__crypto_init_update_final () parallel
benchmarks

ssh

At the risk of repeating ourselves, Erlang/OTP is a functional programming language built
to solve concurrency related issues while providing a robust platform to develop and work
on. Since most Erlang applications are distributed ones and those run on nodes, either on one
machine or server, or in multiple ones, it has a built-in ssh application included to help start
clients or daemons and run commands in a shell on a remote server with the language itself.

This component of Erlang/OTP has only two properties to check whether
it is possible to properly encode, or first decode and then encode, a ssh mes-
sage. Once acain, in this report we will include only the latter of the properties,
ssh_eqc_encode_decode:prop_ssh_decode_encode(), as it was the
most time consuming of the two (although in this case it was pretty fast by itself and we had

to scale the number of tests up to get proper benchmarks).

Module:Property ‘ NumTests ‘ NumWorkers | Median execution
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 0 0.0888925
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 1 0.430613

49

4.2. Benchmarking

ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 2 0.3949945
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 4 0.3877615
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 8 0.416598

ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 16 0.44926

ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 32 0.5559945
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 64 0.4801235
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 0 0.848077

ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 1 0.9098715
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 2 0.510886

ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 4 0.319352

ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 8 0.2444555
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 16 0.2411055
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 32 0.323419

ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 64 0.5012535
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 0 8.4215655
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 1 8.4747755
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 2 4.2756365
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 4 2.2221815
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 8 1.2049885
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 16 0.8060915
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 32 0.7260185
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 64 0.8326165
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 0 84.384597
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 1 83.621504
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 2 41.946111
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 4 21.035486
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 8 10.8567325
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 16 5.6160635
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 32 4.5863795
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 64 3.750699

Table 4.9: Erlang/OTP: ssh, prop_ssh_decode_encode () parallel benchmarks

50

CHAPTER 4. TESTING AND BENCHMARKING

stdlib

In Erlang, although it is possible and there is an official API to document modules and func-
tions with notations, said documentation could only be checked in the form of HTML docu-
ments. Recently, however, Erlang/OTP has been changed to include the documentation of a
module in its compiled file in a standardized way, so that this information can be retrieved
and displayed in more ways (i.e., from the interactive shell). As a result of that, the standard
library added to its test suite a property, shell_docs_prop:prop_render (), that
checks whether it is possible to render, validate and normalize the documentation of a module

with the new format.

Module:Property ‘ NumTests | NumWorkers | Median execution ‘
shell_docs_prop:prop_render() 10000 0 60.293814
shell_docs_prop:prop_render() 10000 1 104.6819455
shell_docs_prop:prop_render() 10000 2 53.814188
shell_docs_prop:prop_render() 10000 4 29.4466085
shell_docs_prop:prop_render() 10000 8 18.669691
shell_docs_prop:prop_render() 10000 16 9.155277
shell_docs_prop:prop_render() 10000 32 5.844506
shell_docs_prop:prop_render() 10000 64 4.1181045

Table 4.10: Erlang/OTP: stdlib, prop_render () parallel benchmarks

4.2.3 Distributed execution benchmarking

Because we will be benchmarking the same properties as in the previous section, where we
showed the parallel benchmarks (4.2.2), we will simply show hereafter the tables of bench-
marks and we will talk about the results of both benchmarks in the Conclusions section of
this chapter (4.3).

Also, we consider important to note that the following tables will have less workers per
table (i.e., less rows) than in the previous section, as sadly we could only run in the cluster

the tool with up to 16 workers, so the rows related to 32 and 64 workers have been left out.

compiler
Module:Property ‘ NumTests | NumWorkers | Median execution
compile_prop:compile() 1000 0 3.531327
compile_prop:compile() 1000 1 3.550182

51

4.2. Benchmarking

compile_prop:compile() 1000 2 1.884106

compile_prop:compile() 1000 4 1.0266975
compile_prop:compile() 1000 8 0.6090585
compile_prop:compile() 1000 16 0.4183475
compile_prop:compile() 10000 0 35.642739
compile_prop:compile() 10000 1 35.058796
compile_prop:compile() 10000 2 18.3370905
compile_prop:compile() 10000 4 9.2465115
compile_prop:compile() 10000 8 4.835463

compile_prop:compile() 10000 16 2.492885

Table 4.11: Erlang/OTP: compiler, compile () distributed benchmarks

Module:Property ‘ NumTests ‘ NumWorkers ‘ Median execution
beam_types_prop:associativity() 5000 0 4.3008585
beam_types_prop:associativity() 5000 1 4.4070315
beam_types_prop:associativity() 5000 2 2.319693
beam_types_prop:associativity() 5000 4 1.2771485
beam_types_prop:associativity() 5000 8 0.7332075
beam_types_prop:associativity() 5000 16 0.4896175

Table 4.12: Erlang/OTP: compiler, associativity () distributed benchmarks

crypto
Module:Property ‘ NumTests ‘ NumWorkers ‘ Median execution

crypto_ng_api:prop__crypto_one_time() 10000 0 29.0995205
crypto_ng_api:prop__crypto_one_time() 10000 1 40.7774245
crypto_ng_api:prop__crypto_one_time() 10000 2 21.125296
crypto_ng_api:prop__crypto_one_time() 10000 4 10.7539585
crypto_ng_api:prop__crypto_one_time() 10000 8 5.7919015
crypto_ng_api:prop__crypto_one_time() 10000 16 3.08204

Table 4.13: Erlang/OTP: crypto, prop__crypto_one_time()

marks

distributed bench-

52

CHAPTER 4. TESTING AND BENCHMARKING

Module:Property ‘ NumTests | NumWorkers | Median execution
crypto_ng_api:prop__crypto_init_update_final() 10000 0 29.67034
crypto_ng_api:prop__crypto_init_update_final() 10000 1 41.0459865
crypto_ng_api:prop__crypto_init_update_final() 10000 2 21.029765
crypto_ng_api:prop__crypto_init_update_final() 10000 4 10.8909075
crypto_ng_api:prop__crypto_init_update_final() 10000 8 5.779673
crypto_ng_api:prop__crypto_init_update_final() 10000 16 3.072786

Table 4.14: Erlang/OTP: crypto, prop__crypto_init_update_final() dis-
tributed benchmarks

ssh
Module:Property ‘ NumTests | NumWorkers | Median execution
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 0 0.024615
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 1 0.1149505
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 2 0.111211
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 4 0.108683
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 8 0.115139
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100 16 0.1590255
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 0 0.251863
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 1 0.3445005
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 2 0.2239095
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 4 0.169825
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 8 0.1619355
ssh_eqc_encode_decode:prop_ssh_decode_encode() 1000 16 0.1821265
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 0 2.453757
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 1 2.5533595
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 2 1.3547285
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 4 0.7534805
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 8 0.463339
ssh_eqc_encode_decode:prop_ssh_decode_encode() 10000 16 0.3546005
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 0 24.4840895
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 1 24.416444
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 2 12.6548485
ssh_eqc_encode_decode:prop_ssh_decode_encode() 100000 4 6.49339

53

4.3. Conclusions

ssh_eqc_encode_decode:prop_ssh_decode_encode()

100000

3.4009055

ssh_eqc_encode_decode:prop_ssh_decode_encode()

100000

16

1.808103

Table 4.15: Erlang/OTP: ssh, prop_ssh_decode_encode () distributed benchmarks

stdlib
Module:Property ‘ NumTests | NumWorkers | Median execution

shell_docs_prop:prop_render() 10000 0 18.6674395
shell_docs_prop:prop_render() 10000 1 28.6606325
shell_docs_prop:prop_render() 10000 2 15.1546485
shell_docs_prop:prop_render() 10000 4 8.2777155
shell_docs_prop:prop_render() 10000 8 4.481394

shell_docs_prop:prop_render() 10000 16 3.5812895

Table 4.16: Erlang/OTP: std1ib, prop_render () distributed benchmarks

4.3 Conclusions

There are a few conclusions to draw from looking at both benchmarks and taking into account
the cost of implementing each new way of execution.

To start with, we want to state that although the reader might feel inclined to compare
each benchmark against the other, that should not be done as the systems used to benchmark
were radically different from each other. Given that the machine where the parallel bench-
marks were done was always being used by more researchers, it is normal for its baseline
results (sequential PropEr) to be slower when running a certain number of tests compared
with those results from the baseline of the distributed benchmarks, where the machine was
always completely free of any other program consuming resources. In short, both settings
are valid and we will be simply commenting on the results we obtained from each.

Secondly, as we will be showing diagrams with the speedup obtained throughout the

different properties we benchmarked, we wanted to explain what that value can mean:

« If the speedup value obtained is between 0 and 1, the parallelization did not help to
shorten the execution times, meaning that the program runs in about the same time

than its sequential version.

« If the speedup value, however, is between 0 and N, with N being the number CPUs

used, the parallel program runs faster than its sequential counterpart. Ideally we would

54

CHAPTER 4. TESTING AND BENCHMARKING

want to have a speedup value of N, as that would mean that the work has been evenly
distributed among the CPUs.

« Finally, if the speedup value happens to be bigger than N, which can happen in rare
situations, it is a superlinear speedup and it means that program has been sped up by
more than the rise of CPUs.

Both settings did show the advantages of turning the property-based testing tool into a
concurrent one. However, the benefits are greater in the distributed execution than in the
parallel execution because we have a bigger total number of resources for the program to
make use of (in other words, more machines instead of one) and there is no machine handling
that many nodes at the same time; whereas in the parallel version, the more workers you use
the more stress you put in your single machine.

Furthermore, in both settings we can notice that running a single worker might be worse
(i.e., a spike can happen) than running the sequential tool, as there is an extra latency produced
from handling the workers and nodes, and even more so when testing stateful properties.

Finally, as seen in the tables throughout the benchmarks, concurrency does indeed speed
up the program, but first the tests to run should take a bit of time for those benefits to appear.
In other words, if your property is being tested 100 times and it takes 1 second to do so, it is
really hard to shorten such an execution time; whereas if your running those 100 tests takes

4-5 seconds, at some point of increasing the number of workers, the testing will be speeded

up.

55

4.3. Conclusions

Execution time Speedup
251
80
201
60
15 4
g 53
5
g g
= &
40
10 1
20
5
0 B T T T T T T T 0 ! T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Schedulers Schedulers
Figure 4.2: Parallel execution
Execution time Speedup
35 A 14
30 -| 12 4
25 A 10 4
% 20 5 s
g @
£ o
= &
15 6
10 4
5 2 1
T T T T T T T T T T T T T T T T
0 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Schedulers Schedulers

Figure 4.3: Distributed execution

Figure 4.4: Results of compile_prop:compile()

56

CHAPTER 4. TESTING AND BENCHMARKING

Time (s)

Time (s)

Execution time Speedup
/] 14 1
12 1
12
10 1
10 1
g4
(=3
g 81
@
[
o
[
6
6
4
44
24 5
T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Schedulers Schedulers
Figure 4.5: Parallel execution
Execution time Speedup
4.5 94
4.0 4 8
3.5 1 74
3.0 A 64
s
2.5 F 54
[
(=N
1]
2.0 44
1.5 4 34
1.0 2
0.5 14
T T T T T T T T T T T T T T T T T
0 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Schedulers Schedulers

Figure 4.6: Distributed execution

Figure 4.7: Results of beam_types_prop:associativity()

57

4.3. Conclusions

Execution time Speedup
140
14 A
120 1
121
100
10 1
- (=3
4 4 S
S 80 2 &
£ o
S &
60 | 64
40 4
20 A 2
T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Schedulers Schedulers
Figure 4.8: Parallel execution
Execution time Speedup
40 1
35 3 |
30
64
25
C) 5
k=1
o
g g
= 20 [
4
15 4
10
24
5
T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Schedulers Schedulers

Figure 4.9: Distributed execution

Figure 4.10: Results of crypto_ng_api:prop__crypto_one_time()

58

Time (s)

CHAPTER 4. TESTING AND BENCHMARKING

Time (s)

Execution time Speedup
160 1
14 4
140 -
12 1
120
10 4
100 4
(=3
S
g 84
[
80 | &
64
60
4
40 1
20 4 21
04— T T T T T T 01— T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Schedulers Schedulers
Figure 4.11: Parallel execution
Execution time Speedup
10
40
35
8 4
30 A
25 4 67
(=3
S
k=1
@
2
20 (7]
4
151
10 4
2 4
5 4
T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Schedulers Schedulers

Figure 4.12: Distributed execution

Figure 4.13: Results of crypto_ng_api:prop__crypto_init_update_final

59

4.3. Conclusions

Time (s)

Time (s)

Execution time Speedup
80
201
70
60 -
15
50
(=3
S
5
a
2
40 1 [
10 1
30
20 5 |
10 4
0 T T T T T T 01— T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Schedulers Schedulers
Figure 4.14: Parallel execution
Execution time Speedup
25 4 14 4
121
20
10
154
a 819
S
5
a
L
(=8
wv
64
10 1
4
5
2
T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Schedulers Schedulers

Figure 4.15: Distributed execution

Figure 4.16: Resultsof ssh_eqc_encode_decode:prop_ssh_decode_encode()

60

CHAPTER 4. TESTING AND BENCHMARKING

Execution time Speedup
100 - 14 o
12 4
80
10
z 8] g 4]
g B
£ ©
= &
6
40 1
4
20
24
0 - T T T T T T T 0 E T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Schedulers Schedulers
Figure 4.17: Parallel execution
Execution time Speedup
5
25
44
20
C) 53
T 34
g :
£ 15 1 &
24
10 4
54 1
T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Schedulers Schedulers

Figure 4.18: Distributed execution

Figure 4.19: Results of shell_docs_prop:prop_render()

61

4.3. Conclusions

62

Chapter 5

Conclusions

IN this final chapter of the report, we will first contrast the proposed objectives we had
set for the project with the reached ones at the end. We will also talk about the lessons
learned from carrying out this project and we will end up by talking about future possible

improvements that could be done to the tool.

5.1 Follow-up

The main goal of this project was to extend the most powerful property-based testing tool for
Erlang with parallel and distributed execution. We wanted to make use of the full potential
of the programming language the tool was written in and for, to easily modify the existing
codebase with as little impact as possible (and while following the best of practices) to bring
a new usable version of the tool with both new manners of execution. Finally, we wanted
to measure the obtainable speedup of our patched version of the tool by running it both in a
cluster to test the distributed execution and in a single powerful machine to test the parallel
execution.

Both implementations were done successfully and the tool can now be executed in a par-
allel or distributed fashion. The benchmarks could be improved upon, but the lack of time at
the end of the project and the general absence of well-known projects, or at least projects used
by the Erlang community, that had property-based tests usable by PropEr was a big decisive

factor in the end.

5.1.1 Impact on the code

The property-based testing tool we extended in this project, PropEr, consisted of 12729 lines
of Erlang code (as shown in 5.1) in the commit we started working on. After our patches, and
also because of the upstream repository having some updates of their own that were added to

our version too, the final number of lines of Erlang code the tool has is 14007. It is important

63

5.1. Follow-up

to note, however, that the real number of changes done to the codebase is 490 insertions and
23 deletions (as shown in the diff of 5.2).

This means that, in order to bring parallel and distributed execution to the tool, the total
number of code changes we did was just 513, which is around 3.66% of the total code of the

tool.

$ cloc proper_before/

3| Language files blank comment code

1 R
5 Erlang 68 2294 4494 127297

ol # elided output as it is not relevant to the report #

s|$ cloc proper_after/

0| Language files blank comment code

1| = o .
12 Erlang 77 2638 5080 14007

1| # elided output as it is not relevant to the report #

Listing 5.1: Comparison of LOC (Lines of Code) PropEr had before and after our work

1|$ git diff upstream/master --stat

2| Makefile | 2 +-

3| include/proper_internal.hrl | 15 +++++

4| src/proper.erl | 476 ++++++t++tHt
5 e o L R R R
6 B B . e e
8 ++--=--

o| test/proper_specs_tests.erl | 4 +-

0| test/proper_tests.erl | 16 +++--

1| 5 files changed, 490 insertions(+), 23 deletions(-)

Listing 5.2: Total of additions and deletions done throughout our work

5.1.2 Lessons learned

Since the property-based testing tool we decided to extend is one that works and is very much
cared about by its maintainers and users, this project meant to the student developing with
the utmost care and their first look into an open-source application in Erlang used by many
professionals.

Thus, this project helped the student to further understand and practise not only their

knowledge of Erlang itself, but also what it meant to make and use a concurrent application

64

CHAPTER 5. CONCLUSIONS

and how to modify an existing one to make it parallel or distributed. This was done by read-
ing papers related to the subject of making an Erlang program more fault-tolerant [28] and
the benefits of the parallelization of an existing Erlang program [29]. Moreover, due to the
relevance of the application in the area of Property-Based Testing, the student was able to
deepen their knowledge of this approach to testing.

Furthermore, this project helped the student understand the importance of following a
good methodology, as otherwise it is easy to lose track of everything and focusing into short
sprints helps breaking down the project into smaller bits. In addition, the help and guidance of
both supervisors has been a critical point of the project, and the student has not only learned
that the knowledge from those with years of experience can be very useful when in need of
help, but that there is no shame in doing so and that knowing how to communicate clearly is
vital.

Finally, developing such an interesting project related to a field of software that is usually
not very liked, testing, has helped the student realize the importance and advantages of having

good test suites and knowing different methods of testing.

5.2 Future work

As future work for this project, there are a few things left to do:

« Revise the two strategies to split the tests that could not be benchmarked due to imple-

mentation issues.

+ Clean up the code and apply any suggestions from the feedback of the creator of the
tool before creating a Pull Request to the original repository to have the changes of this

work go upstream.

« The experience from carrying out this project and the results of obtained from it will

be also turned into a scientific paper that will be published later.

65

5.2. Future work

66

Appendices

67

List of Acronyms

BEAM Bogdan/Bjorn’s Erlang Abstract Machine. 8, 47

EQC Erlang Quickcheck. 47

ERTS Erlang RunTime System. 36
OTP Open Telecom Platform. 7, 36

PBT Property-Based Testing. 2

PID process identifier. 8

spg Scalable Process Groups. 3

69

List of Acronyms

70

Glossary

upstream Original repository from where the code has been forked.. 3

71

Glossary

72

Bibliography

[1] E. W. Dijkstra, “On the reliability of programs (EWD303)” [Online]. Available:
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html

[2] K. Claessen and]J. Hughes, “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs,” Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, ICFP, vol. 46, 01 2000. [Online]. Available:
https://doi.org/10.1145/1988042.1988046

[3] —. (2000) Quickcheck. [Online]. Available: https://hackage.haskell.org/package/
QuickCheck

[4] M. Papadakis and K. Sagonas, “A PropEr Integration of Types and Function
Specifications with Property-Based Testing,” in Proceedings of the 2011 ACM
SIGPLAN Erlang Workshop. New York, NY: ACM Press, Sep. 2011, pp. 39-50.
[Online]. Available: https://doi.org/10.1145/2034654.2034663

[5] PropEr: A QuickCheck-Inspired Property-Based Testing Tool for Erlang. [Online].
Available: https://proper-testing.github.io

[6] R. Hickey and R. Drape. (2014) test.check. [Online]. Available: https://github.com/

clojure/test.check

[7] M. Fedorov. (2019) Scalable Process Groups. [Online]. Available: https://github.com/

max-au/spg
[8] Fork of PropEr in GitHub. [Online]. Available: https://github.com/pablocostass/proper

[9] PropEr repository in GitHub. [Online]. Available: https://github.com/proper-testing/
proper

[10] J. Armstrong, Software for a Concurrent World, 2nd ed. Pragmatic Bookshelf, 2013.

73

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://doi.org/10.1145/1988042.1988046
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://doi.org/10.1145/2034654.2034663
https://proper-testing.github.io
https://github.com/clojure/test.check
https://github.com/clojure/test.check
https://github.com/max-au/spg
https://github.com/max-au/spg
https://github.com/pablocostass/proper
https://github.com/proper-testing/proper
https://github.com/proper-testing/proper

Bibliography

[11] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR Formalism for
Artificial Intelligence,” in Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, ser. JCAI’73. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1973, p. 235-245. [Online]. Available: https://dl.acm.org/doi/10.
5555/1624775.1624804

[12] M. Papadakis, “Automatic Random Testing of Function Properties from Specifications,”
Diploma thesis, National Technical University of Athens, School of Electrical
and Computer Engineering, Oct. 2010. [Online]. Available: https://proper-testing.
github.io/papers/manolis-thesis.pdf

[13] E. Arvaniti, “Automated Random Model-Based Testing of Stateful Systems,” Diploma
thesis, National Technical University of Athens, School of Electrical and Computer
Engineering, Jul. 2011. [Online]. Available: https://proper-testing.github.io/papers/
eirini-thesis.pdf

[14] Proper’s documentation. [Online]. Available: https://proper-testing.github.io/apidocs/

[15] Getting Started with Erlang. [Online]. Available: http://erlang.org/documentation/
doc-5.3/doc/getting_started/getting_started.html

[16] rebar3. [Online]. Available: https://www.rebar3.org/
[17] F. Hebert. rebar3 proper. [Online]. Available: https://github.com/ferd/rebar3_proper

[18] A PropEr statem tutorial. [Online]. Available: https://proper-testing.github.io/tutorials/

PropEr_testing of_generic_servers.html
[19] Nifty - nif interface generator. [Online]. Available: http://parapluu.github.io/nifty/

[20] PropEr’s licence: GPL-3.0. [Online]. Available: https://github.com/proper-testing/
proper/blob/master/COPYING

[21] Erlang’s Directory Structure Guidelines for a Development Environment.
[Online]. Available: https://erlang.org/doc/design_principles/applications.html#

directory-structure-guidelines-for-a-development-environment
[22] Cowlib. [Online]. Available: https://github.com/ninenines/cowlib

23] V. Raghunathan. Huffman Coding (ECE264). [Online]. Available: https://engineering.
g g p g g
purdue.edu/ece264/17au/hw/HW13?alt=huffman

[24] Kazoo. [Online]. Available: https://www.2600hz.org/

74

https://dl.acm.org/doi/10.5555/1624775.1624804
https://dl.acm.org/doi/10.5555/1624775.1624804
https://proper-testing.github.io/papers/manolis-thesis.pdf
https://proper-testing.github.io/papers/manolis-thesis.pdf
https://proper-testing.github.io/papers/eirini-thesis.pdf
https://proper-testing.github.io/papers/eirini-thesis.pdf
https://proper-testing.github.io/apidocs/
http://erlang.org/documentation/doc-5.3/doc/getting_started/getting_started.html
http://erlang.org/documentation/doc-5.3/doc/getting_started/getting_started.html
https://www.rebar3.org/
https://github.com/ferd/rebar3_proper
https://proper-testing.github.io/tutorials/PropEr_testing_of_generic_servers.html
https://proper-testing.github.io/tutorials/PropEr_testing_of_generic_servers.html
http://parapluu.github.io/nifty/
https://github.com/proper-testing/proper/blob/master/COPYING
https://github.com/proper-testing/proper/blob/master/COPYING
https://erlang.org/doc/design_principles/applications.html#directory-structure-guidelines-for-a-development-environment
https://erlang.org/doc/design_principles/applications.html#directory-structure-guidelines-for-a-development-environment
https://github.com/ninenines/cowlib
https://engineering.purdue.edu/ece264/17au/hw/HW13?alt=huffman
https://engineering.purdue.edu/ece264/17au/hw/HW13?alt=huffman
https://www.2600hz.org/

BIBLIOGRAPHY

[25] Zotonic. [Online]. Available: http://zotonic.com/
[26] Diffy. [Online]. Available: https://github.com/mmzeeman/difty

[27] N. Fraser. (2006, Apr.) Diff strategies. [Online]. Available: https://neil.fraser.name/
writing/dift/

[28] A. Loscher and K. Sagonas, “The Nifty Way to Call Hell from Heaven,” in Trends
in Functional Programming. New York, NY, USA: Association for Computing

Machinery, 2016, p. 1-11. [Online]. Available: https://doi.org/10.1145/2975969.
2975970

[29] S. Aronis and K. Sagonas, “On Using Erlang for Parallelization,” in Trends in
Functional Programming, H.-W. Loidl and R. Pefia, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 295-310. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-3-642-40447-4_19

75

http://zotonic.com/
https://github.com/mmzeeman/diffy
https://neil.fraser.name/writing/diff/
https://neil.fraser.name/writing/diff/
https://doi.org/10.1145/2975969.2975970
https://doi.org/10.1145/2975969.2975970
https://link.springer.com/chapter/10.1007/978-3-642-40447-4_19
https://link.springer.com/chapter/10.1007/978-3-642-40447-4_19

Bibliography

76

	Introduction
	Motivation
	Objectives
	Methodology
	Work plan
	Project cost

	Report layout

	Background
	Erlang/OTP
	Property-Based Testing
	Unit Testing
	Property-Based Testing

	PropEr
	Stateless vs. stateful properties

	Development
	Design
	Proposed design
	Test distribution among workers

	A PropEr study
	Implementation
	Preamble
	Project structure
	A PropEr implementation
	Problems faced during the Implementation stage
	Implementing the different strategies of test distribution

	Testing and benchmarking
	Testing the implementation
	Benchmarking
	Picking a strategy to split the tests
	Parallel execution benchmarking
	Distributed execution benchmarking

	Conclusions

	Conclusions
	Follow-up
	Impact on the code
	Lessons learned

	Future work

	List of Acronyms
	Glossary
	Bibliography

