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Abstract: Artificial neural networks (ANNs) have recently also been applied to solve partial
differential equations (PDEs). In this work, the classical problem of pricing European and American
financial options, based on the corresponding PDE formulations, is studied. Instead of using
numerical techniques based on finite element or difference methods, we address the problem using
ANNs in the context of unsupervised learning. As a result, the ANN learns the option values for
all possible underlying stock values at future time points, based on the minimization of a suitable
loss function. For the European option, we solve the linear Black–Scholes equation, whereas for the
American option, we solve the linear complementarity problem formulation.

Keywords: (non)linear PDEs; Black–Scholes model; artificial neural network; loss function;
multi-asset options

1. Introduction

The interest in machine learning techniques, due to the remarkable successes in different
application areas, is growing exponentially. ANNs are learning systems based on a collection
of artificial neurons that constitute a connected network. Such systems “learn” to perform tasks,
generally without being programmed with task-specific rules. Many different financial problems
have also been addressed with machine learning. The financial application on which we focus is the
valuation of financial derivatives with PDEs. Generally, we can distinguish between supervised and
unsupervised machine learning techniques. The goal of the current work is to solve the financial
PDEs by applying unsupervised machine learning techniques. In such a case, only the inputs of the
network are known, and based on a suitable loss function that needs to be minimized, the ANN
should “converge” to the solution of the PDE problem. We will price European and American options
modeled by the Black–Scholes PDE and look for solutions for all future time points and stock values.
Thus, linear and nonlinear partial differential equations need to be solved.
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2. Artificial Neural Networks Solving PDEs

We introduce the methodology following [1] to solve linear and nonlinear time-dependent PDEs
by ANNs. Then, we write a general PDE problem as follows:

NI(v(t, x)) = 0, x ∈ Ω̃, t ∈ [0, T],

NB(v(t, x)) = 0 on ∂Ω̃, (1)

N0(v(t∗, x)) = 0 x ∈ Ω̃ and t∗ = 0 or t∗ = T,

where v(t, x) denotes the solution of the PDE,NI(·) is a linear or nonlinear time-dependent differential
operator, NB(·) is a boundary operator, N0(·) is an initial or final time operator, Ω̃ is a subset of RD,
and ∂Ω̃ denotes the boundary on the domain Ω̃. The goal is to obtain v̂(t, x) by minimizing a suitable
loss function L(v) over the space of k-times differentiable functions, where k depends on the order of
the derivatives in the PDE, i.e.,

arg min
v∈Ck

L(v) = v̂

where we denote by v̂(t, x) the true solution of the PDE. A general expression for the loss function,
defined in terms of the Lp norm, including a weighting, is defined as follows [1,2]:

L(v) = λ
∫

Ω
| NI(v(t, x)) |p dΩ + (1− λ)

∫
∂Ω

(| NB(v(t, x)) |p + | N0(v(t, x)) |p) dγ, (2)

where Ω = Ω̃× [0, T] and ∂Ω the boundary of Ω. Financial options with early-exercise features give
rise to free boundary PDE problems. We will focus on the reformulation of the free boundary problem
as a LCP. The generic LCP formulation reads:

max(N0(v(t, x)),NI(v(t, x))) = 0, x ∈ Ω̃, t ∈ [0, T],

NB(v(t, x)) = 0, on ∂Ω̃,

N0(v(t∗, x)) = 0, x ∈ Ω̃ and t∗ = 0 or t∗ = T.

Our expression for the loss function, to solve the linear complementarity problem, is as follows:

L(v) = λ
∫

Ω
| max(N0(t, x, v),NI(t, x, v)) |p dΩ + (1− λ)

∫
∂Ω

(| NB(t, x, v) |p + | N0(t, x, v) |p) dγ . (3)

3. Financial Derivatives Pricing PDEs

In this section, the option pricing partial differential equation problems are presented. We
briefly introduce the European asset model, the American and multi-asset options model being
easily extended.

The underlying asset St is assumed to pay a constant dividend yield δ, and follows the geometric
Brownian motion:

dSt = (µ− δ)Stdt + σStdWP
t (4)

where WP
t is a Brownian motion. Assuming there are no arbitrage opportunities, the European option

value follows from the Black–Scholes equation:{
L(v) = ∂tv +Av− rv = 0 S ∈ Ω̃ t ∈ [0, T)

v(T, S) = H(S)
(5)
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where operator A is the classical Black–Scholes operator, and function H denotes the option’s payoff.
Then, the loss function is defined as:

L(v) = λ
∫

Ω
| L(v(t, x)) |p dΩ

+ (1− λ)
∫

∂Ω
(| v(t, x)− G(t, x) |p + | v(t, x)− H(x) |p) dγ, (6)

where functions G and H denote the values of the spatial boundary conditions and final condition,
respectively. The integral terms in the loss function are approximated by Monte Carlo techniques.

4. ANN Option Pricing Results

We start with a European put option, with the following parameters’ values: σ = 0.25, r = 0.04,
T = 1, K = 15, S∞ = 4K, δ = 0.0. In Figure 1, the ANN-based, trained, and the analytical solution are
plotted for two time instances. The relative error, with λ = 0.5, is equal to 2.23 × 10−4.

Figure 1. European put option for different times instances, t = 0, t = 0.5, with λ = 0.5.

Finally, in order to show the accuracy of the method applied to train the ANN to price American
options depending on two asset prices, the relative error is presented in Table 1.

Table 1. Error for different multi-asset American options.

Error

Max-call 1.73× 10−3

Spread 2.45× 10−3

Arithmetic average put 6.42× 10−3
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