
Facultade de Informática

BACHELOR’S DEGREE THESIS (TFG)
DEGREE IN COMPUTER SCIENCE

MENTION IN COMPUTER ENGINEERING

Soft-fault recovery in MPI applications

Student: David Fernández Rey
Co-director: María José Martín Santamaría
Co-director: Patricia González Gómez

A Coruña, September 2020.

Thanks to all technical writers, hackers and demosceners who

have inspired me to become a computer engineer, and to all the great teachers that have kept me

motivated throughout the years.

Acknowledgements

• Juan Touriño for contacting me initially in order to develop this project.

• María JoséMartín Santamaría and Patricia González Gómez for supervising and helping
me throughout the development of this project.

• CPPC developers and Nuria Losada for their ground work on this area of research.

• Computer Architecture Group (GAC) for providing me with access to the Pluton HPC
cluster.

Abstract

Current high-performance computing (HPC) systems are comprised of thousands of CPU
cores, and this number is expected to grow into the millions in the near future. With such an
elevated number of processors, the mean time between failures (MTBF) can become so small
that most scientific applications will not have time to complete their execution before a failure
occurs. It is therefore critical to develop fault tolerance and resilience mechanisms in order
to guarantee the completion and integrity of massively parallel applications. University of A
Coruña’s Computer Architecture Group (GAC) proposed a solution (Controller/comPiler for
Portable Checkpointing - CPPC) in order to transparently convert generic MPI applications
into fault tolerant applications, based on a checkpoint-restart scheme. CPPC was extended
by Nuria Losada into CPPC-resilience in order to make resilient MPI applications, that is,
those that are capable of detecting and reacting to failures without aborting the application,
such that survivor processes don’t have to be restarted. This was accomplished by means
of a logging protocol and the usage of a proposed fault tolerance interface addition to the
MPI standard (User Level Failure Mitigation). However, this system cannot handle soft errors
efficiently, since it kills and respawns the failed processes entirely when it is not necessary,
as these errors are transient in nature. The object of this project is to extend and adapt CPPC-
resilience in order to handle soft errors in a more efficient manner, without having to respawn
the failed processes. This proposal has been evaluated using 3 MPI applications with different
characteristics, achieving a decrease in recovery times after a soft error ranging from 2 to 44
percent, depending on the total number of processes involved.

Resumo

Os sistemas actuais de computación de altas prestacións (HPC) están formados por miles
de núcleos de procesadores, e espérase que este número aumente ata os millóns nun futuro
cercano. Cun número tan elevado de procesadores, o tempo medio entre fallos (MTBF) po-
de chegar a reducirse tanto que a maioría de computacións científicas non terían tempo de
completar a súa execución antes de que ocorrese un fallo. Polo tanto, é crítico o desenvolve-
mento de sistemas tolerantes e resilientes a fallos, para garantizar a finalización e integridade
das aplicacións masivamente paralelas. O Grupo de Arquitectura de Computadores (GAC) da
UDC propuxo unha solución (Controller/comPiler for Portable Checkpointing - CPPC) para
convertir de xeito transparente aplicatcións MPI xenéricas en aplicacións tolerantes a fallos,
basándose nun esquema de checkpointing e reinicio. CPPC foi posteriormente extendido por
Nuria Losada en CPPC-resilience coa finalidade de crear aplicacións MPI resilientes, é dicir,

aquelas que son capaces de detectar e reaccionar a fallos sen abortar a aplicación, de xeito que
os procesos superviventes non necesitan ser reiniciados. Isto logrouse mediante un protocolo
de logging de mensaxes e o uso dunha interfaz de tolerancia a fallos, ULFM (User Level Failure
Mitigation), proposta para adición ao estándar MPI. Sen embargo, este sistema non xestiona
os errores soft de maneira eficiente, xa que mata e reinicia os procesos fallados por completo
cando non é necesario, xa que este tipo de errores teñen natureza transitoria. A meta deste
TFG é extender e adaptar CPPC-resilience para poder manexar os errores soft eficientemente,
sen ter que reiniciar os procesos fallados. Esta proposta foi evaluada utilizando 3 aplicacións
MPI con diferentes características, conseguindo unha redución nos tempos de recuperación
tras un erro soft de entre un 2 e un 44 por cento, dependendo do número total de procesos
involucrados.

Keywords:

• High-performance computing
• MPI
• ULFM
• Fault tolerance
• Parallelism
• CPPC
• Resilience
• Soft errors

Palabras chave:

• Computación de altas prestacións

• MPI

• ULFM

• Tolerancia a fallos

• Paralelismo

• CPPC

• Resiliencia

• Erros soft

2

Contents

1 Introduction 1
1.1 Project background and goals . 1
1.2 Resources and planning . 2
1.3 Document structure . 3

2 Previous concepts 5
2.1 Faults and their types . 5
2.2 Parallel programming: MPI . 6
2.3 CPPC . 7

3 Combining CPPC and ULFM to obtain resilience 11
3.1 ULFM background . 11
3.2 CPPC-resilience overview . 12
3.3 CPPC-resilience workflow . 13

3.3.1 Failure detection and notification . 13
3.3.2 Communicator reconfiguration . 13
3.3.3 Application recovery . 14
3.3.4 Local rollback approach . 15
3.3.5 Message logging protocol . 16

4 Extending CPPC-resilience to cope with soft errors 19
4.1 Introduction . 19
4.2 Simulating soft errors for CPPC-resilience . 20
4.3 Soft error detection and propagation . 20
4.4 Current recovery procedure flow . 21
4.5 Modifications for soft error handling . 24

i

Contents

5 Experimental evaluation 29
5.1 Testing environment . 29
5.2 Testbed . 30
5.3 Measuring spawn timings in CPPC-resilience 30
5.4 Experiments performed . 33

5.4.1 Solution validation . 33
5.4.2 Overhead without failures . 36
5.4.3 Improvement with soft errors . 37

6 Concluding remarks 41
6.1 Project conclusions . 41
6.2 Lessons learned . 42
6.3 Future work . 42

List of Acronyms 43

Glossary 45

Bibliography 47

ii

List of Figures

2.1 Relation between fault, error and failure . 5
2.2 CPPC instrumentation example . 8
2.3 CPPC checkpointing and recovery flow . 8

3.1 CPPC error checking function pseudocode . 14
3.2 CPPC-resilience checkpointing and recovery flow for a global rollback. 15
3.3 CPPC-resilience local rollback recovery process. 16

4.1 C code for a signal handler under Linux . 20
4.2 Sequence diagram illustrating the recovery process in CPPC-resilience. 23
4.3 Sequence diagram illustrating the recovery process for soft errors in CPPC-

resilience. 25

5.1 MPI C pseudocode for the spawning benchmark. 32
5.2 Time taken to spawn a process with different amounts of MPI processes. . . . 34
5.3 Time taken to spawn a process with different amounts of MPI processes (log-

arithmic scale). 34
5.4 Output log for execution of CPPC_SOFT branch for the tealeaf application. . . 35
5.5 C pseudocode for time measuring using MPI_Wtime 36
5.6 Execution time comparison for all variants of each benchmark, with no fail-

ures and nprocs = 16 . 36
5.7 CPPC timing struct dump, for a benchmark with 16 processes. 38
5.8 Execution time breakdown for a failed process for each benchmark, with nprocs

= 16. 38
5.9 Execution time breakdown for a failed process for each benchmark, with nprocs

= 64. 39
5.10 Improvement in the recovery phasewhen using our soft-error CPPC-resilience

branch. 39

iii

List of Figures

iv

List of Tables

3.1 List of ULFM fault tolerance routines. 12

4.1 Relevant ULFM, MPI and custom functions used during the respawning process. 22

5.1 Hardware platform description. 29

v

List of Tables

vi

Chapter 1

Introduction

This first chapter offers a short description of the project at hand, indicating its main goals,
alongside with the planning followed by the author in its development and ending with the
structure of this document.

1.1 Project background and goals

High Performance Computing (HPC) systems have been around for many decades, how-
ever their complexity and computing power have been increasing non-stop. The con-

straints for the problems to be solved with these systems have also become higher, with larger
datasets (e.g. Big Data from telemetry, social networks, etc.) and shorter time constraints (e.g.
real-time analytics).

The growth of these systems is characterized mainly by 2 factors. On one hand these sys-
tems make use of innovative and faster technology, such as hardware extensions for vector
operations (SIMD), higher clock frequencies, pipeline optimizations, among others. On the
other hand HPC systems have becomemassively parallel, with a high number of similar hard-
ware elements replicated and interconnected in such a way that it allows for certain problems
to be partitioned and solved on many processors at the same time.

With the increase of massively parallel systems there comes however a new set of chal-
lenges and hazards that must be overcome in order to guarantee the successful, correct and
efficient completion of software applications executed on these systems. One of these chal-
lenges is the reduction of times between hardware failures. It is evident from a statistical
point of view that a higher amount of elements used at the same time will greatly reduce the
Mean Time Between Failures (MTBF), even if the individual failure rates are very low. Don-
garra et al. [1] show that if a single processor presents on average only 1 failure per century,
a machine with 100000 nodes will encounter on average a failure every 9 hours, and with 1
million nodes this time shortens to 53 minutes on average.

1

1.2. Resources and planning

With these numbers in mind it becomes clear that advanced fault tolerance mechanisms
must be researched and developed in order to avoid application crashes, inconsistent results
and a waste of electrical energy on massively parallel systems.

Faults present in these systems can be divided into hard and soft faults, the former being
permanent and the latter being transient in nature. This implies that hard faults must entail
some sort of complete restart while soft faults can be partially restarted. The goal of this
project is to adapt an existing fault recovery tool for MPI applications, CPPC-resilience [2],
to be able to deal with soft errors in an efficient manner, without restarting failed processes
completely and simply going back to before the point of failure.

1.2 Resources and planning

This project was developed and tested in the Pluton cluster of the University of A Coruña [3],
managed by the Computer Architecture Group (GAC). Version control of the changes made
was done with Git [4], as it was the versioning tool originally used by CPPC and it allows for
very efficient branching and committing.

The steps taken for the development of this project were, in chronological order:

• Study of previous work: as this project aims to improve an existing complex tool
(CPPC), special care was taken to understand the functional principles and code struc-
ture of said tool.

• Analysis: clear definition of the scope of this project and a rough time estimation for
each of the next steps.

• Design: layout of the new code components needed, their relationships and how the
testing will be performed.

• Development: following the design as much as possible, implementation of the new
components necessary for soft error handling into our own branch of CPPC-resilience.

• Testing: experimental evaluation of our new branch, and verification of the correctness
of our code.

The thesis was written in parallel with all these steps, as a way to avoid forgetting small
details and also to help review the work done in small batches, aiding sometimes in discover-
ing errors or inconsistencies.

2

CHAPTER 1. INTRODUCTION

1.3 Document structure

This document is divided into 6 chapters (including this one), each containing the following
information:

• Chapter 1: short description of the project goals, resources used, and planning and
methodologies followed.

• Chapter 2: introduction to previous concepts necessary for understanding the whole
scope of this project. Particularly, there is an explanation of the different types of faults
in computer systems, of parallel programmingwith theMPI framework, and of the fault
tolerance tool CPPC.

• Chapter 3: detailed description of the ULFM fault tolerance standard and its integra-
tion into CPPC in order to build CPPC-resilience, the fault tolerance tool that allows
for transparent recovery from hard failures without aborting the execution.

• Chapter 4: soft error detection simulation and implementation of the algorithm for
soft error recovery in CPPC-resilience.

• Chapter 5: experimental evaluation of results and details of the methodology used for
testing.

• Chapter 6: final conclusions drawn from the development of this project, author’s
notes and possible future work paths.

3

1.3. Document structure

4

Chapter 2

Previous concepts

This chapter illustrates the technologies and theoretical concepts necessary to understand the
purpose and development of this project: types of faults, parallel programming with MPI and
outline of the Fault Tolerance (FT) tool CPPC.

2.1 Faults and their types

For us to be able to develop fault tolerant systems, we must first identify and classify the
different types of faults that happen in HPC environments. First, let us familiarize ourselves
with the terminology employed in the industry, described by Avižienis et al. in [5] and sum-
marized in Figure 2.1. Faults are flaws in the system (physical or logical) that are the source of
errors, which are incorrect system states. These inconsistent state may propagate and lead to
failures, which are what can be externally perceived. For clarity, an example follows: An elec-
trolytic capacitor leaks (fault), this causes a bit flip which corrupts a struct in memory (error),
which in turn leads to a read outside of boundaries and triggers a program crash (failure).

Figure 2.1: Relation between fault, error and failure

5

2.2. Parallel programming: MPI

Faults can be classified in 2 major groups: hard faults and soft faults. The former group
corresponds to physical faults (usually permanent), which cause errors that may be handled
by hardware mechanisms and appear transparent to the software (such as RAID). Soft faults,
which are the object of this project, are transient. They are most often caused by cosmic rays,
and their impact has been increasing with the decrease in transistor sizes [6]. These errors
can cause Silent Data Corruption (SDC) which could alter program results if not detected and
corrected during runtime.

2.2 Parallel programming: MPI

The Message Passing Interface (MPI) is the de-facto standard for parallel programming in
distributed memory architectures. It allows for the development of portable message-passing
programs in C, C++ and Fortran. Some of the most used and efficient implementations are
developed by the HPC community and are open-source, the most prominent examples being
MPICH [7] and OpenMPI [8]. These implementations consist of a set of libraries that provide
message passing primitives and collective operations in order to be able to share data among
processors.

As the tools used and developed in this project use MPI at their core, some basic MPI
concepts and terminology are required for the reader to understand and will be described
here:

• Rank: numbering given to each process, starting incrementally from zero.

• Communicator: an object that connects groups of processes in the MPI session. Each
communicator gives each contained process an independent identifier and arranges its
processes in an ordered topology, or in explicitly defined groups.

• Point-to-point operations: communications between two specific processes. The
most popular examples are MPI_Send and MPI_Recv, which allow for sending and
receiving data respectively (i.e. sending a double-precision floating point number to an-
other process). Point-to-point operations can be blocking or non-blocking, depending
on whether the program execution is halted after the function call.

• Collective operations: in contrast to point-to-point, they involve communication
among all processes in a process group. A typical function is the MPI_Bcast call
(short for ”broadcast”). This function takes data from one node and sends it to all pro-
cesses in the process group (in practice, communicators are used for grouping).

• MPI datatypes: representations of the structure of the data to be used with MPI func-
tion calls. Primitive types, such as MPI_INT, MPI_DOUBLE or MPI_CHAR are already

6

CHAPTER 2. PREVIOUS CONCEPTS

defined by default, but more complex user-defined datatypes can be created.

One of the issues withmassively parallel systems is that the currentMPI standard does not
have fault tolerance support, and the default behaviour after a failure is to abort the execution
of the application completely. One of the solutions that is currently under consideration to be
added to the standard is the User Level Failure Mitigation (ULFM) interface designed by the
Fault Tolerance Group, which integrates fault tolerance capabilities such as failure detection
and notification, and communicator recreation and reconfiguration. These features are critical
to the scope of this project and will be explained in depth in the next chapter.

2.3 CPPC

The Computer Architecture Group (GAC) of the University of A Coruña developed the Con-
troller/comPiler for Portable Checkpointing (CPPC) [9] [10], an open source checkpointing
tool for MPI applications written in C++ that aims to create a transparent approach to devel-
oping fault-tolerant MPI programs.

CPPC is used by the final user as a source-to-source transpiler (based on the CETUS frame-
work [11]), which attempts to transform a normal MPI code written in C or Fortran into a
fault tolerant version by adding calls to the CPPC library, although manual instrumentation
is sometimes required in more complex programs. An example of said instrumentation can
be found in Figure 2.2. The added calls perform the following functions which are defined in
the runtime CPPC library:

• Configuration and initialization: at the beginning, routines are included that ini-
tialize internal data structures and variables (CPPC_Init_configuration(),
CPPC_init_state()).

• Registration of variables: variables necessary for application recovery are identified
and marked here.

• Checkpointing: after an user-defined number of calls to the
CPPC_Do_Checkpoint() function, which is introduced in code hotspots, the state
will be dumped to a portable file format (HDF5 [12]) in stable storage for future failure
recovery.

• Shutdown: added at the end of the program, it ensures consistent and integral system
shutdown.

The behavior after a failure, as seen in Figure 2.3, is to relaunch the application. Then, there
is a negotiation phase among the processes in order to identify the most recent valid recovery

7

2.3. CPPC

1 int main(int argc, char* argv[]) {
2 CPPC_Init_configuration();
3 MPI_Init(&argc, &argv);
4 CPPC_Init_state();
5

6 if (CPPC_Jump_next()) goto REGISTER_BLOCK_1;
7 [...]
8

9 REGISTER_BLOCK_1:
10 <CPPC Register(...) block>
11 [...]
12 if (CPPC_Jump_next()) goto RECOVERY_BLOCK_1
13 [...]
14

15 for(i = 0; i < nIters; i++) {
16 CKPT_BLOCK_1:
17 CPPC_Do_checkpoint();
18 [...]
19

20 }
21 <CPPC_Unregister(...) block>
22 CPPC_Shutdown();
23 MPI_Finalize();
24 }

Figure 2.2: CPPC instrumentation example

Figure 2.3: CPPC checkpointing and recovery flow

8

CHAPTER 2. PREVIOUS CONCEPTS

point, which corresponds to the most recent checkpoint file available to all processes. Finally,
the checkpoint data is loaded into memory and the state is recovered through re-execution
of critical parts of the program such as initialization, variable registration and creation of
communicators.

The issue with CPPC is that the execution is aborted completely upon a single process
failure. This is unnecessary in most cases as the majority of processes would still be alive
and with correct partial results. Furthermore, a complete restart introduces major overheads
since the application must be re-queued and the checkpoint files must be moved to the newly
assigned computing nodes.

Therefore, in the next chapter we will introduce CPPC-resilience, an extension of CPPC
that allows us to obtain resilient MPI applications, that is, applications capable of detecting
failures in one or more processes and recovering from them without completely aborting
program execution.

9

2.3. CPPC

10

Chapter 3

Combining CPPC and ULFM to
obtain resilience

Resilient applications are a subset of fault-tolerant applications. The latter is a more gen-
eral term to describe programs that can continue functioning after a failure, whereas the

former also imply that the execution continues without causing a program abortion. This gen-
erally entails a quicker and more efficient recovery, without re-initializing any unnecessary
parts of the program.

In this chapter we will describe in detail the mechanisms used and the steps taken by
CPPC-resilience in order to guarantee resilient failure recovery without respawning non-
failed processes.

3.1 ULFM background

As described in Section 2.2, the current MPI standard as of June 2020 does not have any
built-in fault tolerance capabilities. This has led to the birth of the ULFM (User Level Failure
Mitigation) interface, currently being proposed for addition into the standard.

With vanilla MPI, the default behavior is to abort the execution of the entire application
upon failure of a single process, so the only option would be to restart it from the beginning.
CPPC improves this default behavior by creating periodic checkpoints in code hotspots, there-
fore even though all the involved processes have to be restarted upon a failure, they do so from
a checkpoint, avoiding all of the computations that had already been done up to that point.

The downside to this approach is that in real life scenarios it is usually just one or a reduced
amount of processes that fail at the same time, so restarting all of them carries a significant
amount of overhead. A possible solution to this is to use the capabilities provided by the
ULFM interface in order to create a more efficient approach to recovering from failures.

It is important to note that ULFM follows the same low-level interface style as MPI, there-

11

3.2. CPPC-resilience overview

fore it provides mechanisms to detect failures, revoke and recreate communicators, but not
to recover or relaunch the application, as this is generally a very specific process for each
different program (i.e. recovery is different in a master-slave paradigm and a grid division,
since in one case the program can continue with the missing processes whereas in the other
they must be recreated in the exact same manner as before). ULFM is simply a set of functions
and data structures and adding fault tolerance capabilities to existing MPI programs would
imply manually refactoring the code in order to introduce these new FT operations, which is
a very difficult and expensive task.

Some routines provided by ULFM are shown in Table 3.1, the full specification of which
is provided by a draft of the standard [13] written by the Fault Tolerance Group.

We will now describe how these routines are integrated into CPPC in order to allow for
transparent application recovery.

Function Description
MPI_Comm_failure_ack(comm) Acknowledge process failures on communicator comm.

Resumes MPI_ANY_SOURCE operations.
MPI_Comm_get_acked(comm,
*failedgroup)

Returns the group of processes acknowledged to have
failed.

MPI_Comm_agree(comm, *mask) Collective, agrees on the AND value on binary mask,
ignoring failed processes (reliable AllReduce).

MPI_Comm_revoke(comm) Non-collective with effect on entire comm, all
communications on comm are interrupted with
MPI_ERR_REVOKED.

MPI_Comm_shrink(comm, *new-
comm)

Collective, creates a new communicator without the
failed processes (all ranks are preserved).

Table 3.1: List of ULFM fault tolerance routines.

3.2 CPPC-resilience overview

CPPC-resilience is a tool developed by Nuria Losada [2] that combines CPPC and ULFM in
order to optimize performance when recovering from failures. The issue with CPPC is that
a single process failure leaves MPI in an undefined state, therefore it cannot continue its
execution properly and all processes must be restarted from the checkpoint, even if they have
partial correct results. This is a waste of resources, and can be improved by integrating fault
tolerance mechanisms from the ULFM extensions to MPI into CPPC. The integration allows
us to create a non-shrinking, local backward recovery scheme based on checkpointing:

• Non-shrinking: the number of running processes stays the same, to allow for the
same data distribution.

12

CHAPTER 3. COMBINING CPPC AND ULFM TO OBTAIN RESILIENCE

• Backward recovery: after a failure the application is restored from a checkpoint. This
is in contrast to forward recovery, where there is an attempt to continue and find a new
state (this is, however, very application-dependent and can not be proposed as a general
approach).

• Local recovery: only failed processes are restored. Due to interprocess communi-
cation dependencies, this solution requires a message logging protocol (that we will
describe in detail later) in order to replay communications from the last checkpoint to
the current state.

3.3 CPPC-resilience workflow

In the domain of this project (scientific MPI applications), plain CPPC is a fault-tolerance
mechanism, as it allows a program to survive hard process failures, but it restarts all running
processes during recovery. CPPC-resilience, on the other hand, takes care to avoid restarting
healthy processes and uses instead a logging protocol that replays communications from the
point of failure.

3.3.1 Failure detection and notification

With the function MPI_Comm_set_errhandler(communicator, handler)
the user can specify whether error codes should be returned to the application or a user-
specified error handling function should be invoked.

In CPPC, after every MPI function call the routine CPPC_Check_errors() is called,
whose pseudocode is shown in Figure 3.1. Its purpose is to check whether the returned value
from the MPI call corresponds to a failure or not and if it does, to start the recovery process
among the surviving processes. In order to do this, in the face of failure detection it calls
the ULFM function MPIX_Comm_revoke(comm) on all communicators, which assures
global failure detection as it interrupts all messages on comm with error
MPIX_ERR_REVOKED.

3.3.2 Communicator reconfiguration

In most MPI applications, the ranks (identifiers of the processes) must be preserved after
a failure in order to guarantee correct program execution. Since we are trying to obtain
resilience and not just fault tolerance, only the failed processes will be restarted. This implies
that all custom communicators will be recreated by CPPC by re-executing the MPI calls used
to create them in the first place.

13

3.3. CPPC-resilience workflow

1 bool CPPC_Check_errors(int error_code)
2 {
3 if (error_code == process failure) {
4 /* Revoke communicators */
5 for comm in application_communicators {
6 MPI_Comm_revoke(..., comm, ...);
7 }
8

9 /* Shrink global communicator */
10 MPI_Comm_shrink(...);
11 /* Re-spawn failed processes */
12 MPI_Comm_spawn_multiple(...);
13 /* Reconstruct communicator */
14 MPI_Intercomm_merge(...);
15 MPI_Comm_group(...);
16 MPI_Group_incl(...);
17 MPI_Comm_create(...);
18

19 /* Start the recovery */
20 return true;
21 }
22

23 return false; /* No error detected */
24 }

Figure 3.1: CPPC error checking function pseudocode

First, all failed processes are excluded from the communicator bymeans of the ULFM func-
tionMPI_Comm_shrink(), which also preserves the original ranks. Then, after respawn-
ing the processes, the communicators are merged and reordered in order to include the new
ranks. In order to ensure that the correct global communicator is used (i.e. one that does not
contain failed processes), the one returned by CPPC_Get_comm() is stored as a global
variable and used instead of the default MPI_COMM_WORLD.

3.3.3 Application recovery

CPPC-resilence can recover the application from a failure in two ways: using a global or
a local rollback approach. In this section, the global approach, which does not require a
message logging protocol, will be explained. In order to recover the application properly, all
processes must be in a consistent global state. This implies that while the respawned process
is already in such a state after reinitializing the communicators, all running processes must
re-execute certain blocks of code (RECs). This is done by reversed conditional jumps after
calls toCPPC_Check_errors() andCPPC_Go_init(), bymeans of goto statements
and return instructions. Non-local jumps (setjmp and longjmp) are not used in order to
provide compatibility with Fortran.

Once all the processes have reached the beginning of the application code, a regular CPPC

14

CHAPTER 3. COMBINING CPPC AND ULFM TO OBTAIN RESILIENCE

Figure 3.2: CPPC-resilience checkpointing and recovery flow for a global rollback.

restart is performed. First, processes negotiate the recovery line as shown in Figure 3.2, and
then the checkpoint files are restored and non-portable state is recovered through the ordered
re-execution of RECs.

3.3.4 Local rollback approach

The approach described in Section 3.3.3 relies on a global rollback scheme. This is inefficient
in many cases as failures are often localized and it is unnecessary to restart all process from
the latest common checkpoint. However, as communications from the latest checkpoint must
be replayed at least for the failed process, local rollback protocols necessarily imply some sort
of message logging capabilities. Figure 3.3 shows an outline of the steps taken by the local
recovery branch of CPPC-resilience in order to recover from failures using a local rollback
protocol.

The first important thing to note in the figure is that the execution of the survivor process
(represented by the top line) is never interrupted. Immediately after a failure is detected, the
communicators are revoked and shrunk in order to exclude the failed processes, by means of
the ULFM functions MPI_Comm_revoke() and MPI_Comm_shrink() respectively.
Afterwards, recovery can be divided into 2 major parts: processes recovery and consistency
recovery. In the first part, processes which have been marked as failed are re-spawned with
regular MPI functions (e.g. MPI_Comm_spawn()) and the global and custom communica-
tors are rebuilt using CPPC’s internal structures to match the ones present before the failure.

The second major part is denoted as consistency recovery, and its function is to recreate
the application state as it was prior to any failures. This is accomplished by first negotiat-

15

3.3. CPPC-resilience workflow

Figure 3.3: CPPC-resilience local rollback recovery process.

ing the recovery line, which entails finding the most recent checkpoint that is present in all
processes. Once this is done, the checkpoint is read into memory and all data stored on it is
assigned to the correspondent variables. Lastly comes the replay of logged communications.
The failed processes request the survivor to re-send all logged communications from the last
checkpoint until the point of failure. This is possible thanks to the message logging protocol
that we will now describe more thoroughly. When the communications have been replayed,
all processes are in a consistent and up to date state and can resume normal execution.

3.3.5 Message logging protocol

Message logging protocols must record two fundamental kinds of data: events and the content
of messages. An event corresponds with a computational or communication step of a process
that, given a preceding state, leads the process to a new state. The content is the payload
that an event is supposed to deliver: it is the actual message data to be exchanged by two
processes.

By executing all these messages in the correct order a process can be brought from the lat-
est checkpoint to its original state before the failure. Two kinds of approaches could be made
for message storage: (1) Receiver-based and (2) sender-based. In (1) processes make the local
copy of the messages in the receiver side. This method has the advantage of having the log
locally available upon recovery, but the disadvantage of having to save the messages to stable
storage in order to not lose them upon process failure. Approach (2) stores the payload in the
sender side. This provides better performance [14] as the local copy can be made in parallel
with the network transfer, and the log can be kept in memory. If the process fails, the log will

16

CHAPTER 3. COMBINING CPPC AND ULFM TO OBTAIN RESILIENCE

be lost but it will be recreated during recovery. This strategy has the drawback of having to
request the replay of messages by survivor processes during recovery. The message logging
protocol in CPPC-resilience uses a sender-based approach, due to increased performance.

There are also certain implementation details that must be taken into account when de-
signing a message logging protocol. An important one is that point-to-point operations (send,
recv and their asynchronous variants) can be logged directly using the MPI protocol, whereas
collectives would have to be saved as their corresponding individual point-to-point variants.
This has 2 problems: (1) the log size would become unnecessarily large and (2) it does not
allow for hardware-specific optimizations. Therefore the actual function call will be logged
at an application level instead, together with the communicator IDs (CIDs) of the communi-
cators involved, in order to allow for translation into CPPC’s custom communicators.

CPPC-resilience was designed for hard failures where a certain amount of processes die
completely, therefore, after a failure, they are replaced with new processes by means of
respawning. Process respawning is the most costly step of the recovery process, as shown by
Nuria Losada et. al. in [15]. However, when dealing with soft errors, the inconsistent pro-
cess state is temporary and respawning would be unnecessary. In the next chapter we will
illustrate how we expanded CPPC-resilience in order to deal with soft errors in this manner,
thereby increasing the efficiency of the recovery process.

17

3.3. CPPC-resilience workflow

18

Chapter 4

Extending CPPC-resilience to cope
with soft errors

In this chapter we will detail the main object of this project, which is the design and im-
plementation into CPPC-resilience of a mechanism to recover from soft errors without

having to respawn all failed processes, thereby avoiding initialization overheads.

4.1 Introduction

In Section 2.1 we have shown the differences between hard and soft errors. The former consist
of physical errors that cause repeated corruption, such as a bit stuck in RAM at ”0” or ”1” or
more severely a bus error, whereas the latter are transient in nature and can be caused by
phenomena such as cosmic rays, where a high-energy particle carries enough energy to alter
the state of a single bit for a short amount of time.

Studies by IBM [16] have shown that these events are not uncommon and that comput-
ers typically experience about one cosmic-ray-induced error per 256 megabytes of RAM per
month. Mechanisms such as ECC memory are used in order to detect and correct such soft
errors whenever possible by means of Hamming codes or TMR (Triple Modular Redundancy).

However in cases where these mechanisms are not available (e.g. in some GPUs) or where
the corruption spans too many bits for error correction algorithms to correct or even detect,
soft errors can cause Detectable Uncorrectable Errors (DUE) and/or Silent Data Corruption
(SDC), which can in turn lead to undefined behavior in anMPI program, such as total program
abortion or possibly worse, incorrect results without knowing (e.g. wrong orbital calculations
for a space probe causing a fatal crash).

In this project we will extend CPPC-resilience to deal with DUEs and SDCs that are de-
tected by software mechanisms such as the ones described in [17] and [18].

19

4.2. Simulating soft errors for CPPC-resilience

4.2 Simulating soft errors for CPPC-resilience

Since soft error detection techniques and means of notification to the Operating System are
still under research and outside of the scope of this project, we will resort to simulating them.
As CPPC is intended for UNIX-like systems, we can use signals, which are a form of inter-
process communications (IPC).

Under Linux, we can define a signal handler in the manner shown in Figure 4.1. The
aforementioned code snippet registers a hypothetical signal SIG_SOFT_ERROR so that
the function sig_handler() will be called whenever that signal is raised by the OS or
another process by means of the function raise().

1 #include <signal.h>
2

3 void sig_handler(int signum)
4 {
5 if (signum == SIG_SOFT_ERROR) {
6 printf("Soft error detected");
7

8 // perform appropriate action
9 }
10 }
11

12 int main()
13 {
14 signal(SIG_SOFT_ERROR, sig_handler);
15

16 // wait (i.e. busy loop)
17 }

Figure 4.1: C code for a signal handler under Linux

In practice wewill use signalSIGUSR1 (predefined Linux signal for user-defined actions)
as no signal currently exists that is raised with soft errors, and one would have to compile a
custom kernel in order to add new ones [19].

4.3 Soft error detection and propagation

As mentioned before, soft errors will be assumed to raise a UNIX signal with code SIGUSR1,
so we will capture this signal. In CPPC, as shown in Figure 2.2, the function
CPPC_Init_configuration() is executed before MPI initialization, therefore this
is an adequate place to register the signal handler.

One of the first challenges is that CPPC runs as a multi-process program, as each of
the MPI processes run by the target application has its own CPPC thread. Therefore, the
signal will only be triggered in the process where it was raised and we would normally

20

CHAPTER 4. EXTENDING CPPC-RESILIENCE TO COPE WITH SOFT ERRORS

not have any way to notify all the other processes of it. We will use the ULFM function
MPIX_Comm_revoke(*global_comm), which is described in Table 3.1, inside of the
signal handler. This function allows us to interrupt all communications and trigger the cus-
tom MPI error handling routine set by CPPC (mpi_error_handler) in all processes,
thereby giving us a starting global control point from where to handle the recovery.

4.4 Current recovery procedure flow

We will use the local recovery branch of CPPC-resilience as a starting point for the develop-
ment of our project. As stated previously CPPC-resilience is currently only designed to deal
with hard failures, so it assumes that when it has to recover, failed processes are already dead.
The flow that CPPC-resilience follows in order to recover from hard failures is illustrated in
the sequence diagram in Figure 4.2, that we will now proceed to describe in detail.

Whenever a failure occurs in one of the processes, the error handler
mpi_error_handler is triggered. Inside this function it is checked whether the error
code is equal to the ULFM codes MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED, being
raised when the process dies and when the communicators are revoked respectively.

The first relevant function called from inside the error handler by survivor processes (as
respawning ones are not available yet) is relaunchProcesses, whose job is to detect
the broken communicators and shrink them, as shown in Figure 3.2, as an initial step after
failure. This is done with the ULFM function MPI_Comm_shrink(). Afterwards the
respawning takes place inside of the custom function MPIX_Comm_replace(), which
takes as parameters the old communicator, the new communicator to act as a replacement,
and a structure containing meta-information about CPPC.

The first important step inside this function is to detect the number of dead processes. This
is done by checking the difference between the sizes of the old communicator (which has not
been shrunk and therefore still contains the dead processes) and the new shrunk one. After
this is done, the parameters for the spawn function MPI_Comm_spawn_multiple()
(shown in Table 4.1) are prepared and said function is called. Once the new processes have
spawned, their original ranks are preserved using the MPI function MPI_Comm_split().
From here onwards the new processes continue the program flow alongside survivors.

Before returning, relaunchProcesses() also sets the global flags
migrationParameter and goBackMigration to true. Later on, this will signal
to other functions that there is a migration in process.

21

4.4. Current recovery procedure flow

Function Parameters

MPI_Comm_replace
oldcomm: old communicator to be replaced
newcomm: new communicator
state: CPPC controller state information

MPI_Comm_spawn_multiple

count: number of commands
array_of_commands: programs to be executed (as string)
array_of_argv: arguments to previous programs
array_of_maxprocs: max processes to be spawned for each
command
root: rank of process in which previous arguments are ex-
amined
comm: intracommunicator containing group of spawning
processes
intercomm: intercommunicator between original group and
newly spawned group
array_of_errcodes: one error code per process

MPI_Comm_split

comm: communicator to be split
color: processes with the same color are in the same new
communicator
key: control of rank assigment
newcomm: new communicator

Table 4.1: Relevant ULFM, MPI and custom functions used during the respawning process.

22

CHAPTER 4. EXTENDING CPPC-RESILIENCE TO COPE WITH SOFT ERRORS

Fi
gu

re
4.2

:S
eq
ue
nc
e
di
ag
ra
m

ill
us
tra

tin
g
th
e
re
co
ve
ry

pr
oc
es
si
n
CP

PC
-r
es
ili
en
ce
.

23

4.5. Modifications for soft error handling

Next, InitStateAction is instanced, which is one of many ”xxxAction” classes de-
fined in CPPC with a common interface that exposes the class method execute(). This
method coordinates the recovery, and starts by calling resilienceActions(). Here,
new processes get their communicators replaced with the new CPPC ones and their error
handler set to the custom one. The global flag migrationParameter is also set to true
for new processes at this point.

The next routine called by InitStateAction::execute() is
bindProcessesToCores(), which, as the name implies, sets the bindings between
processes and physical processor cores for the new processes. Afterwards,
loggingAgreement() is called. This function is responsible for the local recovery using
the message logging protocol and it is to be called twice, first for the survivor processes and
then for the newly created ones when they have already recovered the checkpoint. On its
first execution, survivors agree here about the last complete checkpoint line from which to
recover, and they are instructed to wait for requests in order to reply to logging requests (i.e.
to replay communications since the last checkpoint).

Following the sequence diagram, we can see that new processes now call
prepareRestart(), whose function is to recover from the checkpoint. First it deter-
mines which actual file on the filesystem contains the latest valid checkpoint, and then it
reads it into memory and restores all required program state.

Now comes the second execution of loggingAgreement() (this time by the new
processes) in order to request the replay of communications by the survivors. As commented
in Section 3.3.4, CPPC-resilience uses a sender-based approach to storing messages because
it allows for a more efficient implementation. Communications are replayed from the check-
point until the point of failure in the original execution. Once this is done, the recovery is
complete and the program resumes normal execution.

4.5 Modifications for soft error handling

Figure 4.3 shows the sequence diagram for the recovery when handling a soft error, although
it must be kept in mind that hard failures can still be handled, it just will not be represented.
We will now highlight the differences between this and the diagram for hard failures (Figure
4.2).

24

CHAPTER 4. EXTENDING CPPC-RESILIENCE TO COPE WITH SOFT ERRORS

Fi
gu

re
4.3

:S
eq
ue
nc
e
di
ag
ra
m

ill
us
tra

tin
g
th
e
re
co
ve
ry

pr
oc
es
sf
or

so
ft
er
ro
rs

in
CP

PC
-r
es
ili
en
ce
.

25

4.5. Modifications for soft error handling

In order to simulate hard failures, CPPC-resilience used an iteration counter that killed a
process with raise(SIGKILL) inside of the checkpointer class. The frequency and num-
ber of processes to be killed is configured with environment variables prior to execution. We
can take advantage of this structure and use it to raise the soft error signal, therefore we will
create our own routinesoftSimFailure() and substitute the callraise(SIGKILL)
with raise(SIGUSR1), this particular signal code being used for the reasons stated in
Section 4.2.

The next step is to catch the signal and propagate it as described in Section 4.3, because,
as contrary to hard failures, this is only detected by the single process which receives the
signal. We propagate this error by interrupting the communicator with the ULFM function
MPI_Comm_revoke, so the MPI error handler is called on all processes. However, before
exiting the signal handler we set a global flag isSoftError to true in the failed process.

The first action inside of the MPI error handler is to check whether the flag
isSoftError is set, and if so, setFailedFlag() is called in order to set the flag
that is used by the other functions to identify this as a failed process and perform checkpoint
recovery on it.

Afterwards, relaunchProcesses() is called in the non-failed processes, which
does the same thing as it did with hard failures, revoking and reconfiguring communicators.
This function is not called on soft failed processes since the communicators have already
been revoked and they will be reconfigured later, when the checkpoint is to be recovered.
The global flags migrationParameter and goBackMigration are also set to true.
Later on, this will signal to other functions that there is a migration in process. Since the soft
failed process is marked as failed, it is simply ignored inside this function.

In InitStateAction::execute, the same procedure as before is used to recover
from hard failures. The difference now is that processes marked as soft failed are prevented
from calling bindProcessesToCores(), as unlike processes to be respawned they
are alive and already allocated in the proper core. Soft failed processes also do not go into
loggingAgreement() in its first execution. Recall that loggingAgreement()
must be run twice, first by the non-failed processes in order to agree about the checkpoint
line and to wait for replay requests from the logging protocol, and afterwards by the failed
ones in order to actually send the replay commands.

Between the loggingAgreement() calls, soft failed processes now also call
prepareRestart(), which is the function that actually loads the checkpoint file from
disk to memory. The procedure from here onwards is the same as if it was a hard failure (aside
from the minor detail of removing the soft failure flag), because at this point the checkpoint
is already recovered and the communications replayed.

In the next chapter we will study the efficiency of these changes by means of benchmark-

26

CHAPTER 4. EXTENDING CPPC-RESILIENCE TO COPE WITH SOFT ERRORS

ing with 3 MPI applications with different characteristics, verifying that our proposal works
and indeed allows us to significantly reduce the overhead time associated to program recovery
when dealing with soft errors.

27

4.5. Modifications for soft error handling

28

Chapter 5

Experimental evaluation

This chapter is dedicated to the experimental evaluation of the proposed extension to
CPPC-resilience. Wewill present in detail theworking environment, the different bench-

marking methods used and the results obtained.

5.1 Testing environment

As CPPC-resilience is intended to run on HPC systems, if we want to be realistic with our
experiments we must do the testing in such a system. Therefore, the Pluton HPC cluster [3]
was used. This cluster has the specifications shown in Table 5.1, and uses the SlurmWorkload
Manager [20] as a job scheduling system for runningHPC applications in its computing nodes.
A special frontend node is provided for SSH access, and then individual jobsmust be scheduled
with Slurm, specifying the resources required (RAM, number of cores, GPUs, etc.) and the
commands to be executed.

As for software, we have used the CPPC-resilience branch of CPPC available at https:
//bitbucket.org/nuriallv/cppc, working with HDF5 version 1.8.11 and GCC

Pluton HPC cluster Hardware details
Nodes 23 computing nodes + 1 frontend node
Processor 2x Intel(R) Xeon(R) Silver 4110 (on each node)
Cores/threads 16/32 per node
Memory 64 GB per node
Storage Total 16 TiB in RAID10 configuration
Network Infiniband FDR@56Gbps and Gigabit Ethernet
OS Rocks 7 (CentOS 7 based)
MPI version ULFM development branch
GCC v4.8.5

Table 5.1: Hardware platform description.

29

https://bitbucket.org/nuriallv/cppc
https://bitbucket.org/nuriallv/cppc

5.2. Testbed

version 4.8.5. The MPI version used corresponds with the ULFM development branch of the
OpenMPI distribution, located at https://bitbucket.org/nuriallv/ulfm2.

5.2 Testbed

In order to test the efficiency of CPPC and our soft error handling modifications, we will use
a series of benchmarks. The testbed will consist in the execution of 3 different scientific MPI
applications on the hardware platform described in Section 5.1:

• MOCFE-bone [21]: written in Fortran, simulates the main procedures in a 3D method
of characteristics (MOC) code for the numerical solution of the steady state neutron
transport equation. 3D-MOC was chosen in exascale computing because of its hetero-
geneous geometry capability, high degree of accuracy, and potential for scalability.

• Himeno [22]: written in Fortran, designed to evaluate the performance of incompress-
ible fluid analysis code. This benchmark program takes measurements to proceedmajor
loops in solving the Poisson’s equation solution using the Jacobi iteration method.

• TeaLeaf [23]: written in C, solves the linear heat conduction equation on a spatially
decomposed regularly grid using a 5 point stencil with implicit solvers.

The scripts to run the benchmarks have a defined set of parameters shown here:
run.sh [bmname] [class] [nprocs] [times] [killnum] [place]

• bmname: benchmark name {tealeaf, himeno, mocfe}.

• class: dataset to use as input to the program.

• nprocs: total number of processes.

• times: number of times to send soft error signals.

• killnum: number of signals to send each time.

• place: where to store the checkpoint files in the filesystem.

5.3 Measuring spawn timings in CPPC-resilience

The current version of CPPC-resilience has 2 operating modes, CPPC_LOGGING and
CPPC_LOGGING_SPARES. The former would spawn new processes whenever a failure oc-
curs, whereas the latter keeps a pool of ”hot spares” (already initialized processes), such that
the failed ones are migrated to the spares at runtime. The spare processes version avoids the

30

https://bitbucket.org/nuriallv/ulfm2

CHAPTER 5. EXPERIMENTAL EVALUATION

spawning overhead during recovery but it adds its own overheads: extra processes need to
be allocated at the beginning of the execution regardless of whether there are failures or not
and, in case of failure, data must be recovered and transferred to the replacement processes
before the execution can continue.

Our proposed branch, CPPC_SOFT, is a modification of the CPPC_LOGGING branch in
order to avoid the re-spawning of alive processes in case of soft errors. Thus, to measure the
efficiency of our proposal, wewill need to compare the execution time of the CPPC_LOGGING
version and the CPPC_SOFT one. Unfortunately, the CPPC_LOGGING branch is currently in
an unusable state, due to bugs with the code that surfaced with the new ULFM specifications
and implementations.

To overcome this issue, we will estimate the execution time needed by CPPC_LOGGING,
using the execution time needed by CPPC_LOGGING_SPARES and adding the time needed
to spawn new processes. A small benchmark program will be used in order to determine time
spent in the creation of new processes. The pseudocode of said program is shown in Figure
5.1. It begins by selecting a random rank from within the total set to be the one who will be
the root when spawning the new process. This rank is sent to all other processes by means
of a broadcast collective, MPI_Bcast. The parameters of this function are, in order: the
buffer with the variables to send, the number of variables, the type of said variables, the root
process for the collective (the one that initially contains the variable) and the communicator
to be used. Afterwards, all ranks make the collective call to spawn the new process, which,
in our case, consists of a bogus worker that simply prints out its assigned rank. Finally there
is a call to MPI_Barrier, in order to ensure that the collective finishes in all ranks before
ending the time measurement.

The time elapsed from before the collective call until after the barrier is reached by all
processes is measured, and it serves as an estimation of the spawn times in CPPC-resilience.
It must be kept inmind that CPPC-resilience performsmanymore taskswhen recovering from
a failure, such as rebuilding communicators, internal state structures, and so on. However,
those are also performed by the CPPC_LOGGING_SPARES branch and need not be added to
the recovery time.

In order to mitigate statistical outliers, this program was ran 5 times for 2x slaves, where
x = {1 − 8}. The average time of these 5 executions was taken and the resulting graph is
shown in Figure 5.2.

If we look at the graph on a logarithmic scale (Figure 5.3), we can see that the time scales
linearly with the number of processes until it reaches 16, where it starts to take considerably
longer. This is due to two facts: (1) if there are more processes involved in a collective op-
eration, the total number of communications increases; and (2) each computing node has a
total of 16 processor cores, and after this number, inter-node communications start occurring,

31

5.3. Measuring spawn timings in CPPC-resilience

1 // spawn.c
2 int main()
3 {
4 MPI_Init...
5 MPI_Comm_size(&nprocs, ...
6 MPI_Comm_rank(&myrank, ...
7

8 // which rank should spawn the new process
9 int ranktospawn;
10

11 if (myrank == 0)
12 ranktospawn = random(0, nprocs - 1);
13

14 t1 = get_time();
15

16 // send which rank should be the root of the collective
operation

17 MPI_Bcast(&ranktospawn, 1, MPI_INT, 0, MPI_COMM_WORLD);
18 // spawn collective operation
19 MPI_Comm_spawn("worker", 1, ...);
20 // wait for it to finish everywhere
21 MPI_Barrier(MPI_COMM_WORLD);
22

23 t2 = get_time();
24 print("time to spawn = %d", t2 - t1);
25 MPI_Finalize();
26 }
27

28 // worker.c
29 int main()
30 {
31 MPI_Init...
32 MPI_Comm_rank(&myrank, ...
33

34 print("worker %d spawned", myrank);
35 MPI_Finalize();
36 }

Figure 5.1: MPI C pseudocode for the spawning benchmark.

32

CHAPTER 5. EXPERIMENTAL EVALUATION

which are significantly more expensive.

5.4 Experiments performed

In this section we will describe all the different experiments that have been done in order
to evaluate different aspects of our custom CPPC-resilience branch. As done in Section 5.3,
the methodology will be to run each benchmark variation 5 times and to take the average
execution time, for all 3 applications.

5.4.1 Solution validation

Our first step was to check that our soft error branch functions correctly. In order to do
this, the presence of various soft errors was simulated during the execution of each of the
benchmark applications. Then, it was verified that in all cases said applications continued
with the execution flawlessly after the failures and finished with the correct results.

In order to validate our program a series of debug log statements were inserted throughout
the program to inform us about the state of the recovery. To check for correct results, the test
values provided by the benchmark datasets were used to compare against the ones returned
by our custom branch. An excerpt from the execution log of tealeaf with 16 processes
can be found in Figure 5.4. In this log we see:

• Lines [1-3]: all processes are initialized in CPPC-resilience.

• Lines [5-7]: normal steps of the benchmark algorithm.

• Lines [9-11]: after a configured number of iterations, a checkpoint is performed in all
processes.

• Lines [15-18]: a soft error signal has been detected by the error handler, failed and
survivor processes are enumerated.

• Lines [20-22]: the checkpoint line (last valid checkpoint in all processes) is selected.

• Lines [25-27]: the failed process’ state is restored using the checkpoint file.

• Lines [28-34]: the message log is attached in the survivors that communicated with the
failed process, and those communications are replayed.

• Lines [36-41]: benchmark execution completes with correct results.

33

5.4. Experiments performed

Figure 5.2: Time taken to spawn a process with different amounts of MPI processes.

Figure 5.3: Time taken to spawn a process with different amounts of MPI processes (logarith-
mic scale).

34

CHAPTER 5. EXPERIMENTAL EVALUATION

1 // process initialization
2 Rank 0 entered CPPC_Init_state
3 Rank 1 entered CPPC_Init_state
4 ...
5 // steps of the benchmark algorithm
6 Timestep 1
7 Timestep 2
8 ...
9 // checkpoint performed in all processes
10 CKPT_AUXILIARYTHREAD_PROC0|0.0232508|
11 CKPT_AUXILIARYTHREAD_PROC1|0.0235608|
12 ...
13 Timestep 13
14 // soft error detected
15 **CPPCSOFTRESET[P15,it15]:afterRunning|10.2873|
16 Detected soft fault signal at rank 15
17 // survivor processes enumerated
18 MPI_ERR_HANDLER: PROCESSES 1,2, ... SURVIVED (isSoftError = 0)
19 ...
20 // recovery line decided in all survivors
21 P2 survivor chooses ckpt 1
22 P3 survivor chooses ckpt 1
23 ...
24 // checkpoint file found
25 isFullCheckpoint: p15 checkpoint path: /scratch/CPPC/15_0/0.cppc
26 // and loaded in soft failed process
27 P15_T0: Restarting from full checkpoint
28 // log attached in required procs, ready to replay commands
29 43344|Survivor 1 attach log in|0.000000|size|35577120|
30 43354|Survivor 14 attach log in|0.000000|size|35577120|
31 ...
32 // processes finished replay
33 **PROC1 FINISH CPPC LOG
34 **PROC14 FINISH CPPC LOG
35 ...
36 Timestep 20
37 // run finished
38 Checking results...
39 Expected 1.012100932683400e+02
40 Actual 1.012100932683323e+02
41 This run PASSED (Difference is within 0.00000000%)

Figure 5.4: Output log for execution of CPPC_SOFT branch for the tealeaf application.

35

5.4. Experiments performed

5.4.2 Overhead without failures

Next, we measured the overhead of our proposal without failures. For that, we ran the 3
benchmarkswithout any sort of FT capabilities (orig), with CPPC-resilience respawning failed
processes (respawn), and with special soft error handling (soft).

The procedure taken to measure time is to use the MPI function MPI_Wtime(), which
returns a double-precision floating point number representing the time since the last call to
itself. The pseudocode of this procedure is shown in Figure 5.5.

1 int main()
2 {
3 double t1, t2;
4

5 MPI_Init...
6 t1 = MPI_Wtime();
7 // do work...
8 t2 = MPI_Wtime();
9 printf("Time measured by MPI_Wtime: %1.2f\n", t2-t1);
10 MPI_Finalize();
11 }

Figure 5.5: C pseudocode for time measuring using MPI_Wtime

Figure 5.6 shows the results obtained for this experiment with 16 processes. We can ob-
serve that the introduction of FT capabilities has a significant amount of overhead on any
version, although it is important to note that this scenario is not particularly realistic as it
employs a set of very short-lived benchmarks. These kinds of fault-tolerant solutions are
designed for programs running for hours or even days, where a total program crash would
imply large electricity and hardware costs.

Figure 5.6: Execution time comparison for all variants of each benchmark, with no failures
and nprocs = 16

36

CHAPTER 5. EXPERIMENTAL EVALUATION

Aside from that, there is no major difference between CPPC-resilience branches, since as
there is no recovery involved the program does not even branch into the code that we have
modified, so the differences are mere statistical deviations.

Another thing to point out are the disparities between overheads in the different bench-
marks (e.g. in tealeaf is 11.8 seconds, or 47%). This can be attributed to various factors:

• Complexity of the actual work performed: if the calculations performed take up
a lot more CPU cycles for one of the benchmarks, this will mask the time spent on FT
tasks.

• Complexity and size of data: certain benchmarks have more intricate data struc-
tures, which in turn take up more space and take longer to store. This is especially
relevant when saving/restoring checkpoints to/from an optical hard drive, which is a
high latency device.

• Cache invalidation: if the benchmark is optimized to fit in the cache, the added in-
structions dedicated to FT tasks can severely impact the performance of the actual cal-
culations.

5.4.3 Improvement with soft errors

In this section we will measure the improvement obtained with our proposal when handling
soft errors. Both in the CPPC_LOGGING and CPPC_SOFT branches, the execution flow of a
program consists of the following steps:

• Spawn: time it takes the MPI library to launch the actual process on the operating
system, for the first time.

• Initialization: setup of all CPPC-related structures and variables, and MPI initializa-
tion.

• Work: actual calculations, different for each benchmark.

• Checkpoint: time taken to write all of the checkpoints to stable storage.

• Recovery: time taken to recover from a failure and resume the execution.

• Finalization: freeing of CPPC and MPI-allocated resources.

Aside from the spawning times already measured in Section 5.3, these steps will be mea-
sured using the timing structures already inside CPPC.These consist of a series of Cstructs

37

5.4. Experiments performed

storing times at different points of the execution, such as after initialization, after each check-
point, after recovery, etc. An example of some of the content of this struct (output reduced
for brevity, many more measurements in the real program) is provided in Figure 5.7.

1 TIMES|RANK|TChkpt|TFinDetect|Trevoke|TShrink|
2 TIMES|0|0.00451507|10.4762|1.387e-05|0.52582|
3 TIMES|1|0.00456191|10.4762|1.8256e-05|0.525821|
4 TIMES|2|0.00398097|10.4762|1.5674e-05|0.525797|
5 TIMES|3|0.00423796|10.4762|1.4766e-05|0.525762|
6 TIMES|4|0.00413456|10.4763|2.0942e-05|0.525714|
7 TIMES|5|0.00391636|10.4762|1.4854e-05|0.525826|
8 TIMES|6|0.00520496|10.4762|1.2049e-05|0.52578|
9 TIMES|7|0.00435946|10.4763|5.436e-06|0.52572|
10 TIMES|8|0.00431812|10.4762|1.3589e-05|0.525819|
11 TIMES|9|0.00432258|10.4762|8.602e-06|0.525816|
12 TIMES|10|0.00447206|10.4762|2.0819e-05|0.525819|
13 TIMES|11|0.00504054|10.4762|1.367e-05|0.525776|
14 TIMES|12|0.00446098|10.4762|1.2414e-05|0.525849|
15 TIMES|13|0.00485647|10.4762|1.2045e-05|0.525805|
16 TIMES|14|0.00488027|10.4762|1.1871e-05|0.525832|
17 TIMES|15(FAILED)|0.0053019|-1|-1|0.000338895|

Figure 5.7: CPPC timing struct dump, for a benchmark with 16 processes.

All 3 benchmarks were run on the CPPC_LOGGING branch with a total of 16 and 64
processes, and the results obtained can be seen in Figures 5.8 and 5.9. Even with such a small
number of processes, we can see that the recovery phase constitutes a big chunk of the total
execution time, and this chunk becomes more significant the more processes are involved.

Figure 5.8: Execution time breakdown for a failed process for each benchmark, with nprocs
= 16.

38

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.9: Execution time breakdown for a failed process for each benchmark, with nprocs
= 64.

In CPPC_SOFT, all broken down times match, except for recovery time, which will be
smaller with our proposal as process respawning is avoided. Thus, to address the main ob-
ject of this project which is the efficiency of handling soft errors as a special case, we have
conducted a last experiment that compares the differences of recovery times after a failure
between the respawning and the soft error branches of CPPC-resilience.

Figure 5.10 shows the reduction for the recovery time for nprocs = {16, 64, 128, 256}. The
data for this graphwas taken from the same structs used earlier that annotate times at different
points of the program, and the percentage was calculated as p =

trespawn−tsoft
trespawn

∗ 100, where
trespawn is the time taken to complete the recovery step by the CPPC_LOGGING version and
tsoft by the CPPC_SOFT version.

Figure 5.10: Improvement in the recovery phase when using our soft-error CPPC-resilience
branch.

39

5.4. Experiments performed

We can draw various conclusions from this graph: (1) There is a clear improvement in
the handling of soft errors as a special case. (2) This improvement is highly dependant on
the total number of processes involved, as evidently reconfiguring communicators with 256
ranks is slower than with 16, and the same is true about coming to an agreement about which
checkpoint line to use. (3) The overhead percentages have disparities between the different
benchmarks (e.g. for himeno it is only a 10% increase with 128 processes whereas for tealeaf
it is nearly 20%), this indicates that the complexity of the data and communicator topologies
to be recovered have an effect on recovery performance. This is application-specific and in
principle unavoidable without ad-hoc solutions.

40

Chapter 6

Concluding remarks

In this last chapter, the final implications of this project along with extra information about
the author’s experience and thoughts during the development of this project will be shown.

6.1 Project conclusions

This project presents the extension of the fault tolerance tool CPPC-resilience in order to be
able to deal efficiently with soft errors in HPC systems. Due to the increasing number of
processors involved per system and the decrease in transistor sizes, soft errors are expected
to become a common occurrence in the near future. The problem is that when soft errors are
treated as hard failures, that is, fully restarting the failed processes by means of a stop-and-
restart approach, it leads to significant execution overheads and energy waste.

Our proposal treats soft errors as a special case, making sure that those processes where
such an error has happened are recovered without re-spawning, because the nature of soft
errors is transitory and the processes do not need to be restarted. The results obtained in
Chapter 5 show the following facts:

• There is a clear improvement in the recovery phase when handling soft errors as a
special case in fault tolerance recovery frameworks. As an example, for the tealeaf
benchmark with 256 processes, we have reduced recovery time by nearly 45 percent.

• This improvement is highly dependant on the total number of processes involved,
larger amounts of processes having significant performance gains. This is specially
important as this project is oriented towards preparing for failures in future exascale
systems where failures are statistically unavoidable and the number of processes could
be in the order of tens of thousands.

41

6.2. Lessons learned

6.2 Lessons learned

In the academic domain, this project has given me the opportunity to learn new concepts in
various disciplines. I have learned about MPI’s cutting-edge fault tolerance interfaces, work-
ing with HPC clusters and job scheduling systems, and about writing a technical document
with LaTeX in order to keep a record of all the work done.

In the technical domain, CPPC is a complex and large project and the source code is
written in a rather convoluted way, with global variables that affect code in other files in a
cascading manner. Due to this, a lot of time was wasted trying to understand all the small
details and intricacies in the code. If I were to start this project over from scratch, I would
have spent a good amount of time at the start re-writing certain parts of CPPC-resilience, in
order to give myself an easier time trying to integrate my new changes into the codebase.

6.3 Future work

While we saw in Chapter 5 that there is already an improvement in the special handling of
soft errors, there are still some unaddressed overheads with communicator reconfiguration
and recreation that could be avoided, as the transitory nature of soft errors implies that the
communicators could still be valid after a failure. This may require more in-depth research in
order to make sure that the data structures that hold the communicator metadata do not get
corrupted by the soft error and are rendered useless. It was not addressed in this project as it
would require a major redesign and rewrite of CPPC-resilience and it would be far too much
work for a Bachelor’s thesis.

42

List of Acronyms

HPC High Performance Computing.

MPI Message Passing Interface

ULFM User Level Failure Mitigation

MTFB Mean Time Between Failures

SIMD Single Instruction Multiple Data

ECC Error Correcting Code

FT Fault Tolerant/Tolerance

DUE Detectable Uncorrectable Error

SDC Silent Data Corruption

CPPC Controller/comPiler for Portable Checkpointing

43

6.3. Future work

44

Glossary

Refactoring The process of restructuring existing source code without changing its behav-
ior.

Application resilience The resistance to failures and ability to continue its execution nor-
mally after one occurs.

Handler A function to be called after a certain event is triggered.

struct A data structure containing different data members, common in C-like languages.

Vanilla Said of something unmodified, default.

45

6.3. Future work

46

Bibliography

[1] R. Y. Dongarra J., Herault T., “Fault tolerance techniques for high-performance comput-
ing,” Springer International Publishing, 2015.

[2] N. Losada, “Application-level fault tolerance and resilience in HPC applications,” PhD
Thesis, University of A Coruña, 2018. [Online]. Available: http://hdl.handle.net/2183/
21451

[3] “Pluton HPC cluster.” [Online]. Available: http://pluton.des.udc.es/

[4] L. Torvalds, “Git, distributed version control system.” [Online]. Available: https:
//git-scm.com/

[5] A. Avizienis, J.-C. Laprie, and B. Randell, “Fundamental concepts of dependability.”
[Online]. Available: https://pld.ttu.ee/IAF0530/16/avi1.pdf

[6] A. Geist, “Supercomputing’s monster in the closet.” IEEE Spectrum, vol. 53, no. 3, pp.
30–35, 2016.

[7] “MPICH.” [Online]. Available: https://www.mpich.org/

[8] “Open MPI.” [Online]. Available: https://www.open-mpi.org/

[9] G. Rodríguez, M. J. Martín, P. González, J. Touriño, and R. Doallo, “CPPC: A compiler-
assisted tool for portable checkpointing of message-passing applications,” Concur-
rency and Computation: Practice and Experience, vol. 22, no. 6, pp. 749–766, 2010.

[10] “The CPPC project.” [Online]. Available: http://cppc.des.udc.es/

[11] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff, “Cetus: A source-to-
source compiler infrastructure for multicores,” IEEE Computer, vol. 42, no. 12, pp.
36–42, 2009.

47

http://hdl.handle.net/2183/21451
http://hdl.handle.net/2183/21451
http://pluton.des.udc.es/
https://git-scm.com/
https://git-scm.com/
https://pld.ttu.ee/IAF0530/16/avi1.pdf
https://www.mpich.org/
https://www.open-mpi.org/
http://cppc.des.udc.es/

Bibliography

[12] “HDF5 website.” [Online]. Available: https://support.hdfgroup.org/HDF5/whatishdf5.
html

[13] “ULFM specification draft,” 2017. [Online]. Available: https://fault-tolerance.org/
wp-content/uploads/2012/10/20170221-ft.pdf

[14] S. Rao, L. Alvisi, and H. M. Vin, “The cost of recovery in message logging protocols,”
Transactions on Knowledge and Data Engineering, vol. 12, no. 2, pp. 160–173, 2000.

[15] N. Losada, “Fault-tolerance of MPI applications in exascale systems: the ULFM solution,”
Elsevier, 2019.

[16] J. F. Ziegler, “Terrestrial cosmic ray intensities,” IBM Journal of Research andDevelopment,
vol. 42, no. 1, pp. 117–140, 1998.

[17] L. Bautista-Gomez and F. Cappello, “Detecting and correcting data corruption in sten-
cil applications through multivariate interpolation,” IEEE International Conference on
Cluster Computing (CLUSTER), pp. 595–602, 2015.

[18] G. Pawelczak, S. McIntosh-Smith, J. Price, and M. Martineau, “Application-based fault
tolerance techniques for fully protecting sparse matrix solvers.” IEEE International

Conference on Cluster Computing (CLUSTER), pp. 733–740, 2017.

[19] L. Torvalds, “Kernel source code for signal number def-
initions.” [Online]. Available: https://github.com/torvalds/linux/blob/
6f0d349d922ba44e4348a17a78ea51b7135965b1/include/uapi/asm-generic/signal.h

[20] SchedMD, “Slurm workload management system.” [Online]. Available: https://slurm.
schedmd.com/archive/slurm-19.05.2/overview.html

[21] E. Wolters and M. Smith, “Mocfe-bone: the 3d moc mini-application for exascale re-
search,” University of North Texas Libraries, UNT Digital Library, 2013.

[22] R. Himeno, “Himeno fortran benchmark.” [Online]. Available: http://accc.riken.jp/en/
supercom/documents/himenobmt/

[23] UK-MAC, “Tealeaf C benchmark.” [Online]. Available: https://uk-mac.github.io/
TeaLeaf/

48

https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://fault-tolerance.org/wp-content/uploads/2012/10/20170221-ft.pdf
https://fault-tolerance.org/wp-content/uploads/2012/10/20170221-ft.pdf
https://github.com/torvalds/linux/blob/6f0d349d922ba44e4348a17a78ea51b7135965b1/include/uapi/asm-generic/signal.h
https://github.com/torvalds/linux/blob/6f0d349d922ba44e4348a17a78ea51b7135965b1/include/uapi/asm-generic/signal.h
https://slurm.schedmd.com/archive/slurm-19.05.2/overview.html
https://slurm.schedmd.com/archive/slurm-19.05.2/overview.html
http://accc.riken.jp/en/supercom/documents/himenobmt/
http://accc.riken.jp/en/supercom/documents/himenobmt/
https://uk-mac.github.io/TeaLeaf/
https://uk-mac.github.io/TeaLeaf/

	Introduction
	Project background and goals
	Resources and planning
	Document structure

	Previous concepts
	Faults and their types
	Parallel programming: MPI
	CPPC

	Combining CPPC and ULFM to obtain resilience
	ULFM background
	CPPC-resilience overview
	CPPC-resilience workflow
	Failure detection and notification
	Communicator reconfiguration
	Application recovery
	Local rollback approach
	Message logging protocol

	Extending CPPC-resilience to cope with soft errors
	Introduction
	Simulating soft errors for CPPC-resilience
	Soft error detection and propagation
	Current recovery procedure flow
	Modifications for soft error handling

	Experimental evaluation
	Testing environment
	Testbed
	Measuring spawn timings in CPPC-resilience
	Experiments performed
	Solution validation
	Overhead without failures
	Improvement with soft errors

	Concluding remarks
	Project conclusions
	Lessons learned
	Future work

	List of Acronyms
	Glossary
	Bibliography

