
proceedings

Proceedings

Enhancing Retinal Blood Vessel Segmentation
through Self-Supervised Pre-Training †

José Morano 1,2,*, Álvaro S. Hervella 1,2, Noelia Barreira 1,2, Jorge Novo 1,2 and José Rouco 1,2

1 CITIC-Research Center of Information and Communication Technologies, University of A Coruña,
15071 A Coruña, Spain; a.suarezh@udc.es (Á.S.H.); noelia.barreira@udc.es (N.B.); jnovo@udc.es (J.N.);
jrouco@udc.es (J.R.)

2 Department of Computer Science, University of A Coruña, 15071 A Coruña, Spain
* Correspondence: j.morano@udc.es
† Presented at the 3rd XoveTIC Conference, A Coruña, Spain, 8–9 October 2020.

Published: 25 August 2020

Abstract: The segmentation of the retinal vasculature is fundamental in the study of many diseases.
However, its manual completion is problematic, which motivates the research on automatic methods.
Nowadays, these methods usually employ Fully Convolutional Networks (FCNs), whose success
is highly conditioned by the network architecture and the availability of many annotated data,
something infrequent in medicine. In this work, we present a novel application of self-supervised
multimodal pre-training to enhance the retinal vasculature segmentation. The experiments with
diverse FCN architectures demonstrate that, independently of the architecture, this pre-training
allows one to overcome annotated data scarcity and leads to significantly better results with less
training on the target task.
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1. Introduction

Retinal vasculature segmentation represents a key step in the analysis of multiple common
diseases like glaucoma and diabetes. However, its manual completion is arduous and partly subjective,
so automatic methods have emerged as an advantageous alternative. State-of-the-art vasculature
segmentation is based on Fully Convolutional Networks (FCNs). Nonetheless, using FCNs requires
addressing two major difficulties: (1) Determining the network architecture and (2) gathering a large
amount of annotated training data. The first issue can be partly overcome by reviewing similar
problems. Annotated data, however, are usually scarce in medical imaging, as they require experts
to be involved in a tedious process. This motivates the proposal of self-supervised multimodal
pre-training (SSMP) to learn the relevant patterns from unlabeled data and reduce the required amount
of annotated data [1–3]. Specifically, the proposed SSMP consists of training an FCN to predict
fluorescein angiographies (a grayscale modality that enhances the vasculature) from retinographies.

In this work, we present a novel application of SSMP to enhance vasculature segmentation in a
transfer learning setting, performing a comparative analysis of several FCN architectures.

2. Methodology

The main objective of this work is the segmentation of the retinal vasculature using FCNs.
To enhance the results, we propose a transfer learning setting that consists of using SSMP followed by
a fine-tuning in the segmentation task [4]. To appraise our proposal, we evaluated the results of the
same networks using the SSMP or training from scratch and with different training set sizes (1, 5, 10,
and 15). In all of the cases, we used the following FCN architectures: U-Net [5], FC-DenseNet [6], and
ENet [7,8].
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In order to perform the SSMP, we aligned the 59 retinography–angiography pairs of the publicly
available Isfahan MISP dataset [9] using the method proposed in [10]. Then, inspired by [1,2], we used
SSIM function to compute the reconstruction loss between the network output and its ground truth.

To train the networks for the vasculature segmentation task, we employed the DRIVE dataset
[11], which consists of 40 retinographies and their corresponding vasculature segmentation masks.
As the loss, we used Binary Cross-Entropy. For testing, we included the 20 annotated images of the
STARE dataset [12].

The networks were trained using the Adam optimization algorithm with learning rate decay and
data augmentation through affine transformations and color and intensity variations.

3. Results and Conclusions

Table 1 shows the best AUC-ROC and AUC-PR values of the different networks trained from
scratch (FS) and using SSMP for the STARE dataset. Moreover, in Figure 1 is depicted an example
of the segmentation masks predicted by the U-Net trained with 15 images, with and without SSMP.
As observed, the use of SSMP has significant benefits in both quantitative and qualitative terms; mainly
due to the fact that the vessel continuity is better preserved and the pathological structures are better
handled. This improvement, in addition, is achieved with less training in the target task. These results
demonstrate that the use of SSMP emerges as a valuable option when annotated data in the target task
are scarce.

Regarding the diverse FCN architectures, both qualitative and quantitative results (see Table 1)
demonstrated that the U-Net provided the best performance.

Table 1. Best AUC-ROC and AUC-PR values of the different networks trained from scratch (FS) and
using self-supervised multimodal pretraining (SSMP) for the STARE dataset.

U-Net FC-DenseNet ENet
SSMP FS SSMP FS SSMP FS

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

0.9834 0.9051 0.9728 0.8590 0.9794 0.8924 0.9699 0.8468 0.9694 0.8434 0.8349 0.4472

Figure 1. Example of the predicted vasculature mask. From left to right: Original STARE retinography,
vasculature segmentation ground truth, vasculature segmentation mask predicted by U-Net trained
with 15 images without SSMP, vasculature mask predicted by the same network with SSMP.
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