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Abstract: This paper deals with the efficiency and sustainability of urban rail transit (URT) using
exploratory data analytics (EDA) and data envelopment analysis (DEA). The first stage of the proposed
methodology is EDA with already available indicators (e.g., the number of stations and passengers),
and suggested indicators (e.g., weekly frequencies, link occupancy rates, and CO2 footprint per
journey) to directly characterize the efficiency and sustainability of this transport mode. The second
stage is to assess the efficiency of URT with two original models, based on a thorough selection of
input and output variables, which is one of the key contributions of EDA to this methodology. The first
model compares URT against other urban transport modes, applicable to route personalization,
and the second scores the efficiency of URT lines. The main outcome of this paper is the proposed
methodology, which has been experimentally validated using open data from the Transport for
London (TfL) URT network and additional sources.

Keywords: urban rail transit (URT); exploratory data analysis (EDA); data envelopment analysis
(DEA); sustainable transport systems; intelligent transportation systems (ITS); big-data applications

1. Introduction

Rail is one of the most energy-efficient transport modes [1], accounting for approx. 8% of global
freight and motorized passenger movements but only 2% of transport energy use, being the transport
mode with highest percentage of electric penetration. Thus, the continuous decarbonization of power
production will allow zero-emission rail transport in the medium term. This is especially relevant
for urban environments, where fuel-based transport modes impact the most on people’s health.
For these reasons, urban rail transit (URT) plays a key role in a context of a significant rise of urban
population, particularly in emerging economies, which increases pollution, congestion, and city-center
traffic restrictions.

URT is ideally suited for high passenger throughput, and although investment is especially high
per kilometer, costs per throughput capacity are lower than for urban road infrastructure [2]. Shifting
passengers from private cars to public transport, particularly in large cities, is key to reducing net
energy use and emissions to be able to meet the mobility challenges within the sustainable development
goals (SDG) [3].

Nearly 200 cities worldwide have metro systems (URT with the highest capacity), whose length
exceed 32,000 km, whereas around 400 cities have light rail systems (URT with less investment
requirements, less speed, and more modest capacity). Most recent (in the 2010s decade) URT
developments have been, in the case of metro, which requires the highest investments, in Asia
(34 of 46 new cities with metro). In the case of light rail, 28 new projects have been developed in
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Europe and another 37 new projects roughly equally among Asia, North America, the Middle East,
and North Africa.

URT, on the one hand, has multiple benefits such as mitigating CO2 emissions and local air
pollution, and wider social and economic benefits. One of these is reducing commuting time, therefore
expanding the urban/suburban areas to those directly communicated by URT. This way, labor force can
live at a higher distance from the city center in new urban developments, which are more cost-effective
(less expensive).

On the other hand, one of the limitations of URT networks, the high infrastructure investment and
its capillarity degree, could be partially addressed through multi-modal communication, using URT
for the main journey combined with another communication mode, typically walking for distances
up to 1 km, cycling, bus, or private car from a park-and-ride facility. However, there is still room for
improvement as living more than 1 km away from an URT station requires either a frequent bus service
network or private car ownership and confronting parking costs.

The objective of this paper is to characterize the efficiency and sustainability of URT using a
proposed methodology based on exploratory data analysis (EDA) [4] and data envelopment analysis
(DEA) [5,6]. First, the available data is explored using EDA to identify the main factors influencing
URT for, secondly, derive efficiency scores, both across different transport modes and different lines
within a rail network.

The reminder of the paper is structured as follows: the current state of the research field is
presented in Section 2 and our methodology for assessing the efficiency and sustainability of URT
using EDA and DEA is explained in Section 3. Section 4 experimentally validates the approach
using open data from Transport for London (TfL) URT, particularly its underground network data.
Section 5 discusses how additional big-data sources can improve the efficiency and sustainability of
URT. In Section 5, we draw the main conclusions, stressing the main contributions of this work.

2. State of the Art

The recent increase in quantity and quality of data in public transport systems has fueled the
adoption of data-driven solutions, mainly based on EDA or artificial intelligence (AI)/machine learning,
to make public transport systems more intelligent, green, and safe. However, research in this area is,
compared to applications in roads and private services/vehicles, more challenging due to the scarcity of
available data, and the difficulties in testing research hypotheses in the real world. Thus, it is relatively
common to have projects such as TEMA Big-Data Platform [7], which monitored 28,000 fuel vehicles
with on-board GPS in Modena and Firenze (Italy) for one month to obtain 4.5 million trips and parking
events, whereas most public transport analysis are based on significantly lower data records.

In an earlier study [8] a method and a software has been developed to estimate an URT
passenger origin–destination trip matrix using an automatic data collection system. The method was
experimentally assessed with automatic fare collection (AFC) origin-only data from Chicago Transport
Authority (CTA), inferring the destination to replace the manual and costly origin–destination surveys.
TfL, although it has a different fare collection scheme, an origin–destination system vs. the origin-only
of CTA, collaborated in this research. In [9] smart-card bus data (metro was not included), travel
surveys, and passengers’ addresses have been used to measure commuting efficiency in Beijing in
2008–2010 as a function of commuting time, and residence/work location. In [10] public transport users’
behaviors have been explored, whereas [11] analyzes individual mobility choices in carpooling. In [12]
multi-modal transportation systems are presented as a way to increase efficiency through economies
of scale, claiming that a multi-modal system combining a fast and efficient URT with other mobility
options can provide more potential gains than optimizing single modal transport systems. These early
works are EDA or data mining single cases studies using only a few data sources.

As the available data has been increasing during the last decade, particularly thanks to the
integration of sensors in intelligent transportation systems (ITS) [13], especially in roads and connected
vehicles, the number of projects started growing exponentially. A recent review paper [14] presents
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almost a hundred EDA, data mining, AI, and machine-learning applications, challenges, and limitations,
particularly for management, traffic safety, public transportation, and urban mobility. However, when it
comes to public transport only tackles route planning, aviation, on-demand bus, and shared mobility,
but no references to URT. Another reference paper [15] covers big-data projects and technologies in
transportation and mobility, highlighting the scarcity of references in maritime and rail transport
systems, with only a few works on predictive maintenance, risk management, and railway accidents.

URT, especially underground, faces important capacity limitations, especially in city centers at
peak times. This has been the focus of [16] for forecasting passenger flows using Artificial Neural
Networks (ANN) on a single metro line in Naples with a simulated dataset. Short-term forecasting on
urban metros has also been studied along with other methods, such as Kalman filter in [17] and ARIMA
(autoregressive integrated moving average) models in [18]. Li et al. [19] proposed a Multi-Scale Radial
Basis Function (MSRBF) for forecasting short-term metro passenger flows on special occasions, such as
sporting events and concerts. In this case, passenger flow is very irregular, and predictions are more
difficult to obtain. Ling et al. [20] used smart-card data for predicting passenger flows in the subway of
Shenzhen (China); they analyzed four predictive models: a historical average model, ANN, regression
model, and a gradient-boosted regression tree model. Liu et al. [21] proposed a deep learning method
for short-term forecasting of metro inbound/outbound passenger flows, while Wang et al. [22] proposed
a Novel Markov-Grey model for solving the same problem.

A novel model of Multi-scale Mixture Feedback Wavelet Neural Network (MMFWNN) has been
proposed in [23] to predict the short-term entrance flow of Shanghai subway stations, distinguishing
passengers into commuter (more predictable) and non-commuter (more dependent on the weather).
In [24] the factors affecting Seoul Metro boarding have been analyzed using regression analyses against
the station environment (density, employment, commercial/office area), external connectivity (through
metro and roads) and intermodal (bus and metro). This, and previous models, can predict highly
accurately the short-term entrance flow, as it corresponds with regular patterns. However, the lack of
historical data limits the behavior in special situations/events.

Relevant research works on other transportation modes are [25], where four classification
algorithms have been used to model the relationship in London between weather and short cycling
journeys using docked bikes. In addition, [26], proposing the application of deep learning methods to
a Bus Rapid Transit (BRT) system (Xiamen, China) to forecast the hourly flow, adopting a three-stage
architecture. This paper also analyses the literature, identifying four different approaches: (1) traditional
classical algorithms; (2) regressive models; (3) machine-learning-based models, including ANNs;
(4) hybrid models. In [27] a novel Context Neural Network framework has been proposed for the
prediction of road traffic flow showing better long-term predictions than previous well-established
models. All studied cases, however, refer to short-term or long-term time periods, without considering
the spatial dimension.

The relevant number of references of the application of DEA to different public transport modes [28],
contrasts with the scarcity of research on the efficiency of rail networks, [29], especially URT. These
references in rail transport systems generally compare different public transport agencies at regional or
national levels. In [30] 17 European URT networks have been evaluated using a two-stage methodology
focusing on the relationship between the operational performance and their socioeconomic contexts.
In [31] urban public transport systems of 652 Chinese cities have been analyzed, highlighting the
high efficiency of URT. In [32] DEA has been used to assess the efficiency of 31 railway companies
across multiple countries. In [33] the efficiency of 20 representative URT systems, among them London,
Hong Kong, and New York, have been analyzed concluding that the higher the number of stations,
the higher the efficiency. This conclusion is also supported by a recent study [34] on Chinese URT.

In [35] DEA has been used to assess the performance of the bus lines of a single transport authority
in a suburban area in California Central Coast. In [36] the efficiency of Seoul Arterial Bus Route
has been analyzed using DEA considering a wide variety of factors, including total rides, service
satisfaction, and CO2 emissions. This latter work was expanded in [37] with a network DEA model,
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also validated with bus companies in Seoul. In addition, finally, in [38], DEA has been used to compare
different transport options and investments on a single route.

The selection of input and output variables in DEA is regarded as an important step that is
normally conducted before the DEA model is implemented. Available techniques are, on the one
hand, based on expert intervention, using heuristic decision-making, and expert judgement (e.g., using
Delphi), and, on the other hand, fully automatic approaches [39] which in turn maximize efficiencies
and lose discrimination power without a full understanding of the domain. There is a lack of data-based
methodologies and use cases that avoid bias of experts and at the same time provide useful, repeatable,
and interpretable results. The proposed methodology in this paper, using EDA for a thorough selection
of a limited number of variables, addresses this need by combining both approaches.

A review of the related literature on efficiency analysis in urban public transport [28] shows a
quite homogenous selection of input and output variables, guided by experts, with a fairly narrow
perspective. Thus, state-of-the-art variables are (in parenthesis the percentage of the papers in the
literature that reported each variable):

• Input (physical measure): number of vehicles (61%), number of employees (40%), fuel consumption
(36%), worked hours (11%), drivers (3%), non-driving employees (2%), seat capacity (total seats of
the fleet) (2%), and number of depots (1%).

• Input (CAPEX): Price of capital (21%), and investment (4%).
• Input (OPEX): Price of labor (39%), price of fuel (29%), OPEX (12%), material costs (11%), fuel costs

(9%), operating cost of vehicles (11%), maintenance costs (6%), and operating labor expenses (4%).
• Output (Service supply): overall traveled kilometers by all vehicles (53%), seats offered

multiplied by overall traveled kilometers (26%), vehicles multiplied by hours of operation
(4%), and revenue-vehicle kilometer (3%).

• Output (Service consumption): passengers multiplied by traveled kilometers (24%), number of
passengers (17%), and number of trips (6%).

• Output (revenue): operating revenues (11%).

Furthermore, in the literature there are additional variables, neither considered inputs nor
outputs, but sometimes considered external variables, which characterize public transport systems.
Representative examples of these variables are (listed together with their presence, in percentage, in the
analyzed related literature):

• Quality and characteristics of service: length of the network (24%), average commercial speed
(21%), average fleet age (15%), service frequency (7%), and number of stops (6%).

• Socio/demographic: population density (16%), location (13%), car ownership (7%), population
served (7%), and area served (5%).

• Managerial: public company (15%), contract type of the operator (11%), size of the company (3%).
• Subsidies: subsidies from public funds (10%), subsidies to operating expenses (8%), local subsidy

(2%).
• Externalities: number of accidents (7%), and emissions (4%).

With regards to URT, the variables used in the related literature are:

• In [30] the network length, the number of stations and cars are the inputs (CAPEX), whereas the
number of employees is considered the only input (OPEX), due to the scarcity of materials and
energy consumption information, two relevant inputs (OPEX). Additional variables considered to
be inputs are ratios between these variables (e.g., the network length divided by the number of
cars), historical data, as well as socioeconomic variables, such as area, population density of the
core city, average household size, unemployment rate, GDP (Gross Domestic Product) per capita,
and diesel pump price. In [30] two models are computed: (i) efficiency, using the number of
cars-kilometers produced as output, and (ii) effectiveness, considering the number of transported
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passengers. The large number of variables and the limited number of analyzed URT networks (17)
ends up with most of the evaluated systems considered highly efficient (here most URT networks
excel in some, disjoint parameters, increasing its efficiency). The impact (elasticity) of the variables
has also been considered, but the work fails in selecting the most representative ones.

• In [32] six inputs have been considered, the annual cost of operation as input (OPEX), and the
network length, and the number of employees, traction vehicles, passenger cars, and cargo cars
as inputs (CAPEX). Additionally, five outputs have been defined, revenues earned, transported
passengers, transported passengers per kilometer, transported cargo tons, and transported cargo
tons per kilometer.

• In [33] the number of employees and the labor costs are the selected inputs (OPEX), whereas the
number of cars in operation and non-labor costs are used as inputs (both OPEX and CAPEX).
The selected outputs are car-kilometers and transported passengers. Historical data has also been
considered. Furthermore, additional variables have been used in the Tobit models phase, after DEA,
such as population density, the number of stations, distance between stations, geographic location,
and the type of URT (light/rapid or heavy).

So far, the use of input and output variables in DEA URT models relies on a wide range of
state-of-the-art variables from the related literature, generally with limited selection and statistical
analysis. Moreover, the access to these variables incurs relevant collection costs, such as accessing to
unstructured reports, limiting the viability of comparing additional URTs.

This paper overcomes these latter limitations through:

• Selecting a limited number of representative variables through EDA, both state-of-the-art and
new variables, increasing the discrimination power of DEA by bringing forward the statistical
and visual analysis, prior to the variable selection (previous works [40] only suggested EDA after
DEA, to understand the impact of variables on the models, so using EDA as first stage is one of
the key contributions of this work).

• Automating data collection from public sources (e.g., open-data and online services),
thus supporting the direct comparison across different URT systems.

• Comparing, for the first time, to the best of our knowledge, a single URT system at the line
level, and also against other transport models from the traveler perspective, focusing on the
efficiency and sustainability, and skipping the wide range of sociodemographic variables that
require two-step modeling, as for [30,33].

Thus, the combination of EDA and DEA will be able to monitor, understand, and improve
URT management.

3. Methods and Materials

Despite the relevance of URT for the development of sustainable cities, there is a lack of research on
the efficiency and sustainability of URT systems and their management. The increasing availability of
data, both personal (e.g., GPS location) and Internet-of-Things (IoT) big data, is expected to play a key
role in the development of tailor-made mobility solutions, also known as Mobility-as-a-Service
(MaaS) [41], based on convenience, sustainability, and resource efficiency to meet passengers’
individual needs.

This paper introduces a methodology for assessing the efficiency and sustainability of an URT
network based on large-scale data analytics consisting of four stages: (1st) EDA using state-of-the-art
indicators; (2nd) EDA using new proposed indicators that deepen the analysis; (3rd) DEA using several
original transport models, and (4th) rank transport modes and URT network elements according to
efficiency measures, analyzing the results. Figure 1 summarizes graphically the methodology.

As URT systems, particularly in large cities, are a combination of complex interrelations,
the proposed methodology aims at better capturing the most relevant efficiency and sustainability
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indicators to optimize transport infrastructures, from planning to real-time operation. Furthermore,
as an additional outcome of this methodology, open-data repositories could be enriched with new data
sources such as occupancy rates, queueing times, URT network elements capacities (e.g., stations) as
well as CO2 footprints.
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3.1. Exploratory Data Analysis (EDA) of URT Data

The first stage of the proposed methodology uses EDA for deriving state-of-the-art quantitative
indicators [30]: network length, number of stations, the number of trains, the number of frequencies,
the number of employees, the number of operated kilometers, and the number of passengers. This data
is usually publicly available at transport operator level, useful for comparing operator’s efficiency,
but it is more difficult to find at line level, limiting the analysis of the efficiency of rail network
elements. However, thanks to big-data technologies (e.g., logging API requests/responses, queueing
transport events, and web scraping) these indicators can be potentially estimated using models at
a more fine-grained level. In the absence of data from operators (according to [28] only 9% of the
research papers in this area has access to official data, generally open data) relying on big data is a
much more scalable and cost-effective solution than ad hoc surveys. This approach will contribute to
deepening the analysis of transport operators, thus increasing the limited number of research papers
with city coverage (only 6% in [28]).

EDA, also known as Visual Analytics, is a heuristic search technique for finding significant
relationships between variables in large datasets. Its simplicity and efficiency are key to derive insights
from big data, in fact, it is usually the first technique when approaching data, particularly unstructured.
According to Tufféry [42] EDA usually consists of six steps (see Figure 2) namely: (i) Distinguish/Identify
Attributes; (ii) Univariate Data Analysis to characterize the data of the dataset; (iii) Detect Interactions
Among Attributes performing bivariate and multivariate analysis; (iv) Detect and minimize impact of
Missing and Aberrant Values; (v) Detect Outliers (further analysis or errors), and finally (vi) Feature
Engineering, where features are transformed or combined to generate new features.
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There is a large number of tools for performing EDA (50 of them are analyzed in [43]) with
different functionalities to assist both with the identification of hidden patterns and correlations among
attributes, but also with the formulation of hypotheses from the data and their validation. EDA can
also be performed using R, python (used in our research work, programming ELTs—Extract, Load, and
Transforms—followed by Datawrapper visualization) or any other programming language oriented to
data preparation and exploration. Additionally, due to the geographical dimension of transport it is
relevant that the tool includes Geographical Information Systems (GIS) support and a strong set of
visualization capabilities.

3.2. Efficiency and Sustainability Key Performance Indicators (KPIs) for URT

The output of EDA is the estimation of state-of-the-art Key Performance Indicators (KPIs), as well
as defining new ones based on large-scale data. For instance, new KPIs that can be defined are the
number of trains per line that could be estimated based on the travel time and the rail frequencies.
Moreover, another KPI, the number of passengers per line, can be estimated from the number of trains
and the entry/exit numbers at the stations of a line. Finally, URT CO2 footprint can be estimated from
the annual supply (in GWh) and the breakdown by source of the consumed electricity and their CO2

respective footprints.
Additional candidate KPIs that can be modeled after big-data sources are:

• Occupancy ratio: considering 100% occupancy ratio equals to all seated places plus 4 standing
people per m2.

• Trains Per Hour (TPH): the number of trains that enter and leave a given station per hour,
monitoring real-time traffic conditions.

• Travel time: from origin to destination, involving an URT journey.
• Excess Journey Time: is the additional time on top of scheduled time.

The definition, measurement, and analysis of the evolution of KPIs is key to improve the efficiency,
security, convenience, and sustainability of existing URT. In fact, the public availability of these KPIs
might support that personalized preferences for route selection can be expanded to, for instance,
the occupancy rate, for ensuring the availability of seating space, CO2 footprint, or risk of an excess
journey time higher than 10 min. Currently the preferences for route selection are quite rigid, the faster
route, or manifest preference for a transport mode, although eventually passengers are considering
additional factors, as seen when analyzing, anonymously, their routes using Wi-Fi data.

3.3. Data Envelopment Analysis (DEA) for Assessing Efficiency and Sustainability of Public Transport

DEA is a non-parametric method to measure the performance of entities, called Decision-Making
Units (DMUs). A DMU can be a factory, a bank branch, a hospital and, as in our paper, a transport
mode, an URT line, or an URT station. The initial DEA models consider Constant Return to Scale
(CRS or CCR for Charnes, Cooper, and Rodhes), which ignores the fact that different DMUs could be
operating at different scales. In our scenario, it would not make any distinction between two URT lines,
one with 6 stations and another with 60 stations. To overcome the drawback the Variable Returns to
Scale (VRS or BCC for Banker, Charnes, and Cooper) mode [44] was introduced, ensuring that DMUs
are only benchmarked against DMUs of similar size. Figure 3 presents an example of four DMUs and
both CRS and VRS efficiency frontiers. DMU 1 is the only one in CRS efficiency frontier (the only
efficient in CRS), maximizing the output/input ratio, whereas DMUs 1, 2 and 3 are in VRS efficiency
frontier (the three are efficient in VRS, DMU 2 in low input values and DMU 3 in high input values).
Further to VRS, a wide range of DEA models have been designed for measuring efficiency and capacity
specializing the original models into different types of problems.
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DEA models can be classified in either input-oriented or output-oriented models. Figure 4 shows
an inefficient DMU (DMU 4 or C) to exemplify both approaches. Input-oriented efficiency is BA/CA.
Output-oriented efficiency is CD/ED. With input-oriented DEA, a DMU computes the potential savings
of inputs in case of operating efficiently (in Figure 4 reducing the inputs from C to B while providing the
same output). In contrast, with output-oriented DEA, a DMU measures its potential output increase
given its inputs do not vary (in Figure 4 increasing the outputs from C to E while using the same
amount of input, D. If C were in the frontier, so C = B = E, the efficiency would be 1.
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The bad/undesirable outputs, in our case CO2 emissions, have been treated as inputs reversing
traditional DEA models [45,46]. This technique is based on the fact that undesirable outputs can be
treated as inputs when there is a combination of undesirable and desirable outputs. The objective is to
minimize the undesirable output, so considering it as input the function looks for its minimization.

A DEA model is a particular selection of inputs and outputs to analyze the efficiency of DMUs.
In previous DEA assessments of transit lines, labor, capital, and energy have been used as inputs and
vehicle-kms and passenger-kms have been used as outputs. In the absence of actual costs of labor,
fuel/energy, and other operational expenses for individual transport lines, it is reasonable to assume
that the cost of operating a line is related to its travel time, round-trip distance, and the number of
stations/bus stops [35]. Additional, when alternative transport options are being considered, the cost
is usually the single input whereas travel time savings, patronage (people for each transport mode),
and car trips removed are outputs, as shown in [38], a study that implemented a constant returns of
scale–output-oriented (CRS–O) model.

Figure 5 presents our candidate DEA models for: (a) assessing different transport modes from the
traveler’s viewpoint (for route planning), and (b) analyzing URT lines from the operator/local authority
perspective. The analyzed DMUs are the available transport modes (e.g., URT, bus, car, taxi, walking,
and cycling) for the first model, and the available URT lines, usually in the range of 1 to 24 lines (e.g.,
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New York has the highest number of metro lines, 24, followed by Beijing 23, Seoul 23, Shanghai 17,
Paris 16, Moscow 14, and Tokyo 13). CRSs are considered for both models, in the transport modes
model because route planning is generally used for one traveler (or a small group) and DMUs operate
in the same scale, whereas URT lines, for a given URT network, are usually directly comparable.
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The selection of inputs and outputs is especially relevant in this scenario due to the large number
of available variables and the modest sample size. Following the cardinality constraints introduced
in [39], the recommended number of variables for these two CRS models is 3 (in case of considering
VRS it would be 2). The selected variables depend eventually on EDA on the available data; however,
a tentative output is the number of passengers, and the models can be considered input-oriented,
designed for minimizing inputs when moving a given number of people.

In the first model CO2 emissions, an undesirable output, have been treated as input, as already
mentioned, while considering the overall cost the only true input [38]. Here, as the model is from
the passenger viewpoint, the overall cost is the transport fare (or the direct costs incurred) plus the
monetary value of the passenger time. As most of the mobility is associated with commuting to work,
the passenger time value can be estimated at the cost of unskilled working time, although this can
be configured on a per-passenger basis for personalized route planning. The selection of these two
inputs, which combined with the output reaches the recommended number of variables (3), is original,
selected after using EDA on the available data, which contrasts with state-of-the-art indicators for
route planning such as travel time and fare cost.

With regards to the URT lines model, two tentative inputs, subject to change due to EDA
conclusions on the available data for a given URT network, are considered: (1) the number of stations
per line as estimate of the capital costs (CAPEX); and (2) weekly frequencies as operating costs (OPEX).

The related literature in public transport generally uses the actual investment as CAPEX; however,
when considering URT lines it is neither directly disaggregated per lines, nor comparable across the
time (e.g., 20th century vs. 21st century URT lines). The number of stations per line has been selected
as input due to the wide availability of this KPI, although generally indirectly, derived from the longest
URT route obtained from online route planning/maps services and applications. The line length,
although it is a more popular metric and it is also widely available, has not been selected after EDA on
the available data (data sourced from [47]) as long lines usually have generally lower investment due
to a higher ratio of above-ground to underground construction, especially in suburban areas where
distance between stations tend to be higher. In fact, in [47], a reference paper in CAPEX in Urban Rail
only considers costs per kilometer, a state-of-the-art KPI, which shows a higher variability than the cost
per station (e.g., in 16 European URT projects, after discarding 3 outliers, the cost per kilometer ranges
from 26.7 to 88.3 M USD$, whereas the cost per station ranges, for the same projects, from 39.4 M
to 83.1 USD$), with lower standard deviation. Additionally, stations have a share of 25–30% of the
infrastructure costs, which favors the selection of the number of stations versus line length as CAPEX.

Regarding OPEX inputs, the related literature in public transport generally uses the price of labor
and the price of fuel. However, they are not particularly useful for comparing different lines within the
same URT system, as they are set at the operator level. Labor and energy consumption can vary per
line, although this level of detailed data is generally not available. Nevertheless, a variable directly
related to OPEX that is generally available per line is the number of weekly frequencies. EDA on route
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planning data shows different patterns for weekdays and for weekends, so the week is the selected
period. This input, in combination with the number of stations (the other input), are the selected
variables for this DEA model after EDA on publicly available data from URT systems.

The shortlisted inputs (e.g., number of stations and weekly frequencies) have a relevant positive
correlation with most of the state-of-the-art inputs, such as the line length, labor force, and number of
URT cars, as shown from EDA on [47] and validated in Section 4 (e.g., using LU lines key parameters),
thus making it a highly representative selection, with higher discriminatory power and simplicity
thanks to minimizing redundancy. Furthermore, the shortlisted inputs are directly obtained from
route planning services and applications (e.g., Apple Maps, Bing Maps, Google Maps, and services
such as Rome2rio.com that, as of today, includes worldwide 176,885 rail lines from 4151 operators),
significantly easier than collecting data from other sources, some of them not available publicly. Finally,
in case of availability of data, our candidate inputs for a more representative model would be car
capacities, consider line branches, and breakdown passengers into time bands (a.m./p.m. peak versus
off-peak). The selection of these additional candidate inputs, which add relevant information about
URT efficiency, is one of the outcomes of the previous step, defining new indicators from EDA.

These DEA models have been computed using the solver software that comes with the reference
DEA book by Cooper [6]. To illustrate DEA concepts this subsection concludes with an example of
DEA analysis, computing the efficiency of London Underground (LU) lines, the use case to validate the
proposed models, using for clarity purposes a simplified URT lines DEA model, with a single input,
the number of stations, and a single output, the number of passengers. Table 1 summarizes the input
and output data, as well as the results provided by the solver. As there is a single input/output the
resolution is direct.

The DMU Victoria maximizes the production function (weekly passengers per station), 363,000, so
it scores 1. Compared to the first DMU of the list, Bakerloo, with 98,000 passengers per station, 26.9% of
363,000, thus scoring 0.269. This is a CRS model, similar to the two proposed models, so the production
function is the same for all DMUs, not varying at scale (as for VRS). Since there is a fixed number of
stations, the key parameter is the number of passengers that maximizes the efficiency for each line, so
the model has been computed as output-oriented. In fact, the highest ratio, 363,000 passengers per
station, has been used to compute the projection of passengers, presented in Table 1, as well as the
difference between the projection and the actual line passengers. Thus, for Bakerloo, ranking 6th in
Efficiency, the projection is 9.08 million passengers, +272% over the actual number of passengers, 2.44
million passengers. Alternatively, models can be computed following an input-oriented approach,
thus minimizing the required number of stations to achieve the maximum ratio. Thus, for Bakerloo
line, it would need to carry 2.44 million passengers with 6.7 stations (2.44/0.353), which is 73.1% less
stations (1 minus its efficiency score, 0.269).

Table 1. Results of simplified URT lines DEA model of LU lines.

LU Line
(DMU)

Num. of Stations
Longest Route (I)

Weekly
Passengers

(millions) (O)

Ratio
Passeng./Station

(thousands)

Efficiency Score
(Solver Output) Rank

Passengers
Projection
(millions)

Difference
(%)

Bakerloo 25 2.44 98 0.269 6th 9.08 272%
Central 49 6.22 127 0.349 5th 17.8 186%
District 60 5.17 86 0.237 7th 21.8 322%

H&C and
Circle 46 2.99 65 0.179 9th 16.71 459%

Jubilee 27 5.99 222 0.61 2nd 9.81 64%
Metropolitan 34 2 59 0.162 10th 12.35 517%

Northern 50 7.03 141 0.387 4th 18.17 158%
Piccadilly 53 4.4 83 0.229 8th 19.26 337%
Victoria 16 5.81 363 1 1st 5.81 0

Waterloo City 2 0.33 166 0.456 3rd 0.73 119%

Figure 6 represents graphically the 10 DMUs (URT LU lines) using their coordinates (number
of passengers as y axis and number of stations as x axis). The production function, CRS, achieves its
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maximum value for Victoria, thus scoring 1 in efficiency. Please note that the CRS function starts at the
origin (0,0). The remaining DMUs score below 1, depending on its ratio passengers/station compared
to the optimal. The least efficient is Metropolitan, graphically it can be seen that it has the minimum
slope to the origin. The figure also helps to understand how to measure inefficiency. Using Bakerloo as
a sample, on the one hand, for input-oriented, the CRS optimal function requires 73,1% less stations
(6.7 stations) for moving 2.44 million passengers. On the other hand, for output-oriented, CRS optimal
function can move 9.08 million passengers, +272%, with 25 stations.
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3.4. Ranking DEA Models URT Lines According to Efficiency Indicators

The fourth and later stage of our methodology is to rank both transport modes and URT lines using
the results of the DEA models. The efficiency of the transport models, from the traveler’s viewpoint,
can be used for personalized route planning, suggesting different transport modes depending on the
time band, the travel distance and the user preferences (e.g., their own estimate of its value of time,
and the usage of new mobility solutions such as private electric scooter, or bike/moto/car-sharing).

With regards to URT lines, ranking them according to their efficiency scores instead of less
sustainable metrics, such as the number of car-kilometers or the increase in the number of passengers,
contributes to align the public transport operation with sustainability goals. In fact, the most efficient
URT lines will be those with a reduced number of stations and weekly frequencies that are able
to transport more passengers. This model/rank can be complemented with the personalized route
planning, as the frequency between URT services could be modified (increased/decreased) up to a
point where URT is still the preferred transport choice.

3.5. Big Data and Sustainable URT

Public transport services, particularly URT systems, due to the economies of scale, are among the
most efficient activities. However, they confront huge initial capital investments, and variables such as
the number of stations, length, speed, are determined by this capital investment. Therefore, it is key to
characterize their efficiency and sustainability, key to monitor its management.

Big data can gather, store, and process large amounts of heterogeneous, large-scale data to assist
regulators, cities, transport operators, and travelers to improve the efficiency, regulation enforcement,
and sustainability of their mobility solutions. So far route planning (e.g., Masivo model [48]) and
public transport timetable optimization [49] are based on simulation models which can greatly benefit
from the incorporation of big-data analysis into their models. Additional big-data applications are
personalized route planning and smart taxation (based in the polluters-pay principle) such as dynamic



Electronics 2020, 9, 1270 12 of 29

tolling depending on the specific CO2 footprint of cars and their usage (kilometers) in city centers,
where air quality has one of the highest impacts on people’s health.

4. Case Study: Efficiency and Sustainability of London Underground (LU)

This section presents the validation of the proposed methodology by analyzing the efficiency and
sustainability of a reference URT network, the LU, selected because of the complexity of its network
(3 million daily journeys, served by 540 trains across 10 lines covering 402 Km and 263 stations. Figure 7
presents the core of the LU network), and its open-data NUMBAT database (see Appendix A), one of
the few publicly available and successful [50] datasets on URT.
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Figure 7. Map of LU lines (colored using the official palette) in Central London.

NUMBAT provides entry/exit/interchange passenger count for 263 stations and the number of
trains per station every quarter hour. Additionally, it provides a 263 × 263 origin station–destination
station matrix, covering all journeys and the annualized number of passengers for each line. However,
NUMBA data is based on real data, but it is not real data. It is the output of a synthetic model used to
research LU usage and travel patterns. Moreover, it assumes a perfect train schedule being operated
and that all passengers board on the first train arriving at the station. This synthetic model is based on
sampling real data from smartcards and gateline entry/exit totals for each station. Data is provided
in quarter hours, grouped also by time bands (Early 3–7, AM Peak 7–10, Midday 10–16, PM peak
16–19, Evening 19–22, Late 22–3). Finally, data has been provided in a differentiated way for Fridays,
Saturdays, Sundays and for the average of the remaining days (from Monday to Thursday).

As NUMBAT is quite limited (e.g., there is no information about schedules and LU lines, neither
descriptive, nor the stations that belong to a line nor the capacity of the trains), we have extended this
database with four major data incorporations: (i) train schedules; (ii) a table that relates lines with all
their stations; (iii) a table that relates lines with their capacity (seated plus standing at 4 passengers per
m2), with data collected from TfL website (TfL open data does not include this data); and (iv) include
GPS location for all the stations, obtained from Open StreetMap [51]. See Appendix A for further
details. Figure 8 presents some key descriptive metrics of LU which are not originally available in its
open-data repository.
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Figure 8. LU Key Descriptive Indicators.

4.1. Assessing the Efficiency and Sustainability of LU Using EDA

The first step of EDA is to distinguish attributes. Table 2 gathers LU key attributes: 3-letter LU
line code (in the same order as Figure 8); the longest travel time in the line, it is the average scheduled
time of the longest service, usually from the first until the last station of the line; and the length,
in kilometers and stations, of the longest route. Additionally, the table contains the scheduled weekly
LU frequencies at the station with the highest number of frequencies (usually stations at the middle
part of the line), and the weekly passengers per line. A passenger counts as one passenger for each of
the lines traveled. On average, a LU passenger uses 1.6 lines per journey (42.4 Weekly passengers in
lines and 26 million weekly LU journeys).

The next parameters in Table 2 are metrics/KPI derived from the previous data. Figure 9 presents
the scatter plot graphs of the number of passengers versus the number of stations (left), two variables
that correlate positively with R2 = 0.55 (the higher the number of stations, the more travelers it captures).
Figure 9 also shows the number of passengers versus the line length (right), with R2 = 0.33 (a long
LU line might be reaching areas with less population density, so this correlation is weaker than the
previous one). Additional parameters are the average number of passengers per service and station
(included as it contributes to explain the variability with R2 > 0.5, discarding the line length). Finally,
Speed, in terms of km per hour and minutes per station is presented to illustrate key metrics of LU
operation. Based on these analyses, two parameters, the number of stations of the longest route and the
weekly frequencies, have been selected to be used in the second phase of the proposed methodology,
efficiency scoring using DEA.

So far, the analyzed metrics are average numbers, not considering a relevant source of variability,
the day of the week and especially the time band. Figure 10 presents the number of passengers per line
and day of the week. The dataset provides an average number from Monday to Thursday. Fridays,
except for the Metropolitan and Waterloo & City lines, is the busiest day, whereas Sundays is the day
with the lowest number of passengers.
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Table 2. LU lines key parameters.

LU Line Longest Travel
Time (minutes)

Longest
Length (km)

Num. of Stations
Longest Route

Weekly LU
Frequencies
(scheduled)

Weekly
Passengers

Avg. Pass. per
Service

Avg. Pass. per
Service and Station Speed (km/h) Speed (min.

per Station)

BAK 50 23.2 25 4836 2,444,910 506 21 28 2
CEN 84 53.9 37 6202 6,218,138 1003 27 39 2.3
DIS 91 42 43 4828 5,166,660 1070 25 28 2.1

HAM 59 23.2 28 3184 2,988,540 939 34 24 2.1
JUB 56 36.2 27 6624 5,985,450 904 33 39 2.1
MET 72 44.4 24 4718 2,003,527 425 18 37 3
NOR 67 43.4 36 10,610 7,028,737 662 18 39 1.9
PIC 98 49.8 42 5710 4,404,640 771 18 30 2.3
VIC 32 21 16 7480 5,813,439 777 49 39 2

WAC 3 2.5 2 3402 331,156 97 49 50 1.5
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Figure 10. LU Daily passengers per Line.

Figure 11 presents the distribution of passengers per day of week and time bands (Early 3–7,
AM Peak 7–10, Midday 10–16, PM peak 16–19, Evening 19–22, Late 22–3). AM and PM peak hours
(3 h each) concentrate most of the use from Monday to Friday, whereas Midday (6 h) is the preferred
time band for weekend passengers. WAC (Waterloo & City) only operates from Monday to Saturday
and has the highest use during Monday to Friday peak hours. Late traffic is higher on Saturday and
also Friday, which motivates the different traffic pattern of Friday versus Monday to Thursday, and
the higher number of passengers of Friday than Monday to Thursday (except MET and WAC lines,
see Figure 10).Electronics 2020, 9, x FOR PEER REVIEW 15 of 29 
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A new metric, occupancy rate (usually not reported by URT operators), has been computed
dividing the number of passengers by the capacity of the line by time band. To compute this KPI
the underground capacity has been considered (seated spaces plus 4 standing passengers per m2,
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see Appendix A). Figure 12 presents the occupancy rate, sometimes higher than 1 (e.g., Central and
District lines). This means that a train, when going from the beginning to the end of the line, can move
more passengers than its theoretical capacity. This is possible because these lines, Central and District,
have branches and multiple exchanges with other lines, so each seat/standing space can be occupied
by more than one passenger per service. A model that estimates the maximum capacity of a line
based on an origin–destination trip matrix has been already suggested [52]. However, in our work
we will capture these differences in the DEA efficiency model, without providing specific weights
to the behavior of line travelers. However, the availability of actual origin–destination data (not the
model-based NUMBAT dataset) would increase the interest of this research.
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Figure 13 presents the occupancy rate by line, day of the week, and time band. On the one hand,
the highest occupancy rates are in PM peak band (4–7 p.m.) from Monday to Thursday, particularly in
Central, District and H&C and Circle lines, with rates over 2. As mentioned, on average a LU travel
involves 1.6 lines, and these three lines cross Central London, so they might be capturing a relevant
number of travels from/to an exchange to another line. In fact, the most crowded line, H&C at PM peak
time, has lower traffic at Early time band (before 7 a.m.), which means that is a line close to weekday
main destinations (Central London). On the other hand, the occupancy rate of Metropolitan and WAC
is the lowest.

Next step is to explore the occupancy rate between two contiguous stations, to characterize the
real occupancy rate experienced by travelers. The number of station links is the number of stations
minus one for each line, thus 352 station links. The most relevant information analyzing occupancy
rates are those extreme values, the lowest and highest, particularly the latter. Figure 14 shows the
most crowded station links at the quarter hours with the highest occupancy rates during AM peak
(left), 8:30–8:45 a.m., and PM peak (right), 5:30–5:45 p.m. These numbers have been derived from our
dataset, combining passengers, line schedules, and line capacities. However, these are estimates as the
real flow of passengers and train delays are not publicly available. As the objective of this paper is
to characterize the efficiency and sustainability of LU, EDA finishes with the analysis of occupancy
rates of stations links, relevant for assessing that the LU carriages theoretical capacity (with 4 standing
people per m2) can be considered its maximum capacity.
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4.2. LU Additional KPIs

TfL considers additional LU KPIs in its reports [53], focused on service provision, reliability,
and journey times, such as the percentage of scheduled kilometers operated (95.8% of the 88.7 million
kilometers scheduled), and the excess journey time, and the average delay or (4.6 min, 11% of the
average journey time which is 41.6 min). The average delay is formally defined as excess journey time,
the additional time on top of scheduled time for access/egress/interchange, platform wait time and on
train (the latest figure is 4.6 min for LU for 2018/2019 (table 12.5 in [53]). TfL has reduced the excess
journey time since 2008/09, from 6.6 min to 4.6 min by increasing the frequency of the services around
20% higher.

Finally, from the attributable CO2-equivalent emissions of operating LU (372,000 tons) and
12 billion annually passenger-km [53], a footprint of 31 g of CO2-equivalent has been estimated by us.
Previously, TfL released, outside of the open-data repository, its CO2 footprints with out-of-date higher
estimates [54]. Additional non-official estimates exist [55,56], although also out-of-date. Although the
number of operated kilometers raised a 20% over the last 10 years, the CO2 footprint has decreased far
more than 20% (LU operates with power and UK National Grid has been reducing more than 20%
its CO2 footprint during this decade). Thus, LU is more sustainable than a decade ago, and more
sustainable than buses (97% fuel-based), which have and 90 g CO2 footprint per passenger per km
(480 million vehicle-km, 4.45 billion passenger-km, and an average CO2 emission of 822 g/km per
vehicle, accounting for around 400,000 CO2 tons).

4.3. Assessing the Efficiency and Sustainability of London Transport Modes Using DEA

This subsection presents the efficiency of the proposed DEA models, first transport modes,
and second URT lines.

Figure 15 presents four routes to evaluate five transport modes (LU, bus, car/taxi, walking,
and cycling), and potential combinations of these five transport modes, in Central London,
from the shortest to the longest: (A) Bank–Covent Garden, (B) King’s Cross St. Pancras–Waterloo,
(C) Paddington–Liverpool Street, and (D) Notting Hill Gate–Liverpool Street. These are quite popular
routes, connecting national rail stations, and commercial, leisure, and residential areas. However,
apart from D, they are not directly connected via LU. Here the optimal route (minimizing travel time)
for each transport mode, has been suggested by online services for multi-modal route planning (e.g.,
Rome2Rio, selected for reporting LU and bus distances and fares).
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Table 3 presents the key parameters of the five analyzed transport modes for the Route A, and a
sixth mode, the combination LU+bus. To be able to run DEA no missing values (or 0) are allowed,
so it has been assigned a transport cost for cycling (0.20 GBP, the daily cost of an annual London
cycle hiring subscription), and for walking (0.10 GBP per 2.4 km, an estimate of the cost of shoe
wear). The estimated value of time is 12.00 GBP per hour, an estimate of unskilled pay rate in London,
to consider the time factor. LU fare in Central London (Zone 1) is 2.40 GBP, and TfL Bus fare is
1.50 GBP. Costs are provided in the local currency. Moreover, for cycling and walking the additional
physical activity has been also considered, estimating 1 g of CO2-equivalent emission per additional
Kcal of energy. This number varies with the diet and weight of the traveler, although it is usually
in the range 0.5–2 g CO2-equiv. per Kcal [57]. The additional cost of walking for a 70 Kg person at
5 km/h in a flat route has been estimated in 150 Kcal/h, and cycling at 15 km/h results in an additional
consumption of 360 Kcal/h (these values are average of online calculators). Bus CO2 emissions are 90 g
per passenger per km and LU footprint 31 g per passenger per km. Private car/taxi estimates are 120 g
per km, the maximum for driving within the Ultra-Low Emission Zone (ULEZ) of Central London.
The number of passengers has been set to 1. These and other values are being used only for illustrative
purposes, they can be adapted for personalized route planning and personalized efficiency analysis.
Nevertheless, to the best of our knowledge they could be valid estimates.

Computed DEA efficiencies for Route A are 100% efficiency for cycling and walking, particularly
for its lowest CO2 footprint, followed by the combination LU+walking (there is no direct LU link
for Route A). Although bus+walking has the second lowest overall cost, its emissions are more than
double the most efficient and it scores 64% efficiency. Car/taxi is the least efficient. DEA shows that the
limiting factor for improving the efficiency of bus+walking and car/taxi is CO2 footprint, which can be
seen graphically in Figure 16. Shifting from fossil fuel to electric transport can reduce emissions by
75% (according to CO2 footprint of electricity mix in the UK). Thus, bus+walking would reach the
efficiency line whereas car/taxi would increase its efficiency significantly.

Table 3. Route A. Results in descending order of efficiency of the transport modes DEA model.

Transport
Mode

Distance
(km)

Transport
Cost (GBP)

Time
(min)

CO2-Equ.
Emissions (I) (g)

Overall Cost
(I) (GBP)

Passengers
(O)

Efficiency
(%) Rank

Cycling 3.4 0.20 14 84 3.00 1 100% 1st

Walking 2.7 0.10 32 80 6.50 1 100% 1st

LU+Walking 1.7 + 1.3 2.40 20 92 6.40 1 88% 3rd

Bus+Walking 2.3 + 0.4 1.50 16 218 4.70 1 64% 4th

Car/Taxi 2.9 8.00 10 348 10.00 1 30% 5th
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Figure 16. Scatter plot of the two inputs (output is always 1) of the transport modes DEA for Route A.

Table 4 presents the key parameters for Route B, in descending order of efficiency, from cycling,
100%, down to car/taxi, 21%. However, if 4 passengers go by car/taxi, CO2 footprint is the same
(for clarity purposes we will consider the same), and the overall cost rises from 16 to 30 GBP, whereas
for the other transport modes both CO2 footprint and costs are four times higher than the cost of one
passenger. In this scenario, see Table 5, car/taxi jumps to the third efficiency position, rivaling with LU.

Table 4. Route B. Results in descending order of efficiency of the transport modes DEA model.

Transport
Mode

Distance
(km)

Transport
Cost (GBP)

Time
(min)

CO2-Equ.
Emissions (I) (g)

Overall Cost
(I) (GBP)

Passengers
(O)

Efficiency
(%) Rank

Cycling 4.5 0.20 18 108 3.80 1 100% 1st

Walking 4.5 0.20 46 120 9.40 1 90% 2nd

LU 4.3 2.40 23 133 6.80 1 81% 3rd

LU+Bus 1.6 + 2.0 2.40 + 1.50 18 230 7.50 1 51% 4th

Bus 3.4 1.50 35 306 8.50 1 48% 5th

Car/Taxi 4.4 14.00 20 528 18.0 1 21% 6th

Table 5. Route B with 4 passengers. Results of efficiency of the transport modes DEA model.

Transport
Mode

Distance
(km)

Transport
Cost (GBP)

Time
(min)

CO2 Emissions (I)
(g)

Overall Cost
(I) (GBP)

Passengers
(O)

Efficiency
(%) Rank

Cycling 4.5 0.20 18 432 15.20 4 100% 1st

Walking 4.5 0.20 46 480 37.60 4 90% 2nd

Car/Taxi 4.4 14.00 20 528 30.00 4 82% 3rd

LU 4.3 9.60 23 532 27.20 4 81% 4th

LU+Bus 1.6 + 2.0 9.60 + 6.00 18 920 30.00 4 51% 5th

Bus 3.4 6.0 35 1224 34.00 4 45% 6th

Table 6 presents the key parameters for Route C, in descending order of efficiency, from cycling,
100%, closely followed by LU, 94%. In this scenario the limiting factor is the cost. Considering 18 GBP
per hour as time value then the fastest transport modes increase their efficiencies (LU rises to 100%,
Car/Taxi to 40%), whereas slower transport modes reduce their efficiencies (Bus goes down to 52%).

Table 7 presents the key parameters for Route D, in descending order of efficiency, where LU
and cycling are both 100% efficient. LU has the lowest overall cost (Cycling has 27% higher cost, 7.60
versus 6.00) and the second lowest CO2 footprint (254 g., 14% higher than Cycling, the option with
the lowest CO2 emissions with 222 g.). In this scenario both CO2 footprints and costs are the limiting
factors. Thus, electrification of vehicles will have a limited impact if the overall cost remains unaltered.
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The main cost reduction would come from reducing even more travel times in buses and car/taxi.
This might be feasible reducing traffic in Central London, for instance imposing higher restrictions to
polluting vehicles in ULEZ.

Table 6. Route C. Results in descending order of efficiency of the transport modes DEA model.

Transport
Mode

Distance
(km)

Transport
Cost (GBP)

Time
(min)

CO2-Equ.
Emissions (I) (g)

Overall Cost
(I) (GBP)

Passengers
(O)

Efficiency
(%) Rank

Cycling 8.3 0.20 33 198 6.80 1 100% 1st

LU 7.4 2.40 24 229 7.20 1 94% 2nd

Walking 7.2 0.30 86 215 17.50 1 90% 3rd

Bus 8.3 1.50 55 747 12.50 1 54% 4th

Car/Taxi 8.3 17.00 23 996 21.6 1 31% 5th

Table 7. Route D. Results in descending order of efficiency of the transport modes DEA model.

Transport
Mode

Distance
(km)

Transport
Cost (GBP)

Time
(min)

CO2-Equ.
Emissions (I) (g)

Overall Cost
(I) (GBP)

Passengers
(O)

Efficiency
(%) Rank

LU 8.2 2.40 18 254 6.00 1 100% 1st

Cycling 9.4 0.20 37 222 7.60 1 100% 1st

Walking 8.6 0.40 109 273 22.20 1 81% 3rd

Bus 8.9 1.50 55 801 12.50 1 48% 4th

Car/Taxi 8.6 19.00 26 1032 24.20 1 25% 5th

Figure 17 presents, considering the latter Route D, an analysis of the sensitivity of the value of
time, the main factor impacting the transport mode efficiency. The range considered, from 0 GBP to
36 GBP per hour, shows that the fastest transport modes, Car/taxi and LU, gain efficiency as the value
of time increases, slower for the Car/Taxi due to the higher transport cost of this mode. It is remarkable
that walking, the slowest transport mode, keeps its efficiency due to its low CO2 footprint. Thus, a shift
from fuel to electric vehicles, reducing the CO2 footprint by 75%, according to the energy generation
mix in the UK, has been considered in Figure 18, also for Route D, together with a varying value of
time. Now electric Bus is always 100% efficient, due to its low transport costs and low emissions,
very similar to those of cycling, whereas LU, faster than LU and cycling but with a more expensive
fare, is also efficient for passengers who value their time from 9 GBP/h on. In a scenario with electric
cars/taxis this transport mode (Car/Taxi) is more efficient than walking from 1 GBP/h of value of time.
As DEA is a relative (non-absolute) efficiency measure, improvements in some DMUs might impact
the efficiency of other DMUs.Electronics 2020, 9, x FOR PEER REVIEW 22 of 29 
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4.4. Assessing the Efficiency and Sustainability of LU Lines Using DEA

This subsection presents the DEA efficiencies of the URT lines model, a CRS model computed
with the same DEA software solver as in the previous subsection.

Table 8 presents the key parameters of the ten analyzed LU lines, the two input parameters,
the number of stations of the longest route and weekly frequencies, and the output, weekly passengers.
Then the efficiency, ranging from 44% for the Metropolitan line to four 100% efficient lines (Central,
District, Jubilee, and Victoria line). In addition, finally, four KPIs considered in EDA to characterize and
compare LU lines. Although DEA is a non-parametric technique, so efficiency is not a linear combination
of the inputs, it looks as if the best performers are those lines with the highest average passengers per
service, the highest passengers per service and station, and the highest speed. WAC efficiency (46%,
9th) is limited by the weekly frequencies, with just 426 weekly frequencies (87% lower than the current
number), retaining the number of passengers, it would be 100% efficient. The rest of the inefficient
lines, those scoring below 100%, are limited both by the number of stations and the weekly frequencies.
Table 9 shows the optimal projections of the inputs of the LU lines.

An efficient line would maximize the number of passengers with the lowest number of stations
(proxy variable of the capital expenses, CAPEX), and the lowest weekly frequencies (proxy variable of
the operating expenses, OPEX), an analysis in tune with previous works [30]. However, to increase the
efficiency, closing stations is not an option. URT management can only influence operating expenses,
reducing/increasing the weekly frequencies. Thus, the efficiency of a LU line will increase if reducing
a given percentage the number of weekly frequencies (e.g., 10%) the number of passengers reduces
significantly less than the reduction of the frequencies. Further analysis of real transport data, actual
number of passengers and actual schedule of LU trains, will help to understand the relationship
between frequencies and the number of passengers of a line, particularly in such a complex network as
LU, with multiple exchanges and different lines sharing the same rail section/station links.

Table 10 presents an alternative DEA model with two additional input variables, the longest travel
time, and the longest length in km. The new ranking that comes out of this extended model only
interchanges positions 8th and 9th, as the new variables are highly correlated with the previous input
variables. Thus, now WAC ranks 8th and BAK ranks 9th as the new model favors the short length and
travel time of WAC, although BAK also increases its efficiency.

Finally, Tables 11–13 present the efficiency of the proposed URT lines DEA model (the original
with 2 input variables) using the data, frequencies, and passengers, for AM, Midday, and PM peak time
bands, from Monday to Thursday, respectively. Efficiency results for the mentioned time bands (bands
of 3, 6, and 3 h, respectively) are in tune with overall line efficiencies presented in Table 8. However,
some differences arise, such as WAC is the 7th in efficiency during peak times, but the 10th during
Midday. WAC connects a national rail station and transport hub, Waterloo Station, with Bank tube
station, in the heart of the financial area in the City of London. Therefore, its traffic pattern shows
more activity during AM and PM peak hours. Moreover, VIC is the only line 100% efficient in the three
time bands. Finally, except for WAC, LU lines score similarly across the analyzed time bands.
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Table 8. Results of the URT lines DEA model of LU lines in descending order of efficiency.

LU Line Num. of Stations
Longest Route (I)

Weekly LU
Frequencies

(Scheduled) (I)

Weekly
Passengers (O) Efficiency (%) Rank Avg. Pass.

per Service
Avg. Pass./Service

and Station Speed (km/h) Speed (min.
per Station)

CEN 37 6202 6,218,138 100% 1st 1,003 27 39 2.3
DIS 43 4828 5,166,660 100% 1st 1,070 25 28 2.1
JUB 27 6624 5,985,450 100% 1st 904 33 39 2.1
VIC 16 7480 5,813,439 100% 1st 777 49 39 2

HAM 28 3184 2,988,540 88% 5th 939 34 24 2.1
NOR 36 10,610 7,028,737 77% 6th 662 18 39 1.9
PIC 42 5710 4,404,640 76% 7th 771 18 30 2.3
BAK 25 4836 2,444,910 53% 8th 506 21 28 2
WAC 2 3402 331,156 46% 9th 97 49 50 1.5
MET 24 4718 2,003,527 44% 10th 425 18 37 3

Table 9. Optimal LU input projections of the URT lines DEA model.

LU Line Num. of Stations
Longest Route (I)

Weekly LU
Frequencies

(Scheduled) (I)

Weekly
Passengers (O) Efficiency (%) Rank

Optimal
Num. of
Stations

Diff. (%)
Optimal

Weekly LU
Freq.

Diff. (%)

CEN 37 6202 6,218,138 100% 1st 37 0% 6202 0%
DIS 43 4828 5,166,660 100% 1st 43 0% 4828 0%
JUB 27 6624 5,985,450 100% 1st 27 0% 6624 0%
VIC 16 7480 5,813,439 100% 1st 16 0% 7480 0%

HAM 28 3184 2,988,540 88% 5th 24.6 −12% 2799 −12%
NOR 36 10,610 7,028,737 77% 6th 27.8 −23% 8182 −22%
PIC 42 5710 4,404,640 76% 7th 28.8 −24% 4325 −24%
BAK 25 4836 2,444,910 53% 8th 13.2 −47% 2544 −47%
WAC 2 3402 331,156 46% 9th 0.9 −54% 426 −87%
MET 24 4718 2,003,527 44% 10th 10.6 −56% 2095 −56%
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Table 10. Results of the URT lines DEA model of LU with two additional input parameters.

LU Line Num. of Stations
Longest Route (I)

Weekly LU
Frequencies

(Scheduled) (I)

Longest Travel
Time (Minutes) (I)

Longest Length
(km) (I)

Weekly
Passengers (O) Efficiency (%) Rank

CEN 37 6202 84 53.9 6,218,138 100% 1st
DIS 43 4828 91 42 5,166,660 100% 1st
JUB 27 6624 56 36.2 5,985,450 100% 1st
VIC 16 7480 32 32 5,813,439 100% 1st

HAM 28 3184 59 23.2 2,988,540 94% 5th
NOR 36 10,610 67 43.4 7,028,737 79% 6th
PIC 42 5710 98 49.8 4,404,640 76% 7th

WAC 2 3402 3 2.5 331,156 60% 8th
BAK 25 4836 50 23.2 2,444,910 58% 9th
MET 24 4718 72 44.4 2,003,527 44% 10th

Table 11. URT lines DEA model scores of LU Monday to Thursday (MTT) AM peak traffic.

LU Line Num. of Stations
Longest Route (I)

MTT LU Frequencies
(Scheduled) (I)

MTT Daily
Passengers (O) Efficiency (%) Rank

JUB 27 176 250,037 100% 1st
VIC 16 210 227,188 100% 1st
DIS 43 128 212,294 100% 1st

HAM 28 74 120,077 98% 4th
CEN 37 170 239,754 94% 5th
NOR 36 262 273,060 77% 6th
WAC 2 128 21,875 77% 7th
PIC 42 144 150,140 65% 8th

MET 24 130 93,937 49% 9th
BAK 25 126 90,913 49% 10th
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Table 12. URT lines DEA model scores of LU Monday to Thursday (MTT) Midday traffic.

LU Line Num. of Stations
Longest Route (I)

MTT LU Frequencies
(Scheduled) (I)

MTT Daily
Passengers (O)

Efficiency (O)
(%) Rank

CEN 37 294 262,604 100% 1st
VIC 16 328 229,735 100% 1st
DIS 43 218 220,130 100% 1st

HAM 28 146 140,918 96% 4th
JUB 27 298 227,774 95% 5th
PIC 42 258 187,219 76% 6th

NOR 36 482 274,669 74% 7th
BAK 25 240 102,527 51% 8th
MET 24 202 77,589 44% 9th
WAC 2 150 9537 33% 10th

Table 13. URT lines DEA model scores of LU Monday to Thursday (MTT) PM peak traffic.

LU Line Num. of Stations
Longest Route (I)

MTT LU Frequencies
(Scheduled) (I)

MTT Daily
Passengers (O) Efficiency (%) Rank

CEN 37 160 273,109 100% 1st
JUB 27 176 263,784 100% 1st
VIC 16 212 245,455 100% 1st

HAM 28 72 134,825 100% 1st
DIS 43 130 227,226 96% 5th

NOR 36 270 295,882 78% 6th
WAC 2 126 21,460 70% 7th
PIC 42 142 175,828 70% 8th
BAK 25 126 105,896 52% 9th
MET 24 132 103,654 50% 10th
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5. Conclusions

This paper has analyzed the efficiency and sustainability of URT using EDA and DEA. The main
contributions of this work are: (1) propose and compute new indicators for EDA of URT sustainability
and efficiency (e.g., occupancy rate by URT line, station links, and time band, and CO2 footprint
per journey); (2) design and propose a methodology for DEA performance assessment based on the
selection of input and output variables using EDA on publicly available data; (3) develop two original
DEA production models, the first one for characterizing the sustainability of different transport modes,
and the second one for measuring the efficiency of URT lines; (4) validating the methodology with open
data from TfL and online services; and (5) ranking URT against other transport modes and analyzing
DEA efficiency scores of URT lines.

The main conclusions of the paper are: (1) EDA plays a key role analyzing URT efficiency and
sustainability indicators, as well and defining new indicators; (2) DEA variable selection can be done
in a semi-automated and repeatable way relying on EDA; and (3) DEA is a simple and straightforward
non-parametric technique to score multiple transport modes and URT lines efficiency to monitor,
understand, and improve its management, even focusing on time bands and URT line sections for the
latter scenario.

To sum up, the introduced big-data-based methodology supports the advance of efficiency
and sustainability in public transport, particularly in URT, through disseminating data, KPIs,
and assessments based on them. Thus, both operators and travelers alike are encouraged to improve
their decision-making, from transport network management to route planning, to meet the Sustainable
Development Goal target of having a more sustainable transport by 2030.
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Appendix A

The sources of data used in the study are openly available online on TfL open data site: https:
//data.tfl.gov.uk (accessed on 25 June 2020).

The main source of information is Urban Rail Passengers Count and Travel Flow
Dataset (codenamed project NUMBAT), https://crowding.data.tfl.gov.uk, which is based on data,
from smartcards (Oyster and contactless bank/NFC cards), gatelines, and automatic passenger counters
and services from timetables, combined through a model to assign journeys to routes using generalized
journey time. Data has been obtained during the autumn of each year (at the time of writing, autumn
2018 is the last one) and provides an average for weekdays from Monday to Thursday, and additionally
data for Friday, for Saturday and for Sunday, each of them independently. Includes only aggregated
data (~100 MB data annually). Additional information from TfL origin–destination dataset is described
here: https://data.london.gov.uk/dataset/tfl-rolling-origin-and-destination-survey.

This dataset, published as open data using an open TfL license, provides:

- Journeys per day by all URT modes in London, LU, London Overground (LO), DLR, Crossrail
EZL, and London Trams.

https://data.tfl.gov.uk
https://data.tfl.gov.uk
https://crowding.data.tfl.gov.uk
https://data.london.gov.uk/dataset/tfl-rolling-origin-and-destination-survey


Electronics 2020, 9, 1270 27 of 29

- – – Values for each 15-minute period of the day.
- – – Number of passengers’ entries/exits at all stations.
- – – Number of interchanging passengers at all stations.

This data has been enriched including GPS location for all the stations, obtained from Open
StreetMap [51], (ii) creating a table that relates lines with all their stations (TfL open data does not
include this table), and (iii) a table that relates lines with their capacity (seated plus standing at 4
passengers per m2), with data collected from TfL website (once again, TfL open data does not include
this table). Table A1 presents LU lines and its associated train capacities.

Table A1. LU train capacity per line as of 2018.

Line Name Capacity

Bakerloo 851
Central 1047
District 1045

H&C and Circle 1045
Jubilee 964

Metropolitan 1176
Northern 752
Piccadilly 798
Victoria 986

Waterloo & City 506
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