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Cross-coupling reactions stand among the most important reactions in chemistry [1,2]. Nowadays,
they are a highly valuable synthetic tool used for the preparation of a wide variety of organic compounds,
from natural and synthetic bioactive compounds to new organic materials, in all fields of chemistry [3].
Almost 50 years from its discovery, the research in this topic remains active, and important progresses
are accomplished every year. For this reason, we believe that a Special Issue on this topic is of general
interest for the chemistry community.

Advances in cross-coupling reactions have been developed with the aim to expand the synthetic
utility of the methodology, through the involvement of new components, reaction conditions, and
therefore, novel synthetic applications [4]. Although initially the term “cross-coupling” referred to
the reaction of an organometallic reagent with an unsaturated organic halide or pseudohalide under
transition metal catalysis, currently the definition is much more general and applies to reactions
involving other components, conditions, and more complex synthetic transformations. In addition
to the well-known and recognized cross-coupling reactions using organoboron (Suzuki-Miyaura),
organotin (Stille), organozinc (Negishi), or organosilicon (Hiyama) nucleophiles, reactions involving
other organometallic reagents such as organoindium [5,6], organolithium [7], and Grignard reagents [8]
are now useful synthetic alternatives. Moreover, a wide range of carbon nucleophiles, from stabilized
carbanions such as enolates and derivatives to neutral species, are also efficiently used [9]. Interestingly,
cross-coupling reactions involving transition metal-catalyzed C–H activation have also been described [10].
They also can be used to form carbon–heteroatom bonds with heteronucleophiles such as amines and
alcohols (Buchwald-Hartwig), among others [11,12].

On the other hand, the set of coupling partners used as electrophiles have been widely enlarged,
from the classical organic halides and sulfonates to substrates with higher C–O bond dissociation
energy, such as ethers and carbamates [13] and to those involving the cleavage of C–N bonds, such
as amine and nitro derivatives [14,15]. More recently, carboxylic acid derivatives have been also
incorporated since decarboxylative, and related processes reveal as a powerful method to generate
electrophilic species with application in modern coupling reactions [16,17].

The discovery of novel metal catalysts and ligands is also a topic of continuous interest.
From the original palladium complexes, the use of other Earth-abundant first-row transition-metals
as catalysts such as iron, cobalt, or copper has emerged as alternatives in coupling reactions [18]. In this
sense, nickel catalysts have been shown especially useful due to its high nucleophilicity and number of
oxidation states [19]. In relation with the use of nickel, photoredox catalysis [20,21] and, in general,
coupling processes involving radical species have gained of particular relevance and constitute an area
in continuous expansion [22]. Additionally, the modulation of the catalytic activity through the design
of ligands with singular steric or electronic properties provides an increasing number of possibilities.
Of particular relevance are biaryl phosphines [23], and the incorporation of carbenes as ligands [24].
This research has allowed us to improve the efficiency of the coupling reactions with lower catalyst
loading, lower reaction temperatures, and shorter reaction times.

Molecules 2020, 25, 4500; doi:10.3390/molecules25194500 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-7036-6217
https://orcid.org/0000-0003-1114-7107
http://www.mdpi.com/1420-3049/25/19/4500?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25194500
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 4500 2 of 4

Another important challenge in cross-coupling reactions is to perform alkyl–alkyl couplings.
These transformations have been traditionally hampered due to the undesired β-H elimination side
reaction. However, recent advances in nickel catalysis have allowed the development of remarkable
examples of such transformations. Even more importantly, some of the newly developed catalytic
systems have been applied to enantioselective reactions [25].

All these advances have facilitated the implementation of cross-coupling reactions in industry.
In this sense, a complete set of reaction conditions have been developed from aqueous or anhydrous to
homogeneous or heterogeneous systems in small or large scale. In addition, novel technologies, such
as solid-phase coupling reactions and flow-chemistry technology are being used in the synthesis of
bulk chemicals and pharmaceutical products.

In this Special Issue, some representative examples of recent advances in cross-coupling reactions
have been collected in the form of reviews, articles, and communications. These contributions cover
different topics, from new methodologies and reaction conditions, some synthetic alternatives, new
metal ligands, and synthetic applications for new pharmaceutical compounds and organic materials.

In a short review, Sotomayor, Lete et al. present the recent advances in the synthesis of
diarylketones through a Pd(II)-catalyzed acylation of (hetero)arenes and the coupling reaction with
aldehydes under oxidative conditions [26]. This synthetic transformation represents an alternative
to the traditional coupling using aryl organometallics and acyl halides. As an example of metal-free
coupling reactions, Trofimov et al. present the inverse Sonogashira coupling between pyrroles and
haloalkynes for the synthesis of 2-alkynylpyrrols, a unit present in many bioactive molecules [27].
This synthetic approach overcomes some limitations of the Sonogashira coupling when electron-rich
heterocycles are employed. In a related procedure, and as alternative to the traditional cross-coupling
protocols, Zhang et al. present the coupling of indoles with diverse C–H nucleophiles under oxidative
dearomative cross-dehydrogenative conditions. As a result, 2,2-disubstituted indolin-3-ones are
obtained [28].

The high chemoselectivity exhibited by transition-metal-catalyzed cross-coupling reactions can
be exploited to develop various synthetic transformations using one-pot procedures. In this issue,
Malezcka, Smith et al. describe the efficient combination of the regioselective iridium-catalyzed C–H
borylation of aryl halides with the Sonogashira coupling [29]. Interestingly, the coupling reaction takes
place selectively at the carbon–halogen bond allowing the preparation of novel alkynyl boron reagents.
In a related article, Chotana et al. report a sequential iridium-catalyzed borylation of NH-free pyrroles
followed by a Suzuki-Miyaura reaction [30].

As previously stated, cross-coupling reactions are valuable synthetic tools for the synthesis
of pharmacologically active compounds. With a personal view form the pharmaceutical industry,
Blanco and Buskes review the most relevant contributions of Suzuki-Miyaura and Buchwald-Hartwig
coupling reactions to the synthesis of bioactive compounds [31]. As a communication, Beller et al.
report the synthesis of aryl propionic acids, a common structural motif in medicinal chemistry,
through combination of a palladium-catalyzed Heck coupling reaction with a rhodium-catalyzed
hydroformylation [32].

The synthetic utility of cross-coupling reactions for the synthesis of medium size rings is covered
by Gulea et al. [33]. In this review, cross-coupling reactions are shown as a valuable synthetic
tool to overcome classical methods and as alternatives to other metal-catalyzed reactions such
as alkene metathesis.

The Stille and Suzuki coupling reactions are used by Nikitin et al. for the synthesis of new
molecular machines based on sterically hindered anthracenyl trypticenyl units [34]. Zani et al. show
the utility of cross-coupling reactions for the synthesis of new organic dyes containing the indigo core,
being the derivatization efficiently accomplished by a Stille coupling in the last step of the synthesis [35].

The catalytic activity of palladium(II)-salan complexes in Suzuki-Miyaura cross-coupling reactions
is studied by Udvardy, Joó et al. as an alternative to classical phosphines, showing that salan ligands
can be used in water and air to perform cross-coupling reactions [36].
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In summary, cross-coupling reactions constitute one of the most relevant methods in modern
organic chemistry and have allowed many new transformations in this science. The impact of these
reactions in academia and industry is profound, and this continuous research tends to develop more
sustainable, economic, and efficient processes. Contributions from this Special Issue in Molecules try to
meet this end.

Finally, we want to thank the authors for their contributions to this Special Issue, all the reviewers
for their work evaluating the submitted articles, and the editorial staff of Molecules, especially
the Assistant Editor of the journal, Emity Wang, for her kind assistance during the preparation of this
Special Issue.
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