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Abstract

The objective of this paper is to present a new Large Eddy Simulation (LES) model
obtained by filtering a generalized version of the Navier-Stokes equations with non-
linear viscosity. This new model is a generalization of the model introduced in [J. M.
Rodríguez, R. Taboada-Vázquez, A new LES model derived from generalized Navier-
Stokes equations with nonlinear viscosity. Computers and Mathematics with Applica-
tions 73 (2017) 294-303].

The new LES model, in which viscosity has been substituted by a non linear func-
tion of the strain rate tensor, has been implemented and validated using FreeFem++
codes. The numerical predictions have been compared with analytical solutions of
the Navier-Stokes equations and it was found that the present model provides a more
accurate approximation of the exact solution than that obtained by Direct Numerical
Simulation (DNS) of the Navier-Stokes equations, even using a coarser mesh.

The model has also been validated by studying the unsteady flow over a backward-
facing step. In this case, our numerical predictions have been compared with the exper-
imental measurements reported by Armaly et al. and the numerical results obtained by
Chacón and Lewandowski. The new model performs satisfactorily in predicting these
flows too.

Keywords: Large Eddy Simulation, nonlinear viscosity, Backward Facing Step Flow
test.
2010 MSC: 76D05, 76F65, 35Q35, 35Q30, 65M60.

1. Introduction

The Large Eddy Simulation (LES) approach is a tool for modelling unsteady turbu-
lent flow and it is extremely useful for the prediction of complex flows in engineering
applications such as channel flows, combustion, automotive, nuclear power engineer-
ing, etc. (see [15] or [22], for example). LES models are more accurate and of wider
applicability than Reynolds-Averaged Navier-Stokes (RANS) models and less compu-
tationally demanding than the Direct Numerical Simulation (DNS) approach (see [1]).
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In LES models, the important large scales are fully resolved on grid scales while the
effects of the smaller subgrid-scales are modelled.

The LES approach is widely used to investigate the turbulence at high Reynolds
numbers and to develop and assess new turbulence models, that is our objective.

The first step of LES method, according to Berselli et al. [6], is filtering the Navier-
Stokes equations. The filter chosen in our previous work [25] was the following Gaus-
sian filter :

f̄(t,x) =

∫ ∞
−∞

∫
R3

G(s− t,y − x)f(s,y) dy ds (1)

with

G(s,y) =
γ
1/2
T γ

3/2
L

16π2η4
exp

(
−γT s

2 + γL|y|2

4η2

)
(2)

where η > 0 is a small parameter related to the size of the filter, and γT > 0, γL > 0
are parameters related to the shape of the filter.

Next step, following [6], is to introduce a closure model for subgrid-scale stress.
One of the most popular models of this type is that proposed by Smagorinsky ([23]).
This model is sometimes too dissipative, and it has other theoretical problems. In
[25] we modelled this dissipation by introducing a nonlinear viscosity in the Navier-
Stokes equations. By acting in such a way we introduced the dissipation predicted
by Kolmogorov directly in our model and, when applying the filter, we closed the LES
model by approximating the subgrid-scale stress tensor using Clark approximation (see
[7] and [26]).

So, to deduce the new LES model, we applied the filter to these generalized Navier–
Stokes equations with a nonlinear effective viscosity

ρ0

(
∂u

∂t
+ (∇u)u

)
= ρ0f +∇ ·T, (3)

∇ · u = 0, (4)

where u is the velocity field, f is the acceleration due to external forces and the stress
tensor T is given by

T = −pI + 2µe(|D|)D, D =
1

2

(
∇u +∇uT

)
, (5)

where p is the pressure and the effective viscosity µe, depending on the norm of the
strain rate tensor D, was chosen as

µe(|D|) = µ0

(
1 + λ2|D|2

)1/2
(6)

where µ0 > 0 is the dynamic viscosity, λ > 0, and we have considered the norm of D
as follows:

|D|2 =

3∑
i,j=1

DijDij (7)

The parameter λwas considered constant in [25] but in this article (see next section)
we will obtain a more general model allowing λ to depend on time and x.
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The model thus obtained in [25] is as follows:

∂ū

∂t
+ (∇ū) ū +

1

ρ0
∇p̄ = f̄ +∇ · (S− τ) ,

∇ · ū = 0, (8)

where τ (the so called subgrid-scale stress tensor) reads

τij = uiuj − ūiūj (9)

= 2

[
1

γT

∂ūi
∂t

∂ūj
∂t

+
1

γL
∇ūi · ∇ūj

]
η2 +O(η4), (10)

and S is given by

Sij =
2

ρ0

(
µe(|D|)D

)
ij

(11)

= 2ν
[
(1 +K1)

1/2
+ (1 +K1)

−1/2
K2η

2 − 1

4
(1 +K1)

−3/2
K3η

2
]
D̄ij

+ 2ν (1 +K1)
−1/2

Kijη
2 +O(η4)

The notation introduced is:

ν = µ0/ρ0, K1 = λ2|D̄|2, (12)

K2 = λ2
3∑

m,n=1

[
1

γT

(
∂D̄mn

∂t

)(
∂D̄mn

∂t

)
+

1

γL
∇D̄mn · ∇D̄mn

]
, (13)

K3 =
1

γT

(
∂K1

∂t

)2

+
1

γL
∇K1 · ∇K1, (14)

Kij =
1

γT

∂K1

∂t

∂D̄ij

∂t
+

1

γL
∇K1 · ∇D̄ij . (15)

So, a nonlinear viscosity was introduced in (6) as part of the model itself rather than
using it as a procedure to close the subgrid-scale stress tensor in (9), where we have
used the Clark approximation instead.

This new model thus obtained reminds us in some way of the dynamic procedure
of Germano (see [14]).

2. Derivation of a new model when lambda is not constant

We are interested in investigating what happens when λ in (6) is allowed to depend
on the time and the spatial variables (λ = λ(t,x)). If we now apply the filter (1)-(2) to
equations (3)-(4), but with non-constant λ, we obtain again (8)-(10) but now S is given
by

Sij = 2ν
[(

1 + K̂1

)1/2
+
(

1 + K̂1

)−1/2
K̂2η

2 − 1

4

(
1 + K̂1

)−3/2
K̂3η

2

+ 2λ̄
(

1 + K̂1

)−1/2
K̂4η

2
]
D̄ij + 2ν

(
1 + K̂1

)−1/2
K̂ijη

2 +O(η4) (16)
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where the notation used is:

ν = µ0/ρ0, K̂1 = λ̄2|D̄|2, (17)

K̂2 =

3∑
m,n=1

[
1

γT

(
∂(λ̄D̄mn)

∂t

)(
∂(λ̄D̄mn)

∂t

)
+

1

γL
∇(λ̄D̄mn) · ∇(λ̄D̄mn)

]
,(18)

K̂3 =
1

γT

(
∂K̂1

∂t

)2

+
1

γL
∇K̂1 · ∇K̂1, (19)

K̂4 =

3∑
m,n=1

[
1

γT

∂λ̄

∂t

∂D̄mn

∂t
+

1

γL
∇λ̄ · ∇D̄mn

]
D̄mn, (20)

K̂ij =
1

γT

∂K̂1

∂t

∂D̄ij

∂t
+

1

γL
∇K̂1 · ∇D̄ij . (21)

Comparing (11)-(15) with (16)-(21) we observe that the terms K̂i(i = 1, 2, 3), K̂ij

are equal to the termsKi(i = 1, 2, 3),Kij , where λ is replaced by λ̄ (that is, filtered λ),
that is not constant now. There is also a new term K̂4 that does not appear in (11)-(15)
because it is zero when λ̄ is constant.

3. Numerical results

The numerical results presented in [25] correspond to a one dimensional version of
the model (8)-(15). We compared the results obtained with analytical and numerical
solutions of the Burgers equations, and we have seen the good numerical behaviour
of the model deduced. Even for large discretization steps the filtered model provided
quite good approximations of the exact solutions.

Now we want to study the numerical behaviour of the two dimensional model pro-
posed in [25] ((8)-(15)) and the model we have just presented in the previous section
((8)-(10), (16)-(21)). With this aim, firstly, we have numerically solved both models
and compared the results obtained with exact solutions. Then, turbulent flow over a
backward-facing step has been studied. All the numerical simulations have been per-
formed using FreeFem++ (see [16]) running in the Supercomputing Center of Galicia
(CESGA), see [8].
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3.1. Numerical comparison with some analytical solutions.
Let us introduce the following family of analytical solutions of the Navier-Stokes

equations considering a rectangular domain of lengthL and height h, [0, L]×[−h/2, h/2].

u1(x, y) = Umax
h2 − 4y2

h2
+

2∑
i=1

di cos(aix) sin(biy) (22)

u2(x, y) =

2∑
i=1

ai
bi
di sin(aix) (1− cos(biy)) (23)

p(x, y) = −µ

(
8x

h2
Umax +

2∑
i=1

a2i + b2i
ai

di sin(aix) sin(biy)

)

− ρ0
2

[
h2 − 4y2

h2
Umax +

2∑
i=1

di cos(aix) sin(biy)

]2

+
8ρ0y

h2
Umax

2∑
i=1

di
bi

(cos(biy)− 1) cos(aix) (24)

where we have chosen

ai =
2πqi
L

, qi ∈ Z, i = 1, 2

bi =
4πki
h

, ki ∈ Z, i = 1, 2 (25)

in such a way that (22)-(23) fulfil the following boundary conditions:

u1(0, y) = y1(L, y) = Umax
h2 − 4y2

h2
+

2∑
i=1

di sin(biy) (26)

u1(x,−h/2) = u1(x, h/2) = 0 (27)
u2(0, y) = u2(L, y) = u2(x,−h/2) = u2(x, h/2) = 0 (28)

To be sure that (22)-(25) is a solution of the Navier-Stokes equations (that is, a
solution of the equations (3)-(4) with µe = µ0), f = (f1, f2) has been chosen in the
appropriate way.

We have introduced the values of the kinematic viscosity and the density of water
at 20oC, that is, ν = 10−6m2s−1 and ρ = 998.2kgm−3. These simulations have been
performed at a Reynolds number of 10000 (turbulent regime).

All the results have been obtained with a time step ∆t = 10−4. The test stop for
the time-stepping procedure has been set to

‖un+1
1 − un1‖∞
‖un+1

1 ‖∞
< 10−4 (29)

while the test stop for the fixed-point algorithm used to compute τ and S in (10), (11)
and (16) is more demanding since it stops when the relative error is less than 10−5.
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In the numerical examples of this paper, the variable λ = λ(t,x) has been chosen
in the following way: it is constant (λc) in the inner part of the domain and it goes
linearly to zero at the boundaries, with boundary layer thickness of three elements.

When we solve the different models, the pressure is computed except for a constant
value, so to be able to compare the errors made when calculating the pressure using the
different models, we introduce the normalized pressure

p∗ = p̄−

∫ h/2

−h/2

∫ L

0

p̄ dxdy

Lh
(30)

and we study the errors obtained approximating p∗ instead of p.
The results that follow have been obtained for these values of the coefficients that

appear in (22)-(25):

d1 = 0.1, d2 = 0.01, q1 = k1 = 1, q2 = k2 = 10 (31)

considering that the domain dimensions are L = 1 and h = 0.1
Firstly we are going to compare the errors that we obtain when we try to approx-

imate this exact solution by Direct Numerical Solution (DNS) of Navier-Stokes equa-
tions (in this case λ = 0) and solving the new model ((8)-(10), (16)-(21)) with η = 0
and different values of λ with mesh step size h/75. We have chosen this mesh step size
because we are not able to achieve convergence in the case λ = 0 (DNS of Navier-
Stokes equations) with coarser meshes. Velocity and p∗ absolute errors are shown in
table 1 (in L∞ norm) and in table 2 (in H1 and L2 norm).

λc L∞ norm L∞ norm L∞ norm
error for u1 error for u2 error for p∗

0 (NS) 3.57e− 2 4.18e− 2 3.44e− 3
0.1 9.77e− 3 1.86e− 2 2.17e− 3
0.5 5.41e− 3 9.31e− 3 1.31e− 3
1 5.48e− 3 7.06e− 3 9.45e− 4
2 8.68e− 3 7.63e− 3 1.32e− 3

Table 1: L∞ norm error bounds for Navier-Stokes (λ = 0) and different values of λc with mesh step size
h/75

We can observe that the errors are smaller when we introduce λ 6= 0. For λc = 1,
for the first component of the velocity the errors are 6 times smaller in L∞ norm, 7
times smaller in L2 norm and 20 times smaller in H1 norm. The error for the second
component of the velocity is also 6 times smaller in L∞ norm but 30 times smaller in
L2 and H1 norm. The improvement is not so significant for the pressure. These tables
also show how the accuracy of the approximations depends not only on the mesh step
size, but also on the election of λ.

We have plotted in figures 1-2 and 4-5 both components of the velocity at x = 0.5
and y = 0.01125, respectively. In figures 3 and 6 we show p∗ (see (30)) at x = 0.5
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λc H1 norm L2 norm H1 norm L2 norm H1 norm L2 norm
error for u1 error for u1 error for u2 error for u2 error for p∗ error for p∗

0 (NS) 4.48e0 7.74e− 7 1.06e+ 1 1.89e− 6 7.39e− 3 1.11e− 8
0.1 4.63e− 1 7.69e− 8 3.62e0 6.01e− 7 4.24e− 3 4.50e− 8
0.5 1.59e− 1 5.78e− 8 8.12e− 1 1.24e− 7 1.50e− 3 1.08e− 8
1 2.05e− 1 1.09e− 7 3.61e− 1 5.40e− 8 1.09e− 3 4.54e− 9
2 7.28e− 1 5.50e− 7 1.7e− 1 2.66e− 8 6.93e− 4 1.38e− 9

Table 2: H1 and L2 norm error bounds for Navier-Stokes (λ = 0) and different values of λc with mesh step
size h/75

and y = 0.01125 too. We have chosen the values of x and y where the solution
presents more oscillations. In these figures, we can observe the exact solution, the
approximation obtained by Direct Numerical Solution of Navier-Stokes equations and
the approximations provided by the new LES model for λc = 0.1, 0.5, 1 and 2. As we
could expect after seeing tables 1 and 2 the worst approximation is the one provided by
DNS of Navier-Stokes equations.

In figures 1 and 4 we appreciate that oscillations appear when λ = 0. These oscil-
lations decrease with λc = 0.1 and disappear when λc is larger. The approximations
with λc = 0.5 and λc = 1 are quite accurate. If we increase the value of λc (λc = 2
for example) we loose accuracy because we are introducing too much viscosity.
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Exact solution
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Figure 1: u1 component of the velocity at x = 0.5 for Re = 10000, with different values of λc with mesh
step size h/75.

In the case of the second component of the velocity (figures 2 and 5) all the approx-
imations present oscillations but their amplitude decreases when we introduce λc > 0.

The approximations of the pressure are also better when we introduce λ 6= 0 than
the approximation obtained by solving Navier-Stokes equations.
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Figure 2: u2 component of the velocity at x = 0.5 for Re = 10000, with different values of λc with mesh
step size h/75.
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Figure 3: Pressure at x = 0.5 for Re = 10000, with different values of λc with mesh step size h/75.
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Figure 4: u1 component of the velocity at y = 0.01125 for Re = 10000, with different values of λc with
mesh step size h/75.
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Figure 5: u2 component of the velocity at y = 0.01125 for Re = 10000, with different values of λc with
mesh step size h/75.
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Figure 6: Pressure at y = 0.01125 for Re = 10000, with different values of λc with mesh step size h/75.

As we have already mentioned, the mesh step size cannot be larger than h/75 to
achieve convergence in the case λ = 0 (DNS of Navier-Stokes equations). So, next we
want to show (see table 3) that we are able to obtain more accurate solutions with the
new model using much coarser meshes. In particular, table 3 shows that if we compute
the new LES model with λc = 1 and mesh step size h/55 the velocity error is twice
smaller than velocity error solving Navier-Stokes equations with mesh step size h/75
in L∞ and L2 norm and 10 times smaller in H1 norm.

In tables 3-4 and figures 7-10, n means that mesh step size is h/n.

λc n L∞ norm L∞ norm L∞ norm H1 norm L2 norm
error for u1 error for u2 error for p∗ error for u1 error for u1

0 (NS) 75 3.57e− 2 4.18e− 2 3.44e− 3 4.48e0 7.74e− 7
0 (NS) 80 2.15e− 2 2.57e− 2 2.78e− 3 1.37e0 1.66e− 7

1 55 1.32e− 2 1.48e− 2 2.47e− 3 4.66e− 1 3.28e− 7
1 75 5.48e− 3 7.06e− 3 9.45e− 4 2.05e− 1 1.09e− 7

Table 3: Error bounds for Navier-Stokes (λ = 0) with n = 75 and λc = 1 variable with n = 55, 75

Even if we reduce the mesh step size (h/80), the errors obtained by using DNS are
still significantly larger than those obtained with the new model with a mesh step size
h/55, see table 3 again. So, the results achieved with the new model are quite better
using a mesh of less than the half of triangles and vertices (see table 4).
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n Number of Triangles Number of Vertices
80 147410 74586
75 117778 59715
55 64040 32623

Table 4: Comparison of the number of triangles and vertices for different values of n

In figures 7-10 we can compare the velocity approximation provided by solving
Navier-Stokes equations with mesh step size h/75 with the velocity approximation
obtained by computing the new model with mesh step size h/55 at x = 0.5 and y =
0.01125. We observe that the solution computed with the new model is more accurate
although the mesh used is much coarser.

y
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u
1
 at x=0.5

Exact solution
Navier-Stokes, n=75
6

c
=1, n=55

Figure 7: u1 component of the velocity at x = 0.5 for Re = 10000, with λc = 1 and without λ.
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Figure 8: u2 component of the velocity at x = 0.5 for Re = 10000, with λc = 1 and without λ.
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Figure 9: u1 component of the velocity at y = 0.01125 for Re = 10000, with λc = 1 and without λ.
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Figure 10: u2 component of the velocity at y = 0.01125 for Re = 10000, with λc = 1 and without λ.

The results obtained can be slightly improved by solving the filtered equations (η 6=
0). Some of these improvements are shown in table 5, where the error bounds obtained
by approximating (22)-(25) for the following values of the coefficients are given:

d1 = 0.1, d2 = 0.01, q1 = k1 = 1, q2 = k2 = 2 (32)

λ 0 (NS) 2 2
η 0 10−3

L∞ norm for u1 1.91e− 3 3.38e− 4 2.31e− 4
H1 norm for u1 2.67e− 3 9.99e− 5 5.60e− 5
L2 norm for u1 1.04e− 9 7.44e− 11 3.81e− 11
L∞ norm for u2 2.39e− 3 4.19e− 4 3.06e− 4
H1 norm for u2 1.16e− 2 2.46e− 4 1.37e− 4
L2 norm for u2 4.02e− 9 8.66e− 11 4.81e− 11

Table 5: Error bounds for Navier-Stokes (λ = 0), λ = 2 with and without filtering for values (32), n = 50

We observe that when η = 10−3 the velocity errors are nearly twice smaller than
those obtained when η = 0 in norm L-infinity and even smaller in norm H1 and L2.

The errors showed in table 6 were obtained with constant λ. We have observed that
we obtain better results choosing a non-constant λ than choosing a constant λ when n
is large enough but for small values of n the situation is the opposite. We think that this
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fact is due to our election of the boundary layer thickness, may be it is too large when
n is not large enough. A deeper study of how we should choose λ should be carried
out.

3.2. Backward facing step flow

The Backward Facing Step Flow test is widely used for turbulence validation and
we want to examine the ability of our models to accurately compute the steady turbulent
2D backward step flow. The test consists in prescribing an inflow at a certain distance
from the step, then the flow suddenly encounters the expansion of a wall, causing a
flow separation, a large vortex is formed behind the step front. Armaly et. al. (see [2])
used a channel that had a height of 1.01 cm downstream the step and whose inlet was
0.52 cm (h) in height to conduct their study of this phenomenon.

So, we have computed this backward step flow by using both models ((8)-(15) with
constant λ and (8)-(10), (16)-(21) with variable λ) and then we have compared the
results obtained with Armaly et al. experimental measures and the numerical results
presented by Chacón and Lewandowski with different turbulence models (see [9]) for
the backward facing step test case.

The definition of the Reynolds number which they used is given by

Re =
4hVmax

3ν
(33)

where Vmax is the maximum inlet velocity (the incoming flow is parabolic) and ν is
the kinematic viscosity. Predictions of this flow, in a geometry equivalent to the case
used for the experiments, were obtained by numerically solving the models proposed
employing FreeFem++ again. The backward step length considered has been l = 4h
and the length of the computational domain 20 times the step height, in the same way
as in [9].

When a variable λ is chosen, it is constructed as in the previous section, that is,
λ = λc in the inner part of the domain and linearly decreasing to zero at the boundaries,
with boundary layer thickness of three elements.

Several numerical simulations have been performed for different values of λ (con-
sidered both constant and a function of x) and different values of the Reynolds number.
All the results presented here have been obtained with a mesh step size h/20 and a time
step 0.01. The test stop for the time-stepping procedure has been set to

‖un+1
1 − un1‖∞
‖un+1

1 ‖∞
< 10−5 (34)

In table 6 we present the computed (or measured) length of the main vortex formed.
This length has been calculated by Xr/h where Xr is the reattachment length.
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Re Xr/h Xr/h Xr/h Xr/h Xr/h
measured [2] computed [9] λ = 0 constant λ variable λ

100 3 2.76− 2.86 2.83 2.85 2.85
5000 ≈ 6.9 7.29− 7.9 14.85 6.94 8.72
6000 ≈ 6.3 7.58− 8.29 14.89 6.34 9.02

10000 8 8.02− 8.85 – 6.45 7.96
20000 8 – 6.83 7.60

Table 6: Reattachment points (Xr/h) for different Reynolds numbers

We can conclude that our models are able to compute the 2D backward step flow, re-
obtaining the reattachment lengths measured by Armaly et al. as accurately as Chacón
and Lewandowski’s models do for different Reynolds numbers. In the case of the
laminar regime (for example, Reynolds number 100) Direct Numerical Solution of
Navier-Stokes equations provides good results. For the values of the Reynolds number
corresponding to the transition regime (for example, Reynolds number 5000 or 6000),
the results obtained by DNS of Navier-Stokes equations are not good enough while
the new models provide good approximations of the reattachment point. Finally, in
the case of the turbulent regime (Reynolds number 10000 and 20000 considered), the
scheme does not converge for λ = 0 (Navier-Stokes equations) with the mesh step size
we are considering. When we consider non-constant λ the predictions of the secondary
vortex are generally improved.

Figure 11: u1 component of the velocity for Re = 10000, non-constant λ

Figure11 shows the first component of the velocity map provided by the model
considering non-constant λ, with Re = 10000.

An additional recirculating-flow region was measured at the upper wall downstream
of the expansion by Armaly et al. (see [2]). The authors report that this recirculation
zone develops in the laminar range (for Reynolds numbers higher than 400) and it dis-
appears above a Reynolds number of approximately Re > 6600 (transition region).
The new models proposed in this paper are able to obtain this recirculating-flow region
(see figure 12 for Re = 5000 for example). The beginning of the recirculation region
found at the upper wall is upstream from the reattachment point of the primary recir-
culating flow region and its end is downstream from it, as Armaly et al. experimentally
demonstrated.
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Figure 12: u1 component of the velocity for Re = 5000, constant λ = 0.07

4. Conclusions

The LES model derived in [25] by applying a filter to the Navier-Stokes equations
with a nonlinear effective viscosity and by approximating the subgrid-scale stress ten-
sor using the Clark model, has been generalized by allowing the parameter λ to be not
constant.

We have performed some numerical simulations to test both new models. We have
compared the results obtained with these new models (constant λ and variable λ, η = 0
and η 6= 0) with analytical and numerical solutions of the Navier-Stokes equations, and
we have seen a good numerical behaviour of the models that we have derived. Even
for coarser meshes the filtered models provide quite better approximations of the exact
solutions than Navier-Stokes equations.

In the case of the Backward Facing Step Flow test, the new models are able to
compute this flow, re-obtaining the reattachment lengths measured by Armaly et al. as
accurately as Chacón and Lewandowski’s models do for different Reynolds numbers.
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