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ABSTRACT: Sarcomas are a group of malignant neoplasms of
connective tissue with a different etiology than carcinomas. The efforts
to discover new drugs with antisarcoma activity have generated large
datasets of multiple preclinical assays with different experimental
conditions. For instance, the ChEMBL database contains outcomes of
37,919 different antisarcoma assays with 34,955 different chemical
compounds. Furthermore, the experimental conditions reported in this
dataset include 157 types of biological activity parameters, 36 drug
targets, 43 cell lines, and 17 assay organisms. Considering this
information, we propose combining perturbation theory (PT) principles
with machine learning (ML) to develop a PTML model to predict
antisarcoma compounds. PTML models use one function of reference
that measures the probability of a drug being active under certain conditions (protein, cell line, organism, etc.). In this paper, we used
a linear discriminant analysis and neural network to train and compare PT and non-PT models. All the explored models have an
accuracy of 89.19−95.25% for training and 89.22−95.46% in validation sets. PTML-based strategies have similar accuracy but
generate simplest models. Therefore, they may become a versatile tool for predicting antisarcoma compounds.

■ INTRODUCTION

Sarcomas are a group of malignant neoplasms of connective
tissue. Although their prevalence is much lower than
carcinomas, the number of cases is increasing according to
the World Health Organization.1 At the molecular level, their
behavior differs from carcinomas, presenting a more varied and
complex etiology. This high etiological complexity possibly
stems from their mesenchymal origin, which makes it difficult
to propose new therapeutic targets for the respective
treatment.2−6 Representative anticancer compounds tend to
have high cytotoxicity and low cellular specificity.7 This leads
to a decreased efficiency within the treatment and a low
remission rate of the disease. However, a description of new
molecular markers and the constant performance of drug
preclinical assays have generated large amounts of data.8−12

This data, if adequately rationalized, may lead in turn to the
design of more selective drugs, which takes into account
specific drivers based on pathogenic signaling pathways. For
instance, the Chemical Database of the European Molecular
Biology Laboratory (ChEMBL)13,14 contains experimental
outcomes for >37,900 different preclinical assays of anti-
sarcoma drug candidates. These assays cover a large and
structurally heterogeneous series of >34,900 different chemical
compounds. Furthermore, the preclinical assays have been
carried out on very different experimental conditions. These

experimental conditions include up to 155 different types of
biological activity parameters, 36 protein targets, 43 cell lines,
and 17 assay organisms. Overall, this forms a large and
complex dataset susceptible to analysis so as to extract useful
knowledge for drug discovery.
In this context, we can use computational techniques to

explore this experimental dataset due to the evident difficulties
to analyze it manually. Specifically, cheminformatics method-
ologies have succeeded in the discovery of new drug candidates
effective in the wet-lab.15,16 However, many models developed
thus far are applied only to carcinomas and/or are focused on
homologous series of compounds with one target or a single
cell line.17−26 In recent years, several studies have focused on
applying these methodologies to the study of new types of
antisarcoma drugs, mainly on cell lines.27−30 However, almost
all the models reported have a narrow domain of application
because they focus on only one set of conditions, for instance,
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one specific property, target protein, or cell line. Thus, models
where multiple conditions of assays are considered at the same
time are attractive. Perturbation theory (PT) ideas with
machine learning (ML) methods (PT + ML = PTML models)
are particularly useful for fitting complex datasets with big data
features in drug discovery, proteomics, nanotechnology,
etc.31−41

PTML models begin with one function of reference that
measures the probability of a drug to be active under certain
conditions (protein, cell line, organism, etc.). Next, PTML
models use PT operators (PTOs) to account for the
perturbations (deviations) of the input variables of this drug
with respect to a population of drugs assayed under the same
conditions. ML algorithms are used to establish the relation-
ship between the inputs and the output variable. In cancer
research, Speck-Planche et al. and other researchers have
developed PTML-like models for different types of cancers
(with an emphasis on carcinomas) such as bladder, prostate,
brain, and breast cancers.42−50 In addition, Bediaga et al.
developed a PTML algorithm for predicting anticancer
compounds using data for multiple types of carcinomas at
the same time.51 Speck-Planche et al. also recently developed
the first PTML-like model for the prediction of antisarcoma
compounds using a spectral moment approach.52

In any case, there are no reports of other PTML-like models
for antisarcoma compounds. In this study, we carried out a
comprehensive compilation, curation, and preprocessing of the
ChEMBL dataset for preclinical assays of antisarcoma
compounds. After that, we developed the first PTML model
able to fit this complex dataset with >37,900 assays and
>34,900 compounds. To the best of our knowledge, the study
outperforms all previous efforts in terms of simplicity of the
model and number of cases, compounds, and cell lines
considered.

■ RESULTS AND DISCUSSION
PTML Antisarcoma Compound Model. The statistical

parameters for the PTML model showed a high specificity
(Sp) and sensitivity (Sn) for the training series (95.63 and
79.64, respectively). In addition, similar values were obtained
for Sp (95.79) and Sn (81.62) in the validation sets.
Furthermore, the p-level obtained from the chi-square (χ2 =
16848.08) was <0.05, indicating that the model is able to
perform a statistically significant separation of both classes. It is
also interesting to observe the high overall accuracy (Ac)
obtained in both sets: over 94% (Table 1). These results
suggest that the generated model performs a statistically
significant classification of antisarcoma compounds; hence, it
can be considered useful for classification models with
application in medicinal chemistry. The full list of biological
activities (c0) in the ChEMBL dataset of antisarcoma
preclinical experimental assays is shown in Table S1.
The resulting PTML−linear discriminant analysis (LDA)

model showed the following formula

χ

= − + · + ·
− · − ·[ − ⟨ ⟩]
+ ·[ − ⟨ ⟩]

= = <

f v f v D
D D D
D D

n p

c
c

( ) 11.8545 34.8028 ( ) 0.37
0.0128 0.3616 ( )
0.0191 ( )

34955, 16848.08, 0.001

ij calc ij ref 1

2 1 1 j

2 2 j

2
(1)

The PTML-LDA model was initiated by using as an input
the values the function of reference f(vij)ref for each compound
and by adding the effect of perturbations within the system.
These perturbation effects refer to the PTOs ΔDk(cj). In eq 1,
“i” and “j” are the assay and condition, respectively. Additional
coefficients and terms are described in Table 2.
The parameters ALOGP and PSA are widely used in

medicinal chemistry because they are related to the lip-
ophilicity of drugs and, consequently, to their capacity to pass
through biological membranes or interact with protein

Table 1. PTML Model Results

predicted set

series statistical parametera predicted statistics (%) observed set f(vij)pred = 0 f(vij)pred = 1

training Sp 95.63 f(vij)obs = 0 25,647 1172
Sn 79.64 f(vij)obs = 1 330 1291
Ac 94.72 total 25,977 2463

validation Sp 95.79 f(vij)obs = 0 8559 376
Sn 81.62 f(vij)obs = 1 100 444
Ac 94.98 total 8659 820

aSn, sensitivity (%); Sp, specificity (%); Ac, accuracy (%).

Table 2. Variables Used to Fit the PTML Model

conditiona (cj)
condition
name symbol operator formula operator information

c0 activity type f(vij)obs =IF(AND(vij > cutoff(c0), d(c0)
= 1), 1, IF (AND (vij <
cutoff(c0), d(c0) = −1), 1, 0))

observed classification of the outcome vij in the assay with conditions cj

c0 activity type f(vij)ref n( f(vij)obs = 1)/nj function of reference if the observed value of probability p( f(vij) = 1)expt for the activity vij of
type c0

cj = [c1,c2,c3] all
conditions
(cj)

ΔD1(cj) ALOGPi - ⟨ALOGP(cj)⟩ deviation of the molecular descriptors of hydrophobicity/lipophilicity D1 (ALOGP) and
polar surface area D2 (PSA) from each expected value (⟨D1(cj)⟩) or (⟨D2(cj)⟩) for the
conditions cj (c1 = protein target; c2 = cell line; c3 = assay organism)

cj = [c1,c2,c3] all
conditions
(cj)

ΔD2(cj) PSAi - ⟨PSA(cj)⟩

aMMA operators with a subset of multiple conditions included in eq 1.
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hydrophobic pockets.53−56 The PTML algorithm has been
previously applied to the study of multiple preclinical assays of
anticancer drugs. As shown in Table 3, most applications have
been directed toward the most prevalent carcinomas among
the global population. For instance, Speck-Planche et al.
reported PTML-like models for bladder,44 colorectal,46

breast,47 prostate49 cancers and for multiple carcinoma
subtypes.51 In addition, PTML-like models have been tested
in antibrain tumor agents.45 Interestingly, Bediaga et al.
demonstrated the application of a PTML on several types of
carcinomas simultaneously and obtained similar Sn and Sp
values as we did (>90%).51 All these PTML-like models are
able to account for changes in target proteins, cellular lines,
organisms, etc. However, they are specific models for
carcinomas, not for sarcomas.
It is worth noting that to the best of our knowledge, Speck-

Planche et al.52 seem to be the only researchers to have
reported a previous PTML-like model for sarcomas thus far. In
their study, the prediction model in external validation resulted
in Ac (90.78) and Sp (90.65) values that were lower than what
was obtained in our model (Ac = 94.98 and Sp = 95.79).
However, our PTML algorithm showed a lower sensitivity in
external validation data (81.62%) than the model obtained by

Speck-Planche et al. (91.74%). Even when our model had a
much lower number of variables and used a stricter cut-off
definition for activity class (i.e., IC50 = 0.1 μM instead 1 μM),
these aspects alone cannot explain the sensitivity reduction.
The generated PTML-LDA model (eq 1) has important

characteristics that allow it to be used within research focused
on drug discovery. One of the main advantages of our model is
the considerable reduction of input variables for the
construction of the algorithm through the inclusion of PTOs.
This reduction allowed us to work on datasets with a large
amount of information, to define cut-off values, and to
calculate the probability of belonging to a class, whether this
was a prediction for active compounds (1) or inactive
compounds (0). In this way, the Sn or Sp values of the
model can be adjusted according to the delimited cut-offs. An
ideal prediction model has a reasonable trade-off between Sn
and Sp. This means that a high sensitivity is achieved by
accepting a relatively low Sp and, conversely, a high Sp is
reached by compromising Sn. Sp is synonymous with a true-
negative rate, which is related to the false-positive rate,30 so a
high specificity in a prediction model for drug discovery
implies that it is unlikely to get a positive result in a drug that
does not have a desired biological activity. Thus, a positive

Table 3. Comparison to Other PTML Models of Anticancer Compounds

cancer typea PTb MLc NVd casese Sn(%)f Sp(%)f ref

sarcoma
MSS MMA LDA 3 37,919 ∼80 >90 this work
MSS MA LDA >10 3017 >90 >90 52
carcinoma
bladder MA LDA >10 664 >90 >90 44
bladder ANN (RBF) 10 664 >95 >95 44
brain MA LDA >10 1236 ∼90 >90 45
breast MA LDA >10 2272 >85 >90 47
colorectal MA LDA >10 1651 >90 >90 46
colorectal MA ANN (RBF) >10 1651 >90 >90 46
prostate MA LDA >10 1668 >85 >90 49
MCS MMA LDA >10 116,934 >70 ∼90 51
MCS MMA LDA 3 116,934 >70 >90 51
MCS MMA ANN 4 116,934 >80 >80 51

aMSS, multiple sarcoma subtypes; MCS, multiple carcinoma subtypes. bPT operators used in PTML models: MMA, multicondition moving
average; MA, moving average. cML method used for the PTML models: LDA, linear discriminant analysis; ANN, artificial neural networks; RBF,
radial basis function; LNN, linear neural networks; E-ANN (RBF), ensemble of artificial neural networks based on the RBF architecture. dNV,
number of input variables. eNumber of preclinical assays. fApproximate values for training series.

Table 4. Different Scores Calculated for the Selected Biological Activities (c0)

activity parameter for vij(c0) (unit) nj(c0)
a ⟨vij(c0)⟩

b dj(c0)
c cutoff (c0) n( f(vij)obs = 1)d p( f(vij)obs = 1/c0)

e

potency (nM) 31,581 19669.199 −1 100 149 0.005
IC50 (nM) 1808 228362.82 −1 100 177 0.098
inhibition (%) 690 39.186507 1 50 225 0.326
CC50 (nM) 450 134445.04 −1 100 4 0.009
activity (%) 404 52.416163 1 50 208 0.515
EC50 (nM) 379 63578.521 −1 100 44 0.116
TGI (%) 202 43.915842 1 50 102 0.505
T/C 173 26.556832 1 50 28 0.162
IC50 (μg mL−1) 167 64.429402 −1 60 118 0.707
T/C (%) 144 156.92153 1 50 123 0.854
GI50 (nM) 113 66515.131 −1 100 13 0.115
EC50 (μg mL−1) 90 60.733562 −1 60 57 0.633

anj(c0), total compounds with experimental values. b⟨vij(c0)⟩, average calculated of each c0 biological activity.
cdj(c0), desirability value (1, −1)

assigned to each c0.
dn( f(vij)obs = 1), total number of biologically active compounds observed within each c0 according to the experimental values

vij(c0) reported for the parameters j. ep( f(vij)obs = 1/c0), probability of a desired biological activity within the conditions c0.
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outcome in a specific model is quite informative in a drug
discovery scenario.
On the other hand, a main attribute is the possible

combination of several experimental conditions for the
prediction of new compounds. In this sense, Speck-Planche
et al.52 used around 3000 interactions derived from 14 cell lines
and only considered IC50 assays for their model. However, we
modeled 37,919 interactions cases comprising 36 protein
targets, 43 cell lines, and 17 assay organisms. We also included
several different assay types (Table 4). The modeling task we
have is more complex not only because of the increment in the
chemical diversity but also the wide type of heterogeneity in
the interactions (i.e., target types and organisms). The two
models cannot be compared in this scenario and our reduction
in the ability to detect the true-positive cases (Sn) could be a
consequence of this data complexity and also the modeling
strategy.
PTML Cut-Off Scanning Study. As mentioned above, the

cut-off implemented in the model is a rigorous value that, at
the experimental level, is important if one desires to increase
effectiveness in the process of discovering antisarcoma drugs. A
restricted value promotes high certainty in the prediction of
active compounds for achieving a desired biological action
under multiple test conditions.57−59 Furthermore, a strict cut-
off can decrease the rate of predicted false positives; therefore,
if the assay is to be implemented, then it needs a higher
sensitivity or higher specificity. This value can be modeled
depending on the experimental conditions one wishes to apply.
This cut-off value also influences the accuracy within our
model. As observed in Figure 1, when using the average
⟨vij(c0)⟩ calculated for each c0, the Ac is not a desirable score.
These low statistical values are mainly influenced by the low Sn
in the prediction. By increasing the rigor, the model improves

its prediction values for the active compounds (1). When
looking at these results, our prediction algorithm not only takes
into account several experimental conditions but also restricts
the prediction of compounds to those that have true biological
activity.

PTML vs ML Model Comparison. Most multitasking or
multilabel ML methods are useful for predicting multiple
categorical outputs for the same set of input continuous
variables.60,61 However, our problem was a little different: we
had to develop an ML model with only two possible outputs,
f(vij)pred = 1 or 0, for the same set of input variables. That
meant that our model was not multitasking for a single case
with a set of input variables containing multiple continuous
variables plus multiple categorical input variables. However, we
had multiple combinations of input categorical variables or
levels for the same set of input continuous variables. Hence,
our model was multilabel in the input categorical variables for
the same set of input continuous variables. To illustrate this
fact, we developed here a comparison of our PTML-LDA
model vs classic ML using multiple labeling categorical
variables. As seen in Figure 2A, the performance of our
PTML-LDA model compared to a classic ML-LDA demon-
strates similar values based on Sp, Sn, and Ac. Similarly, when
developing neural networks (NN), the results of PTML-NN
(Figure 2B) and ML-NN (Figure 2C) are quite similar. One of
the advantages of our PTML model is the inclusion of PTOs,
which greatly reduces the number of variables to generate the
algorithm. Thus, although the statistics of all the models
generated are quite similar, the PTML methodology allows for
the reduction of variables from 164 variables in classic ML
methods to only 5 in the PTML model. All the PTML and
non-PTML model results are described in Table S2.

Figure 1. Variation of the specificity, sensitivity, and accuracy values according to the cut-offs implemented. The variation of these scores based on
the biological activities c0 is included in the x-axis. Biological activities c0 expressed in % (e.g., inhibition, activity, tumor growth inhibition, etc.) and
those expressed in nM (e.g., potency, IC50, CI50, etc.) are described. The final model is obtained by applying cut-off values of 50 for c0 expressed in
% and 100 for c0 expressed in nM.
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PTML vs ML Model with Other Descriptors. Previous
studies have considered a wide variety and quantity of
molecular descriptors in PTML models. For example, for
sarcoma modeling, Speck-Planche et al.52 used 423 descriptors
followed by a feature selection strategy. Similarly, 289
descriptors were used in a PTML model on breast cancer.47

We used this approach as a strategy to compare the
performance of PTML model vs classic ML techniques
including new molecular descriptors (Figure 2A). In this ML
study, we included 12 BCUT molecular descriptors (Dk, with k
> 2) as an input, which were not used in the previous model,
and 162 categorical (dummy) variables (Ck). These Ck have

been used to label the multiple conditions of the assays cj
(organisms, proteins, cell lines, etc.). One must remember that
D1 = ALOGP and D2 = PSA. The new molecular descriptors
were D3, D4, ..., D14. The expansion of the variables together
with the ML strategies yielded good results but did not
outperform what was obtained for the PTML-LDA anti-
sarcoma model (as seen in Figure 2A and Table S2) and the
number of variables increased to 174 input variables in total.
This suggests that by adding different molecular descriptors
and probably feature selection strategies, acceptable models for
drug discovery can be built. However, our PTML-LDA model
based on D1 and D2 is a simpler yet effective model.

Figure 2. PTML vs ML models. Comparison of sensitivity, specificity, and accuracy of all the generated models. (A) Prediction values of PTML-
LDA and ML-LDA models using different types of input variables: f(vij)pred is the function of reference; D1(cj) and D2(cj) are the ALOGP and PSA
descriptors, respectively; ΔD1(cj) and ΔD1(cj) are the deviations of the molecular descriptors of ALOGP and PSA, respectively; D3, ..., D15(cj) are
the 12 BCUT molecular descriptors calculated from ChemAxon. Unlike the PTML model, the ML model is calculated with conditions c1, c2, and c3
as a separated set of categorical variables. (B) Prediction values between the neural network-PTML (NN-PTML) and (C) NN-ML models. The
NN obtained were multilayer perceptron (MLP), linear neural network (LNN), and radial basis function network (RBF).
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Multiple-Condition Averages in the PTML Antisarco-
ma Model. In total, we found 83 possible combinations of
multiple conditions for all the included sarcoma assays. As
shown in Table 5, the nj(cj) with the highest number of entries
corresponded to tests on human cell lines and on cell lines in
Mus musculus. The multicondition moving averages (MMAs)
used here, ⟨D1(cj)⟩ and ⟨D2(cj)⟩, vary significantly along all
combinations. However, the anticancer compounds observed
for the human osteosarcoma cell lines U2OS, HOS, SAOS-2,
MG-63, and 143B and for the fibrosarcoma cell line HT-1080
were in a range of ⟨D1(cj)⟩ of 1.2−3.7. A similar range was
observed in compounds tested in M. musculus (⟨D1(cj)⟩ = 1−
3). Interestingly, when comparing these values with the
variation of ⟨D2(cj)⟩, tests on virus lines, such as Moloney
murine sarcoma virus and Woolly monkey sarcoma virus, had
higher means (between 140 and 205). Since the ALOGP
coefficient is a measure widely used in drug discovery to assess

the degree of absorption, distribution in the body, penetration
across biological membranes, metabolism, and excretion, this
range identified in our results is an important space for the
prediction of antisarcoma drugs.62,63 Likewise, the range of
PSA evidenced in viral line assays may be a better space for this
coefficient if it is desired to predict new compounds in these
experimental conditions. This may be interesting when
defining the validation of a certain antisarcoma compound.
Thus, if a compound is significantly predicted in an
experimental animal or human cell lines, then it will be
possible to propose validations at the preclinical level or in
clinical trials, respectively.

How to Use the PTML Model in Practice. The model is
capable of scoring the activity of a single compound under
different assay conditions. To predict a new compound, first,
we have to substitute the expected values of function of
reference f(vij)ref = p( f(vij = 1)expt in the model. As

Table 5. Multiple-Condition Averages for All Sarcoma Assays

assay condition (cj)
a parameter

c1 = protein (gene) c2 = cell line c3 = assay organismsb nj(cj) ⟨D1(cj)⟩ ⟨D2(cj)⟩

O75874 (IDH1) MD H. sapiens 31,581 3.778 70.597
MD MD M. musculus 1440 2.67 103.712
MD U2OS H. sapiens 746 4.421 78.325
MD HOS H. sapiens 637 3.603 89.517
MD MD H. sapiens 375 3.846 69.876
MD SAOS-2 H. sapiens 358 4.882 81.659
MD Sarcoma-180 M. musculus 271 1.108 83.68
MD MG-63 H. sapiens 241 2.965 111.864
MD M5076 M. musculus 197 3.033 114.886
MD HT-1080 H. sapiens 170 2.826 97.731
MD 143B H. sapiens 131 1.283 141.735
MD MD Pseudomonas aeruginosa 130 0.277 142.432
MD MD MD 126 1.898 93.448
MD rhabdomyosarcoma cell H. sapiens 116 4.036 77.177
MD CCRF S−180 M. musculus 109 0.978 140.984
P13053 (Vdr) MD Rattus norvegicus 64 5.844 60.476
MD MES-SA H. sapiens 64 2.956 89.631
MD MD RSV 61 1.277 127.944
MD 6C3HED M. musculus 60 3.09 97.831
MD C3H/3T3 MMSV 50 0.327 139.359
P35354 (PTGS2) MD H. sapiens 49 3.515 69.152
MD A204 H. sapiens 44 1.189 106.655
P03359 (pol) MD WMSV 44 6.786 204.629
MD MD Gallus gallus 43 0.516 106.529
P37231 (PPARG) MD H. sapiens 40 5.33 83.835
MD MD MMSV 39 0.213 166.782
Q07869 (PPARA) MD H. sapiens 37 5.364 81.891
Q13443 (ADAM9) MD H. sapiens 35 2.914 91.186
MD MD R. norvegicus 34 5.245 64.58
MD fibroblast MMSV 33 −1.224 150.956
MD MD enterovirus 33 6.348 38.332
MD MD human herpesvirus 1 31 6.27 57.306
MD 791T cell line H. sapiens 28 −1.179 139.194
MD C3H/3T3 M. musculus 28 1.745 115.047
P08253 (MMP2) MD H. sapiens 28 3.31 112.85
MD MD human enterovirus 71 28 1.967 124.221
P04637 (TP53), Q00987 (MDM2) SJSA-1 H. sapiens 27 5.213 49.453
P06401 (PGR) MD H. sapiens 26 4.494 32.958
MD HL-60 H. sapiens 25 3.81 33.754

aMD, missing data. bRSV, Rous sarcoma virus; MLV, murine leukemia virus; MMSV, Moloney murine sarcoma virus; WMSV, Woolly monkey
sarcoma virus.
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aforementioned, this is the probability of the compound being
active for a given biological activity parameter (c0) (see Table
2). Next, we need to substitute into the equation the values of
molecular descriptors D1 = ALOGP and D2 = PSA of the
compound (chemical structure), calculated with the same
algorithm used in the ChEMBL dataset. Last, we have to
substitute into the equation the average values (expected
values) of the molecular descriptors ⟨D1(cj)⟩ for the specific
subset of conditions of the assay cj we want to predict. In Table
5, we show some selected values of these averages with >25
assays reported. It can be noted that the most populated assays
in Homo sapiens in the dataset were those in vitro assays that
targeted the protein O75874 (IDH1) and that targeted the cell
line U2OS. Upon inspecting Table 5, we can see that ⟨Dk(cj)⟩
values change for different subsets of conditions cj.
Consequently, when we substitute the different ⟨Dk(cj)⟩ values
into the model for the same compound, we can calculate
different scores f(vij)calc of biological activity of the same
compound under multiple assay conditions. The full list of the
values of ⟨Dk(cj)⟩ appears in Table S3.

■ CONCLUSIONS

In this research work, we generated a PTML-LDA model
constructed with antisarcoma assays obtained from ChEMBL
and a heterogeneous set of different cell lines, organisms, and
targets. As far as we know, this constitutes the first time that
this kind of model was tested for sarcoma comprising 34,955
chemical compounds and 37,919 assays. The PTML-LDA
model was compared with classic ML approaches like the
neural network and also with non-PT consideration. The rate
of true positives and true negatives is similar when comparing
PTML-LDA to other prediction models. PTML-LDA reduces
the amount of input variables (ALOGP and PSA) needed, thus
increasing the simplicity and interpretability of the model.

■ METHODS

ChEMBL Data Curation and Preprocessing. In total, we
downloaded >370,000 outcomes for preclinical assays of
antisarcoma drug candidates from the ChEMBL database.
The keywords (fields) used for the search were as follows:
Sarcoma (Assay) and also keywords for more relevant cell
osteosarcoma lines MG-63, U2O2, HOS, SAOS-2, and 143B.
After that, we carried out a data fusion of the datasets obtained
into one single raw dataset. The working dataset was curated
by eliminating all duplicated entries. We also eliminated all
cases with missing values of biological activity (vij) and/or
molecular descriptors. The molecular descriptors used were
the same as those precalculated by the ChEMBL database
where D1 = logP and D2 = PSA.13,14 The final dataset obtained
after curation contained 37,919 cases comprising 36 protein
targets, 43 cell lines, and 17 assay organisms (Table S1). For
comparison and exploration with other models, we additionally
computed 12 BCUT molecular descriptors64 with ChemAxon
(http://www.chemaxon.com). The classical unweighted Bur-
den descriptors as well as those weighted by charge and
hydrogen bond properties were calculated. The lowest and the
three highest eigenvalues were used for descriptor calculation.
To train the model, we split this dataset into two data

subsets: training and validation series. We performed a
random, stratified, and representative selection of training/
validation cases. To accomplish this task, we sorted the cases
by nj (from highest to lowest) as well as by assay conditions:

biological activity, protein accession, cell line, and assay
organism (alphabetically from A to Z). After this, we selected
every fourth case (1 out of 4) to form a training subset (75% of
cases) and validation subset (25% of cases). The result of each
experimental assay is the value obtained from the quantifica-
tion of each biological activity and named vij (“i” and “j”
represent the assay and conditions, respectively). Each
biological activity depends on the conditions cj (c0, c1, c2, ...,
cn) used in each assay. Thus, the conditions taken into account
in the data preprocessing were c0 = biological activity, c1 =
protein accession, c2 = cell line, and c3 = assay organism. From
vij, each experimental assay was discretized based on the
desirability d(c0). This variable was defined as 1 when the
result of the desired biological activity depended on an
increased value of vij and −1 when the desired biological
activity depended on a lower value of vij. Thus, the discretized
value f(vij)obs was calculated as follows: f(vij)obs = 1 when vij >
cut-off and d(c0) = 1. The function f(vij)obs = 1 when vij < cut-
off and d(c0) = −1; otherwise, f(vij)obs = 0. The value f(vij)obs =
1 refers to a strong effect of the compound over the target.
Since d(c0) has a direct relationship with f(vij)obs, we applied a
rational cut-off for each c0, which will be discussed later.
Briefly, the cut-off for properties related to drug concentrations
and described in nM (potency, IC50, CC50, EC50, GI50, etc.)
was set at 100. For properties described in % (inhibition,
activity, TGI, among others), the cut-off was set at 50. Last, to
calculate the probability of these expected values, we evaluated
the relationship between the total number of the observed
n( f(vij) = 1)obs within the level of biological activity desired for
the condition cj and the total number of compounds nj that
were described in that same condition. In this sense, we have
that p( f(vij)obs = 1)expt = n( f(vij) = 1)obs/c0.

PTML Linear Model. The multicondition moving averages
(MMAs) are PTOs similar to Box−Jenkins moving average
operators. However, MMAs are PTOs accounting for
perturbations (changes) in multiple conditions cj at the same
time, while MA quantifies changes in only one condition. By
using linear discriminant analysis (LDA),65 we obtained a
PTML-LDA equation as follows

∑ ∑= + · + · + ·

Δ

= = =
f v a a f v a D a

D c

( ) ( )

( )
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k

kj k
k j

k j

kj
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1 1, 0

,

j

max max max

The model generates an output score f(vij)calc that refers to a
score function for a biological activity vij under the assay
conditions cj. The LDA algorithm includes the Mahalanobis’
distance metric,65 which makes it possible to infer predictive
values through a probability calculation p( f(vij) = 1)pred. For
the variable selection, we detected specific perturbations within
the conditions cj that will be adjusted to anticancer properties
through a forward-stepwise strategy.65 Such conditions as c1 =
protein accession, c2 = cell line, and c3 = assay organism were
significant, so we took them into consideration in our model.
Through p( f(vij) = 1)pred, we predicted the activity of each
compound by applying the function f(vij)pred = 1 when p( f(vij)
= 1)pred > 0.5 or f(vij)pred = 0.
For comparison, we also used a strategy that is not based on

perturbation theory. In this sense, besides the molecular
descriptors, we added conditions c1, c2, and c3 as a separate set
of categorical variables. A total of 237 variables were needed to
represent all conditions. Filtering using the variance of each
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variable leads to a total of 162 variables, including ALOGP and
PSA.
The evaluation of the discriminant model was calculated

from Wilks’ lambda (Λ) as follows
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For ML, besides LDA, we also used neural networks (NN)
with different architectures. STATISTICA software was used
in both cases. The final networks obtained were multilayer
perceptron (MLP), linear neural network (LNN), and radial
basis function network (RBF). All these ML strategies were
applied with perturbation and nonperturbation theory. The
predicted 1 or 0 values were used to determine the specificity
or true-negative rate (Sp), sensitivity or true-positive rate (Sn),
and accuracy (Ac) when compared to the observed values.
Thus, when f(vij)pre = f(vij)obs, the cases were determined to be
correct.65

The metrics to evaluate the performance of all the prediction
models were Ac, Sn, and Sp using the following formulae

=Ac
number of correctly classified compounds

total number of compounds

=Sn
number of correctly classified active compounds

total number of active compounds

=Sp
number of correctly classified inactive compounds

total number of inactive compounds
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Ameŕicas, Quito 170125, Ecuador

Sonia Arrasate − Department of Organic Chemistry II and
Basque Center for Biophysics, University of Basque Country
UPV/EHU, Leioa 48940, Biscay, Spain

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.0c03356

Author Contributions
&A.C.-A. and A.L.-C. contributed equally to the study.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors acknowledge research grants from Ministry of
Economy and Competitiveness, MINECO, Spain (FEDER
CTQ2016-74881-P), and Basque government (IT1045-16).
The authors also acknowledge the support of Ikerbasque,
Basque Foundation for Science. This work was supported by
Universidad de Las Ameŕicas and the Collaborative Project in
Genomic Data Integration (CICLOGEN) PI17/01826 funded
by the Carlos III Health Institute from the Spanish National
Plan for Scientific and Technical Research and Innovation
2013−2016 and the European Regional Development Funds
(FEDER)−“A way to build Europe”. This project was also
supported by the General Directorate of Culture, Education
and University Management of Xunta de Galicia ED431D
2017/16 and “Drug Discovery Galician Network” ref.
ED431G/01 and the “Galician Network for Colorectal Cancer
Research” (ref. ED431D 2017/23) and finally by the Spanish
Ministry of Economy and Competitiveness for its support
through the funding of the unique installation BIOCAI
(UNLC08-1E-002, UNLC13-13-3503) and the European
Regional Development Funds (FEDER) by the European
Union. Additional support was offered by the Consolidation
and Structuring of Competitive Research Units−Competitive
Reference Groups (ED431C 2018/49), funded by the Ministry
of Education, University and Vocational Training of the Xunta
de Galicia endowed with EU FEDER funds.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03356
ACS Omega 2020, 5, 27211−27220

27218

https://pubs.acs.org/doi/10.1021/acsomega.0c03356?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c03356/suppl_file/ao0c03356_si_001.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alejandro+Cabrera-Andrade"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-9702-6618
http://orcid.org/0000-0001-9702-6618
mailto:raul.cabrera@udla.edu.ec
mailto:raul.cabrera@udla.edu.ec
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Humbert+Gonza%CC%81lez-Di%CC%81az"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-9392-2797
http://orcid.org/0000-0002-9392-2797
mailto:humberto.gonzalezdiaz@ehu.es
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andre%CC%81s+Lo%CC%81pez-Corte%CC%81s"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cristian+R.+Munteanu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5628-2268
http://orcid.org/0000-0002-5628-2268
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alejandro+Pazos"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yunierkis+Pe%CC%81rez-Castillo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eduardo+Tejera"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sonia+Arrasate"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03356?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03356?ref=pdf


■ REFERENCES
(1) Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.;
Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J. Clin. 2018, 68, 394−424.
(2) Hui, J. Y. C. Epidemiology and Etiology of Sarcomas. Surg. Clin.
North Am. 2016, 96, 901−914.
(3) Sidaway, P. Sarcoma: Genetic determinants of sarcoma risk
revealed. Nat. Rev. Clin. Oncol. 2016, 13, 590.
(4) Thomas, D. M.; Ballinger, M. L. Etiologic, environmental and
inherited risk factors in sarcomas. J. Surg. Oncol. 2015, 111, 490−495.
(5) HaDuong, J. H.; Martin, A. A.; Skapek, S. X.; Mascarenhas, L.
Sarcomas. Pediatr. Clin. North Am. 2015, 62, 179−200.
(6) Yang, J.; Ren, Z.; Du, X.; Hao, M.; Zhou, W. The role of
mesenchymal stem/progenitor cells in sarcoma: update and dispute.
Stem Cell Investig. 2014, 1, 18.
(7) Double, J.; Barrass, N.; Barnard, N. D.; Navaratnam, V. Toxicity
testing in the development of anticancer drugs. Lancet. Oncol. 2002, 3,
438−442.
(8) Yap, T. A.; Sandhu, S. K.; Workman, P.; de Bono, J. S.
Envisioning the future of early anticancer drug development. Nat. Rev.
Cancer 2010, 10, 514−523.
(9) Williams, R. J.; Walker, I.; Takle, A. K. Collaborative approaches
to anticancer drug discovery and development: a Cancer Research UK
perspective. Drug Discovery Today 2012, 17, 185−187.
(10) Heinemann, F.; Huber, T.; Meisel, C.; Bundschus, M.; Leser,
U. Reflection of successful anticancer drug development processes in
the literature. Drug Discovery Today 2016, 21, 1740−1744.
(11) Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H. A
systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol.
2017, 11, 87.
(12) Carvalho-Silva, D.; Pierleoni, A.; Pignatelli, M.; Ong, C.; Fumis,
L.; Karamanis, N.; Carmona, M.; Faulconbridge, A.; Hercules, A.;
McAuley, E.; Miranda, A.; Peat, G.; Spitzer, M.; Barrett, J.; Hulcoop,
D. G.; Papa, E.; Koscielny, G.; Dunham, I. Open Targets Platform:
new developments and updates two years on. Nucleic Acids Res. 2019,
47, D1056−D1065.
(13) Mendez, D.; Gaulton, A.; Bento, A. P.; Chambers, J.; De Veij,
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Sotomayor, N.; Gonzaĺez-Díaz, H. Perturbation theory model of
reactivity and enantioselectivity of palladium-catalyzed Heck-Heck
cascade reactions. RSC Adv. 2016, 6, 38602−38610.
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