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de la Información de la Universidade da Coruña, y concluye la Tesis Doctoral que

presenta para optar al grado de Doctor en Ingenieŕıa Informática con la Mención de
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Resumo

A chegada do Big Data e a explosión do Internet das cousas supuxeron un gran

reto para os investigadores en Aprendizaxe Automática, facendo que o proceso de

aprendizaxe sexa mesmo máis complexo. No mundo real, os problemas da apren-

dizaxe automática xeralmente teñen complexidades inherentes, como poden ser as

caracteŕısticas intŕınsecas dos datos, o gran número de mostras, a alta dimensión dos

datos de entrada, os cambios na distribución entre o conxunto de adestramento e

test, etc. Todos estes aspectos son importantes, e requiren novos modelos que poidan

facer fronte a estas situacións. Nesta tese, abordáronse todos estes problemas, tra-

tando de simplificar o proceso de aprendizaxe automática no escenario actual. En

primeiro lugar, reaĺızase unha análise de complexidade para observar como inflúe

esta na tarefa de clasificación, e se é posible que a aplicación dun proceso previo

de selección de caracteŕısticas reduza esta complexidade. Logo, abórdase o proceso

de simplificación da fase de aprendizaxe automática mediante a filosof́ıa divide e

vencerás, usando un enfoque distribúıdo. Seguidamente, aplicamos esa mesma filo-

sof́ıa sobre o proceso de selección de caracteŕısticas. Finalmente, optamos por un

enfoque diferente seguindo a filosof́ıa do Edge Computing, a cal permite que os da-

tos producidos polos dispositivos do Internet das cousas se procesen máis preto de

onde se crearon. Os enfoques propostos demostraron a súa capacidade para reducir

a complexidade dos métodos de aprendizaxe automática tradicionais e, polo tanto,

espérase que a contribución desta tese abra as portas ao desenvolvemento de no-

vos métodos de aprendizaxe máquina máis simples, máis robustos, e máis eficientes

computacionalmente.
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Resumen

La llegada del Big Data y la explosión del Internet de las cosas han supuesto

un gran reto para los investigadores en Aprendizaje Automático, haciendo que el

proceso de aprendizaje sea incluso más complejo. En el mundo real, los problemas de

aprendizaje automático generalmente tienen complejidades inherentes, como pueden

ser las caracteŕısticas intŕınsecas de los datos, el gran número de muestras, la alta

dimensión de los datos de entrada, los cambios en la distribución entre el conjunto de

entrenamiento y test, etc. Todos estos aspectos son importantes, y requieren nuevos

modelos que puedan hacer frente a estas situaciones. En esta tesis, se han abordado

todos estos problemas, tratando de simplificar el proceso de aprendizaje automático

en el escenario actual. En primer lugar, se realiza un análisis de complejidad para

observar cómo influye ésta en la tarea de clasificación, y si es posible que la aplica-

ción de un proceso previo de selección de caracteŕısticas reduzca esta complejidad.

Luego, se aborda el proceso de simplificación de la fase de aprendizaje automático

mediante la filosof́ıa divide y vencerás, usando un enfoque distribuido. A continua-

ción, aplicamos esa misma filosof́ıa sobre el proceso de selección de caracteŕısticas.

Finalmente, optamos por un enfoque diferente siguiendo la filosof́ıa del Edge Com-

puting, la cual permite que los datos producidos por los dispositivos del Internet de

las cosas se procesen más cerca de donde se crearon. Los enfoques propuestos han

demostrado su capacidad para reducir la complejidad de los métodos de aprendi-

zaje automático tradicionales y, por lo tanto, se espera que la contribución de esta

tesis abra las puertas al desarrollo de nuevos métodos de aprendizaje máquina más

simples, más robustos, y más eficientes computacionalmente.
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Abstract

The advent of Big Data and the explosion of the Internet of Things, has brought

unprecedented challenges to Machine Learning researchers, making the learning task

more complex. Real-world machine learning problems usually have inherent com-

plexities, such as the intrinsic characteristics of the data, large number of instances,

high input dimensionality, dataset shift, etc. All these aspects matter, and call

for new models that can confront these situations. Thus, in this thesis, we have

addressed all these issues, simplifying the machine learning process in the current

scenario. First, we carry out a complexity analysis to see how it influences the

classification models, and if it is possible that feature selection might result in a

decrease of that complexity. Then, we address the process of simplifying learning

with the divide-and-conquer philosophy of the distributed approach. Later, we aim

to reduce the complexity of the feature selection preprocessing through the same

philosophy. Finally, we opt for a different approach following the current philoso-

phy Edge computing, which allows the data produced by Internet of Things devices

to be processed closer to where they were created. The proposed approaches have

demonstrated their capability to reduce the complexity of traditional machine learn-

ing algorithms, and thus it is expected that the contribution of this thesis will open

the doors to the development of new machine learning methods that are simpler,

more robust, and more computationally efficient.
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Chapter 1

Introduction

The “big data” phenomenon is unfolding before our eyes and its life-changing

nature is unquestionable. Over the past 20 years, data has increased in volume, va-

riety and velocity in various disciplines. Alongside advances in storage technology,

scientific research laboratories and enterprises have become interested in the high

potential of all these data for deriving relevant information. These data contain

buried within it knowledge that can be critical to a enterprise’s growth or decline,

knowledge that could lead to important discoveries in science, knowledge that could

enable us accurately to predict natural disasters, knowledge that could enable us to

identify the causes of and possible treatments for lethal illnesses. Thus, Machine

Learning (ML) methods have become indispensable in order to extract useful infor-

mation from huge amounts of otherwise meaningless data. In a society that needs

to deal with big data, there is an urgent need for new analysis and processing tools.

1.1. Exploring the complexity in machine learn-

ing

Apart from the obvious increase in data size —both in number of samples and

features—, machine learning techniques have to be capable of dealing also with other

challenges given by the huge variety of data, as well as its changing nature and the

Internet of Things explosion. Therefore, in the era of big data, the complexity of a

1
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machine learning problem takes multiple forms. Some of such forms are:

INTRINSIC CHARACTERISTICS OF THE DATA. During the last

few decades, tremendous progress has been made on developing and refining

machine learning algorithms. However, automatic learning still appears to be

far from reach in daily tasks. Therefore, when the classifiers are not perfect,

is it a deficiency of the algorithms by design?, or is it a difficulty intrinsic to

the classification task?

The Bayes error is a well-known description of the intrinsic complexity of a

classification problem, which can be computed if complete knowledge is given

on the probability distribution of each class in the feature space [73, 114].

The universal distribution assigns high probabilities to simple patterns, and

thus implicitly prefers simple hypothesis. But empirical studies suggest that,

from the perspectives of classification algorithms given limited training data,

problems can be complex for different reasons even if the same Bayes error is

achieved. This results in strongly data-dependent performances of classifiers.

Intrinsic data characteristics affecting accuracy can be, for example, the shapes

of the classes: the shape of the decision boundary, the amount of overlap among

the classes, the proximity of two classes, and the number of informative samples

available for training.

A prerequisite for setting appropriate expectations on classification perfor-

mance is to understand the complexity of a specific problem arising from an

application. The work from Ho and Basu [10] was seminal in analyzing the

complexity of a classification problem by using descriptors extracted from a

learning dataset. Given that there is none ML technique that can consistently

obtain the best performance for every classification problem [126], this type

of analysis allows to find out whether, or to which extent, patterns exist in

the data. It is also useful to obtain guidance selecting specific classification

techniques. We consider that this is one of the keys for further advances in

classification.

LARGE NUMBER OF INSTANCES. Databases continue to increase

in size. Between the dawn of time up to 2003 humanity generated a total

of 5 exabytes of data and by 2008 this figure had tripled to 14.7 exabytes
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[19]. Nowadays 5 exabytes of data is produced every 2 days, and the pace of

production continues to rise.

Under the explosive increase of global data, the term of big data is mainly

used to describe datasets that could not be perceived, acquired, managed,

and processed by traditional information technology and software/hardware

tools within a tolerable time [28]. Thus, this new big data scenario offers

both opportunities for discovering new values, helps us to gain an in-depth

understanding of the hidden values, and also incurs new challenges, e.g. how

to effectively organize and manage such datasets.

Most existing learning algorithms were developed when datasets sizes were

much smaller, but nowadays different solutions are required for large-scale

learning problems. Small-scale learning problems are subject to the usual

approximation-estimation trade-off, but this trade-off is more complex in the

case of large-scale learning problems, not only because of accuracy but also

due to the computational cost of the learning algorithm. Moreover, since most

algorithms rely on in-memory data structures, these algorithms are useless

when the entire dataset does not fit in system memory. This means that

temporary results will have to be written out to disk or the dataset will have

to be divided into partitions small enough to be processed in memory, entailing

further scans.

The preferred way to effectively process such datasets is to combine the dis-

tributed storage and bandwidth of a cluster of machines. Several paradigms

for performing distributed learning have emerged in the last decade, such as

MapReduce [36], Hadoop [5], Spark [6] and Flink [4]. Such frameworks com-

bine the ability to use high-capacity storage and execution platforms with

programming via simple, naturally parallelizable language primitives.

HIGH INPUT DIMENSIONALITY. In some applications, data samples

are represented by a very large number of features. Machine learning scenarios

such as DNA microarray analysis, image classification, face recognition or text

classification can easily have several millions of input features, far exceeding

the range of 10-1000 considered common until recently [12]. Thus, the advent

of big data has raised unprecedented challenges for researchers. The high input

dimensionality not only incurs into unbearable memory requirements and high
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computational cost in training, but also deteriorates the generalization ability

of ML algorithms because of the curse of dimensionality [13]. This issue

arises when analyzing and organizing data in high-dimensional spaces, and

that does not usually occur in low-dimensional settings. To avoid this curse

of dimensionality, feature selection—defined as the process of identifying the

relevant features from the training data—is advisable.

Traditionally, feature selection methods have been designed to run in a cen-

tralized computing environment. In order to cope with such an unprecedented

number of features posed by the explosion of big data, there is a growing need

for scalable yet efficient feature selection methods, given than existing methods

are likely to prove inadequate.

DATASET SHIFT. Systems based on machine learning techniques often

face a major challenge when applied “in the wild”: The conditions under

which the system was developed might differ from those in which we will use it,

caused by intrinsic sample selection bias or inevitable non-stationary scenarios

[42]. However, most supervised learning algorithms assume that training and

test data follow the same probability distribution. In classification scenarios

changes in class balance are often observed, e.g. the female-male ratio is almost

fifty-fifty in the real-world (test set), whereas training samples collected in a

research laboratory tend to be dominated by male data.

This problem complicates the task of learning a model from data and requires

special approaches, different from commonly used techniques, which treat ar-

riving instances as equally important contributors to the final concept [121].

INTERNET OF THINGS EXPLOSION. Due to the growth of wireless

communication technology and to the cost reduction of electronic components,

the number of Internet of Things (IoT) devices has exploded in recent years.

These devices continuously generate zettabytes of data, which must be fed to

a ML system to analyze information and make decisions. However, limitations

in the computational capabilities of portable embedded systems—small mem-

ories and limited computing power—inhibit the implementation of most of the

current ML algorithms on them.
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To meet this demand, a new computing paradigm, Edge Computing [110], has

emerged. Until recently, these millions of devices that conform the IoT just

recorded data, and send them to the cloud or a computer center where it was

processed to obtain information and knowledge from that data. Edge comput-

ing aims at changing this passive situation improving efficiency by allowing

the nodes of the network or the very own devices to analyze the generated

data. In this way, beside avoiding unnecessary network traffic the paradigm

allows obtaining real-time process knowledge. There are also factors that will

make this type of paradigm even easier in the future: the increasingly reduced

cost of devices and sensors joins the increasing power of even modest devices.

There are also industrial needs that contribute to betting on Edge Computing:

in certain environments the only way to further optimize processes is to try

to avoid communication with the cloud as much as possible. This allows to

reduce latencies, consume less bandwidths—it is not necessary to send all the

data to the cloud at all times—and immediately access analysis and evaluation

of the state of all those sensors and devices.

There is another interesting advantage: security. The less data there is in a

cloud environment, the less vulnerable is that environment if it is compromised.

Of course, the security in those “micro data centers” should be taken care of

properly. However, this does not mean that Cloud Computing environments

disappear: both trends must contribute, and for example Edge Computing is

more appropriate when above all speed and low latency are needed in those

data that require remarkable computing power. For that reason, both scenarios

are taken into account in this work.

Real-world machine learning problems usually have inherent complexities, such

as intrinsic characteristics of the data, large number of instances, high input dimen-

sionality, dataset shift, etc. All these aspects matter, and call for new models that

can confront these situations. Thus, in this thesis, we have addressed all these issues,

simplifying the machine learning process, which is currently even more complex due

to the big data and IoT scenarios. To begin with, we carry out a complexity analysis

to see how it influences the classification, and if it is possible that feature selection

results in a decrease of that complexity. Then, we address the process of simplifying

learning with the philosophy of the distributed approach. Later, we try to reduce
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the complexity of the feature selection through the same philosophy. Finally, we

opt for a different approach following the current philosophy of computing close to

the source (edge computing). To the best of our knowledge and, unlike learning

approaches, feature selection techniques under computational constraints have not

been implemented yet.

1.2. Structure of this thesis

This thesis can be divided into four different parts, that aim to find a solution

to all the problems raised above:

1. Data complexity. This part of the thesis is committed with data complexity

analysis, which enables an understanding of whether classification performance

could be affected, not by algorithm limitations, but by intrinsic data charac-

teristics. For showing how to confront this problem, we have chosen as an

example microarray datasets. These datasets are characterized by high num-

bers of gene expressions combined with small sample sizes, and represent a

particular challenge for machine learning researchers. This type of data also

has other particularities that may negatively affect the generalization capacity

of classifiers, such as overlaps between classes and class imbalance. Making use

of several data complexity measures, we explored the connection between the

intrinsic complexity of several microarray datasets and the empirical results

obtained by four widely used classifiers, analyzing as well if feature selection

reduces that complexity. Experimental results for 21 binary and multiclass

datasets demonstrate that a correlation exists between microarray data com-

plexity and the classification error rates.

2. Distributed learning. Traditional machine learning algorithms and, more

specifically, data mining algorithms, do not scale well—memory demands and

impracticable runtimes—, damaging performance and efficiency in the current

big data scenario. Thus, we consider a distributed framework where train-

ing and test samples drawn from the same distribution are available, with the

training instances spread across disjoint nodes. In this setting, a novel learning

algorithm based on combining with different weights the outputs of classifiers
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trained at each node is proposed. The weights depend on the distributional

distance between each node and the test set in the feature space. Two differ-

ent weighting approaches are introduced, which are referred to as per-Node

Weighting (pNW) and per-Instance Weighting (pIW). While pNW assigns the

same weight to all test instances at each node, pIW allows distinct weights

for test instances differently represented at the node. By construction, our

approach is particularly useful to deal with unbalanced nodes. Our methods

require no communication between nodes, allowing for data privacy, inde-

pendence of the kind of trained classifier at each node and maximum training

speedup. In fact, our methods do not require retraining of the node’s classifiers

if available. Although a range of different combination rules are considered to

ensemble the single classifiers, theoretical support for the optimality of using

the sum rule is provided. Our experiments illustrate all of these properties

and show that pIW produces the highest classification accuracies compared

with pNW and the standard unweighted approaches.

3. Distributed feature selection. In the big data context, many datasets have

a common characteristic, the large number of features. As a result, selecting

the relevant features and ignoring the irrelevant and redundant features has

become indispensable. However, similar to learning methods, when dealing

with large amounts of data, most existing feature selection algorithms do not

scale well, and their efficiency may significantly deteriorate to the point of

becoming inapplicable. Moreover, data is often distributed in multiple loca-

tions, and it is not economic or legal to gather it in a single site. For these

reasons, we propose a complexity reduction of the feature selection process

following the distributed philosophy. Unlike existing procedures to combine

the partial outputs obtained from each partition of data, we propose a merg-

ing process using the theoretical complexity of these feature subsets yielding

better or comparable accuracy results, and a considerable reduction in com-

putation time. The novel procedure tested in 11 datasets has proved to be

useful, showing competitive results both in terms of runtime and classification

accuracy.

4. Feature selection under computational constraints. Since wearable

computing systems have grown in importance in the last years, there is an
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increased interest in implementing machine learning algorithms with reduced

precision parameters/computations. Not only learning, also feature selection,

most of the times a mandatory preprocessing step in machine learning, is of-

ten constrained by the available computational resources. This part considers

mutual information—one of the most common measures of dependence used

in feature selection algorithms—with a limited number of bits. In order to

test the procedure designed, we have implemented it in several well-known

feature selection algorithms. Experimental results over several synthetic and

real datasets demonstrate that low bit representations are sufficient to achieve

performances close to that of double precision parameters and thus open the

door for the use of feature selection in embedded platforms that minimize the

energy consumption and carbon emissions.

Finally, the main conclusions and contributions of this thesis are summarized.

Notice that Appendix A presents the methods used throughout this thesis and Ap-

pendix B reports additional results from our experiments.



Chapter 2

Data complexity

Throughout the 1990s, research into supervised classification has resulted in a

rich set of classifier technologies for improving accuracy. One of the main problems

of supervised classification is the generalization capacity of the learned classifier.

Classification rules, typically derived from randomly selected training samples for

each class, are used to test new instances and evaluate classification performance.

However, since the accuracy of each classifier is strongly dependent on the charac-

teristics of the data, an analysis of intrinsic data complexity would appear to be

essential in order to select classification algorithms suitable for particular problems.

Data complexity analysis, a relatively recent proposal by Ho and Basu [10], identifies

data particularities which imply some difficulty for the classification task—such as

overlaps between classes, class separability or decision boundary linearity—and also

identifies relationships (correlations) with classifier accuracy. In our research we ap-

plied data complexity measures to microarray data given the intrinsic characteristics

of these datasets.

Microarray technology is used to collect information from tissue and cell samples

regarding gene expression differences that could be useful for diagnosing diseases.

The classification of this type of data has been viewed as a particular challenge for

machine learning (ML) researchers over the last 20 years, mainly due to the mis-

match between dimensionality and sample size. The existence of many fields relative

to few samples means that false positives findings due to chance are very likely in

terms of both identifying relevant genes and building predictive models [99]. More-

9
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over, several studies have demonstrated that most of the genes measured in a DNA

microarray experiment do not actually contribute to efficient sample classification.

To avoid this “curse of dimensionality”, feature selection—defined as the process of

identifying and removing irrelevant features from the training data—is advisable so

as to identify the specific genes that enhance classification accuracy. As well as their

extremely high dimensionality, microarray datasets have other properties that com-

plicate the classification task [20, 106]. This type of theoretically complex dataset is

thus quite interesting for a study aimed at addressing the issue of classifier choice.

We believe that the impact on problems of algorithm selection and parameter

optimization could be significant for high dimensionality problems in general and

for challenging applications like microarray data analysis in particular. Our aim,

therefore, is to explore the connection between the intrinsic characteristics of mi-

croarray data and the classification performance of four widely used algorithms. To

do this we observed changes in complexity measures obtained for both binary and

multiclass datasets with and without feature selection.

2.1. Background

It is widely acknowledged that the prediction capacities of classifiers greatly

depend on the available data. Several studies have explored the use of data com-

plexity analysis to characterize data and to relate data characteristics to classifier

performance. The most commonly employed data complexity measures are those

proposed (as mentioned in the Introduction of this chapter) by Ho and Basu [10].

Bernadó-Mansilla and Ho [14], moreover, investigated the domain of competence

of an accuracy-based classifier system (XCS), characterizing classification problem

complexity using a set of geometrical descriptors. Sánchez et al. [107], using the

Ho and Basu measures as reference, analyzed how training data complexity affected

nearest neighbor (NN) classifiers. Mollineda et al. [85] extended some of the Ho and

Basu measures to multiclass problems, analyzing two classic prototype selection al-

gorithms and proposing Fisher’s discriminant ratio as the most effective technique.

Other authors [81], for demonstrating the potential bias of advocating the supe-

riority of any given learner for a limited set of problems, proposed characterizing

datasets using complexity measures, as they are helpful both in guiding experimental
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design and in explaining learner behavior. Luengo et al. [78] presented an automatic

extraction method to determinate the domains of competence of a classifier using a

set of data complexity measures.

Studies focusing on the complexity of microarray data are less common, but

include Lorena et al. [77], who, using the Ho and Basu measures, investigated the

particular characteristics of several microarray datasets that most impacted on the

prediction ability of Support Vector Machine (SVM) classifiers; the same authors

also used suitable feature selection for the data, demonstrating that this procedure

could reduce the influence of data characteristics on classifier error rates. Okun et

al. [92], in a novel approach based on using an ensemble of k-NN classifiers, also

found positive dependence between complexity and error.

Several studies have shown that most genes measured in gene expression microar-

ray data are not crucial to classification accuracy [48], as selecting a small number

of discriminative genes ensures effective categorization of diseases [40, 125, 127].

For this reason, feature selection is receiving growing attention in gene selection for

sample classification and is being increasingly used as preprocessing step in tack-

ling microarray data: it not only removes redundant and irrelevant features but

also helps biologists identify the underlying mechanisms relating gene expression to

disease [20].

Our aim was to analyze and compare the link between microarray data com-

plexity and classification performance with and without feature selection, thereby

contributing with further insights in an area which has only been partially studied

to date [77, 92]. We also analyze changes in complexity measures before and af-

ter applying feature selection so as to provide some insights into why classification

accuracy is improved in some cases.

2.2. Data complexity measures

Data complexity analysis is a recent proposal aimed at representing data particu-

larities that add complexity to classification tasks—such as overlaps between classes,

separability and decision boundary linearity—and at identifying relationships (cor-

relations) with classification performance. To analyze the theoretical complexity of



12 Chapter 2. Data complexity

the microarray datasets chosen for this research, we used the measures proposed by

Ho and Basu [93, 10]. These measures are grouped according to the aspect of the

data they focus on.

2.2.1. Measures of overlap in feature values from different

classes

These measures, which focus on the capacity of features to separate instances

from different classes, examine the range and spread of values in the dataset within

each class and check for overlaps between different classes.

Maximum Fisher’s discriminant ratio (F1). It measures the overlap between

the values of the features in different classes and is given by:

rf =
(µ1 − µ2)

2

σ2
1 + σ2

2

(2.1)

where µ1, µ2 are the means and σ2
1 and σ2

2 are the variances of the two classes,

in that feature dimension. We computed rf for each feature and take the

maximum as the F1 measure. That is, F1 takes the values of the largest

discriminant ratio among all the available features. This is consistent with the

definition that if at least one feature discriminates the classes, the dataset can

be considered simpler than if no such feature exists.

Roughly, the F1 measure computes the ratio of inter-class to intra-class scatter

for each feature. High values of the F1 measure indicates the existence of a

feature for whose values there is a little overlap among the different classes.

That is, it indicates the existence of a feature for which a hyperplane perpen-

dicular to its axis can separate the classes fairly. Nonetheless, if the required

hyperplane is oblique to the feature axes, F1 may not be able to reflect the

underlying simplicity.

Taking, for instance, the problem shown in Figure 2.1, the most discriminative

feature would be f1. F1 correctly indicates that the classes can be easily sepa-

rable using this feature. Feature f2, on the other hand, is non-discriminative,

since its values for the two classes overlap, with the same mean and variance.
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Figure 2.1: Example of F1 computation for a two-class problem.

Most of the data complexity measures were designed for two-class problems. A

relatively simple way of adapting them to multiclass problems is to convert the

original problem to several instances of two-class problems. Alternatively, the

F1 measure can be extended to multiple classes according to their semantics

(mF1):

rf =

∑c
i=1,j=1,i 6=j pipj(µi − µj)

2∑c
i=1 piσ

2
i

(2.2)

where µi, σ
2
i and pi are the mean, variance and proportion of the ith class,

respectively. In practice the inverse of the Fisher ratio (1/mF1) is preferred,

with a small complexity value representing a simple problem.

Volume of overlap region (F2). This measure of the amount of overlap between

bounding boxes of two classes is 0 if there is at least one feature in which the

values of the two classes do not overlap. F2 can be determined by finding, for

each feature fi, its minimum and maximum values in the classes. The range

of the overlapping interval is then calculated, normalized by the range of the

values in both classes. Finally, the obtained values are multiplied:

F2 =
d∏
i

max(0,minmax(fi)−maxmin(fi))

maxmax(fi)−minmin(fi)
(2.3)
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where

minmax(fi) = MIN(max(fi, c1),max(fi, c2)),

maxmin(fi) = MAX(min(fi, c1),min(fi, c2)),

maxmax(fi) = MAX(max(fi, c1),max(fi, c2)),

minmin(fi) = MIN(min(fi, c1),min(fi, c2)).

and fi is the i = 1, ..., d feature for a d-dimensional problem and c1 and c2

refer to the two classes.

The numerator becomes zero when the per-class value ranges are disjoint for

at least one feature. This implementation uses a correction that was made

in Souto et al. [35] to the original definition of F2, which may yield nega-

tive values for non-overlapping feature ranges. The higher the F2 value, the

greater amount of overlap between the problem classes. Thus, the problem’s

complexity is also higher. Figure 2.2 illustrates the region that F2 tries to

capture (as the shared area), for a problem with two features and two classes.

Figure 2.2: Example of overlapping region.

Maximum (individual) feature efficiency (F3). In a procedure that progres-

sively removes unambiguous points falling outside the overlapping region in

each chosen dimension, the efficiency of each feature is defined as the fraction

of all remaining points separable by that feature. To represent the contribu-

tion of the most useful feature, we use maximum feature efficiency as measure

F3.



2.2 Data complexity measures 15

F3 =
d

max
i=1

n− no(fi)

n
, (2.4)

where n0(fi) gives the number of samples that are in the overlapping region

for feature fi:

no(fi) =
n∑

j=1

I(xji > maxmin(fi) ∧ xji < minmax(fi)), (2.5)

and I is the indicator function, which returns 1 if its argument is true and

0 otherwise, while maxmin(fi) and minmax(fi) are the same as defined for

F2. Figure 2.3 presents the computation of F3 for the same problem from

Figure 2.2. While for feature f1 the proportion of samples that are not in the

overlapping region is 19
33

(Figure 2.3(a)), for f2 this proportion is 5
33

(Figure

2.3(b)), resulting in a F3 value of 19
33

.

f
2

f
1

maxmin(f
1
) minmax(f

1
)

(a)

f
2

f
1

minmax(f
2
)

maxmin(f
2
)

(b)

Figure 2.3: Calculating F3 for the problem from Figure 2.2.

This measure considers only separating hyperplanes perpendicular to the fea-

tures axes so, even for a linear problem, it may be less than 1 if the optimal

separating hyper-plane is oblique.
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2.2.1.1. Measures of class separability

These measures reflect to which extent classes are separable by estimating the

length and linearity of class boundaries. They are motivated by the assumption that

a linearly separable problem can be considered simpler than a problem requiring non-

linear decision boundary. To obtain the linear classifier, Ho and Basu [10] suggested

to solve an optimization problem proposed by Smith [112], while in Orriols-Puig et

al. [94] a linear Support Vector Machine (SVM) is used instead. Here we adopt the

SVM solution.

The hyperplane sought in the SVM formulation is the one which separates the

samples from different classes with a maximum margin while minimizing training

errors. This hyperplane is obtained by solving the following optimization problem:

Minimizew,b,E =
1

2
‖ w ‖2 +C

(
n∑

i=1

εi

)

Subject to :

yi(w · xi + b) ≥ 1− εi,

εi ≥ 0, i = 1, ...n

where C is the trade-off between the margin maximization, achieved by mini-

mizing the norm of w, and the minimization of the training errors, modeled by ε.

The hyperplane is given by w · x+ b = 0, where w is a weight vector a b is an offset

value.

Minimized sum of the error distance by linear programming (L1). This mea-

sure evaluates to which extent the training data is linearly separable. It returns

the sum of the differences between a linear classifier predicted value and the

actual class value. A zero value for L1 indicates that the problem is linearly

separable and can be considered simpler than a problem for which a non-linear

boundary is required.

Given the SVM hyperplane, the error distance of the erroneous instances can

be computed by summing up the εi values. For examples correctly classified, εi

will be zero, which indicates the distance of the sample to the linear boundary
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otherwise.

L1 =
1

n

n∑
i=1

εi (2.6)

where the εi values are determined in the SVM optimization process.

Figure 2.4 presents an example of L1 application. After a linear boundary

is obtained, the εi values of the misclassified examples (gray triangles) are

summed up.

ε

Figure 2.4: Example of L1 and L2 computation.

Error rate of the linear classifier by linear programming (L2). This measure is

the error rate of the linear classifier defined for L1, measured using the training

set. Let h(x) denote the linear classifier obtained. L2 is then given by:

L2 =

∑n
i=1 I(h(xi) 6= yi)

n
(2.7)

Higher L2 values denote more errors and thus a greater complexity regarding

the aspect that the data cannot be separated linearly. For the problem in

Figure 2.4, the L2 value is 2
33

. L2 has similar issues to L1 in that it does not

differentiate between problems that are barely linearly separable (i.e., with a

narrow margin) and those with classes that are very far apart.

Fraction of points on the class boundary (N1). This measure constructs a

class-blind minimum spanning tree over the entire dataset, as illustrated in

Figure 2.5. Herewith, each vertex corresponds to an example and the edges
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are weighted according to the distances between them. N1 is obtained by

computing the percentage of vertices incident to edges connecting examples of

opposite classes in the generated minimum spanning tree. These examples are

either on the border or in the overlapping areas between the classes. There-

fore, N1 estimates the size and complexity of the required decision boundary

through the identification of the critical points in the dataset: those very close

to each other that have opposite classes.

Figure 2.5: Example of minimum spanning tree generated for the problem for the
Figure 2.2 and the detected points in the decision boundary.

Higher N1 values indicate the need for more complex boundaries to separate

the classes and/or that there is a large amount of overlapping between the

classes. However, N1 can be large even for a linearly separable problem when

the distances between borderline examples are smaller than the distances be-

tween examples from the same class. Differently, Ho and Basu [60] suggested

that a problem with a difficult nonlinear class boundary can still have rela-

tively few edges among examples from different classes as long as the data

points are compact within each class.

Ratio of average intra/inter class NN distance (N2). This measure starts by

computing the Euclidean distance from each data point to its nearest neighbor

from the same class and its nearest neighbor from the other class. It then

calculates the ratio between the average (over all points) of all distances to

intraclass nearest neighbors and the average of all the distances to interclass

nearest neighbors.
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High values indicate that examples from the same class are disperse. N2 is

sensitive to how data is distributed within classes and not only to how the

boundary between the classes is like. It can also be sensitive to labeling noise

in the data, just like N1.

f
2

f
1

d
intra

d
inter

Figure 2.6: Example of intra and inter class distances for a particular example.

Error rate of the 1-NN classifier (N3). This measure reports the error rate for

a 1-NN classifier estimated by leave-one-out cross-validation on the training

set. High values indicate that many examples are close to examples of other

classes, making the problem more complex.

2.2.2. Measures of geometry, topology and density of man-

ifolds

These measures indirectly characterize class separability by assuming that a class

is made up of single and multiple manifolds that support the probability distribution

of a given class.

Nonlinearity of a linear classifier by linear programming (L3). This measure

makes use of the linear classifier defined for L1 to report the error rate obtained

on a test set created from the training set by linear interpolation between

randomly drawn pairs of points from the same class. Herewith, two examples

from the same class are chosen randomly and they are linearly interpolated

(with random coefficients), producing a new example. Figure 2.7 illustrates
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the generation of six new samples (in gray) from a base training dataset. Then,

a linear classifier is trained on the original data and its error rate measured

in the new data points. This index is sensitive to how the data from a class

is distributed in the border regions and also on how much the convex hulls

which delimit the classes overlap. Higher values indicate a greater complexity.

Letting hT (x) denotes the linear classifier induced from the original training

data T , the L3 measure can be expressed by:

Figure 2.7: Example of how new points are generated in measures L3 and N4.

L3 =
1

l

l∑
i=1

I(hT (x′i) 6= y′i), (2.8)

where l is the number of interpolated examples x′i and their corresponding

labels are denoted by y′i. In this work, we generate the interpolated examples

maintaining the proportion of examples per class from the original dataset and

use l = n.

Nonlinearity of the 1-NN classifier (N4). This measure creates a test set as

proposed by L3 and returns the test error for the 1-NN classifier. High N4

values indicate problems of great complexity. In contrast to L3, N4 can be

applied directly to multiclass problems, without the need to decompose them

into binary subproblems first.

Fraction of maximum covering spheres (T1). This measure counts the number

of spheres needed to cover each class, where each sphere is centered at a

training point and grown to the maximum size before it touches another class.
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The count is then normalized by the total number of points. In a problem

where each point is closer to points in the other class than to points in its own

class, each point is covered by a distinctive sphere of a small size, resulting in

a high value for the measure.

Average number of points per dimension (T2). This is the simple ratio between

the number of points in the dataset and the number of feature dimensions.

2.3. DNA Microarray

All cells have a nucleus, and inside this nucleus there is DNA, which encodes

the “program” for future organisms. DNA has coding and non-coding segments.

The coding segments, also known as genes, specify the structure of proteins, which

do the essential work in every organism. Genes make proteins in two steps: DNA

is transcribed into mRNA and then mRNA is translated into proteins. Advances

in molecular genetics technologies, such as DNA microarrays, allow us to obtain

a global view of the cell, with which it is possible to measure the simultaneous

expression of tens of thousands of genes [99]. Figure 2.8 displays the general process

of acquiring the gene expression data from a DNA microarray. These gene expression

profiles can be used as inputs to large-scale data analysis, for example, to increase

our understanding of normal and diseased states.

During the last two decades, the advent of microarray datasets has stimulated

a new line of research both in bioinformatics and in machine learning. Although

there are usually very small samples (often less than 100 patients) for training and

testing, the number of features in the raw data ranges from 2000 to 25,000. A typical

classification task is to separate healthy patients from cancer patients based on

their gene expression “profile” (binary approach). There are also datasets in which

the goal is to distinguish among different types of tumours (multiclass aproach),

making the task even more complicated. Therefore, microarray data poses a serious

challenge for machine learning researchers. Having so many fields relative to so few

samples created a high likelihood of finding “false positives” due to chance (both in

finding relevant genes and in building predictive models). Thus, it becomes necessary

to find robust methods to validate the models and assess their likelihood.



22 Chapter 2. Data complexity

Figure 2.8: General process of acquiring the gene expression data from DNA mi-
croarray

Several studies have shown that most genes measured in a DNA microarray

experiment are not relevant in the accurate classification of different classes of the

problem [48]. To avoid the problem of the “curse of dimensionality” [66], feature

(gene) selection plays a crucial role in DNA microarray analysis, which is defined as

the process of identifying and removing irrelevant features from the training data,

so that the learning algorithm focuses only on those aspects of the training data

useful for analysis and future prediction [53].

Apart from the large number of genes versus small sample size, microarray data

have other particularities such as the imbalance of the data, their complexity, the

presence of overlapping, or the so-called dataset shift. These problematics render

the analysis of microarray data an exciting domain [106].

Small sample size. The first problem that one may find when dealing with

microarray data is related to the small sample size (usually less than 100), as

microarrays are still costly, although the price has been diminishing progres-

sively. Thus, microarrays have increased the rate of data collection during the

last years, but sample size is still a major issue when selecting features and

building predictive models for medical applications. A key point in this regard
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is that error estimation is greatly impacted by small samples [41], as well as

the low power for statistical tests, as for example the widely used t-test for

comparison of groups [128].

As said above, the number of datasets available has been growing during the

last years, although the sample size of each dataset remains small regarding

the number of features. One way of dealing with this problem was to combine

multiple datasets [91], that has the potential for increasing the power of mi-

croarray data analysis by pooling information. Combining datasets is however

difficult, as different normalization and summarization techniques are used.

Also, due to the shortage of datasets measuring the same area, perhaps dif-

ferent platforms might be needed, complicating even more the problem. That

is perhaps the main reason behind the fact that most studies are limited to

single datasets of small size. But combination might also be achieved by using

fold-change methods, as feature selection is improved that way, and feature

selection is almost mandatory for this type of datasets.

Without the appropriate estimation of the error, an unsound application of

classification methods follows, which has generated a large number of publi-

cations and an equally large amount of unsubstantiated scientific hypotheses

[23].To overcome this problem, it becomes necessary to select a correct valida-

tion method for estimating the classification error.

Class imbalance. A common problem in real datasets is the so-called “class-

imbalance problem”. Imbalance typically occurs when a dataset is dominated

by a major class or classes with significantly more instances that the other

classes in the data [59, 76]. In these cases, standard classification algorithms

have a bias toward the classes with a greater number of instances, since the

rules that correctly predict those instances are positively weighted in favor

of the accuracy metric, whereas specific rules that predict examples from the

minority class are usually ignored (treated as noise), because more general

rules are preferred. This bias is even larger when data is high dimensional,

such as microarrays: the high dimensionality further increases the bias toward

the classification into the majority class, even if there is no real difference

between the classes [79]. Therefore, minority class instances are more often

misclassified than those from the other classes [46].



24 Chapter 2. Data complexity

In the domain at hand, the cancer class tends to be rarer than the non-cancer

class because usually there are more healthy patients. However, although in

the global population there are more healthy patients than with cancer, among

the population that undergoes certain clinical tests, there are more cancer pa-

tients than healthy. This results in multiple imbalanced tumor types or several

skewed subtypes of a special tumor. In any case, it is important for practi-

tioners to predict and prevent the appearance of rare/minority classes. Exam-

ples of very unbalanced microarray datasets are Lung-test or Brain-Tumor-1,

among other (Figure 2.9). This problematic is of especial importance when

the imbalance is more marked in the test set than in the training set. Mul-

ticlass datasets also suffer from this problem: some types of tumors/tissues

have fewer samples compared to others. For example, Brain-Tumor-1 has five

classes but the majority class takes 67% of the samples.

Malignant pleural

mesothelioma

Adenocarcinoma

(a)

Medulloblastoma

Malignant glioma

AT/RT

Normal cerebellum

PNET

(b)

Figure 2.9: Class distributions for the (a) Lung-test and (b) Brain-Tumor-1 datasets

The traditional preprocessing techniques used to overcome this issue are un-

desampling and oversampling methods. Undersampling is a technique which

creates a subset of the original dataset by eliminating samples. It aims to at-

tain the same number of samples of the majority class as the minority class. As

a very small number of samples are available in the microarray datasets, elimi-

nation of observations is not a good option. In contrast, oversampling methods

create a superset of the original dataset by replicating some instances or creat-

ing new instances from existing ones. One of the most employed oversampling

techniques is the so-called SMOTE [27], in which the minority class is oversam-

pled by taking each minority class sample and introducing synthetic examples

along the line segments joining any/all of the k minority class nearest neigh-
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bors. This technique was applied in Blagus and Lusa [80] on microarray data,

although the authors stated that it does not attenuate the bias toward classi-

fication in the majority class for most classifiers. In recent years, ensemble of

classifiers has arisen as a possible solution to the class-imbalance problem, at-

tracting great interest among researchers [47], in several cases combined with

preprocessing techniques such as SMOTE. Another approach to deal with im-

balanced microarray datasets could be one-class SVM trained only with the

target class, which may lead to a better predictive performance [82].

Dataset shift. Another common problem when datasets were originally di-

vided into training and test sets, is the so-called “dataset shift”. This occurs

when the testing (unseen) data experiences a phenomenon that leads to a

change in the distribution of a single feature, a combination of features, or the

class boundaries [87]. As a result, the common assumption that the training

and testing data follow the same distributions is often violated in real-world

applications and scenarios, which may hinder the process of feature selection

and classification. For example, Lung and Prostate datasets have separated

training and test sets. In this case, there is a single feature (#1136) which can

correctly classify all the samples in the training set, as shown in Figure 2.10(a),

in which different colors and shapes stand for different classes and the dashed

line shows a clear linear separation between them. However, the same feature

is not that informative in the test set and the class is not linearly separable,

as displayed in Figure 2.10(b). Furthermore, note that there is an enormous

disparity in class distribution: 50%-50% in the training set and 90%-10% in

the test set.

2.4. Experimental settings

Below we describe the specific datasets used for this study, focusing on some of

their particularities, and we also introduce the classification algorithms and feature

selection methods used, given the high dimensionality of microarray data.

Datasets. Two types of microarray datasets are described in the literature. The

most famous are binary datasets that separate, for example, healthy patients from
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(b) Lung Test

Figure 2.10: Feature #1136 in Lung dataset

patients with cancer. Multiclass datasets are more complicated datasets used to

distinguish between different types of tumors. We chose 21 datasets: 11 binary and

10 multiclass. Two different situations are covered for our binary study: datasets

divided into training and test sets and datasets with only a training set. Table 2.1

profiles the main characteristics of the microarray datasets used in this research in

terms of the number of features, the number of samples and the imbalance ratio

(IR), defined as the number of samples in the majority class divided by the number

of samples in the minority class, where a high score indicates a highly imbalanced

dataset.

As can be observed in Table 2.1, the datasets reflect some of the challenges

mentioned above. Sample sizes are small, ranging from 21 to 253, whilst features

number between 2000 and 24481. Dataset shift reflects the enormous complexity

of the microarray data, with, in some cases, training and test samples recorded in

completely different situations: for instance, the training samples for the Leukemia

dataset were extracted from adult patients, whereas the test samples were obtained

mainly from children; for the Prostate dataset, an independent set of testing samples

was prepared from a different experiment, resulting in nearly 10-fold difference in

overall intensity from the training data. Other datasets suffer from class imbalance,

especially Lung test and Brain Tumor 1 (see Figure 2.9).

Feature selection methods. In the extreme case of having few observations for

so many features, it is common to investigate the impact of feature selection. Fea-
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Table 2.1: Characteristics of 21 microarray datasets.

Dataset #Classes #Features #Samples IR Download
9-Tumors 9 5726 60 4.50 [115]
11-Tumors 11 12533 174 4.50 [115]
Brain 2 12625 21 2.00 [64]
Brain-Tumor-1 5 5920 90 15.00 [115]
Brain-Tumor-2 4 10,367 50 2.14 [115]
Breast-train 2 24,481 78 1.29 [2]
Breast-test 2 24,481 19 1.71 [2]
CLL-SUB-111 3 11,340 111 4.63 [122]
CNS 2 7129 60 1.86 [2]
Colon 2 2000 62 1.82 [2]
DLBCL 2 4026 47 1.04 [2]
Gli85 2 22,283 85 2.27 [122]
Leukemia-1 3 5327 72 4.22 [115]
Leukemia-2 3 11,225 72 1.40 [115]
Leukemia-train 2 7129 38 2.45 [2]
Leukemia-test 2 7129 34 1.43 [2]
Lung-cancer 5 12,600 203 23.16 [115]
Lung-train 2 12,533 32 1.00 [2]
Lung-test 2 12,533 149 8.93 [2]
Ovarian 2 15,154 253 1.78 [2]
Prostate train 2 12,600 102 1.04 [2]
Prostate test 2 12,600 34 2.78 [2]
Smk 2 19,993 187 1.08 [122]
SRBCT 4 2308 83 2.63 [115]
TOX-171 4 5748 171 1.15 [122]

ture selection methods have received a great deal of attention in the classification

literature [19], which largely reflects filter, wrapper and embedded methods. Fil-

ter methods are based on performance evaluation metric calculated directly from

the data, without direct feedback from predictors that will finally be used on data

with reduced number of features. Wrappers involve a learning algorithm as a black

box and consists of using its prediction performance to assess the relative useful-

ness of subsets of variables. Finally, embedded methods perform feature selection

in the process of training and are usually specific to given learning machines. Since

wrapper and embedded method interactions with the classifier are computationally

burdensome, we opted for filter methods as more suitable for our microarray prob-

lem with a large number of features, as they have the key advantage of being less

computationally intractable. For this purpose, two filters were chosen: CFS and
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CONS; a description of both methods can be found in Appendix A.

Classifiers. Finally, four different classifiers, each belonging to a different family,

were chosen to evaluate dataset complexity: two linear, naive Bayes (NB) and SVM

using a linear kernel, and two non-linear, C4.5 and k-NN (see Appendix A). All four

classifiers were executed employing the Weka tool [54], using default values for the

parameters.

2.5. Experimental results

The aim of the experiments described below is to analyze the relationship be-

tween dataset complexity and the results obtained by the four classifiers described

above. Four of the 21 datasets (Breast, Leukemia, Lung and Prostate) are divided

into training and test datasets. For the remaining 17 datasets only training sets

are available; since standard 10-fold cross-validation would reduce the test set in

some of these latter datasets to just a handful of samples, we computed 5-fold cross-

validation three times to estimate the error rate.

In order to cover all the cases, following the experimental framework described

below we conducted two kinds of experiments, that is, for the 11 binary datasets

and for the 10 multiclass datasets:

1. The complexity of the microarray datasets is analyzed so as to determinate

the relationship between dataset complexity and the results obtained by the

different classifiers.

2. Features are selected with a view to dimensionality reduction and the filters

are applied.

3. The complexity of the new reduced datasets is analyzed for differences in

complexity measures with the original datasets.

4. Statistical t-tests are performed to demonstrate that the results obtained are

statistically significant.
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2.5.1. Binary approach

In order to gain deeper insights into the 11 binary datasets studied, we sub-

divided the experiment into an analysis of datasets for which training and test sets

are available and an analysis of datasets for which only training sets are available.

2.5.1.1. Is dataset complexity related to classifier accuracy?

Table 2.2 shows the results for the data complexity measures applied to the

microarray datasets. Below we summarize results common to almost all the datasets,

leaving more specific results to be commented later in detail.

The fact that F2 = 0 for all the datasets indicated the presence of at least one

feature that could discriminate between samples from the two classes.

For all datasets T1 = 1. When a data point is closer to a point in the other

class rather than in its own class, each point is covered by a small, distinctive

sphere, resulting in a high T1 value.

T2 always took extremely low values, since we are dealing with datasets in

which the number of features is much higher than the number of samples.

L2 = 0 for all the datasets excepting Colon, indicating this to be the only

dataset in which classes were not linearly separable. By way of explanation,

note the high L1 value for this dataset and, moreover, that this was the only

dataset for which L2 was distinct from zero. Due to its small size, overfitting

might have occurred during the training process, severely underestimating the

true error rate.

Table 2.3 shows classification accuracy rates for the binary datasets (highest

accuracy rates highlighted in bold). The area under the curve (AUC) is also shown,

presenting analogous results as those for accuracy. For the Breast, Leukemia, Lung

and Prostate datasets, results are shown for both training (Tr) and test (Te) sets.

Regarding the training-set-only datasets, SVM performed best for all the datasets

except Brain and Colon. In this study our choice of SVM with a linear kernel seems
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appropriate as, focusing on the results for L1 and L2, Colon appears to be the only

dataset that was not linearly separable.

Regarding F1 measure, which indicates dataset complexity, Table 2.2 shows that

the four datasets with the lowest complexity values (Brain, CNS, Colon and Smk)

had the poorest classification accuracies (all below 80%). We would expect the N2

value to be high if samples from the same class were scattered over the finite space,

complicating the classification task based on distances (the case with k-NN). Brain,

CNS and Smk datasets obtained a poor k-NN performance but showed a high N2

value.

Datasets originally divided into training and test sets presented an added chal-

lenge for the ML methods, given that the data were extracted under different con-

ditions. If the two sets were joined in a unique dataset (e.g., in order to later apply

k-fold cross-validation), training would be easier and dataset shift of the microarray

data would be overlooked.

Accuracies for the training sets would be expected to be notably higher than

for the test sets and might even show the effect of overfitting due to the small

sample size in some cases. However, this only happened, in fact, for two

datasets: Breast and Prostate (see Table 2.3). The data in Table 2.2 explains

why. F1 values for the Breast and Prostate training and test sets differed

significantly, whereas they were more similar and also higher for the Lung and

Leukemia training and test sets (indicating simpler classification).

Focusing on linearity, the L1 values for these datasets suggest that all were lin-

early separable, so we would expect good behavior for the linear classifiers (NB

and SVM). Interestingly, the SVM classifier did not exhibit the same superior

classification power with this type of datasets as it did for the training-set-only

datasets. This may be because this method is sensitive to overfitting, most

especially for independent training and test sets. In fact, SVM achieved 100%

classification accuracy for all the four dataset training sets, with performance

decays for the test sets (except for Leukemia).

This kind of analysis can be used to support the choice of the most promising

classification algorithm. Figure 2.11 depicts the behavior of the four classifiers used
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in this study (C4.5, NB, 1-NN and SVM) for the domain of values of several data

complexity measures and considering as input the seven training-only microarray

datasets. We have excluded from this study the complexity measures (L2, L3, N3

and N4) that return error rates for certain classifiers and also complexity measures

(F2, T1 and T2) with similar values for all datasets.

The results for the F1 measure are shown in Figure 2.11(a). As the measure

increases in value, overlapping between classes is reduced so better classifi-

cation results can be expected. In terms of classification accuracy, all four

algorithms behaved similarly, but more robust results are obtained by SVM

classifier.

Behavior for F3 (the other measure related to overlapping between classes) is

similar (see Figure 2.11(b)). For all the classifiers, when feature efficiency was

low the accuracy rate was negatively affected.

Regarding the L1 measure (Figure 2.11(c)), small values should indicate high

linear separability. However, as can be seen, this does not seem to occur and,

as explained above, this might be because the measure can be sensitive to

overfitting. In fact, the results for L1 after applying the CFS filter (see Figure

2.11(d))—feature selection reduces the overfitting risk—show that linear sep-

arability affected the accuracy rates of the classification algorithms, with the

most robust results obtained for the SVM classifier.

The results for N1 are shown in Figure 2.11(e). Higher values indicate that

most of the points lie close to the class boundary, making it more difficult

to define this class boundary accurately. Thus, the nature of this measure in

terms of its NN definition would indicate N1 to be of interest in supporting

the choice or otherwise of a 1-NN classifier.

The results for N2 are shown in Figure 2.11(f). High values, which is the case

here, indicate that samples of the same class are disperse. Even so, N2, even

though it is not as robust as N1, seems also to be of interest in supporting the

choice or otherwise of a 1-NN classifier.
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(a) Accuracy vs. F1 measure (b) Accuracy vs. F3 measure

(c) Accuracy vs. L1 measure (d) Accuracy vs. L1 measure after apply-
ing the CFS filter

(e) Accuracy vs. N1 measure (f) Accuracy vs. N2 measure

Figure 2.11: Behavior of four classifiers for the domain of values of several data
complexity measures.
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2.5.1.2. Can feature selection reduce complexity?

Since several studies have shown that most genes measured for microarray pur-

poses are not crucial to accurate classification, we applied the CFS and CONS filters

in order to improve classification performance. Table 2.4 shows classification accura-

cies for the binary datasets after applying these filters, with the last row indicating

the number of features (genes) required for each tested combination. The filters,

but especially CONS, are able to considerably reduce the number of genes required

to the order of dozens rather than thousands. Having far fewer genes to handle can

facilitate identification of the underlying mechanisms relating gene expressions to

particular diseases.

The CFS filter obtains the best accuracy rates for almost all the binary datasets

and is especially powerful in its effect on the Prostate dataset, improving classifi-

cation accuracy from 53% to 97%. The CONS filter, in contrast, does not work

effectively with this type of data. In order to shed light on this issue, we applied the

data complexity measures to the datasets after redundant and/or irrelevant genes

were removed. Figure 2.12 illustrates some of these data complexity measures with

and without feature selection.

The N1 measure decreases considerably, especially for the CFS filter. Higher

N1 values indicate smaller separation in distributions and a more difficult

classification task, so it seems logical to think that lower values after applying

the filters would improve classification performance. Nevertheless, that is not

true for the CONS filter. This can be explained by the fact that F1 and F3

measures obtain lower values after applying CONS compared to CFS or to no

feature selection, making the classification task more difficult. Furthermore,

the fact that the CONS filter selected lower number of genes—perhaps too

few—may be the reason why this filter failed to achieve results as good as

those for CFS.

The L1 and L2 values increase significantly after applying the CFS and CONS

filters, which might be because feature selection reduces the risk of overfitting.

N2 values for the original datasets are higher, suggesting that instances from

the same class are dispersed in the feature space. However, values are lower
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after feature selection was applied, indicating a simplification of the data struc-

ture.

2.5.2. Multiclass approach

The same experimental framework is used for multiclass datasets. As most of

the data complexity measures are not directly applicable to a multiclass problem,

we use two well-known strategies to convert a multiclass problem to many instances

of a two-class problems: one-versus-one (OVO) and one-versus-rest (OVR). OVO

considers each binary pair of classes and OVR approach takes one class as positive

and rest all as negative.

Although the simplest way to classify a dataset with more than two classes is to

use a multiclass classifier, this approach runs the risk of focusing on the majority

classes, so good results cannot be expected [45]. In order to overcome this problem,

the multiple class problem is reduced to a series of binary problems that are solved

individually and, the resulting predictions are combined to obtain a final solution.

Although several class binarization techniques are proposed in the literature, we

apply the widely used OVO strategy in combination with the Hamming decoding,

loss-based decoding, cumulative sum and cumulative sum with threshold techniques

[17] (only the best results are discussed in this study).

It was not possible to demonstrate that data complexity measures were correlated

with classifier behavior, as the results were unclear. This is because in studying the

complexity of a dataset with more than two classes, the values of the measures are

related only to two classes (OVO strategy) or to one class versus the remaining

classes (OVR strategy) whilst the classification performance refers to all the classes.

However, in the following subsections we endeavor to identify some relationships.

2.5.2.1. Is dataset complexity related to classifier accuracy?

Table 2.5 briefly summarizes the results obtained by the different data com-

plexity measures for the 10 multiclass datasets chosen following the OVR strategy.

Indicated for each data property (overlap between classes, non-linearity, closeness
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to class boundary and sample dispersion with respect to the class groupings) are

the corresponding classes and the related data complexity measures. For example,

in the Brain Tumor 1 dataset, class 0 is not linearly separable from the whole class.

When all classes present a given problematic, this fact will be indicated with an

asterisk (*).

An alternative option could be to use the 1/mF1 measure, described in Section

2.2, with simple problems represented by small values of this measure. Accordingly,

the most difficult datasets to classify should be 9-Tumors and TOX-171 whilst 11-

Tumors should be easy to classify. However, these assumptions were only true for

9-Tumors and 11-Tumors—which, respectively showed poor (54%) and good (91%)

classification performance rates—but not for TOX-171, which, despite obtaining the

highest value for the 1/mF1 measure, obtained a 96% classification performance

rate. This may have happened because this measure, in trying to summarize the

complexity of all the classes at once, ignored the particular cases.

Table 2.5: Summary results for 10 multiclass datasets.

Complexity
Overlap Non-linearity Boundary Class Disperse 1/mF1 IR Max. Accuracy
(F1, F3) (L1) (N1) (N2)

CLL-SUB-111 1,2 1,2 1,2 * 0.19 4.63 0.76
Leukemia 1 0,2 * 0.23 4.22 0.96
Leukemia 2 1 0,1,2 * 0.26 1.40 0.96
Brain Tumor 2 2 0,2,3 2 * 0.14 2.14 0.71
SRBCT * 0.26 2.63 1.00
TOX-171 * * * 0.64 1.15 0.96
Brain Tumor 1 0,4 0 * 0.16 15.00 0.96
Lung cancer 0 0 * 0.14 23.16 0.95
9-Tumors 0,1,2,3 1,5 * 0.30 4.50 0.54
11-Tumors 2,9 * 0.06 4.50 0.91

Table 2.6, which shows the complexity measures results for the CLL-SUB-111

dataset for both the OVO and OVR strategies, indicates that the classification

algorithms had problems in distinguishing between samples from classes 2 and 3,

which, in fact, obtained the lowest values for the F1 and F3 measures. These results

are consistent with the high values obtained for N1, indicating that most points lay

close to the class boundary and thereby making the classification task more difficult.

As for L1 and L2, which suggest non-linearity of the data, it seems that class 1 was
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the only class that was linearly separable. These results explain the true positive

rates for each class, with class 0 obtaining higher rates than classes 1 and 2.

Table 2.6: Analysis of the CLL-SUB-111 dataset.

Data complexity measures % True positives
F1 F3 L1 N1 N2 C4.5 NB 1NN SVM

OVO
0 vs. 1 15.953 0.966 0.093 0.033 0.770

Class 0 75.33 92.44 94.67 94.67
0 vs. 2 16.134 0.967 0.089 0.032 0.750
1 vs. 2 0.871 0.230 0.001 0.610 0.992

Class 1 58.78 60.69 39.27 64.34

OVR
0 vs. rest 16.244 0.982 0.198 0.126 0.849
1 vs. rest 1.047 0.234 0.883 0.550 0.995

Class 2 58.11 71.00 68.17 84.48
2 vs. rest 0.585 0.216 0.919 0.505 0.993

2.5.2.2. Can feature selection reduce complexity?

Figure 2.13 illustrates the behavior of several data complexity measures with

feature selection (CFS and CONS) and without feature selection (All genes), where

the X axis represents the multiclass datasets used. The value of the complexity

measure was the average of the OVR problems into which each multiclass dataset

was divided. Standard deviations are also shown.

As happened with the binary datasets, complexity in some datasets was reduced

after applying feature selection. The first conclusion is that the N1 and N2 mea-

sures decreased significantly, indicating a simplification of the data structure. The

L1 measure increased considerably after applying feature selection (Figure 2.13(c)),

possibly because feature selection avoided overfitting. In contrast, the F1 and F3

measures obtained lower values after the filters (especially CONS) were applied,

which should reflect a more difficult classification task. As for the standard devi-

ation values, it can be observed that these decreased for almost all the measures

after feature selection was applied, indicating that class complexities were more

homogeneous.
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2.5.3. Are the results statically significant?

In this section we will study if the observed differences/correlations are significant

or just the result of chance in this particular set of microarray datasets, as it is

discussed in [22]. Taking this context into account, a paired t-test [37] was performed

so as to compare classification performances. The aim was to demonstrate that the

recommended classifiers obtained in fact better statistically significant results than

those of the other classifiers. Two different contexts were analyzed, without using

feature selection, and using a previous filter as preprocessing.

The considered classification algorithms were as above, C4.5, NB, kNN and SVM.

Feature selection is performed by the CFS and CONS filters. The study is con-

ducted for two different setups: for the seven binary datasets with only training set

(Brain, CNS, Colon, DLBCL, Gli85, Ovarian and Smk) and for all the 21 microarray

datasets chosen for this work (see Table 2.1).

Table 2.7 shows the results of the one-side paired t-test for the nine pairwise

differences of classification accuracy rates. In the study based on the seven bi-

nary datasets, only three of the nine pairwise differences between accuracy rates are

statistically significant when tested at an α-value of 0.05. As Boulesteix et al. con-

cluded in [22], significant differences would not have been detected with the number

of datasets being 3 to 7, especially in the context of high dimensional problems.

However, if the study is extended to the 21 datasets, the nine pairwise differences

between classification accuracy rates are statistically significant.

These results, besides highlighting the cruciality of using a sufficient number of

datasets in comparison studies, show the superiority in performance of SVMs over

other classifiers in this domain [90], both before and after (CFS filter) applying

feature selection. In the case of the CONS filter, the results do not hold, and in this

case the best classification performances are achieved by kNN.

2.6. Summary

We have analyzed the theoretical complexity of several datasets, trying to relate

this to the results achieved by four widely-used classifiers. Making use of several data
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Table 2.7: Results of the one-sided matched-pair t-test for the nine pairwise differ-
ences of accuracy rates over 7 and 21 datasets.

Paired t-test
Datasets Comparison ∆acc t p-value

7 binary

C4.5 vs. SVM -0.036 -0.638 0.273
NB vs. SVM -0.07 -3.862 0.004
kNN vs. SVM -0.116 -5.036 0.001
C4.5-CFS vs. SVM-CFS -0.007 -0.113 0.457
NB-CFS vs. SVM-CFS 0.01 0.337 0.375

datasets kNN vs. SVM -0.051 -2.184 0.036
C4.5-CONS vs. SVM-CONS -0.005 -0.203 0.422
NB-CONS vs. SVM-CONS -0.033 -1.322 0.117
kNN-CONS vs. SVM-CONS 0.011 0.458 0.331

21 binary

C4.5 vs. SVM -0.107 -3.402 0.001
NB vs. SVM -0.095 -4.914 4.183e-005
kNN vs. SVM -0.094 -5.732 6.55e-006
C4.5-CFS vs. SVM-CFS -0.123 -2.936 0.004
NB-CFS vs. SVM-CFS -0.068 -1.796 0.044

& multiclass kNN vs. SVM -0.036 -3.627 0.001
datasets C4.5-CONS vs. SVM-CONS 0.047 1.814 0.042

NB-CONS vs. SVM-CONS 0.046 2.453 0.012
kNN-CONS vs. SVM-CONS 0.059 3.465 0.001

complexity measures, we studied in detail the problematics present in 21 microarray

binary and multiclass datasets. Our main conclusions are the following:

The F1 and F3 measures related to overlapping between classes have been

demonstrated to be related to classification accuracy, with better classification

results to be expected for increased values of these measures.

F2—which is 0 for all datasets—does not yield any information. A side effect

of employing the product (see Eq. 2.3) is that the value of the measure de-

creases greatly as dimensionality increases. That is, it is highly dependent on

the number of features a dataset has. This worsens for problems with many

features, such as DNA microarrays, so that their F2 values may not be com-

parable to those of other problems with few features. Thus, in future work,

it might be interesting to compute the logarithm or the sum rather than the
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product. Nonetheless, the result will not be an overlapping volume, but the

amount or size of the overlapping region.

The N1 and N2 separability measures are useful in predicting the behavior of

the 1-NN classifier, whilst L1 is observed to be more related to SVM. As for

L2 and N3, these measures are not useful for analyzing classifier behavior as

they return the error rate of a specific classification algorithm.

Regarding the measures of geometry, topology and density of manifolds, the

impact of the T1 and T2 measures on the classification task is not representa-

tive as values were similar for all the microarray datasets. The problem with

L3 and N4 is the same as explained above for L2 and N3.

To sum up, we recommend using F1 and F3 in all cases, N1 and N2 to analyze

datasets for k-NN and L1 for linear classifiers (in this case, SVM).

Once dataset theoretical complexity was analyzed, we applied feature (gene)

selection using two filters to reduce the number of features. We have observed that

feature selection—especially via the CFS filter—reduces data complexity, resulting

in the best classification performance for 15 of 21 datasets in this study. Due to the

statistical tests performed over the 21 microarray datasets, we can conclude that the

presented results are statistically significant. Moreover, although researchers agree

that the best classifier simply does not exist, in this specific work, SVM with linear

kernel was a good option, in general, reporting high classification accuracies.
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(a) F1 (b) F3

(c) L1 (d) L2

(e) N1 (f) N2

Figure 2.12: Data complexity measures with feature selection (CFS and CONS) and
without feature selection (All genes).
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Figure 2.13: Complexity data measures with feature selection (CFS and CONS) and
without feature selection (All genes) for 10 multiclass datasets.
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Distributed learning

In the era of big data, with datasets rapidly growing in size—both in number

of samples and features—, machine learning techniques face a major challenge since

they cannot look at very large datasets and plausibly find a good solution with

reasonable requirements of computation. The scaling up problem appears in any

traditional machine learning algorithm when data size increases beyond capacity,

damaging performance and efficiency. This issue can also affect negatively in some

other aspects such as excessive storage requirements, increase of time complexity

and, finally, generalization accuracy due to over-fitting and noise. Thus, the machine

learning community has been essentially focused on the design of distributed or

parallel algorithms to deal with massive datasets [98]. A method is said to be

parallel when the processes are executed on different cores of one or several nodes

connected by a high-speed network at the same location. Differently, a method is

said to be distributed if the data are allocated in different locations and there is very

low interaction among the processes. In this situation, the philosophy of distributed

approach seems to be a promising line of research to reduce the current complexity

of learmning algorithms. It represents a natural manner for scaling up algorithms

since an increase of the amount of data can be compensated by an increase of the

number of locations wherein the data is processed.

Data can be distributed either horizontally or vertically. In horizontal parti-

tioning, the dataset is divided into several packets that have the same features as

the original dataset, each containing a subset of the original instances (see Figure

45
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3.1(a)). In vertical partitioning, the original dataset is divided into several packets

that have the same number of instances as the original dataset, each containing a

subset of the original set of features (see Figure 3.1(b)).
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Features
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(a) Horizontal partition

S
a
m
p
l
e
s

Features

Vertical

(b) Vertical partition

Figure 3.1: Techniques to partition data.

This chapter is focused on horizontal partitioning, since it constitutes the most

suitable and natural approach for most applications. In addition to the common

learning scenario assumptions, we assume the availability of a test set large enough

to obtain distributional information. In this distributed scenario, class probabilities

can be shown to be a weighted average of the individual class probabilities within

each node. These weights depend on the marginal probabilities of the instance over

each node and over the entire dataset. This result motivates the study of the use of

distribution distances for improving classification performance.

Besides, we assess a common problem in many real world problems, the “class-

prior change” [42] in classification. In a non-distributed framework, this problem

appears when the class balance changes between training and test datasets, due

to sample selection bias or non-stationarity of the environment [101]. In our case,

unbalancedness happens when the feature distributions differ between nodes. Dis-

tributed real-world datasets are usually not symmetric, i.e. the distributions of data

for different locations may not be the same. Imagine a group of epidemiologists
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studying the spread of hepatitis-C in Europe. They are interested in detecting any

underlying relation of the emergence of hepatitis-C in Europe with the weather

and social patterns. They have access to some large hepatitis-C country-specific

databases and an environmental database at EEA (European Environment Agency).

These patterns could change considerably from one country to another (e.g. from

Denmark to Italy). Moreover, analyzing the data from these distributed datasets

using a traditional data mining algorithm will require combining the databases at a

single location, which is quite impractical, or perhaps not possible due to memory

reasons or to privacy issues.

3.1. Background

Different from the traditional centralized algorithms where a single learner has

access to the full dataset, distributed learning algorithms have their foundations in

ensemble learning [16]. Ensemble learning consists of a hierarchy of multiple local

learners operating on subsets of the full dataset, and one or more ensemble learners

combining the outputs of all the local learners. Thus, the ensemble approach is

almost directly applicable to a distributed scenario since a classifier can be trained

at each site, using the subset of data stored in it, and then the classifiers can be

eventually combined using ensemble strategies. To combine the predictions of a set

of classifiers, one of the simplest ways consists of using decision rules [69]. These

decision/fixed rules are defined as functions that receive as inputs the outputs of

the set of learned classifiers and combine them to produce a unique output.

During the last decade, several computation frameworks have emerged to ease

the use of large quantities of data. MapReduce [36] is a simple model for distributed

computing that abstracts away many of the difficulties in parallelizing data man-

agement operations across a cluster. Hadoop [5], built from commodity hardware

and based on MapReduce processing, is a set of algorithms for distributed storage

and processing of very large datasets on computer clusters. Apache Spark [6] is a

fast, general engine for large-scale data processing, popular among machine learning

researchers due to its suitability for iterative procedures. Developed as part of the

Apache Spark project was MLlib [7], created as a scalable machine learning contain-

ing many algorithms and utilities. Another solution to the scability problem is the
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use of graphic processing units (GPUs) to distribute and thus accelerate calculations

in learning algorithms.

3.2. A novel distributed learning model

Consider a population Ξ characterized by pairs of measurements (x,C) ∈ X ×C,
where X denotes a domain of d-dimensional feature vectors and C = {C1, . . . , Cm} is

a set of m class labels. Denote by P (x,C) the joint probability function over X ×C.
In a standard classification context, a classifier based on a training sample of n

labeled objects Z = {(x1, C1), . . . , (xn, Cn)} is used to predict the class of unlabeled

features. In a horizontally distributed framework, the population Ξ spreads across

p disjoint nodes, let us say P ≡ {N1, . . . ,NP}, and the training dataset brings

together instances from the different nodes, i.e. Z = ∪pi=1Zi, with Zi formed by ni

instances belonging to Ni, with
∑p

i=1 ni = n.

In this paper we focus on a distributed environment where a set T of t unlabeled

instances is available and our target is to estimate their labels. The availability

of a whole set of unlabeled instances T enables us to gain knowledge about the

underlying distribution of X and to assess how well this distribution is represented

at each node. As we will see later, our learning model relies on these distributional

distances so that the availability of T is a basic requirement.

In addition, our learning model is constructed under the standard assumption

that the training set Z and the test set T are independent and identically distributed

samples drawn from the population in study, and therefore following the probabil-

ity model given by P (x,C). Note that this stationarity assumption is the default

assumption in many learning scenarios. No distributional or other assumptions are

required on the data or how they are distributed across nodes. In fact, data within

each node could follow different distributions since no constraints on the fragmenta-

tion scheme are imposed. In particular, our framework encompasses scenarios with

unbalanced nodes [105] or with data-driven partitions on the basis of heuristic rules

stated to obtain better classification rates [38].

We also impose the restriction that no communication between nodes is required.

Intelligent interaction between nodes, e.g. taking advantage of the most informative
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data at each node, can improve the classification accuracy [33]. Nevertheless, ex-

changing information between nodes is frequently unfeasible in real problems dealing

with distributed data for different reasons such as storage cost, communication cost

or private and sensitive data, among others [120].

3.2.1. An overview of our approach

A common approach in distributed learning [12] consists of building classifiers

trained at each node Ni using Zi, i = 1, . . . , p, and then combining the classifier

outputs by means of a proper ensemble learning strategy [39]. In our approach, we

intend to take advantage of the availability of T to gain insight into the marginal

probability distribution of the feature vectors, and using this knowledge to modulate

the importance of each individual classifier in the combination rule. Specifically, we

wish to estimate the posteriori probability that the j-th instance in T , with observed

feature vector xj, belongs to the class Ck, for k = 1, . . . ,m and j = 1, . . . , t. Under

the stationarity assumption and given that P is a partition of Ξ, we have

P (Ck |xj )P (xj) =

p∑
i=1

P (Ck |xj,Ni )P (xj |Ni )P (Ni) , (3.1)

where P (xj) denotes the marginal density of xj, P (xj |Ni ) the density of xj condi-

tional on the i-th node, and P (Ni) the prior probability of an instance is allocated

to Ni.

Let ωji be the ratio defined by ωji =
P (xj |Ni )

P (xj)
, for i = 1, . . . , p. Then, from

(3.1) follows that

P (Ck |xj ) =

p∑
i=1

P (Ck |xj,Ni )ωjiP (Ni) . (3.2)

Equation (3.2) establishes that the posteriori probability of the class Ck given an

observed feature vector xj is a weighted average of the posteriori probabilities within

each node, with weights depending on the node size and the ratios ωji. By definition,

ωji measures how well represented is the observed feature vector xj in the i-th node.

Whether the partition P has been set evenly and uniformly at random, the feature
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vectors within each node follow similar distributions and ωji will take values close

to one for all j and i. Otherwise, markedly unbalanced nodes will produce very

different ωji.

The value of P (Ck |xj ) can be directly estimated from (3.2) as long as the remain-

ing involved probabilities are previously approximated. The posteriori probability

within each node, P (Ck |xj,Ni ), is estimated using the classifier trained at Ni and

whose output consists of a vector of m belief values. The proportion of training

data belonging to the i-th node can be taken as an estimate of P (Ni). For the

sake of simplicity and computational efficiency, we will assume nodes of equal size

so that the weight of a single prediction is not affected by the nodes’ sizes. Lastly,

the behavior in probability of the feature vectors over Ξ and over each node Ni can

be modeled with nonparametric kernel densities based on the features forming T
and Zi, respectively. Nevertheless, this involves several difficulties. First, we could

face the “curse of dimensionality” problem since the dimension of the feature space

may be arbitrarily large. Moreover, we look for a learning model able to manage

different types of features, including mixtures of discrete and continuous variables.

But even assuming an affordable dimension and continuous features, (p+ 1) kernel

densities should be obtained, which substantially increases the likelihood of estima-

tion errors. In particular, small errors estimating P (xj |Ni ) or P (xj) might produce

arbitrarily large or small coefficients ωji, thus leading to overweight or underweight

the predictions in specific nodes.

To overcome these drawbacks, the computation of the (p+ 1) kernel densities is

circumvented by directly estimating the coefficients ωij. Two different approaches

are proposed. In both cases, the aim is to measure the dissimilarity di between the

feature distributions on the i-th node and the global population, hereafter denoted

by FNi
and FX , respectively. A suitable distance between high-dimensional distri-

butions is considered, and then specific values for di, i = 1, . . . , p, are obtained using

the empirical distributions based on Zi and T . The first proposal consists in taking

ωji = K · d−1i , for all j and i, and K being a constant. This way, all the instances

in T receive the same weight at each node, which decreases with the distance be-

tween FNi
and FX . The second proposed approach is not simply based on the global

distance between empirical distributions. The weights ωji are determined in order

to maximize the matching between FNi
(xj) and FX (xj), for all xj ∈ T . Unlike the
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prior approach, the test instances receive different weights ωji at the same node.

The effective computation of the weights is formalized throughout an optimization

problem. A detailed description of the two proposed weighting criteria is provided

in Section 3.2.4.

3.2.2. Outline of the methodology

We propose a distributed learning methodology consisting of the following four

stages.

Step 1 Assess the distance between the probability distributions of X on the i-

th training node Ni and the global population Ξ using a suitable statistic to

measure dissimilarity between high-dimensional distributions. Denote by di

the normalized distance obtained for the i-th training node, i = 1, . . . , p.

Step 2 Based on a pre-selected classifier, obtain for each feature vector xj of the

test sample the classifier outputs Yj = {yj1, . . . ,yjp}, where yji denotes the

response generated by the classifier trained at the node Ni, for i = 1, . . . , p

and j = 1, . . . , t.

It is assumed that each classifier output consists of a vector of m membership

or belief values, i.e. yji = (yji1, . . . , yjim), where yjik can be interpreted as the

amount of confidence or evidence in the assignment of the feature xj to the

k-th class, Ck, for k = 1, . . . ,m.

Step 3 Obtain weighted versions of the belief values Yω
j =

{
yω
j1, . . . ,y

ω
jp

}
, with

yω
ji = ωjiyji, where the weights ωji take into consideration the distributional

distances di. Two different criteria are proposed to determine how the weights

are constructed.

Step 4 Generate a unique decision for classifying the j-th instance in T , with ob-

served feature xj, by combining the corresponding weighted belief sets { ωj1yj1

. . . , ωjpyjp }. Following Kittler et al. [69], several fixed rules (decision rules)

involving functions of the elements of Yω
j are considered to produce the re-

quired unique output.
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The key points of the proposed methodology involve: (i) the choice of the dis-

tributional distance di, (ii) the weighting criteria on the belief values regarding the

distances di, and (iii) the selection of a decision rule. Each of these issues is properly

discussed below.

3.2.3. Measuring dissimilarity between high dimensional dis-

tributions

To assess the distance between the probability distributions of X over an arbi-

trary node Ni and the population Ξ, we propose to use the so-called energy statistic

[116, 117]. Consider two independent samples X and X ′ generated from multivariate

distributions FX and FX ′ , respectively. The energy distance between X and X ′ is

defined by

E (X ,X ′) = 2dX ,X ′ − dX ,X − dX ′,X ′ , (3.3)

with

dA,B =
1

rs

r∑
u=1

s∑
v=1

‖au − bv‖ ,

where ‖·‖ denotes the Euclidean norm and A ≡ (a1, . . . , ar) and B ≡ (b1, . . . , bs)

denote arbitrary datasets.

Under mild regularity conditions on the generating patterns, Székely and Rizzo

[116] established the consistency of the statistic (3.3) to check the equality of the

generating distributions FX and FX ′ . Hence E (X ,X ′) can be seen as a measure of

the distance between FX and FX ′ in such a way that the larger value of the statis-

tic, the more distant are the distributions. By construction, E (X ,X ′) is based on

comparing averages of interpoint distances evaluated within and between samples,

which means to move the multidimensional problem to dimension one. Thus, the

energy distance is particularly attractive to be applied in arbitrarily high dimension.

It is also worthy to remark that different types of interpoint distances could be used

to construct E(·, ·), thus providing versatility to deal with features taking nominal,

categorical, continuous and also mixed values. Also, the good analytical properties

of the energy distance will allow us to formalize in the next section a suitable opti-

mization problem designed to provide useful weights for the belief values. Supported

by these nice properties, we decided to evaluate the distributional distance between
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each Ni and Ξ by means of the energy distance between the i-th training sample

and the test sample, i.e. by di = E (Zi, T ), for i = 1, . . . , p.

3.2.4. Weighting the belief values generated by the single

classifiers

From Step 2 of the proposed methodology, the outputs of the single classifiers

Yj = {yj1, . . . ,yjp} are available for each feature vector xj of the test sample. As

mentioned, we assume that yji is a vector of levels of belief in the assignment of xj to

each of the classes. Working with belief levels enables us to analyze the performance

of a range of efficient classifier combination rules [69] in Step 4 of the proposed

methodology. Step 3 consists in correcting these belief values by introducing the

distributional distances di. Two different criteria are proposed.

One approach consists in assigning weights in inverse proportion to the en-

ergy distance for the corresponding node, i.e. ωji = K · d−1i for all j, where

K =
(∑p

i=1 d
−1
i

)−1
, is a normalizing constant used to make the sum of weights

equal to one. This way, the belief values generated from each local classifier re-

ceive a common weight for all instances in the test set, resulting yω
j = K d−1i yj, for

all j = 1, . . . , t. Hereafter this weighting approach will be referred to per-Node

Weighting and denoted by pNW.

In order to provide a finer grain approach where the belief degrees per instance in

the test set receive different weights, an alternative weighting approach is proposed.

The aim is to assign weights in order to minimize the energy distance between each

training sample and the test set. The procedure can be understood as if, for each

node Ni, a weighted resampling scheme of the test set is carried out to overweight

belief values associated to instances better represented at the node than in the test

sample. Features xj allocated in low probability zones in the test set but belonging

to high probability zones in a specific node will receive high weights, and conversely

instances with low probability in the test set but high probability in the node will

be downweighted (see Figure 3.2). By assigning high weights to instances with low

representation in the test set but well-represented at the node, we ensure an efficient

use of the training samples. Notice that equation (3.2) in Section 3.2.1 leads to

theoretical weights ωji = P (xj |Ni ) /P (xj), thus accounting for the rationale of this
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approach. Unlike the per-node belief approach, under this new weighting criterion

each node produces a weight for each instance in the test set. For this reason, this

weighting approach will be referred as per-Instance Weighting and denoted by

pIW.
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Figure 3.2: Graphical illustration of the per-Instance Weighting (pIW) criterion.

According to the definition of the energy distance in (3.3), the per-instance

weights for the set of test instances at the i-th node, ωi = (ω1i, . . . , ωti), are obtained

by minimizing the objective function E (ωi) given by

E (ωi) = 2DZi,T ω
T
i −DZi,Zi

− ωiDT ,T ω
T
i , (3.4)

where DA,B is the matrix whose (u, v)-element is DA,B(u, v) = ‖au − bv‖, for arbi-

trary datasets A ≡ (a1, . . . , ar) and B ≡ (b1, . . . , bs).

In practice, the minimization of E(ωi) is posed by means of the optimization

problem:

minimize
ωi

1

t
DNi,T ω

T
i − ωiDT ,T ω

T
i

subject to

p∑
i=1

ωi = 1, ωi � 0.
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3.2.5. Combining the belief values generated by the single

classifiers

Last step in the proposed methodology consists in combining the weighted out-

puts of the single classifiers trained at each of the nodes, namely the vectors of

belief degrees yω
ji = ωjiyji = (ωjiyji1, . . . , ωjiyjim), whose k-th element yωjik = ωjiyjik

provides an estimate of the posteriori probability P (Ck |xj,Ni ), for k = 1, . . . ,m.

Having available continuous outputs in form of belief values allows us to consider

different functions of these values, so-called decision rules [98], to get a unique out-

put. Kittler et al. [69] argue that the decision rules provide a useful approach to

circumvent the complex problem of inferring the posteriori probability function

P (xj is assigned to the class Ck |yj1, . . . ,yjp ) ,

which would allow us to determine the most likely class using the Bayesian the-

ory. Some alternative classifier combination approaches include techniques such as

Stacked Generalization, Meta-Learning, Knowledge Probing and Effective Stacking

[98]. Nevertheless, these methods work training a new classifier based on single

outputs produced by each node, which requires access to a common training set or

sharing of private training information among nodes, thus limiting their applica-

bility and violating the condition of no communication between nodes. Supported

by these arguments, we propose to use some of the most popular decision rules to

generate the final assignment.

Following Kittler et al. [69], where a common theoretical framework for different

decision rules is provided, we have considered in our experiments the set of rules

presented below. In all cases, we assume that the belief values have been normalized

so that P (Ck |xj,Ni ) = yωjik/
∑m

l=1 y
ω
jil, for all j and i.

Product rule. The instance with observed feature vector xj is assigned to the

class Ck if
p∏

i=1

yωjik = max
1≤l≤m

p∏
i=1

yωjil.

Note that, under this rule, a class with a zero or very small belief value from

only one node will receive a zero or very small combined belief degree, even if
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the rest of nodes provide high belief degrees to the mentioned class. Hence,

this rule will exhibit a bad performance if for example a class is not represented

in a particular node.

Sum rule. The instance with observed feature xj is assigned to the class Ck if

p∑
i=1

yωjik = max
1≤l≤m

p∑
i=1

yωjil.

The theoretical support for the sum rule lies on assuming that the posteriori

probabilities do not deviate greatly from the prior probabilities [69], that is

P (Ck |xj,Ni ) = P (Ck)+εjk, with εjk taking very small values for all k and j.

Kittler et al. [69] have shown that the sum rule is less sensitive to the estimate

errors than the product rule.

Max rule. The instance with observed feature xj is assigned to the class Ck if

max
1≤i≤p

yωjik = max
1≤l≤m

max
1≤i≤p

yωjil.

The class obtaining the highest belief degree over all the nodes is selected as

combined output. It can be shown that this rule approximates the sum rule

under the assumption of equal prior probabilities for the classes.

Min rule. The instance with observed feature xj is assigned to the class Ck if

min
1≤i≤p

yωjik = max
1≤l≤m

p

min
i=1

yωjil.

Assuming as before that classes are a priori equiprobable, the min rule ap-

proximates the product rule.

Majority vote rule. The instance with observed feature xj is assigned to the

class Ck if
p∑

i=1

∆jik = max
1≤l≤m

p∑
i=1

∆jil,

where ∆jil = 1 if yωjil = max1≤u≤m y
ω
jiu and ∆jil = 0 otherwise. Therefore, the

combined output consists in selecting the class receiving the largest number

of votes from the single classifiers. Under the equiprobability assumption for
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the prior probabilities, this rule matches the sum rule when the belief values

are discretized by using the ∆jil values.

3.2.6. Some remarks

Some remarks concerning the proposed methodology are highlighted below.

Remark 1. The estimated distributional distance di between a particular node Ni

and Ξ could be small (large) even though a few test instances are bad (well) rep-

resented at Ni. In any case, all the classifier outputs obtained at Ni will receive

the same weight when the pNW criterion is used. This is an unsuitable conse-

quence of taking weights based on the global distance di such as pNW does. On the

contrary, the pIW criterion checks the point-to-point distribution matching, thus

being sensitive to local deviations. Note that if a feature vector xj is badly repre-

sented at a specific node, then it must be well represented at another node because

P is a partition of the feature domain. In sum, the pIW criterion is expected to

outperform the pNW one, and the improvement would be more substantial with

unbalanced nodes. In our experimental evaluation in Section 3.4.2, both weighting

criteria are examined and compared with a standard approach without weighting

the single belief values (an unweighted approach denoted by UW). A scheme of the

three distributed approaches is shown in Figure 3.3.

Remark 2. In a non-distributed classification context with different distributions

for the training and test sets (sample selection bias problem), Huang et al. [61]

proposed to use the unlabeled data to reweight the training data in such a way

that the means of the training and test features in a reproducing kernel Hilbert

space are close. Although in a different context, this is a similar idea to the pIW

approach and it is worthy to emphasize the main differences. In our work, the

reweighting process is applied to the test data because the nodes cannot be retrained

in our distributed scenario. On the other hand, a key assumption in [61] is that the

conditional probability of C|x is the same for the training and test populations

so that the bias is only exhibited by the feature distributions. In our framework,

stationarity is assumed and therefore the bias can only be present between nodes.

Nevertheless, it is not necessary to require that the conditional probabilities of C|x
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Figure 3.3: Distributed approaches schemes.

remain unchanged across the nodes, which would be a very restrictive constraint.

Remark 3. As already mentioned, Kittler et al.[69] pointed out some nice properties

of the sum rule to combine the single classifier outputs. Beyond these properties,

equation (3.2) provides theoretical support to use this criterion since the posteriori

probabilities are expressed as a weighted sum of the single classifier outputs within

each node.

Remark 4. The proposed learning model is not restricted to the use of a particular
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classification model at each node. The unique requirement is that the classifier

outcome consists of a vector of belief values or posteriori probabilities of the classes

for a given feature vector. Thus, artificial neural network, logistic regression, support

vector machines, Bayesian classifiers, and Random Forest could be used among

others.

3.3. Experimental settings

The main characteristics of the experiments are detailed below.

Classifiers. To study the interaction between the distributed learning models and

the classifier type, five classification algorithms are considered, namely Random For-

est (RF), a support vector machine with RBF Kernel (SVM), the Fisher’s linear dis-

criminant (LDA), the classifier based on multinomial logistic regression (Mult), and

the XGBoost (eXtreme Gradient Boosting) algorithm (XGB), a fast implementation

of the gradient boosting using decision trees. All of them were executed by using

different R packages, randomForest [74] for RF, e1071 [84] for SVM, xgboost[29]

for XGB, and MASS and nnet [124] for LDA and Mult, respectively. The default

parameters are taken in all cases since our concern is not to determine the most effi-

cient inputs but comparing the models under homogeneous conditions. All classifiers

provide the options to output belief values in addition to classes.

Datasets. Seven datasets are used to analyze the coupling between the proposed

method and the underlying classification problem. Five databases (Spambase, KDD

Cup 99, Connect-4, Covertype, and Higgs) contain real data and are available from

the UCI Machine Learning Repository [75]. The other two databases (Simul-C2 and

Simul-C8) consist of synthetic data generated from simulated classification scenarios.

The main characteristics of these datasets are summarized in Table 3.1, including

the total number of instances, the dimension d of the feature space, and the number

m of classes forming C.

To get a quick understanding on the nature of these datasets, a very brief de-

scription of each one is provided below.

KDD Cup 99. Benchmark dataset in the intrusion detection field, which
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Table 3.1: Datasets characteristics.

Dataset #Samples #Features #Classes
Spambase 4601 57 2
KDD Cup 99 825,050 41 5
Connect-4 67,557 42 3
Covertype 581,012 54 7
Higgs 100,000 28 2
Simul-C2 5 2
Simul-C8 3 8

contains 5 million instances featured by 41 attributes and 39 types of distinct

attacks, grouped into four classes of attack (DoS, Probe, R2L and U2R) and

one class of non-attack (normal pattern) [1]. In our study, a smaller subset with

494,021 instances is used as training sample (10% of the original training set).

For the test set, we used a subset of 331,029 patterns including new attacks

that are not present in the training set. Around 20% of the two datasets are

normal patterns (no attacks). The percentages of class labels for the training

and test sets are shown in Table 3.2. As can be seen, the percentage of attacks

in both datasets is very high, overcoming 80%, where most of the attacks

belong to type DoS. Furthermore, it is a very unbalanced dataset, with some

classes (such as U2R and R2L) formed by very few instances. Due to these

characteristics, KDD Cup 99 becomes a real challenge for the classification

task.

Table 3.2: Distribution (in percentage) of normal activities and kinds of attacks in
KDD Cup 99 dataset.

Type Training set Test set
Normal 19.69 19.48
DoS 79.24 73.90
Probe 0.83 1.34
R2L 0.23 5.21
U2R 0.01 0.07

Simul-C2. Consider a square grid of size 3 in dimension 5 and, centered
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at each grid node, a 5-dimensional Gaussian distribution with uncorrelated

components of equal variance 0.052. Each Gaussian is assigned to one of

m = 2 possible classes at random. In this scenario, an identical number of

data are drawn out from each Gaussian to form our first synthetic dataset.

Figure 3.4 provides an intuition on the structure of Simul-C2 in dimension

2. This scenario lets us have an exact knowledge of the complexity of the

classification task in order to derive some insight into the results.

1 2 3

111

222

333

Figure 3.4: Plot of a simulated trial from a 2-dimensional version of Simul-C2 sce-
nario. Color identifies the class.

Simul-C8. Synthetic dataset generated in a similar way as Simul-C2, but

now with 3-dimensional Gaussian distributions randomly assigned to m = 8

classes.

Sample size. At each experimental trial, the sizes of both the training sample Z
and the test sample T are fixed to 500, i.e. n = t = 500. The training sample is

then equidistributed between the nodes so that ni = 500/p, for all i = 1, . . . , p.

Balancedness. Since no constraints on the fragmentation scheme are imposed, it

is interesting to check the behavior of our learning model with balanced and un-

balanced nodes, i.e. nodes exhibiting similar or different distributions, respectively.
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The balanced scenarios are recreated by allocating instances to each node at random

and without replacement while maintaining the class proportions. The unbalanced

scenarios are set up as follows. First, one node with the same class proportions as

the entire training set is formed. For the rest of nodes, the class proportions are per-

turbed by multiplying each one of them by a random number uniformly generated

between 0.3 and 1.7, and then normalizing. In consecutive nodes, the overall class

proportions are updated on the basis of the number of remaining training instances,

and sampling without replacement is always carried out.

Partition size. To assess the classification accuracy as data fragmentation in-

creases, the training set was randomly split into 2, 4, 7, 11 and 15 nodes. The unique

randomization restrictions are imposed by the class proportions at each node, which

depend on whether a balanced or unbalanced scenario is considered.

Decision Rules. The belief values generated by the classifiers at each node are

combined according to the five decision rules enumerated in Section 3.2.5, namely

the Product, Sum, Max, Min and Majority rules.

3.4. Experimental results

An empirical study addressed to motivate and evaluate the performance of the

proposed learning models has been carried out. An overview and discussion of the

main results are presented in this section.

3.4.1. Some motivating experiments

By construction, the proposed learning models take into account the distances

between the probability distributions of the features in the population and within

each node. The heuristic is that, in general, smaller distributional distances between

training and test sets tend to produce better classification results. Indeed, the key

issue is how these distances should be jointly used to attain this improvement.

Beyond this issue, a pair of motivating experiments designed to provide empirical

support for this heuristic have been carried out. The first experiment consisted in
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checking for the existence of negative correlation between distributional distance and

classification accuracy. In the second one, a distributed scenario is considered, and

then the proportion of times that the node with the smallest distributional distance

produces the best classification accuracy is measured.

For these specific experiments, the Spambase dataset is used and the within-

node distributions are generated according to the unbalancing approach described

in Section 3.3. The number of nodes is set to p = 5 and a training sample of size

ni = 200 is used at each node to train a Random Forest classifier.

Considering test samples with the same size, t = 200, the first experiment con-

sisted in measuring the distributional distances between training and test samples

using the energy distance di introduced in Section 3.2.3, and simultaneously com-

puting the proportion of test data correctly classified at each node. This process was

performed for a large number of trials, and the outputs are plotted in Figure 3.5. A

clear negative correlation between distributional distance and classification accuracy

is observed, thus supporting the argument that less distant nodes tend to produce

better classification accuracy.
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Figure 3.5: Correlation between distributional distance and classifier accuracy.

In the second experiment, the test sample size is not constant at all trials, taking

values moving from 200 to 3200. Notice that the distributional distance becomes

more accurately approximated as test sample size increases, and therefore the clas-
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sification accuracy should be also higher. In a five node distributed scenario, the ex-

pected proportion of times that a node picked at random produces the best classifier

is 0.2. Table 3.3 shows the proportion of times that the node with the smallest dis-

tributional distance produced the highest classification accuracy in our experiment,

denoted by pmin(di). It is observed that the node with the smallest distributional

distance becomes the best one in an increasing proportion with the test sample size,

always above the baseline proportion 0.2, until it is approximately doubled.

Table 3.3: Proportion of times that the smallest distributional distance leads to the
best classifier node (pmin(di)) against the test sample size (t).

t 200 1200 2200 3200
pmin(di) 0.28 0.35 0.37 0.37

In sum, these first experiments empirically illustrate the interest in distributed

learning models regarding distributional distances between training nodes and test

samples. We propose models taking into consideration this principle, but in addition,

they take advantage of combining efficiently the classifiers produced by each node

instead of simply selecting one of them.

3.4.2. Results

The accuracy of the two weighting criteria (pNW and pIW) described in Sec-

tion 3.2.4 was checked on all the combinations of parameters involved in our ex-

perimental setup, namely classifiers, datasets, partition sizes, decision rules, and

balanced and unbalanced scenarios (Section 3.3). For comparison purposes, accu-

racy results based on a standard unweighted distributed model (UW) and a non-

distributed model (ND) were also obtained. The ND model uses the entire dataset

Z to train a unique classifier. Hence, ND is expected to achieve the highest classi-

fication accuracy, and its results can be taken as an upper reference level. Besides

the classification accuracy, values of precision and recall were also evaluated.

For each combination of parameters, the experiment was replicated N = 300

times and average classification accuracy values were obtained for each learning

model. In order to examine how the learning models interact with the different
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parameters, the average results were aggregated in different ways. For example,

Table 3.4 shows the average accuracy attained with each classifier. It is observed that

the weighted models interact better with SVM, LDA and Mult than with Random

Forest and XGBoost in the unbalanced setting (see Figure 3.6). In particular, the

most significant improvement rates due to the pIW model in the unbalanced setup

are observed for Mult and SVM. In the latter case, this may be connected with the

fact that SVM with Gaussian kernel and energy distance are based on Euclidean

inter-point distances.

Table 3.4: Average classification accuracy values conditional on classifier type. Rows
under the last sub-table (MEAN) show the averages over all trials, including bal-
anced and unbalanced scenarios. The lack of results for ND in the first two sub-tables
is due to the ND model assumes non-distributed data, i.e. no partitions (balanced
or unbalanced) are considered.

Classifier

Model RF SVM XGB LDA Mult

BALANCED
pNW 0.7087 0.5852 0.6923 0.5768 0.6084
pIW 0.7173 0.5908 0.7016 0.5826 0.6168
UW 0.7131 0.5881 0.6964 0.5769 0.6066

UNBALANCED
pNW 0.6935 0.5804 0.6843 0.5727 0.6035
pIW 0.7059 0.5921 0.6977 0.5863 0.6186
UW 0.6996 0.5784 0.6909 0.5749 0.6022

MEAN
pNW 0.7011 0.5828 0.6883 0.5747 0.6060
pIW 0.7116 0.5915 0.6997 0.5845 0.6177
UW 0.7063 0.5832 0.6937 0.5759 0.6044
ND 0.7566 0.6719 0.7398 0.6315 0.6423

The average results aggregated by decision rule are reported in Table 3.5 and

graphically represented using bar charts in Figure 3.7. Regardless of whether the

partitioning is balanced or not, the SUM rule produces the best average results with

the three distributed models. This result is consistent with the experimental findings

in Kittler et al. [69] and with our theoretical arguments in Section 3.2 (Remark 3
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Figure 3.6: Accuracy-based interaction plot to check the joint effect of classifier,
learning model and scenario.

in Section 3.2.6).

Table 3.5 and Figure 3.7 also allow to compare the average accuracy attained

with the different models. Except for the MIN and PROD rules, the highest accuracy

values are obtained with the per-Instance Weighting. Nevertheless, the MIN rule

fairly produces the worst results and no differences between weighting approaches

are observed with the PROD rule. Therefore, it is concluded that the per-Instance

Weighting approach fairly leads to the best results.

Overall, pNW performs worse than UW on average. This behavior is some-

what surprising in the light of the results showed in the motivating experiments

of Section 3.4.1. We guess that this may be caused by the joint effect of two cir-

cumstances, namely the global character of the per-Node weights (see Remark 1 in

Section 3.2.6) and the noise increase generated by the variability of these weights

(Figure 3.5 illustrates this variability).

The average accuracies aggregated by partition size are shown in Figure 3.8.
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Table 3.5: Average classification accuracy values conditional on the decision rules.

Decision rule

Model MAJ MAX MIN PROD SUM Mean

BALANCED
pNW 0.6442 0.6252 0.6184 0.6347 0.6491 0.6343
pIW 0.6582 0.6461 0.6066 0.6345 0.6639 0.6418
UW 0.6456 0.6283 0.6205 0.6347 0.6519 0.6362
Mean 0.6493 0.6332 0.6152 0.6346 0.6549 0.6374

UNBALANCED
pNW 0.6407 0.6191 0.5977 0.6276 0.6493 0.6269
pIW 0.6652 0.6513 0.5823 0.6275 0.6743 0.6401
UW 0.6454 0.6189 0.6008 0.6277 0.6531 0.6292
Mean 0.6504 0.6297 0.5936 0.6276 0.6589 0.6321

ND — — — — — 0.6884
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Figure 3.7: Average classification accuracy values aggregated by decision rules. The
horizontal red line indicates the average accuracy for the ND model.

Significant degradation of accuracy with the number of nodes is evident for all com-

binations of decision rule and learning model in balanced and unbalanced scenarios.
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For all the models, the MIN rule degrades faster with fragmentation, although it

is very competitive with UW and pNW for a small number of nodes. As the best-

performing pIW approach is considered, the MIN rule is substantial and uniformly

the worst decision rule. SUM, MAJ and MAX exhibit similar performance, with

SUM having a slight edge. The good behavior of pIW deserves particular attention.

Note that, except for the MIN rule, the pIW approach always produces the highest

percentages of correct classification for all the levels of fragmentation regardless of

the used rule.
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Figure 3.8: Average accuracy as function of the partition size. The horizontal red
lines indicate the average accuracy for the ND model.

All our results allow to conclude that the favorable effects of the weighting ap-

proaches are more important in unbalanced scenarios. In particular, the amount

of accuracy improvement produced by the per-Instance Weighting model is clearly



3.4 Experimental results 69

stronger when unbalancing.

Figure 3.9 shows separately the average results for each dataset and provides

additional insight into the behavior of the proposed models. Concerning the KDD
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Figure 3.9: Average accuracy as function of the partition size for each dataset. The
horizontal blue lines indicate the average accuracy for the ND model.

Cup 99 dataset, it is noticeable the good performance showed by the per-Node

Weighting approach in unbalanced scenarios. In fact, pNW and pIW behave very

similarly and fairly outperform the Unweighted model. Since KKD Cup 99 exhibits

concept drift, this result illustrates that our distributed approaches work well for

various types of differences in distribution between nodes and population, no matter

how these differences occur. In other words, the effectiveness of our proposal is not

restricted to the case of distributional differences caused by a non-uniform partition

of the data.

The pIW model reports lower accuracy with Spambase, while it performs slightly

better than the other distributed models in Connect-4, Covertype and Higgs, the
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most complex scenarios in terms of classification. In these cases, the non-distributed

model only reaches an accuracy around 0.6, and the distributed approaches are

reasonably close to this proportion for all partition sizes. An atypical behavior

is observed for Connect-4 since the classification accuracy does not monotonically

decrease with the number of partitions. So, in this particular case, it looks more

likely that the local scenarios generated by splitting the data lead to an easier

classification task.

In addition to knowing the exact underlying distributions, the analysis of sim-

ulated data is free of limitations to generate nodes maintaining the required regu-

larity and provides insight into the level of difficulty. The results for our simulated

datasets, Simul-C2 and Simul-C8, are particularly interesting. In both cases, pIW

clearly draws the best results, and the differences are more substantial in the unbal-

anced setting. In the scenario with only two classes, degradation with the number of

nodes is almost prevented in the balanced setting, and the results end up surpassing

the non-distributed approach in Simul-C2. In the non-distributed approach, a linear

classifier will have bad performance in this scenario, since the classification frontier

is non linear. When distributed, different local models work better. In Simul-C8,

degradation of pIW with the fragmentation is more marked, but still less severe than

in the case of pNW and UW.

3.5. Computational Cost

In addition to the cost of training each classifier, our approach requires calcu-

lating the distributional distance between each node and the test set, and the pIW

model requires each node to calculate the weights that minimize this distance.

The cost of training the classifiers depends on the chosen method, but the im-

provement is equivalent to reducing the training sample by the number of nodes,

e.g. if a given classifier trains in O(n3) then the complexity will be reduced to

O(n3/p3). Similarly, calculating the energy statistic has computational complexity

O((n/p)2 + t2 + (n/p)t), given n the training size, p the number of nodes that the

training set is fragmented into and t the test size. Even though it can be consid-

ered a constant factor, we introduce the number of nodes p to highlight the strong
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computational benefits of this distributed approach.

Finding the individual weights for the pIW approach has the complexity of solv-

ing the related quadratic programming problem, and is the usually dominating com-

plexity: Experimentally, this quadratic programming complexity is between O(t2)

and O(t3). The influence of the training test size on the quadratic programming

complexity is linear: O(n/p).

Assuming the underlying classifiers test in constant time, the complexity of clas-

sifying a given test set goes from O(t) to a worst case of O(t3 + n) for the pIW

version.

3.6. Summary

In a distributed classification framework, we have proposed two weighted ap-

proaches that combine local classifiers trained at each node to improve overall clas-

sification accuracy. The two approaches assume the availability of a test set and

are based on the distance between the distributions of the feature vectors of each

node and the test set. The first approach, per-Node Weighting, assigns the same

weight at each node to all test instances, while the per-Instance Weighting approach

achieves finer granularity by allowing distinct weights for each test instance at each

node.

Under the general assumption that both the test set and the entire training set

are i.i.d. samples from the population in study, we have motivated the proposed

weighting criteria and provided theoretical support for the optimality of combining

the classifier outcomes using a weighted sum. Our framework makes no assumptions

about the structure or distribution of the data across the nodes. In fact, by con-

struction, our classification models are particularly useful to deal with heterogeneity

of data among the nodes, which usually happens in real-world distributed datasets.

In addition, our technique requires no communication between nodes, preserving

data privacy, allowing combination of different classifier models and maximizing

computational efficiency.

Our experimental study involving synthetic and real datasets has illustrated the
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good performance of the proposed models compared to standard classifier combina-

tion rules. Overall, the per-Instance Weighting approach achieves the best results.

As expected, the improvement is more substantial when treating with unbalanced

nodes, under all tested classifiers an partition sizes. Our experiments also illus-

trate that the sum rule outperforms other alternative decision rules. The per-Node

Weighting approach does not achieve improvement over the standard approaches

but on the most extreme cases when the individual nodes training sets differ the

most.
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Distributed feature selection

To confront the problem of the extremely high dimensionality it is advisable to

investigate the effects of the application of feature selection. The use of an adequate

feature selection method can avoid over-fitting and improve model performance, pro-

viding faster and more cost-effective models and a deeper insight into the underlying

processes that generated the data [106]. However, as stated in previous chapter for

learning methods, we will have to deal with a scalibility problem if we apply these

techniques to large datasets due to their high computational complexities. There-

fore, a possible solution to reduce the complexity of feature selection process in the

current big data scenario might be to distribute the data, run a feature selection

method on each subset of data and then combine the results. As mentioned in the

introduction of Chapter 3, the partition can be done vertically or horizontally. Both

alternatives will be explored in this chapter since horizontal partitioning is especially

suitable when dealing with datasets with a high number of samples whilst vertical

partitioning is more appropriate to datasets with a high number of features.

In this chapter, we will present a methodology in which several rounds of feature

selection are performed on different partitions of the data. Then, the partial outputs

are combined into a single subset of relevant features according to the theoretical

complexity of these features using several data complexity measures. We (a) include

experimental results for both horizontal and vertical partitioning strategies; (b) per-

form a more intensive study, making use of several complexity measures to combine

the partial rankings of features; (c) include datasets of different sample sizes, with

73
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different number of classes, and also microarray datasets, trying to check the be-

havior of the approach on high input dimensionality and (d) examine the effects of

including different levels of overlap in the feature subsets.

4.1. Background

Although distributed learning is a fairly new field, it has been receiving a growing

amount of attention since its inception. There exist in the literature several works

to scale up datasets that are too large for machine learning in terms of features. In

these works [83, 111], authors described a novel ensemble approach, in which data is

partitioned by features. Results show that this technique is simple, predicts almost

as well as a centralized approach, reduces the amount of communication required,

distributes computation and data access well, and allows each local site to keep its

raw data private. Kamalika et al. [31] developed a local distributed privacy preserv-

ing algorithm for feature selection in large peer-to-peer environment. Banerhee et al.

[9] proposed a distributed privacy preserving method to perform feature selection

that handles both horizontal and vertical data partitioning, whose efficiency has

been demonstrated for real life datasets including time series data. Besides, several

paradigms for performing distributed learning have emerged in the last decade. Per-

alta et al. [97] present a feature selection method based on evolutionary computation

which uses the MapReduce paradigm to obtain subsets of features from big datasets.

Developed in Spark, Eiras-Franco et al. [43] proposed distributed versions of four

popular feature selection algorithms. Ramı́rez et al. [102] also use the Apache Spark

paradigm to implement a distributed version of generic feature selection framework

that includes a broad group of well-known information theory-based methods.

In Bolón-Canedo et al. [21], we presented a methodology for distributing the

data vertically which combined partial feature subsets based on improvements in

classification accuracy. Although the experiments showed that execution time was

considerably shortened whereas performance was maintained or even improved com-

pared to standard algorithms applied to the non-partitioned datasets, the drawback

of this methodology was its dependence on the classifier used. In order to overcome

this issue, a new framework for distributing the feature selection process [18, 86] was

proposed, which performed a merging procedure to update the final feature subset
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according to the theoretical complexity of these features, by using data complex-

ity measures instead of the classification error. Such measures provides a basis for

analyzing classifier performance beyond estimates of error rates (see Section 2.2 in

Chapter 2 for more details). In this way, we provided a framework for distributed

feature selection which not only was independent of the classifier, but also reduced

drastically the computational time needed by the algorithm, thus paving the way

for its application in high dimensional datasets.

4.2. Distributed feature selection based on com-

plexity measures (DFS-CM)

Our proposed framework for distributed feature selection (DFS-CM) can be sum-

marized in the three following stages:

1. Partition of the training datasets in several packets (by samples or features).

2. Application of the distributed algorithm to the subsets in several rounds.

3. Combination of the results into a single feature subset.

The pseudocode for the distributed algorithms is shown in Algorithm 1 (horizon-

tal partitioning) and Algorithm 2 (vertical partitioning). For each of the iterations of

our methodology, which we call “rounds”, the first step is to randomly partition (by

samples or features) the training dataset D into a number of disjoint packets. Re-

peating the process in several rounds (see lines 2–10 in Algorithms 1 and 2) ensures

that we have gathered enough information for the final combination step. Then,

the feature selection method is applied with no adjustments to each of these par-

titions separately—which could be done in parallel, as all of them are independent

to each other—and the features selected to be removed receive a vote. Note that

these algorithms can be used with any feature selection method, although the use

of filters is highly recommended since they are faster than other techniques. Note

that the proposed method DFS-CM can be also applied on ranker methods, another

threshold has to be established, however, to determine the number of features to be

removed in each subset of data.



76 Chapter 4. Distributed feature selection

At this point, a new round is performed leading to a new partition of the dataset,

followed by another iteration of votes. Finally, after the predefined number of

rounds, the features that have received a number of votes above a certain threshold

are removed, and the remaining feature subset will be used in the training and test

sets. In order to determine the optimal threshold of votes, we followed the recom-

mendations exposed in Haro-Garćıa et al. [58] for our first approach [21], where the

best value will be the one that minimizes the training classification error and the

percentage of features retained to the extent possible:

e[v]← α× error + (1− α)× featPercentage,

where α is a parameter with a value in the interval [0,1] which measures the

relative relevance of both values. Different values can be used if the researcher is

more interested in reducing features or in error.

The drawback of applying this approach is that, by involving a classifier in the

process of selecting the optimal threshold, our methodology is dependent on the

classifier chosen. Moreover, in some cases the required time for this task is higher

than the time necessary for the feature selection process. Trying to overcome these

issues, we proposed to modify the function for calculating the threshold of votes by

making use of data complexity measures [18]. The reason for this decision was that

we assume that good candidate features would contribute to decrease the theoretical

complexity of the data and must be maintained. Since our intention was to propose a

framework that could be independent of the classifier and applicable to both binary

and multiclass datasets, the Fisher’s multiple discriminant ratio for C classes was

chosen (Eq. 2.2).

We used the inverse of the Fisher ratio 1/f—from now noted as F1 —where a

small complexity value represents an easier problem. Therefore, the new formula

for calculating e[v] was defined as (see line 17 in Algorithms 1 and 2):

e[v]← α× F1 + (1− α)× featPercentage

Apart from the way of partitioning the data, the interval [minV ote,maxV ote]

changes for the two techniques. In the horizontal approach (see lines 13–14 in
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Algorithm 1 Pseudo-code for horizontal partitioning

Data: D(m×n+1) ← labeled training dataset with m samples and n input
features

X ← set of features, X={x1, ..., xn}
s ← number of submatrices of D with p samples
V ← vector of votes
r ← number of rounds . 5 in this experimentation
α ← relative relevance of complexitymeasure and featPercentage

Result: S ← subset of features \S ⊂ X

//* Obtaining a vector of votes for discarding features *//
1: initialize the vector of votes V to 0, |V |=n
2: for each round do
3: split D into s disjoint maintaining the class distribution
4: for each submatrix do
5: apply a feature selection algorithm
6: F ← features selected by the algorithm
7: E ← features removed by the algorithm \E ∪ F = X
8: increment one vote in vector V for each feature in E
9: end for

10: end for

//* Obtaining a threshold of votes, Th, to remove a feature *//
11: avg ← compute the average of the vector votes
12: std ← compute the standard deviation of the vector votes
13: minVote ← minimum threshold considered . (avg − 1/2std)
14: maxVote ← maximum threshold considered . (avg + 1/2std)
15: for v ← minVote to maxVote with increment 5 do
16: Fth ← subset of selected features . number of votes < v
17: complexityMeasure ← value of the data complexity measure computed on

training dataset
18: featPercentage ← percentage of features retained . |Fth|

|X| × 100

19: e[v] ← α × complexityMeasure + (1-α) × featPercentage
20: end for
21: Th ← min(e), Th is the value which minimizes the function e
22: S ← subset of features after removing from X all features with a number of

votes ≥ Th

Algorithm 1), trying to avoid a high number of calculations which could lead to

unaffordable computing times—the maximum number of votes vmax in some cases
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Algorithm 2 Pseudo-code for vertical partitioning

Data: D(m×n+1) ← labeled training dataset with m samples and n input
features

X ← set of features, X={x1, ..., xn}
s ← number of submatrices of D with p samples
V ← vector of votes
r ← number of rounds . 5 in this experimentation
α ← relative relevance of complexitymeasure and featPercentage

Result: S ← subset of features \S ⊂ X

//* Obtaining a vector of votes for discarding features *//
1: initialize the vector of votes V to 0, |V |=n
2: for each round do
3: split D into s disjoint submatrices with m samples and t features
4: for each submatrix do
5: apply a feature selection algorithm
6: F ← features selected by the algorithm
7: E ← features removed by the algorithm \E ∪ F = X
8: increment one vote in vector V for each feature in E
9: end for

10: end for

//* Obtaining a threshold of votes, Th, to remove a feature *//
11: minVote ← minimum threshold considered . 1
12: maxVote ← maximum threshold considered . number of rounds, r
13: for v ← minVote to maxVote with increment 1 do
14: Fth ← subset of selected features . number of votes < v
15: complexityMeasure ← value of the data complexity measure computed on

training dataset
16: featPercentage ← percentage of features retained . |Fth|

|X| × 100

17: e[v] ← α × complexityMeasure + (1-α) × featPercentage
18: end for
19: Th ← min(e), Th is the value which minimizes the function e
20: S ← subset of features after removing from X all features with a number of

votes ≥ Th

might be in the order of thousands—we opted for delimiting an interval computed

using the mean and standard deviation such that minV ote = avg − 1/2std and

maxV ote = avg+1/2std instead of evaluating all the possible values for the number

of votes [18]. If in the future we need to deal with datasets with millions of data, it
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is better to reduce the computation as much as possible.

As expected, the experimental results obtained showed that the time required

by the distributed methods was drastically reduced for all datasets (the first six

included in Table 4.1) and feature selection methods if compared with that of the

centralized approach [18]. Since our first distributed approach D-Clas made use of

the classification error to establish the threshold, the time required depended highly

on the classifier, whilst the second distributed approach based on a complexity mea-

sure (D-Comp) this time was independent of the classifier. Therefore, in Figure 4.1,

we can see the values of speed up —which indicate the performance improvement

of D-Comp with respect to the time of D-Clas— versus the difference in the classifi-

cation accuracy for each feature selection method and classifier. The high speed up

values (from 50 to almost 700) show that the time required to find the threshold in

“D-Comp” was lower than in our first approach D-Clas. Moreover, there was no a

significant degradation in classification accuracy. In fact, in some cases the accuracy

was improved (points located along the positive X axis).

Figure 4.1: SpeedUp vs. classification accuracy achieved by the distributed ap-
proaches using a classifier for the threshold versus using a data complexity measure.

Bearing in mind that, in our proposed approach based on the Fisher’s multiple

discriminant ratio, runtime was significantly shortened, in this work we will ana-

lyze if there is still room for improving classification performance using other data

complexity measures and different ratio samples/features.
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4.3. Experimental settings

A description of the specific datasets used for this study—focusing on some

of their particularities—is provided in this section, as well as the data complexity

measures, classification algorithms and feature selection methods.

Datasets. In order to evaluate empirically the proposed distributed framework

DFS-CM, we used 11 datasets, described in Table 4.1 in terms of the number of fea-

tures, training and test samples and classes. For the horizontal distributed approach

we employed the first six datasets. These datasets can be considered representative

of medium to large problems, since the horizontal distribution is not clearly suitable

for small datasets. For the vertical distributed approach we used three of the six

datasets employed for the horizontal approach—those that have the highest number

of features (Isolet, Madelon and Mnist)—and, moreover, five microarray datasets

due to their high dimensionality. Those datasets originally divided into training

and test sets were maintained, whereas, for the sake of comparison, datasets with

only training sets were divided maintaining the class distribution using the rule 2/3

for training and 1/3 for testing.

Table 4.1: Characteristics of 11 datasets.

#Samples
Dataset #Features Training Test #Classes Download
Connect4 42 45,038 22,519 3 [8]
Isolet 617 6238 1559 26 [8]
Madelon 500 1600 800 2 [8]
Ozone 72 1691 845 2 [8]
Spambase 57 3067 1534 2 [8]
Mnist 717 40,000 20,000 2 [8]
Breast 24,481 78 19 2 [2]
Gli85 22,283 56 29 2 [122]
CLL-SUB-111 11,340 74 37 3 [122]
Lung cancer 12,600 136 68 5 [115]
11-Tumors 12,534 114 58 11 [115]

Data complexity measures. Apart from the Fisher discriminant ratio (F1), two

new measures are used for calculating the threshold of votes in our proposed method
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DFS-CM, extended from the original definitions [10], so as to adapt them for datasets

with multiple classes. The first one is F2 (Eq. 2.3 in Chapter 2). In the original

definition of this measure [10], the authors compute the product (volume of the

overlap region) instead of the sum (amount or size of the overlap region). The side

effect of employing the product is that the value of this measure decreases drastically

as dimensionality increases. Thus, as this can be a problem when dealing with high

input dimensionality datasets, such as microarrays, we opted for using the sum. For

multiclass problems, we compute F2 for each pair of classes, then obtain the absolute

value for all of them, and finally return the sum of all these values. A low value

of this measure means that the features can discriminate the instances of different

classes. The second measure, N2, is the ratio of average intra/inter class nearest

neighbor distance.

Table 4.2 reports the computational cost of each data complexity measure used

in this work, where m is the number of samples, n the number of features and c the

number of classes.

Table 4.2: Computational cost of the complexity measures.

Label Data complexity measure Computational cost
F1 Fisher discriminant ratio O(m · n · c)
F2 Length of the overlapping region O(m · n · c)
N2 Ratio of average intra/inter class nearest neighbor distance O(m2 · n · c)

Classifiers. Four classifiers, each belonging to a different family, were chosen to

evaluate the performance of the framework: two linear (naive Bayes and Support

Vector Machine using a linear kernel) and two non-linear (C4.5 and 1-Nearest Neigh-

bor). All four classifiers are executed in the Weka [54] environment, using default

values for the parameters.

Feature selection methods. Feature selection methods have received a great deal

of attention in the classification literature [19], which largely reflects filter, wrapper

and embedded methods. Since wrapper and embedded method interactions with

the classifier are computationally burdensome, we opted for filter methods as they

have the advantage of being less computationally costly. In this work, five well-

known filters were chosen: CFS, CONS, INT, IG and ReliefF; a description of both
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methods can be found in Appendix A.

While three of them return a feature subset (CFS, CONS and INTERACT), the

other two (IG and ReliefF) are ranker methods, so a threshold is mandatory in order

to obtain a subset of features. In this work we have opted for retaining the c top

features, being c the number of features selected by CFS, since it is a widely used

method and, among the three subset methods chosen, it is the one which usually

selects the greatest number of features.

Table 4.3 shows the theoretical complexity of the five methods described above,

where m is the number of samples and n is the number of features.

Table 4.3: Computational cost of the five feature selection methods focus of this
work.

Method Computational cost
CFS O(m · n2)
CONS O(m · n)
INT O(m · n2)
IG O(m · n)
ReliefF O(m2 · n)

4.4. Experimental results

In this section we present and discuss experimental results in terms of number of

selected features, classification accuracy and runtime. Two different techniques for

partitioning the data have been employed: horizontally (by samples) and vertically

(by features). For each of these strategies, four different approaches will be com-

pared: the centralized approach (C) and three distributed approaches (D-F1, D-F2

and D-N2) based on the data complexity measures Fisher’s multiple discriminant

ratio (F1), length of the overlapping region (F2) and ratio of average intra/inter

class nearest neighbor distance (N2), respectively.
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4.4.1. Horizontal partitioning

In order to test the proposed distributed method DFS-CM with horizontal parti-

tion, we selected six datasets which can be consulted in Table 4.1: Connect4, Isolet,

Madelon, Ozone, Spambase and Mnist. The number of packets in which each train-

ing dataset is partitioned was calculated trying to maintain a proportion between

the number of samples and the number of features, with the constraint of having,

at least, three packets per dataset. According to this rule, the number of packets in

which the dataset was divided was 3 for Madelon, 5 for Isolet, Spambase and Mnist,

11 for Ozone and 45 for Connect4.

Prior to any comparison, a study of the best alpha value for each distributed

method based on a particular data complexity measure is provided. Tables 4.4 and

4.5 show the number of selected features and the classification accuracy achieved by

each filter over the six datasets for the α values 0.25, 0.5 and 0.75. As can be seen,

the number of selected features was smaller when α was 0.25. However, the best

classification performances were obtained with α = 0.75.

Table 4.4: Number of features selected by the horizontal distributed approaches
with different alpha values.

D-F1 D-F2 D-N2
α 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
CFS 36.83 37.17 37.50 26.13 27.13 27.33 66.20 68.60 66.80
INT 24.00 25.33 27.17 32.17 33.83 34.17 40.20 42.40 44.4
Cons 17.50 17.83 19.00 15.00 17.33 17.33 22.20 21.20 22.00
IG 40.83 40.17 40.33 34.83 35.83 36.17 50.40 50.40 51.40
ReliefF 43.67 44.83 43.17 36.33 36.83 36.83 66.20 53.60 54.00

Average 32.57 33.07 33.43 28.89 30.19 30.37 46.08 47.24 47.76

In light of the results, although no significant differences were observed between

the three values of alpha, this parameter was set to α = 0.75, giving more influence

to the value of the data complexity measure. This is because a lesser error is more

important than a smaller storage requirement when directly selecting a subset of

features.
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Table 4.5: Classification accuracy achieved by the horizontal distributed approaches
with different alpha values.

D-F1 D-F2 D-N2
α 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
CFS 76.48 76.36 76.60 70.03 71.83 72.56 73.77 73.96 74.00
INT 75.14 77.17 76.26 75.67 76.37 76.37 72.55 72.21 72.72
Cons 75.78 71.40 77.54 75.33 75.33 75.97 71.43 71.01 71.04
IG 77.36 78.25 76.56 74.38 74.93 76.93 74.52 74.39 74.60
ReliefF 76.17 77.11 77.13 73.83 74.46 74.67 72.84 74.47 74.43

Average 76.19 76.28 76.82 73.85 74.59 75.30 73.02 73.20 73.36

4.4.1.1. Number of selected features

Figure 4.2 displays the average of features selected by the five filters both with

the centralized and distributed approaches. As can be seen, there were no significant

differences between the number of features selected by centralized and distributed

approaches, in some cases being even larger in the centralized approach (Isolet,

Madelon and Ozone). Therefore, we can affirm that applying a distributed approach

does not imply a larger selection of features.

Figure 4.2: Comparing the centralized and distributed approaches using horizontal
partition in terms of number of selected features.
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4.4.1.2. Classification accuracy

In terms of classification accuracy, Tables B.5 and B.6 show the results obtained

by the algorithms C4.5, NB, kNN and SVM both with the centralized and dis-

tributed approaches based on data complexity measures, whilst the best result for

each dataset and approach is presented in Figure 4.3. As expected, the results were

very variable depending on the dataset and classifier. For some datasets (Connect4

and Isolet) the highest accuracies were achieved by the centralized approach. For

Spambase and Mnist the best results were obtained by our distributed approaches

D-F2 and D-F1, respectively, whilst for Madelon and Ozone the best classification

accuracy was the same for the four approaches.

Figure 4.3: Comparing the centralized and distributed approaches using horizontal
partition in terms of classification accuracy.

Following with the analysis, we studied the relationship between classifiers and

data complexity measures. Figure 4.4 shows the average classification accuracy

over the six datasets and the five feature selection methods. As expected, the

best classification performance for the algorithm kNN was achieved by the D-N2

distributed approach. This is caused by the fact that the N2 measure was based in

the nearest neighbor rule. For the rest of classifiers, the best classification accuracy

was always achieved by the D-F1 approach.

In Figure 4.5, the classification accuracy achieved for a particular classification

algorithm and feature selection method is shown. The NB and kNN classifiers

obtained the best results for CONS. Regarding the ReliefF filter, C4.5 was the
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Figure 4.4: Relationship between the three distributed approaches and the four
classifiers.

classifier which achieved the best classification performance whilst SVM was the

best after applying IG.
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Figure 4.5: Relationship between the four classifiers and the five feature selection
methods.

Figure 4.6 shows the relationship between the three distributed approaches and

the five feature selection methods in terms of classification accuracy. As can be

seen, the Cons and Relief filters were better with respect to the D-F1 whilst CFS

and IG achieved the best results with the D-N2 distributed approach. In the case

of the INT filter, this was the best feature selection method with respect to D-F2

approach. However, there were no significant differences between the classification

performances achieved by the filters and the three distributed approaches based on

data complexity measures.
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Figure 4.6: Relationship between the five feature selection methods and the three
distributed approaches.

4.4.1.3. Runtime

Finally, Table 4.6 shows the runtime required by the feature selection methods,

as well as the speed up values, which indicate the performance improvement of the

DFS-CM distributed approach with respect to the centralized approach. Note that

in the three distributed approaches, the feature selection stage at each packet was

the same, so the time required will be referred as D for three of them. Also, in the

distributed approach, given that all the subsets can be processed in parallel, the

time displayed is the maximum of the times required by the filter in each subset

generated in the partitioning stage.

As expected, the time required by the distributed methods was drastically re-

duced for all datasets and filters compared with that of the centralized approach,

except for Ozone with the IG filter. It is worth mentioning the important reductions

when the dimensionality of the dataset grew. For the Mnist dataset, which has 717

features and 40000 training samples, the reduction was more than notable. This fact

proves the adequacy of the distributed approach when dealing with large datasets.

Furthermore, for the distributed approaches, it is necessary to take into account

the time required to calculate the optimal threshold of votes to combine the partial

results obtained on the different partitions of the data. In Table 4.7 we can see the

average runtime on all datasets for each filter and distributed approach. Note that

the time required to find the threshold in D-F1 and D-F2 was noticeably lower than
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Table 4.6: Maximum runtime (s) for the feature selection methods tested. C stands
for centralized approaches, while D refers to the distributed approaches.

Connect4 Isolet Madelon Ozone Spambase Mnist SpeedUp

CFS
C 100 250 36 10 12 1787

5.73
D 10 77 25 8 6 257

INT
C 112 196 40 9 13 3145

10.56
D 11 70 31 8 14 199

Cons
C 268 245 52 11 14 6163

21.10
D 10 80 25 6 2 197

IG
C 97 171 41 9 11 1451

5.30
D 4 54 29 9 5 235

ReliefF
C 1680 553 62 14 21 30413

21.66
D 11 103 40 8 4 1346

the one in D-N2. This was happening because the computational cost of the data

complexity measure used by this method is higher than the other two (see Table

4.2).

Table 4.7: Average runtime (s) for obtaining the threshold of votes.

Method D-F1 D-F2 D-N2
CFS 0.51 0.19 3605.14
INT 0.29 0.11 3559.31
Cons 0.16 0.07 3217.27
IG 0.28 0.11 3112.32
ReliefF 0.31 0.13 3281.38

4.4.2. Vertical partitioning

This section presents the results over eight of the datasets described in Table 4.1:

Isolet, Madelon, Mnist, Breast, Gli85, CLL-SUB-111, Lung cancer and 11-Tumors.

In the case of the first three datasets, we opted for partitioning them in five packets,

so that each packet contained 20% of features. For the microarray datasets, the
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data was split by assigning groups of k features to each subset, where the number of

features k in each subset was half the number of the samples, to avoid over-fitting. In

this manner, the considered datasets had enough features to ensure correct learning.

Prior to any comparison, a study of the best alpha value for each distributed

method based on a particular data complexity measure is provided. Tables 4.4 and

4.5 show the number of selected features and the classification accuracy achieved by

each filter over the eight datasets, respectively. As can be seen, the best classification

performances were obtained with α = 0.75. Although the difference in the number

of selected features is higher than in the case of the horizontal distribution, this

parameter was set to 0.75, giving more influence to the value of the data complexity

measure. This is because a better classification performance was more important

than a smaller storage requirement.

Table 4.8: Number of features selected by the vertical distributed approaches with
different alpha values.

D-F1 D-F2 D-N2
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CFS 974.50 981.00 1063.25 962.75 970.30 977.88 978.63 978.63 1098.00
INT 740.13 741.75 920.50 707.30 724.88 736.25 737.00 744.13 1109.50
Cons 265.38 264.63 312.50 251.88 268.88 268.88 265.25 292.00 295.00
IG 1051.88 1060.25 1116.00 989.30 989.30 1051.30 1053.25 1055.38 1176.5
ReliefF 802.50 797.13 805.00 749.25 784.3 796.75 911.63 911.63 911.63

Average 766.88 768.95 843.45 732.10 747.53 766.21 789.15 796.35 918.23

4.4.2.1. Number of selected features

As we can see in Figure 4.7, contrary to the horizontal distribution case, the

number of features selected by distributed methods was larger than those selected

by the centralized approaches. This is caused by the fact that, with the vertical

partition, the features were distributed across the packets and it was more difficult

to detect redundancy between features if they were in different partitions. Even so,

our distributed approaches were using—in the worst case—33.68% (Isolet), 3.96%

(Madelon), 8.81% (Mnist), 5.53% (Breast), 8.86% (Gli85), 6.43% (CLL-SUB-111),
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Table 4.9: Classification accuracy achieved by the vertical distributed approaches
with different alpha values.

D-F1 D-F2 D-N2
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CFS 78.34 77.93 77.77 76.75 76.79 77.09 77.44 77.44 76.71
INT 77.02 76.46 77.55 75.81 76.44 76.44 76.81 76.81 76.88
Cons 73.24 72.84 76.75 73.01 73.31 74.08 75.29 76.60 77.39
IG 77.63 77.39 78.04 76.26 76.27 76.93 77.76 77.76 77.60
ReliefF 78.53 78.15 78.09 77.52 78.75 78.31 78.57 78.57 79.21

Average 76.95 76.56 77.64 75.87 76.31 76.60 77.17 77.44 77.56

12.20% (Lung cancer) and 13.61% (11-Tumors) of the total features for the datasets

chosen.
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Figure 4.7: Comparing the centralized and distributed approaches using vertical
partition in terms of number of selected features.

4.4.2.2. Classification accuracy

In terms of classification accuracy, Tables B.7 and B.8 show the best result

for each dataset and classifier in bold face, whilst the best result for each dataset

and approach is presented in Figure 4.8. As can be seen, in general there were

no differences in terms of accuracy. As expected only the Gli85 dataset achieved

the highest accuracy by the centralized approach. For 11-Tumors, the distributed
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approaches D-F2 and D-N2 obtained the same classification performance as the

centralized approach. The best results for the rest of datasets were reported by one

or several of the distributed approaches.

Isolet Madelon Mnist Breast Gli85 CLL−SUB−111 Lung cancer 11−Tumors
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Figure 4.8: Comparing the centralized and distributed approaches using vertical
partition in terms of classification accuracy.

Figure 4.9 shows the average classification accuracy over the eight datasets and

the five filters for a particular classifier and data complexity measure. As happened

in the horizontal partitioning, the best classification performance for the kNN al-

gorithm was achieved by the D-N2 distributed approach, due to the fact that the

N2 measure was based on the nearest neighbor rule. In Figure 4.10, the classifica-

tion accuracy achieved for a particular classification algorithm and feature selection

method is shown. The C4.5 and SVM classifiers obtained the best results for ReliefF.

Regarding the IG filter, kNN was the classifier which achieved the best classification

performance whilst NB was the best after applying INTERACT.

Figure 4.11 shows the correlation between the three distributed approaches and

the five feature selection methods in terms of classification accuracy. As can be seen,

the CFS, INT and IG filters are better with respect to the distributed approach using

F1 as the data complexity measure. On the other hand, Cons and ReliefF achieved

the best results with the D-N2 distributed approach.
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Figure 4.9: Relationship between the three distributed approaches and the four
classifiers.
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Figure 4.10: Relationship between the four classifiers and the five feature selection
methods.
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Figure 4.11: Relationship between the the five feature selection methods and the

three distributed methods.
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4.4.2.3. Runtime

Finally, Table 4.10 shows the runtime required by the feature selection methods,

as well as the speed up values. In the case of the distributed approach, the time

displayed is the maximum time among those obtained in the different packets. As

happened with the horizontal distribution, this filtering time was independent of the

classifier chosen. Again, the execution time was drastically shortened by applying

the distributed approach, in some cases from 9434 seconds to 0.29 seconds (Lung

dataset with CFS filter).

Table 4.10: Maximum runtime (s) for the feature selection methods tested. C stands
for centralized approaches, while D refers to the distributed approaches.

Isolet Madelon Mnist Breast Gli85 CLL-SUB-111 Lung cancer 11-Tumors SpeedUp

CFS
C 250 36 1787 7969 7652 1335 9434 7959

104.81
D 40 18 287 0.47 1.32 0.26 0.29 0.27

INT
C 196 40 3145 179 121 45 135 79

13.52
D 46 16 225 0.68 1.76 0.59 1.12 0.31

Cons
C 368 52 6163 14.35 10.29 6.36 8.11 9.31

21.98
D 58 16 225 0.33 1.33 0.29 0.45 0.33

IG
C 171 41 1451 1.88 1.44 1.11 1.99 1.89

5.03
D 42 15 273 0.61 0.93 0.21 0.24 0.22

ReliefF
C 533 62 30413 3.95 2.31 1.65 5.05 5.49

5.40
D 190 26 5522 0.70 1.76 0.24 0.26 0.27

For the distributed approaches, it is necessary to take into account the time

required to calculate the threshold to combine the partial outputs of features. Ta-

ble 4.11 depicts the average runtime on all datasets for each filter and distributed

approach. As happened with the horizontal distribution, the time required for the

D-N2 approach increased considerably due to the high number of samples of some

datasets. This becomes clear from examining the runtimes required by this ap-

proach for each filter and dataset in Table 4.12. As can be seen, the times were

noticeably longer for the datasets with higher number of samples—specially Mnist,

which has 40000 training samples—while for microarrays datasets these times were

quite similar to those obtained by the D-F1 and D-F2 approaches.

In light of the results, we can conclude that the distributed approaches performed

successfully—for both horizontal and vertical data partitioning—since the runtime

was considerably reduced for the D-F1 and D-F2 approaches, while accuracy was
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Table 4.11: Average runtime (s) for obtaining the threshold of votes.

Method D-F1 D-F2 D-N2
CFS 3.12 0.96 3941.5
INT 2.48 0.74 4415.3
Cons 1.52 0.45 2916.5
IG 3.14 0.95 4464.6
ReliefF 3.16 0.96 3135.3

Table 4.12: Runtime (s) for obtaining the threshold of votes by the D-N2 approach.

Method Isolet Madelon Mnist Breast Gli85 CLL-SUB-111 Lung cancer 11-Tumors
CFS 652.78 25.42 3084.20 0.77 1.02 0.79 6.67 2.34
INT 368.50 25.31 3491.78 0.78 1.11 0.78 6.19 2.31
Cons 181.76 25.32 2311.81 0.72 0.85 0.75 2.64 1.87
IG 644.52 25.37 2703.43 0.79 1.09 0.96 7.11 2.36
ReliefF 644.34 22.70 2440.24 0.80 1.24 0.90 7.22 2.38

maintained or even improved in some cases with regard to the standard centralized

features selection process.

4.5. Case studies

Before discussing and analyzing the experimental results in detail, we will de-

scribe several case studies in order to extract some recommendations on the appro-

priate methods to use in certain specific scenarios: a) centralized vs. distributed

approach, b) horizontal partitioning vs. vertical partitioning, c) distributed ap-

proaches based on three different data complexity measures, d) vertical distributed

approach with no-disjoint partitions and e) experiments using a dataset which has

approximately the same size in both dimensions.
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4.5.1. Case study I: Centralized vs. distributed approach

Feature selection methods have been applied traditionally in a centralized man-

ner. However, over the last few years many distributed methods have been devel-

oped. In this case study, we compare the centralized approach and the distributed

approaches (average between the horizontal and vertical strategies) over 11 datasets

in terms of number of selected features, classification accuracy and runtime. As we

can see in Table 4.13, the number of features selected by the distributed methods

was larger than those selected by the centralized approaches. In terms of classifica-

tion accuracy, the best results were reported by the distributed approach, improving

in 2% the centralized approach. Finally, the average maximum runtime (in seconds)

for the feature selection methods tested on all datasets is illustrated in Table 4.13,

as well as the speed up values, which indicate the performance improvement of the

distributed with respect to the centralized approach. As expected, the advantage

of the distributed approaches in terms of execution time over the standard method

was significant. The time was reduced for all filters, showing a high speed up value.

In light of these results, the authors recommend the use of the distributed approach.

Table 4.13: Comparison between centralized (C) and distributed (D) approaches.

#Features Accuracy (%) Runtime (s) SpeedUp
Method C D C D C D
CFS 144.09 541.41 75.80 76.25 3322.18 34.42 96.52
INT 100.18 479.04 74.60 76.68 370.36 30.09 12.31
Cons 13.64 154.45 70.16 76.18 618.31 29.20 21.17
IG 144.09 575.72 75.59 77.24 162.57 31.29 5.19
ReliefF 144.09 439.17 76.09 77.35 2978.31 330.88 9.01

Average 109.22 437.96 74.45 76.74 1490.35 91.18 16.35

4.5.2. Case study II: Horizontal partitioning vs. vertical

partitioning

As was stated above, two different ways to partition the original dataset were

applied. In the horizontal partitioning (H), the dataset was divided into several
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packets that had the same features as the original dataset, each containing a subset

of the original samples. In the case of vertical partitioning (V), the original dataset

was divided into several packets that had the same number of samples as the orig-

inal dataset, each containing a subset of the original set of features. In order to

compare these approaches, the three common datasets used in Section 4.4 for the

experimental setup were chosen: Isolet, Madelon and Mnist. Table 4.14 shows the

results of these two techniques in terms of number of features, classification accuracy

and runtime. As can be seen, the number of features selected by the distributed ap-

proach with vertical partition was noticeably larger than in the case of the horizontal

distribution. This was happening because, with the vertical partition, the features

were distributed across the packets and it was more difficult to detect redundancy

between them. In terms of classification accuracy, the results were variable depend-

ing on the filter applied, though the best average classification accuracy on the three

datasets and five filters was obtained by the vertical distributed approach. Finally,

the time required by the horizontally distributed approach was smaller for all filters

if compared with that of the distributed approach for vertical partitioning.

Table 4.14: Horizontal partitioning (H) vs. Vertical partitioning (V) in terms of
number of features, classification accuracy and runtime.

#Features Accuracy (%) Runtime (s)
Method H V H V H V
CFS 58.22 99.00 75.27 76.59 1830 3500
INT 58.11 51.44 76.25 75.52 1520 3930
Cons 22.55 18.00 72.80 72.59 860 2590
IG 59.89 137.56 76.11 76.88 1210 3080
ReliefF 66.67 119.00 74.25 75.83 1110 2790

Average 53.09 85.00 74.94 75.48 1310 3180

In light of the results, if it is possible to select the way of partitioning the data,

since the difference in classification accuracy was low (in the order of 0.7%) but the

difference in terms of number of selected features and runtime was much bigger, the

horizontal partition is preferable.
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4.5.3. Case study III: Distributed approaches based on data

complexity measures

Trying to overcome the issues of our first approach [21]—high runtimes to calcu-

late the threshold of votes and methodology dependent of the classifier chosen—we

propose new distributed approaches based on three different complexity measures.

In Table 4.15 one can see a comparison among the three (D-F1, D-F2 and D-N2) in

terms of number of selected features, classification accuracy and runtime. As can be

seen, D-F1 obtained better accuracy by selecting a larger number of features than

D-F2, which always selected insufficient features. On the other hand, D-N2 selected

a number of features similar to D-F1, but with poorer classification performances in

overall thus indicating that the selected subset by D-N2 was suboptimal. For each

distributed approach based on a different data complexity measure, the average time

required to build the final subset of features for all datasets is shown. Note that

the time was notably less for the D-F2 and D-F1 approaches than for D-N2. As

was explained in Section 4.4.1, this was happening due to the computational cost

of the N2 complexity measure used by this method (see Table 4.2). In light of the

above, the authors suggest using the Fisher discriminant ratio (F1) if classification

accuracy is more important than reducing the storage requirements and runtime. In

other cases, F2 is recommended.

Table 4.15: Comparison between D-F1, D-F2 and D-N2 approaches.

#Features Accuracy (%) Runtime (s)
Method D-F1 D-F2 D-N2 D-F1 D-F2 D-N2 D-F1 D-F2 D-N2
CFS 1606.3 977.8 1098 77.18 74.82 76.01 1.81 0.57 3777.32
INT 920.5 676.8 1109.5 77.30 76.40 76.64 1.39 0.42 3987.31
Cons 312.5 268.8 295.5 77.15 75.02 76.84 0.84 0.26 3066.88
IG 1116 1051.3 1176.5 77.30 76.93 77.28 1.71 0.53 3788.46
ReliefF 805 796.8 911.6 77.62 76.49 77.69 1.73 0.54 3208.34

Average 952.1 754.3 918.2 77.31 75.93 76.22 1.49 0.46 3565.64

In the particular case of microarray data, as we mentioned in Section 4.4.2.3 (see

Table 4.12), the times for the D-N2 approach were quite similar to those obtained

by the D-F1 and D-F2 approaches. As the runtime is small for the three distributed
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approaches, it could be interesting to use the data complexity measure with the

best classification accuracy (F1), although F2 shows competitive results in terms of

number of selected features and runtime.

Table 4.16: Comparison between D-F1, D-F2 and D-N2 approaches on microarray
datasets.

#Features Accuracy (%) Runtime (s)
Method D-F1 D-F2 D-N2 D-F1 D-F2 D-N2 D-F1 D-F2 D-N2
CFS 1599 1505 1697.2 77.72 77.98 76.94 3.10 0.82 2.32
INT 1427 1154.6 174.02 78.83 77.74 76.89 2.89 0.78 2.23
Cons 484.8 421.6 450.2 78.49 77.51 77.70 2.04 0.56 1.37
IG 1704 1599 1801.8 79.55 80.47 80.47 3.14 0.82 2.46
ReliefF 1211.8 1205.8 1389.8 78.59 78.01 77.95 3.14 0.83 2.51

Average 1285.3 1177.2 1415.8 78.59 78.01 77.95 2.86 0.76 2.18

Following with the analysis, a study of the relationship between particular clas-

sifiers and data complexity measures was carried out. Figures 4.4 (horizontal parti-

tioning) and 4.9 (vertical partitioning) shows the average classification accuracy for

each classifier and distributed approach based on the three data complexity mea-

sures. As expected, the best classification accuracy for the algorithm kNN was

achieved by the D-N2 distributed approach. This is caused by the fact that the N2

measure was based on distances to the nearest neighbor.

4.5.4. Case study IV: Distributed approach by features with

no-disjoint partitions

As was stated in Section 4.2, with the vertical partition, the first step of our

method was to divide the training dataset into a number of disjoint packets of

features (see line 3 in Algorithm 2). Thereby, the features were distributed across the

packets and it was more difficult to detect redundancy between features. Trying to

alleviate the problem of fighting redundancy among features, we propose using non-

disjoint partitions, including a certain level of overlap in the packets. The overlap

is defined as the subset of features that are common across different partitions.
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In this case study, we consider three levels of overlapping (5%, 10% and 15%)

and the Fisher discriminant ratio (F1) as the data complexity measure to establish

the threshold of votes because of the results showed in Section 4.5.3. Figure 4.12

compares the results in terms of number of selected features and classification ac-

curacy for the three approaches with overlap—one for each level—and the common

vertical approach using disjoint packets of features (0%). As expected, a larger level

of overlap decreased the number of selected features. However, in terms of classifi-

cation accuracy, the distributed approaches with a certain level of overlap did not

improve the results obtained with disjoint packets of features. This may be hap-

pening because the redundancy was positive, i.e. noise reduction and consequently

better class separation may be obtained by adding features that are presumably re-

dundant. Features that are independently and identically distributed are not truly

redundant [51]. Thus, users should carefully balance both, number of features and

classification performance, in order to decide if a small reduction in performance

(in our experiments, of 1.25%), could be accepted for the sake of a more important

reduction in the number of features (in our experiments 50%).

4.5.5. Case study V: Gisette dataset

The experiments carried out in this work involve some large datasets, in which

either the number of examples or features are quite large. In this case study, we

complete the experiments using a dataset that has approximately the same size in

both dimensions, the Gisette dataset [52], which has 6000 samples (4000 for training

and 2000 for test) and 5000 features. We considered both distributed approaches

(horizontal and vertical partitioning) and the Fisher discriminant ratio and length

of the overlapping region as data complexity measures to establish the threshold of

votes. The number of packets into which the training dataset was divided in each

round was four in the horizontal partitioning and three in the vertical partitioning.

Table 4.17 shows the results of these two techniques for the Gisette dataset in

terms of number of selected features, classification accuracy and runtime (highest

results highlighted in bold). The runtime was divided into two: the maximum

runtime for the feature selection method tested plus the runtime for obtaining the

threshold of votes.
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Figure 4.12: Number of selected features and classification accuracy for the distri-
buted approach D-F1 with different levels of overlap (5%, 10% and 15%).

In contrast to the results showed in case study II (see Section 4.5.3), the average

number of features selected by the vertical distributed approach was smaller than in

the case of horizontal partitioning, except for the ranker methods IG and ReliefF,

which selected less features with the horizontal distribution. In terms of classification

accuracy, the filters selecting more features in any distributed approach obtained the

best classification performances. The runtime was variable depending on the filter

applied, as expected, due to their different complexities (see Table 4.3). Whilst the

times for CONS and ReliefF were higher when the vertical distributed approach was

applied for CFS, INT and IG times were faster. Regarding the two data complexity

measures used in the distributed approaches, F1 achieved the best classification

performances (more significant in the vertical distribution) whilst F2 selected a
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lower number of features.

Table 4.17: Comparison between the distributed approaches on Gisette dataset. H
stands for horizontal distribution approach, while V refers to the vertical distributed
approach. Runtime is in seconds.

Method
CFS INT Cons IG ReliefF Average

#Features
H

D-F1 132 135 61 79 92 99.80
D-F2 135 128 57 80 90 98

V
D-F1 75 23 13 133 120 72.8
D-F2 64 22 14 127 120 69.4

Accuracy
H

D-F1 94.31 94.14 94.36 86.56 92.68 92.41
D-F2 94.10 93.94 93.91 86.75 91.71 92.08

V
D-F1 92.50 89.50 73.74 88.81 89.91 92.75
D-F2 92.31 86.70 86.34 88.51 93.15 89.40

Runtime
H

D-F1 191.33+0.04 155.56+0.02 89.40+0.02 2.75+0.03 93.40+0.02 102.66+0.02
D-F2 191.33+0.02 155.56+0.02 89.40+0.01 2.75+0.02 93.40+0.02 102.66+0.02

V
D-F1 15.98+0.09 24.85+0.11 110.48+0.05 2.43+0.10 175.03+0.10 65.75+0.09
D-F2 15.98+0.06 24.85+0.05 110.48+0.06 2.43+0.06 175.03+0.07 65.75+0.06

The results of this study suggest the strategy of combining the partial results

from the different partitions when the dimensions are equally big, partitioning the

datasets by both instances and features together. In such a case, each subset will

be formed by a subset of instances and a subset of features.

4.6. Summary

Nowadays, the standard approach to feature selection methods is centralized.

As dataset sizes grow and models become more complex, it is natural to consider

replacing centralized feature selection by parallel and distributed techniques, as a

way to reduce costs. We argue that the existing feature selection algorithms may

not work very well because of scalability and privacy concerns.

The main goal of this chapter was to design a method that would be able to

successfully scale up feature selection algorithms, meaning that the runtime would

be considerably reduced and the classification accuracy would do not drop to inad-

missible values. Thereby, several methodologies for distributing the feature selection

process based on data complexity measures have been proposed. First, we tackled

the distribution commonly used in the literature: the horizontal partition. Then, we

applied the same algorithm to data partitioned by features. The novel procedures
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proposed were able to reduce significantly the runtime while maintaining—or even

improving—classification performance.

From the experiments carried out, we can draw some conclusions and make some

recommendations to the users:

Which is the best approach to feature selection?

We have demonstrated that distributed methods show competitive results both

in terms of runtime and classification accuracy. With respect to runtime, the

behavior is excellent, being this fact the most important advantage of our

method. Thereby, we recommend to use the distributed approaches instead of

the traditional centralized methods when dealing with large datasets.

Which is the best way to partition data?

The partition of the datasets can be carried out in two ways: horizontally

(by samples) or vertically (by features). In terms of runtime, this decision

should be closely related to the complexity of the feature selection algorithm

chosen. Depending on the design, the complexity of a certain feature selection

algorithm may depend more on the number of features or on the number of

samples of the dataset. That is the reason why it would be highly advisable to

divide datasets by one or the other, depending on which factor determines the

complexity of the algorithm. Due to the challenge of detecting redundancy

between features in the vertical partition, the number of selected features is

noticeably larger than in the case of the horizontal distribution. In contrast,

the classification accuracy is better in the case of the vertical approach. Thus,

if reducing the storage requirements and runtime is more important than clas-

sification accuracy, the horizontal partition is preferable.

Which is the best data complexity measure to calculate the threshold

of votes?

Regarding the three different data complexity measures—Fisher discriminant

ratio, length of the overlapping region and ratio of average intra/inter class

nearest neighbor distance—used to combine the partial outputs obtained from

each partition of data in the distributed methods, we found that the Fisher

discriminant ratio (D-F1) achieved the best classification performance whilst
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D-F2 shows interesting results in terms of number of selected features and

runtime. Thus, if reducing the storage requirements and runtime is more im-

portant than classification accuracy, F2 is preferable. If classification accuracy

is more important, F1 is recommended.

Which is the behavior of the vertical distributed approach when

including a certain level of overlap in the feature subsets?

In the original definition of our distributed feature selection framework for

vertical data partitioning, the training dataset was divided into a number

of disjoint packets of features. As a result, it was more difficult to detect

redundancy between features as they were distributed across the packets. By

including a certain level of overlap (5%, 10% and 15%) we were able to reduce

by 50% the number of selected features, whilst in the worst case scenario

the classification accuracy decreased from 76.4% to 73.1% (see the CONS

filter in Figure 4.12(b)). However, in some cases, including overlap in the

feature partitions is not possible due to privacy concerns. An example could

be that in which a hospital and a public health body wish to collaborate in

order to analyze outbreak of certain diseases without actually revealing their

data, making it impossible to join all the data together and distribute it with

overlapping.

In light of the above, the authors suggest distributing the data including a

certain level of overlap when possible, taking into account not only privacy

concerns, but also balancing loss of accuracy and reduction of features.





Chapter 5

Feature selection under

computational constraints

Finally, and unlike the distributed approach followed in the previous chapter,

we propose a complexity reduction of feature selection process based on the current

philosophy of Edge Computing. With the advent and standardization of wireless

connectivity paradigms and the cost reduction of electronic components, the number

and diversity of IoT devices has exploded over the last decade [103]. Wearable

computing has made successful and significant forays in fitness domains, health care,

fashion and entertainment, among other application areas. These devices are usually

employed as local systems, and their fundamental requirements are to work with

little computing power and small memories. However, these requirements become

challenging since emerging computing devices are not just sensor devices: they must

perform sophisticated computation, collect and aggregate data for propagation to

the cloud, and respond in real time to user requests. These data must be fed on a

machine learning system to analyze information and make decisions. Unfortunately,

limitations in the computational capabilities of resource-scarce devices inhibit the

implementation of the most current machine learning algorithms on them. Then,

the data must be sent to a remote computational infrastructure. However, Edge

Computing has arrived to allow us to simplify the learning task in this scenario.

Imagine a health wearable (Figure 5.1) which measures a high number of body

parameters such as vital signs (electrocardiography, pulse, blood oxygen saturation,

105
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respiration, skin temperature, CO2), body kinematics as well as sensorial, emo-

tional and cognitive reactivity such as electrocardiography, posture, fall, movement,

speed, acceleration or pressure. It is common that a large number of these fea-

tures (i.e. body parameters) is not informative because they are either irrelevant

or redundant with respect to a specific disease or health condition. Therefore, se-

lecting the most relevant features could significantly improve disease prevention,

diagnosis, treatment, disease management and rehabilitation, and help to discover

personal patterns of interest. Feature selection arises from the need of determining

the “best” subset of variables for a given problem. Features can be categorized

in three ways: relevant, irrelevant and redundant [62]. As a result, selecting the

relevant features and ignoring the irrelevant and redundant ones is advisable. The

process of feature selection is typically performed on a machine using high numerical

representation, i.e. double-precision floating point calculations (64 bits). Using a

more powerful general purpose processor provides significant benefits in terms of

speed and capability to solve more complex problems. But this capability does not

come without cost; a conventional microprocessor can require a substantial amount

of off-chip support hardware, memory, and often a complex operating system [71]. In

contrast to up-to-date computers, these requirements are often not met by embed-

ded systems, low energy computers or integrated solutions that need to optimize the

used hardware resources. However, to the best of our knowledge, reduced-precision

approaches have not been implemented yet in the area of feature selection. And

portable embedded systems, though, call for new feature strategies and methods

that are able to deal with big dimensionality.

Figure 5.1: Health wearable [30].
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In this chapter, we investigate feature selection by considering the information

theoretic measure of mutual information with reduced precision parameters. The

mutual information measure is used due to its computational efficiency and simple

interpretation. Therefore, we are able to provide a limited bit depth mutual infor-

mation, and—through different feature selection methods based on this measure—

experimentally achieve classification performances close to that of 64-bit represen-

tations for several real and synthetic datasets. Our reduced precision approach is

designed to analyze user level data, i.e. on-board analysis for close-loop feedback. It

performs the preprocessing step over private “small” data. Then, this anonymized

data could become available in the cloud, by aggregation of personal data from dif-

ferent users, to obtain “big” data that can be processed by more powerful processors

and/or distributed to experts for further analysis.

5.1. Background

The majority of the existing approaches available investigated the effect of re-

duced precision in neural networks [88]. Han et al. [57] presented an energy-efficient

engine that performed inference on compressed deep neural networks and accelerated

the resulting sparse matrix-vector multiplication with weight sharing. Hubara et al.

[63] introduced a method to train Quantized Neural Networks (QNNs), i.e. neural

networks with extremely low precision weights and activations at run-time. They

found that QNNs achieved prediction accuracy comparable to their 32-bit counter-

parts. Benoit et al. [65] proposed a quantization scheme that relied only on integer

arithmetic to approximate the floating-point computations in a neural network. The

authors were inspired by the work of [50], which leverages low-precision fixed-point

arithmetic to accelerate the training speed of convolutional neural networks. In the

area of Bayesian networks, Tschiatschek and Pernkopf [119] considered online learn-

ing of these classifiers with reduced precision parameters in order to facilitate their

utilization in computationally constrained platforms. All above mentioned authors

demonstrated that their proposed reduced-precision algorithms achieved classifica-

tion performances close to that of Bayesian networks classifiers with parameters

learned by traditional algorithms using double-precision floating point representa-

tion.
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5.2. Mutual information in feature selection

Mutual Information (MI) comes from the field of Information Theory and it is

widely used in both machine learning and statistics. One of its main uses is feature

selection methods, and in fully supervised data, the features X are ranked using

this measure, and the ones finally selected are those having the highest mutual in-

formation with the class label Y . The mutual information is defined as the expected

logarithm of a ratio:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) ln
p(x, y)

p(x)p(y)
(5.1)

where p(x, y) = Pr{X = x, Y = y} is the probability mass function of the joint

distribution when the random variable X takes on the value x from its alphabet X
and Y takes on y ∈ Y , while p(x) = Pr{X = x} and p(y) = Pr{Y = y} are the

probability mass functions of the marginal distributions. In this work, the function

is calculated in natural logarithm, so returned units are “nats”. In practice we

have to estimate this from data. This can be done by using the sample (maximum-

likelihood) estimates of the probabilities p̂ and plug them in the Equation 5.1. This

maximum likelihood estimator for the mutual information is consistent [95], and as

a result we have:

I(X;Y ) ≈ Î(X;Y ) =
∑
x∈X

∑
y∈Y

p̂(x, y) ln
p̂(x, y)

p̂(x)p̂(y)
(5.2)

In order to calculate this we need the estimated distributions p̂(x, y), p̂(x), and

p̂(y). The probability of any particular event p(X = x) is estimated by maximum

likelihood, the frequency of occurrence of an event X = x divided by the total

number of events.

An example. Let us consider a vector Y with 651 observations, in which the

number of occurrences of an event Y = y is 3. The probability p̂(y) will be:

p̂(y) =
3

651
= 0.00460829493
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which it is approximately zero. For real applications, it is not necessary to store

all the decimal digits, which makes mutual information an interesting measure to ex-

plore reduced precision. Besides, as the embedded systems market matures, we will

likely see a movement away from full mutual information (i.e. 64 bit-representation)

to limited approaches using a lower number of bits.

Mutual information definition is useful within the context of feature selection

because it gives a way to quantify the output vector. Thus, there exist in the lit-

erature several feature selection methods based on mutual information measures

[11, 118, 96, 49]. Most methods define heuristic functionals to assess feature sub-

sets combining definitions of relevant and redundant features. Among the different

feature selection methods based on mutual information, we have chosen three to eval-

uate our limited bit depth mutual information approach: MIM (Mutual Information

Maximisation) [72] due to its simplicity, JMI (Joint Mutual Information) [129] and

mRMR (minimum Redundancy Maximum Relevance) multivariate filter [96] since

they showed the best overall trade-off for accuracy/stability [26]a description of both

methods can be found in Appendix A. In any case, our reduced precision approach

could be easily implemented in any other MI-based feature selection algorithms.

Table 5.1 shows the theoretical complexity of the three methods described above

[108]. Let us assume that we have a dataset of m samples and n features and we

want to select the top-k.

Table 5.1: Theoretical complexity of the three feature selection methods focus of
this work.

Method Complexity
MIM O(k ·m · n)
JMI O(k2 ·m · n)
mRMR O(k2 ·m · n)

5.3. Limited bit depth mutual information

In information theoretic feature selection, the main challenge is to estimate the

mutual information, one of the most common measures of dependence used in ma-
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chine learning. As said above, to calculate mutual information we need to estimate

the probability distributions. Internally, it counts the occurrences of values within

a particular group (i.e. its frequency). Thus, based on Tschiatschek and Pernkopf

[119]’s work for approximately computing probabilities, we investigate mutual in-

formation with limited number of bits by considering this measure with reduced

precision counters. To perform the reduced precision approach, we target a fixed-

point representation instead of the 64-bit resolution used typically by the standard

hardware platforms. Fixed-point numbers are essentially integers scaled by a con-

stant factor, i.e. the fractional part has a fixed number of digits. We characterize

fixed-point numbers by the number of integer bits bi and the number of fractional

bits bf . The motivation to move to fixed-point arithmetic is two-fold. The first

reason is that these bit representation compute units are typically faster and con-

sume far less hardware resources and power than the conventional floating-point

computations. And, second, low-precision data representation reduces the mem-

ory footprint, enabling larger models to fit within the given memory capacity and

lowering the bandwidth requirements.

Mutual Information parameters are typically represented in the logarithm do-

main. For the reduced precision parameters, we compute the number of occurrences

of an event and use a lookup table to determine the logarithm of the probability of

a particular event. The lookup table is indexed in terms of number of occurrences

of an event (individual counters) and the total number of events (total counter)

and stores values for the logarithms in the desired reduced precision representation.

To limit the maximum size of the lookup table and the bit-width required for the

counters, we assumed some maximum integer number M . The lookup table L is

pre-computed such that:

L(i, j) =

[
ln(i/j)

q

]
R

· q (5.3)

where [·]R denotes rounding to the closest integer, q is the quantization interval

of the desired fixed-point representation (2−bf ), ln(·) denotes the natural logarithm,

and where the counters i and j are in the range {0, ...,M − 1}.

Given certain specific data, the individual counters cij and the population C are

computed according to Algorithm 3. Following the fixed-point representation, we
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assumed some maximum integer number M , where M = 2(bf+bi) − 1 in terms of

number of fractional bits bf and number of integer bits bi. After calculating the

cumulative count C, we ensure that it is in range. Different from Tschiatschek’s

algorithm, we also divide by two the individual counters ci when C reaches its

maximum value (lines 9–12 in Algorithm 3). The problem we encountered with the

original algorithm was that sometimes the total counter could be lower than the

individual counter. And in order to estimate the mutual information, it gave us

poor approximations of the logarithmic probabilities.

Algorithm 3 Our reduced precision algorithm for MI

1: Require: Individual counters cij and total counter C; lookup table L
2: for i, j do
3: if cij = M then . maximum value reached?
4: cij ← cij/2 ∀i, j . half counters (round down)
5: end if
6: end for
7: C =

∑
(cij) . sum of the individual counters

8: while C ≤M do . ensure that C is in range
9: C ← C/2

10: cij ← cij/2 ∀i, j . revise index correction
11: end while
12: lij ← L(cij, C) ∀i, j . get the log-probability from lookup table
13: return lij

5.3.1. Empirical study

Below we empirically evaluate our limited bit depth mutual information in terms

of accuracy—using bias and variance measures—and ranking similarity over syn-

thetic data.

5.3.1.1. Accuracy in terms of bias/variance

To evaluate the performance of the reduced precision mutual information against

the full version using a 64-bit representation, we generate synthetic data with two

different degrees of dependency with the target class Y . To create the data, firstly
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we generate the values of Y , by taking n samples from a Bernoulli distribution with

p(y = 1) = 0.5. Then, we choose the parameters p(x|y) that guarantee the desired

degrees of dependency in terms of I(X;Y ) and we use these parameters to sample

the values of X. All criteria need an estimate of the mutual information between a

feature or a feature set and the class variable, which is derived from a finite dataset.

For that reason, the accuracy of the estimator plays a crucial role in the ranking

of features. The bias and variance are used to measure the accuracy, which can be

defined as:

bias
(
Î(X;Y )

)
= E

[
Î(X;Y )

]
− I(X;Y )

var
(
Î(X;Y )

)
= E

[(
Î(X;Y )− E

[
Î(X;Y )

])2]

Figure 5.2 shows the results of an experimental study considering two different

degrees of dependency, I(X;Y ) = 0.01 and I(X;Y ) = 0.1, and three sample sizes,

1k, 10k and 100k. Bias/variance is obtained for the different limited bit depth

mutual information versions (4, 8, 16 and 32 bits) and the full mutual information

(64 bits), which will be the baseline method for comparison. As can be observed,

the bias for 8, 16 and 32 bits converges to the 64-bit representation. Besides, the

reduced precision MI using 4 bits does not converge but it is consistent, since both

bias and variance decrease as the sample size increases.

5.3.1.2. Similarity rankings

Our limited bit depth mutual information described above will be used within a

feature selection procedure. The output of a feature selection algorithm might be:

a scoring over the features, a ranking of the features or a feature subset. In this

section, we aim at illustrating the performance of our limited bit mutual information

in terms of feature ranking variability. Let us assume there are d features in total.

A ranking r can be formed as a vector of d distinct natural numbers taken from

1 to d. To measure the similarity of the feature rankings obtained by the reduced

precision mutual information with different number of bits, we use the Spearman

rank-order correlation coefficient [15], also commonly called Spearman’s ρ. This
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Figure 5.2: Comparing the performance of our bit limited depth mutual informa-
tion (4, 8, 16 and 32 bits) with the full mutual information (64 bits) in terms of
bias2/variance. To estimate bias/variance we average over 5000 runs. Please note
different axes for the different variables Bias and Variance.

coefficient takes values in the range [−1, 1], where 1 means that the two rankings

are identical, -1 means that there is no correlation between them. To be able to do

this, we need to know the “true” ranking [109]. For this task, we generate various

synthetic datasets consisting of d = 10 and d = 20 features with different degrees

of dependency with the target class Y in terms of mutual information. The mutual

information I(X, Y ) population values for each feature are:

“Easy” scenario with 10 features: [2 4 6 8 10 12 14 16 18 20] ×10−2.

“Difficult” scenario with 20 features: [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21] ×10−2.

where a high mutual information translates into a high rank of the feature. The
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arity of features is chosen randomly between the following values |X | = 2, 5, 10 and

20. The experiment was repeated taking different sample sizes from 1000 to 100,000

samples to observe the performance when the sample size increases. To estimate

the Spearman’s ρ we average over 100 runs.

Table 5.2 shows the Spearman’s ρ obtained for the different limited bit depth

mutual information versions (4, 8, 16 and 32 bits) and the full mutual information

(64 bits). The lower values of the reduced precision approach using 4 bits shows

that the correlation between its ranking and the “true” ranking is quite poor in

both scenarios. However, from 8 bits all the approaches achieved a Spearman’s ρ

coefficient close to 1, which means that the rankings obtained by these approaches

are similar to the “true” rankings. Moreover, we can observe that by increasing the

sample size all of the reduced precision approaches improve their rankings, and they

are closer to the “true” ranking in both scenarios. However, differences between

both scenarios can be seen when 16 and 32 bits are used. In the difficult scenario,

these limited bit depth MI versions do not get the “true ranking”. This could be

because there is a smaller distance between the population values of the mutual

information, and thus the ranking will change.

Table 5.2: Spearman’s ρ coefficient

#Features #Samples #Bits
4 8 16 32 64

10
1000 0.215 0.963 0.983 0.983 0.983
10,000 0.326 0.963 1.000 1.000 1.000
100,000 0.429 0.974 1.000 1.000 1.000

20
1000 0.179 0.975 0.973 0.973 0.973
10,000 0.320 0.973 0.995 0.995 0.995
100,000 0.472 0.984 0.996 0.996 0.996

In light of the results obtained, we proceed to use our limited bit depth mutual

information approach within a more sophisticated method. In this work, we have

chosen to apply this to feature selection. Despite the poor results using 4 bits, we

have kept this approach in order to see how it affects to the accuracy of feature

selection methods.
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5.4. Application in feature selection

Our bit limited depth mutual information described above can be applicable to

any method that uses internally the mutual information measure. In this work, we

have chosen to do so within feature selection since this process has a key role to

play in helping reduce high-dimensionality in machine learning problems [19], and

it is lately specially relevant with the advent of Big Data. There is a large number

of feature selection methods that use mutual information as a measure, thus their

performance depending on the accuracy obtained by the mutual information step.

As mentioned before, we have chosen to implement our reduced precision approach

in the MIM, JMI and mRMR filters methods due to their popularity and good results

in the machine learning area, but analogous implementations could be derived for

any other FS method based on mutual information. We have considered several

synthetic—of which the relevant features are already known—and real datasets.

Table 5.3 details the main characteristics of the chosen datasets: for each dataset, the

number of features, the number of samples and the number of classes. Experiments

were executed in the Matlab2018a and Weka environments.

Table 5.3: Characteristics of the datasets.

Dataset Type #Features #Samples #Classes
Arcene Real 10,000 200 2
Congress Real 16 435 2
Connect-4 Real 42 45,038 3
CorrAL-100 Synthetic 100 100,000 2
GISETTE Synthetic 5000 6000 2
Led-500 Synthetic 500 200,000 10
Splice Real 60 3175 3
Waveform Real 40 5000 3

UCI datasets [75]. This is a collection of datasets of which we have selected

Arcene, Congress, Connect-4, Splice and Waveform, with small to medium

number of samples. The features within each dataset have a variety of char-

acteristics: some are binary/discrete, and some are continuous. Continuous
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features were discretized, using an equal-width strategy in 5 bins, while fea-

tures already with a categorical range were left untouched.

GISETTE is a handwritten digit recognition problem from the NIPS 2003

Feature Selection Challenge [52]. Features were discretized independently into

10 equal width bins.

CorrAL-100. The CorrAL dataset [67] has six binary features (f1, f2, f3, f4,

f5, f6), and its class value is (f1∧f2)∨(f3∧f4). Feature f5 is irrelevant and f6 is

correlated to the class label by 75%. CorrAL-100 was constructed by adding

93 features irrelevant binary features to the previous CorrAL dataset. The

data for the added features was generated randomly. The correct behavior for

a given feature selection method is to select the four relevant features and to

discard the irrelevant and correlated ones. The correlated feature is redundant

if the four relevant features are selected and, besides, it is correlated to the

class label by 75%, so if one applies a classifier using only this feature, a 25%

of error should be obtained.

LED-500. The LED problem [25] is a simple classification task that consists

of, given the active LEDs on a seven segments display, identifying the digit

that the display is representing. Thus, the classification task to be solved is

described by seven binary attributes and ten possible classes available. A 1 in

a attribute indicates that the LED is active, and a 0 indicates it is not active.

Led-500 was constructed by adding 493 irrelevant binary features.

In the following sections we present and discuss the experimental results in terms

of the quality of the selected features and the classification accuracy.

5.4.1. Quality of the selected features

To evaluate the similarity between the rankings obtained by the reduced pre-

cision versions and the 64-bit mutual information after performing the MIM, JMI

and mRMR methods, we show the true positive rate for each dataset. The true

positive rate measures the proportion of features that are correctly identified as

such, using the full mutual information version (64 bits) as the ideal ranking. In
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high dimensional datasets, it is common to focus only on the top features, so in

these experiments we compare only the k top features, with k = 5, 10 and 20 for all

datasets except Congress, for which only the results with the 5 and 10 top features

are shown as it has only 16 features.

Figures 5.3, 5.4 and 5.5 show the true positive rate (TPR) over the eight datasets

presented in Table 5.3. The datasets are sorted in ascending order by their number

of total features. As can be seen, for the datasets with less than 100 features—

Congress, Waveform, Connect-4 and Splice—, our reduced precision approach using

only 16 bits selected the same 5, 10 and 20 features that the full version. Moreover,

for the smaller datasets in terms of sample size, Congress and Splice, the reduced

precision approach was able to achieve a 100% true positive rate even using 8 bits.

When the number of features of the dataset increases, the performance of our reduced

precision version using 16 bits started to decrease, and the same effect appears for

datasets with high number of samples. The challenge with high dimensionality can

be clearly seen in the Arcene dataset, where the limited bit depth MI using 4 bits

does not select correctly any feature. For CorrAL-100 dataset, even the reduced

precision version using only 4 bits was able to return the same 5 top features of

the full version using 64 bits. It might be happening because this dataset has four

relevant features (f1, f2, f3 and f4) and another feature that is correlated to the

class label by 75%. This means that there is a slight difference between the mutual

information values of these features and the rest of features. Therefore, we can say

that in general, 16 bits are sufficient to select the same features that the full version

using 64 bits.

Comparing the results between the different feature selection methods, we can

see that JMI performs better—in some cases—than MIM and mRMR when 8 bits

are used. This could be because JMI criterion has the best trade-off in terms of

stability and flexibility over other feature selection methods based on Information

Theory due to its nature (it balances the relevancy and redundancy terms and

includes the conditional redundancy) [26].
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Figure 5.3: TPR of the different reduced precision approaches using MIM.
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Figure 5.4: TPR of the different reduced precision approaches using JMI.
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Figure 5.5: TPR of the different reduced precision approaches using mRMR.
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5.4.2. Classification accuracy

After the feature selection process, and in order to estimate whether the reduced

precision in the feature selection process might affect classification, a study using

classifiers was carried out. At this point, it is necessary to clarify that including

classifiers in our experiments is likely to obscure the experimental observations re-

lated to feature selection performance using a limited number of bits, since they

include their own assumptions and particularities. Therefore, in these experiments,

we used a simple nearest neighbor algorithm (with number of neighbors k = 3) [3] as

classifier since it makes few assumptions about the data, and we avoid the need for

parameter tuning. To estimate the error rate we computed a 5-fold cross validation.

For evaluating the performance of the reduced precision approaches, we compared

the results obtained when using the ranking built with 4, 8, 16, 32 and 64 bits. Due

to the large number of results, some tables have been moved to Appendix B.

To explore the statistical significance of our classification results, we analyzed

the ranks of the reduced precision approaches by using a Friedman test with the Ne-

menyi post-hoc test. Figures 5.6, 5.7 and 5.8 present the critical difference diagrams,

introduced by Demšar [37], where groups of methods that are not significantly differ-

ent (at α = 0.10) are connected. As can be seen for the three different k top selected

features and JMI and mRMR methods, 64, 32 and 16 bits perform better on aver-

age but with no statistical significance over the reduced precisions approaches using

only 4 and 8 bits, with the exception of mRMR (Figure 5.8). In the case of MIM,

although there is no statistical significance over the reduced precisions approaches,

the best performance is not always achieved through versions with 16, 32 or 64 bits.

This could be because this last method assumes that each feature is independent of

all other features. However, where features may be interdependent, this is known to

be suboptimal. In general, it is widely accepted that a useful and parsimonious set of

features should not only be individually relevant, but also should not be redundant

with respect to each other [26].

In summary, these experiments demonstrate that with a small number of bits

the rankings change, but this variation does not affect significantly the classification

accuracy, since this measure is the ultimate form of evaluation of the goodness of a

feature ranking method.
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Figure 5.6: Critical difference diagrams showing the average ranks after applying
MIM on the four reduced precision approaches (4, 8, 16 and 32 bits) and the full
version (64 bits) for three different k-top selected features.
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Figure 5.7: Critical difference diagrams showing the average ranks after applying
JMI on the four reduced precision approaches (4, 8, 16 and 32 bits) and the full
version (64 bits) for three different k-top selected features.
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Figure 5.8: Critical difference diagrams showing the average ranks after applying
mRMR on the four reduced precision approaches (4, 8, 16 and 32 bits) and the full
version (64 bits) for three different k-top selected features.
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5.4.3. Case study: Dealing with noise in the inputs: LED

The LED dataset consists of correctly identifying seven LEDs that represent

numbers between 0 and 9. Some irrelevant features were added forming the Led-

500 dataset (493 irrelevant features). In order to make this dataset more complex,

different levels of noise in the inputs (6%, 10% and 20%) were added [34]. In this

manner, the tolerance to different levels of noise of the bit limited depth MI tested

will be checked. Note that, as the attributes take binary values, adding noise means

assigning to the relevant features an incorrect value. Besides, and unlike the Led-500

dataset used above, the number of samples was reduced to 10,000 so that its volume

does not affect the study of noise.

In this case study, we consider JMI as the feature selection method due to the

results obtained in Section 5.4.1. Figure 5.9 depicts detailed results of these experi-

ments. It is interesting to note that the presence of noise does not seem to influence

our limited bit depth MI, except in the case of 20% of noise and 5-top features. The

reduced precision approach was not able to achieve a 100% true positive rate using

just 8 bits.

With regard to the classification accuracy, it decreases as the level of noise in-

creases, as expected (Table 5.4). However, the results using 4 bits are somewhat

misleading. The 4-bit reduced precision version achieved better results in terms of

classification accuracy than other versions with a larger number of bits. This is

happening because—due to the high number of features of LED dataset and the

low values of mutual information (99% under 0.006, see Figure 5.10)—the reduced

precision approach does not get to sort the features by following the JMI criterion

and it returns the feature ranking following its order in the original dataset. And,

in this particular synthetic dataset, the classification task to be solved is described

by the first seven binary attributes.

5.4.4. Comparison with baseline method

As we mentioned above, Tschiatschek and Pernkopf [119] proposed Bayesian

Network classifiers when reducing the precision of the probability parameters. Since

mutual information also needs to estimate probabilities, our work was built upon
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Figure 5.9: TPR of the different reduced precision approaches using JMI over LED
dataset with different levels of noise (6%, 10% and 20%).

Table 5.4: Classification accuracy (%) and standard deviation for LED dataset with
different levels of noise (6%, 10% and 20%).

Top Noise #Bits
features (%) 4 8 16 32 64

5

0 100.00± 0.00 89.67± 0.00 89.67± 0.00 89.67± 0.00 89.67± 0.00
6 94.00± 0.00 84.16± 0.00 84.16± 0.00 84.16± 0.00 84.16± 0.00
10 90.00± 0.01 81.10± 0.01 81.10± 0.01 81.10± 0.01 81.10± 0.01
20 80.00± 0.01 64.52± 0.01 72.27± 0.01 72.27± 0.01 72.27± 0.01

10

0 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
6 94.00± 0.00 94.00± 0.00 94.00± 0.00 94.00± 0.00 94.00± 0.00
10 90.00± 0.00 90.00± 0.00 90.00± 0.00 90.00± 0.00 90.00± 0.00
20 80.00± 0.01 80.00± 0.01 80.00± 0.01 80.00± 0.01 80.00± 0.01

20

0 98.71± 0.00 98.93± 0.00 98.75± 0.00 98.79± 0.00 98.79± 0.00
6 92.52± 0.00 92.18± 0.01 92.33± 0.01 92.23± 0.01 92.23± 0.01
10 87.90± 0.00 87.85± 0.00 87.99± 0.01 87.84± 0.01 87.84± 0.01
20 76.65± 0.00 76.48± 0.00 76.39± 0.00 76.39± 0.00 76.39± 0.00
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Figure 5.10: Histogram of frequency distribution values of mutual information of
LED dataset.

this idea. In order to analyze Tschiatschek’s algorithm on the mutual information

measure, we generated synthetic data in the same way as in Section 5.3. The degree

of dependence with the target class in terms of mutual information was fixed to 0.1

and the number of samples to 10,000. All criteria need an estimate of the mutual

information between a feature or a feature set and the class variable, which is derived

from finite dataset. For that reason, the accuracy of the estimator plays a crucial role

in the ranking of features. To measure the accuracy we use the Mean Square Error

(MSE), which is calculated from the ground truth we know from artificial data. To

estimate MSE we averaged over 5000 runs. Both look up tables are calculated in

natural logarithm, so the returned units are “nats”.

Figure 5.11 compares Tschiatschek’s algorithm with our proposal in terms of

MSE. As can be seen, for the reduced precision approaches using only 4 and 8 bits,

Tschiatschek’s algorithm obtained high values of MSE while our proposed limited bit

mutual information method achieved values close to zero. Besides, we can observe

that with 16 and 32 bits both algorithms converge. It is necessary to clarify that

Tschiatschek and Pernkopf [119] performed their experiments using 10 bits. As we

aimed to explore the effect of the reduced precision with a small amount of bits,

we redefined this algorithm with the aim of achieving better performance for our

limited bit mutual information version.
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Figure 5.11: Comparing the performance of Tschiatschek’s algorithm with our
proposed reduced precision mutual information in terms of Mean Square Error,
I(X;Y ) = 0.1.

5.5. Summary

Since the development and commercialization of wearable technology is grow-

ing expansively, we have seen an opportunity to develop machine learning methods,

specifically feature selection algorithms, in computationally constrained platforms.

In this work we have proposed mutual information using reduced precision parame-

ters within a feature selection procedure. Experimental results over several synthetic

and real datasets have shown that 16 bits are sufficient to return the same feature

ranking than that of 64-bit representation. As a result, meaningful benefits will be

provided when implementing mutual information in embedded systems for on-device

analysis. Having on device machine learning has some tremendous profits regarding

privacy, reliability, efficient use of network bandwidth and power saving.

From the experiments carried out, we can draw some conclusions and make some

recommendations to the users:

Our reduced precision approach will not be adequate if there is a small distance

between the population values of the mutual information. Besides, the ranking

will be more unstable in the bottom of the list, where the features contain less

and less information.

When the number of features of the dataset increases, we will need more bits.

Nevertheless, it is important to note that our reduced precision approach was

designed to analyze user level data. If we are working in a big data scenario,
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data is probably collected from different users, and so it would be processed

either by more powerful central processors or distributed in different nodes by

further analysis.

Regarding the three feature selection methods used to test our limited bit

depth mutual information, we have found that JMI was the most stable. How-

ever, if we take into account the computational cost of these methods, MIM

seems to the most appropriate for this scenario.

With respect to the presence of noise, it does not seem to influence appreciably

our limited bit depth MI . In terms of classification accuracy, and as expected,

it decreases as the level of noise increases.





Chapter 6

Conclusions and Future Work

Data is growing at an unprecedented pace. With the variety, changing nature

and volume—both in number of samples and features—of data flowing through

networks, databases and IoT devices, it has become more and more difficult to find

patterns that lead to meaningful conclusions. At the same time, organizations need

to find ways to obtain some value from all of this data. This thesis is devoted to

reduce the complexity of machine learning methods in the current scenario.

In the present chapter we summarize the main contributions of the work carried

out in this thesis and provide some insights of future research directions.

Data complexity. Intrinsic characteristics extracted from the training data-

sets of classification problems have proven to be effective predictors. Among

them, data complexity measures can be used to identify data particularities

which imply some difficulty in separating the data points into their expected

classes—such as the shape of the decision class boundary, the amount of over-

lap among the classes, the proximity of two classes or the number of informa-

tive samples available for training. This information can reduce the complex-

ity of machine learning techniques, which can in turn be focused on challenges

highlighted by such characteristics of the problems. Our experimental results

for 21 microarray datasets demonstrated a correlation between several data

complexity measures and classification performance, thereby enabling conclu-

sions regarding the best classifiers for particular datasets. We also observed
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that feature selection and, specially the “Correlation-based Feature Selection”

filter, reduced the complexity of the data.

Besides, the task of choosing the appropriate classifier for a problem is not

an easy-to-solve question due to the high number of algorithms available be-

longing to different families. Most of these classification algorithms exhibit

a degradation in the performance when faced with many irrelevant and/or

redundant features. Thus, it would be interesting to analyze the impact of

feature selection in classification. We have already performed some prelim-

inary work in this research line, that will be published in an international

conference (ESANN 2020). In this study, the initial experimental results over

ten synthetic datasets showed that the significance of selecting a given clas-

sifier notably decreased after applying an appropriate preprocessing step. As

future research, we plan to extend this study to other scenarios including real

datasets, as well as analyzing the complexity reduction—through data com-

plexity measures—after feature selection has been performed.

Distributed learning. With the proliferation of large-scale data, researchers

must focus not only on the accuracy but also on the scalability of the existing

methods. Thus, a possible strategy is to distribute the learning task over a

number of nodes. In this distributed scenario, class probabilities can be shown

to be a weighted average of the individual class probabilities within each node.

These weights depend on the marginal probabilities of the instance over each

node and over the entire data set. In this work, two different approaches to ap-

proximate these weights were proposed. The first one was based on estimating

the distance between feature distributions between each node and the test set,

while the second one controlled the contribution of each instance of the test

set in order to minimize these distributional distances. The resulting learning

models exhibited interesting properties including that they worked with any

local classifier and did not require retraining the classifiers or sharing informa-

tion between individual nodes, thus conforming privacy-preserving methods.

The experimental results on several real and synthetic datasets reported bene-

fits in terms of classification accuracy, particularly when the second approach

was considered. Besides, we assessed the “class imbalance change” problem.

There are several topics related to our approach to be further considered. It
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will be interesting to check the usefulness of our approach to select one or a

small subset of nodes to perform the classification and evaluating whether a

significant degradation in accuracy is observed. Another future research direc-

tion involves the study of a linear-time approximation of the second approach.

Distributed feature selection. The big data explosion now has the added

problem of big dimensionality. Thus, similar to learning algorithms, we will

have to deal with scability if we apply feature selection to this new scenario.

The main goal was to distribute the feature selection process, expecting that

the execution time would be considerably shortened and the accuracy would

not degrade to poor values. Several proposals have been presented in Chapter

4, in an attempt to deal with both horizontal and vertical partitioning of the

data. The experimental results on several datasets demonstrated important

savings in runtime and satisfactory performance, since the classification ac-

curacy matched and in some cases even improved the results of the original

feature selection algorithms over the whole datasets.

While the initial findings are promising, further research is necessary. As future

research, we plan to partition the datasets by both instances and features

together, developing new strategies to combine the partial results from the

different partitions. We are considering possibilities for implementing this

method on Big Data platforms such as Spark [6] or Flink [4].

Feature selection under computational constraints. Different from the

distributed approach followed in the two previous chapters, in Chapter 5 we

focused on reducing the complexity of the feature selection task from the phi-

losophy of Edge Computing. Due to the proliferation of mobile computing

and Internet of Things devices, there is an urgent need to push the machine

learning frontiers to the network edge so as to fully unleash the potential of

the edge big data. Bearing this is mind, and the limitations in the compu-

tational capabilities of these devices, we have proposed mutual information

using reduced precision parameters within a feature selection procedure. To

test the adequacy of the proposed approach, we have implemented it in several

well-known feature selection algorithms, applied to a broad suite of synthetic

and real datasets. The obtained results demonstrated that low bit representa-

tions were sufficient to achieve performances close to that of double precision
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parameters and thus open the door for the use of feature selection in embedded

platforms that minimize the energy consumption and carbon emissions. As

future research, we plan to use our limited bit depth mutual information in a

Markov Blanket context.

As can be seen, this thesis covers a broad suite of problems arisen from the advent

of big data and the explosion of the Internet of Things. The proposed approaches

have demonstrated their capability to reduce the complexity of traditional machine

learning algorithms, and thus it is expected that the contribution of this thesis

will open the doors to the development of new machine learning methods that are

simpler, more robust, and more computationally efficient.

In addition to the future works that have been mentioned above, most of which

are already in progress, there are some other lines of research that we would like

to tackle. Another alternative solution to handle large-scale datasets is to apply

prototype reduction techniques [89]. The goal of this technique is to build a reduced

version of the training set that improves the accuracy of future predictions and

speeds up the execution of algorithms. Thus, it would be interesting to apply the

idea of measuring similarity between high dimensional distributions proposed in

Chapter 3 in prototype reduction techniques.

Finally, we plan to use our limited bit depth mutual information as preprocessing

step of some low precision classifiers since industry investment and research interest

in edge computing have grown dramatically in recent years. A relevant example

is that of the autonomous car, that it is estimated can generate 4TB of data per

day, with only the cameras transmitting between 30-40 Mbits/s to the system, and

adding the 10-100 Kbits/s of the radar. It is obvious that the car can not wait to

communicate with the cloud to obtain an answer, it is indispensable for the own

devices, and the car central computer to be able to analyze data—using both learning

and preprocessing methods—and respond to the needs of autonomous driving at all

times. Of course, the cloud will still remain important, as the information and

knowledge derived can be transferred so that the rest of cars can benefit from the

experience and results of the reaction to different events.
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6.1. Publications from the thesis

The contents of the present research have been published in the following spe-

cialized journals, conferences and book chapters:

Journal publications

L. Morán-Fernández, V. Bolón-Canedo and A. Alonso-Betanzos (2017). Cen-

tralized vs. distributed feature selection methods based on data complexity

measures. Knowledge-Based Systems, 117, 27-45. JCR Q1.

L. Morán-Fernández, V. Bolón-Canedo and A. Alonso-Betanzos (2017). Can

classification performance be predicted by complexity measures? A study

using microarray data. Knowledge and Information Systems, 51(3), 1067-

1090. JCR Q2.

P. Montero-Manso, L. Morán-Fernández, V. Bolón-Canedo, J. A. Vilar and A.

Alonso-Betanzos (2019). Distributed classification based on distances between
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JCR Q1.
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L. Morán-Fernández, K. Sechidis, V. Bolón-Canedo, A. Alonso-Betanzos and
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for portable embedded systems. Knowledge-Based Systems.

International conferences
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July). An insight on complexity measures and classification in microarray
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(pp. 1-8). IEEE.
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(pp. 245-254). Springer, Cham.
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Appendix A

Methods

This appendix describes the feature selection methods and classification algo-

rithms used in this thesis.

A.1. Feature selection methods

Feature selection methods have traditionally been categorized as filter, wrappers

and embedded methods. Filter methods are based on performance evaluation metric

calculated directly from the data, without direct feedback from predictors that will

finally be used on data with reduced number of features. As mentioned in Chapter 4,

we have used these algorithms since they are usually computationally less expensive

than wrappers or embedded methods. In this section, the filters used throughout

this thesis are described.

Correlation-based Feature Selection (CFS). This simple multivariate fil-

tering algorithm ranks feature subsets according to a correlation based heuris-

tic evaluation function [55]. The evaluation function is biased towards subsets

containing features that are highly correlated with the class and uncorrelated

with each other. Irrelevant features with low correlation with the class are

ignored. Redundant features are screened out as they would be highly corre-

lated with one or more of the remaining features. The acceptance of a feature
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depends on the extent to which it predicts classes in areas of the instance space

not already predicted by other features.

Consistency-based filter (CONS) [32]. This filter evaluates the worth of a

features subset according to consistency in class values when training samples

are projected onto the features subset. The algorithm generates a random

subset S from the number of features encountered in each round. If there are

fewer features in S than in the current best set, the data with the features

prescribed in S are checked against the inconsistency criterion and, if the in-

consistency rate is below a pre-specified threshold, S becomes the new current

best set.

INTERACT (INT) [130]. This algorithm is based on symmetrical uncer-

tainty (SU) and it also includes the consistency contribution. It consists of

two main parts. In the first part, the features are ranked in descending order

based on their SU values. In the second part, features are evaluated one by one

starting from the end of the ranked feature list. If the consistency contribu-

tion of a feature is less than an established threshold, the feature is removed,

otherwise it is selected.

Information gain (IG) [56]. This filter evaluates the features according to

their information gain and considers a single feature at a time. It provides an

orderly classification of all features, and then a threshold is required to select

a certain number of them according to the order obtained.

ReliefF [70]. This algorithm, an extension of the original Relief [68], adds

the ability of dealing with noisy, incomplete and multiclass datasets. The key

idea of this algorithm is to estimate features according to how well their values

distinguish among the instances that are near to each other. This method may

be applied in all situations, has low bias, includes iteration among features and

may capture local dependencies which other methods miss.

A.1.1. Information theory-based feature selection methods

Mutual Information Maximisation (MIM) [72]. This method ranks the

features by their MI score, and selects the top k features, where k is decided by
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some predefined need for a certain number of features or some other stopping

criterion.

MIM(Xk) = I(Xk;Y ) (A.1)

An important limitation is that this assumes that each feature is independent

of all other features and effectively ranks the features in descending order

of their MI content. Thus, this approach does not take into account the

redundancy between the features.

Joint Mutual Information (JMI) [129]. This method is focused on increas-

ing complementary information between features. The JMI score for feature

Xk is:

JMI(Xk) =
∑
Xj∈S

I(XkXj;Y ) (A.2)

This is the information between the targets and a joint random variable XkXj,

defined by pairing the candidate Xk with each feature previously selected. The

idea is if the candidate feature is “complementary” with existing features, we

should include it.

minimum Redundancy Maximum Relevance (mRMR) [96]. The multi-

variate filter selects features that have the highest relevance with the target

class and are also minimally redundant, i.e. it selects features that are maxi-

mally dissimilar to each other. Both optimization criteria (maximum-relevance

and minimum-redundancy) are based on mutual information. Let S denote

the subset of features we are seeking:

mRMR(Xk) = I(Xk;Y )−
∑
Xj∈S

I(XkXj;Y ) (A.3)

The mRMR criterion, like JMI, has a strong belief in the pairwise independence

assumptions as the feature set S grows.
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A.2. Classification algorithms

This section describes the most common classification algorithms which are used

along this thesis.

Naive Bayes (NB) [104]. This simple probabilistic classifier is based on ap-

plying Bayes’ theorem with strong (naive) independence assumptions. This

classifier assumes that the presence or absence of a particular feature is unre-

lated to the presence or absence of any other feature, given the class variable.

Support Vector Machine (SVM) [123]. This learning algorithm, used for

classification, regression and other tasks, was proposed by Vapnik. More for-

mally, a SVM constructs a hyperplane or set of hyperplanes in a high —or

finite— dimensional space. Intuitively, good separation is achieved by the hy-

perplane with the greatest distance to the nearest training data point of any

class (functional margin), since in general, the larger the margin, the lower the

generalization error of the classifier.

C4.5 [100]. This classifier was developed by Quinlan as an extension of the

ID3 algorithm (both are based on decision tree concepts). A decision tree

classifies a pattern by means of a descending filtering until is found a leaf,

that points to the corresponding classification. One of the improvements with

respect to ID3 is that C4.5 can deal with both numerical and symbolic data.

k-Nearest Neighbor (k-NN) [3]. This classification strategy is an example

of a “lazy learner”. An object is classified by majority vote of its neighbors

and is assigned to the most common class among its k nearest neighbors. If

k = 1, then the object is simply assigned to the class of that single nearest

neighbor. This method is more adequate for numerical data, although it can

also deal with discrete values.

Random Forest (RF) [24]. Random forests are a combination of random

trees, which are decision trees generated in a specific way to obtain diversity

among the trees. Each random tree is trained on a bootstrap replicate, i.e.,

a example obtained from n training samples by randomly selecting n samples

with replacement. This procedure is referred to as “bagging”. Besides, only a
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randomly selected subset of the available features is considered when choosing

each interior split. The samples that were missing in the bootstrap replicate,

for a specific tree, are said to be out-of-bag for that tree.

Fisher’s linear discriminant (LDA) [44]. Fisher’s linear discriminant is

perhaps the oldest classification method in the literature and yet is still being

used in modern applications. LDA was originally suggested by Fisher where

the basic idea was to find an optimal linear projection of the data in which the

optimality measure is the ratio of the between-class variance to the within-class

variance on the projected data.

eXtreme Gradient Boosting (XGB) [29]. XGB is a boosting tree algorithm

that is an enhancement over tree bagging methodologies. The basic philoso-

phy of bagging is based on combining three concepts: (i) creation of multiple

datasets; (ii) building of multiple trees and (iii) bootstrap aggregation or bag-

ging. It adopts a divide-and-conquer approach to capture non-linearities in

the data and perform pattern recognition. Its core principle is that a group of

“weak learner” combined, can form a “strong predictor” model.

Multinomial logistic regression (Mult). This algorithm is an extension of

the logistic regression for multiclass classification tasks.





Appendix B

Supplementary material

This appendix reports the experimental results achieved in this thesis.

Regarding Chapter 3, the same numerical analysis performed in Section 3.4.2

with the accuracy values has been carried out for recall and precision values, two

alternative performance measures. The attained results are shown in this Appendix

B. In the case of binary classification, recall measures the effectiveness of a clas-

sifier to identify correctly classified positive instances (sensitivity), while precision

evaluates the class agreement of the instance labels with the positive labels given

by the classifier. One possible way to extend these concepts to the multi-class clas-

sification task is to obtain the averages of these measures calculated over all the

classes {C1, . . . , Cm}. This generalization approach is known by macro-averaging

[113]. This way, we have

Precision =
1

m

m∑
i=1

tpi
tpi + fpi

,

Recall =
1

m

m∑
i=1

tpi
tpi + fni

,

with m the number of classes in the dataset, and tpi denoting the number of true

positive for Ci, and fpi and fni the false positive and false negative counts, respec-

tively.
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The results attained for these alternative criteria are displayed below, using the

same scheme of tables and figures as in Section 3.4.2 for accuracy. It can be seen

that very similar results are also obtained, thus supporting the main conclusions of

our work.

Table B.1: Average recall values conditional on classifier type.

Classifier

Model RF SVM XGB LDA Mult

BALANCED
pNW 0.7154 0.5912 0.6991 0.5788 0.6128
pIW 0.7240 0.5968 0.7079 0.5846 0.6211
UW 0.7197 0.5935 0.7031 0.5788 0.6109

UNBALANCED
pNW 0.7029 0.5890 0.6926 0.5777 0.6093
pIW 0.7154 0.6008 0.7063 0.5915 0.6247
UW 0.7094 0.5869 0.6998 0.5797 0.6078

MEAN
pNW 0.7091 0.5901 0.6959 0.5783 0.6110
pIW 0.7197 0.5988 0.7071 0.5880 0.6229
UW 0.7146 0.5902 0.7015 0.5792 0.6094
ND 0.7676 0.6794 0.7477 0.6418 0.6515
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Figure B.1: Recall-based interaction plot to check the joint effect of classifier, learn-
ing model and scenario.

Table B.2: Average recall values conditional on the decision rules.

Decision rule

Model MAJ MAX MIN PROD SUM Mean

BALANCED
pNW 0.6505 0.6291 0.6237 0.6401 0.6539 0.6395
pIW 0.6633 0.6506 0.6119 0.6399 0.6687 0.6469
UW 0.6507 0.6323 0.6262 0.6402 0.6567 0.6412
Mean 0.6548 0.6374 0.6206 0.6401 0.6598 0.6425

UNBALANCED
pNW 0.6493 0.6245 0.6060 0.6353 0.6564 0.6343
pIW 0.6733 0.6582 0.5895 0.6351 0.6826 0.6478
UW 0.6527 0.6257 0.6086 0.6353 0.6613 0.6367
Mean 0.6584 0.6362 0.6014 0.6353 0.6668 0.6396

ND — — — — — 0.6976
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Figure B.2: Average recall values aggregated by decision rules. The horizontal red
line indicates the average recall for the ND model.

Table B.3: Average precision values conditional on classifier type.

Classifier

Model RF SVM XGB LDA Mult

BALANCED
pNW 0.7016 0.5631 0.6896 0.5833 0.6118
pIW 0.7113 0.5723 0.6989 0.5895 0.6200
UW 0.7060 0.5665 0.6935 0.5818 0.6103

UNBALANCED
pNW 0.6875 0.5577 0.6827 0.5815 0.6098
pIW 0.7001 0.5760 0.6956 0.5948 0.6249
UW 0.6929 0.5569 0.6879 0.5819 0.6090

MEAN
pNW 0.6945 0.5604 0.6862 0.5824 0.6108
pIW 0.7057 0.5741 0.6973 0.5922 0.6224
UW 0.6994 0.5617 0.6907 0.5819 0.6097
ND 0.7516 0.6586 0.7392 0.6405 0.6496
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Figure B.3: Average recall as function of the partition size. The horizontal red lines
indicate the average recall for the ND model.
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Figure B.4: Average recall as function of the partition size for each data set. The
horizontal blue lines indicate the average recall for the ND model.

Table B.4: Average precision values conditional on the decision rules.

Decision rule

Model MAJ MAX MIN PROD SUM Mean

BALANCED
pNW 0.6392 0.6239 0.6145 0.6282 0.6436 0.6299
pIW 0.6550 0.6459 0.6030 0.6280 0.6601 0.6384
UW 0.6408 0.6266 0.6166 0.6283 0.6459 0.6316
Mean 0.6450 0.6321 0.6113 0.6282 0.6499 0.6333

UNBALANCED
pNW 0.6378 0.6193 0.5945 0.6226 0.6451 0.6238
pIW 0.6637 0.6531 0.5799 0.6224 0.6724 0.6383
UW 0.6420 0.6178 0.5985 0.6226 0.6477 0.6257
Mean 0.6478 0.6300 0.5910 0.6225 0.6551 0.6293

ND — — — — — 0.6879
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Figure B.5: Precision-based interaction plot to check the joint effect of classifier,
learning model and scenario.
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Figure B.6: Average precision values aggregated by decision rules. The horizontal
red line indicates the average precision for the ND model.
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Figure B.7: Average precision as function of the partition size. The horizontal red
lines indicate the average precision for the ND model.
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Figure B.8: Average precision as function of the partition size for each data set.
The horizontal blue lines indicate the average precision for the ND model.
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In relation to Chapter 4, Tables B.5, B.6, B.7 and B.8 depict classification ac-

curacy for horizontal and vertical partitioning, respectively. Tables B.9 and B.10

show classification accuracy rates achieved by the vertical distributed approach D-F1

including a certain level of overlap in the packets.

Table B.5: Test classification accuracy achieved by the centralized and distributed
approaches of horizontal partitioning using C4.5 and NB algorithms, α = 0.75.

Connect4 Isolet Madelon Ozone Spambase Mnist

C
4
.5

CFS

C 61.22 81.59 80.50 97.63 81.16 86.99
D-F1 61.25 81.53 80.62 96.09 79.73 88.55
D-F2 61.72 56.45 80.63 96.45 79.73 88.80
D-N2 62.36 81.85 79.63 97.16 79.73 88.80

INT

C 60.48 78.96 80.63 96.92 78.16 87.24
D-F1 61.25 79.35 80.62 96.92 80.44 88.45
D-F2 61.66 79.35 80.05 97.75 80.05 88.36
D-N2 62.72 78.77 80.63 96.69 80.05 88.36

Cons

C 60.49 56.00 80.63 98.70 84.62 87.00
D-F1 61.25 72.87 80.62 97.75 85.27 89.46
D-F2 61.66 66.71 80.63 98.70 80.83 89.06
D-N2 62.72 65.43 80.63 98.70 80.83 89.06

IG

C 63.90 81.40 72.75 98.22 83.83 87.83
D-F1 62.27 79.41 80.62 97.87 81.68 87.77
D-F2 62.27 76.39 80.63 97.75 85.40 87.77
D-N2 62.09 77.29 79.63 97.75 85.40 87.77

ReliefF

C 63.49 79.54 73.88 98.11 78.81 87.34
D-F1 63.00 81.53 84.12 95.98 84.88 88.06
D-F2 63.00 65.30 84.13 98.60 84.22 88.09
D-N2 60.26 80.50 84.13 98.46 84.22 88.09

N
B

CFS

C 60.28 75.05 71.75 78.22 57.69 71.88
D-F1 58.83 75.30 70.50 77.63 58.87 73.49
D-F2 60.56 45.35 70.50 72.54 58.87 73.70
D-N2 56.73 74.66 70.63 72.90 58.87 73.70

INT

C 53.85 71.26 70.00 78.22 57.95 70.94
D-F1 58.83 69.60 70.00 76.21 78.42 71.30
D-F2 59.16 69.98 70.00 80.71 61.73 71.35
D-N2 55.85 69.85 70.00 75.27 61.73 71.35

Cons

C 54.12 42.78 70.00 98.70 91.00 72.78
D-F1 58.83 64.91 70.00 98.46 92.05 74.61
D-F2 59.16 52.73 70.00 98.70 91.00 73.33
D-N2 55.85 48.49 70.00 98.70 91.00 73.33

IG

C 60.42 69.34 70.38 74.08 76.53 70.74
D-F1 60.20 66.77 70.50 78.46 66.95 68.07
D-F2 60.20 60.62 70.50 77.99 90.35 68.07
D-N2 57.27 66.45 70.63 74.67 90.35 68.07

ReliefF

C 60.42 62.67 68.63 71.36 41.85 69.82
D-F1 60.50 53.69 72.25 66.86 92.05 70.89
D-F2 60.50 33.42 72.25 59.41 92.51 70.86
D-N2 59.11 53.18 72.25 57.63 92.50 70.86
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Table B.6: Test classification accuracy achieved by the centralized and distributed
approaches of horizontal partitioning using kNN and SVM algorithms, α = 0.75.

Connect4 Isolet Madelon Ozone Spambase Mnist

k
N
N

CFS

C 53.90 56.00 85.63 96.45 79.14 87.93
D-F1 53.68 54.65 88.50 94.56 79.92 91.57
D-F2 52.76 52.21 88.50 94.79 79.92 91.87
D-N2 59.67 57.92 86.13 94.20 79.92 91.87

INT

C 58.27 52.92 88.75 94.44 79.73 86.87
D-F1 53.68 50.42 88.75 94.79 76.92 91.72
D-F2 57.61 53.18 88.75 98.70 76.79 93.74
D-N2 60.77 53.43 88.75 93.37 76.34 91.71

Cons

C 58.06 49.90 88.75 98.70 80.83 87.36
D-F1 53.68 57.41 88.75 95.50 76.79 95.14
D-F2 57.61 65.81 88.75 98.70 76.79 93.75
D-N2 60.77 62.73 88.75 91.60 76.79 93.74

IG

C 51.29 54.78 74.25 95.98 78.62 89.63
D-F1 54.52 61.83 88.50 94.79 77.71 90.97
D-F2 54.52 62.16 88.50 93.85 78.03 90.97
D-N2 58.89 63.05 86.13 94.67 78.03 90.97

ReliefF

C 61.81 59.14 75.25 95.98 76.99 89.97
D-F1 57.01 55.93 88.38 96.33 80.18 91.77
D-F2 57.01 50.42 88.38 95.62 82.72 91.19
D-N2 56.67 55.23 88.38 96.09 82.72 91.19

S
V
M

CFS

C 60.42 83.54 66.50 98.70 85.85 79.58
D-F1 60.42 82.30 66.75 98.70 85.46 81.49
D-F2 60.42 42.85 66.75 98.70 85.46 81.81
D-N2 60.42 82.75 67.13 98.70 85.46 81.81

INT

C 60.42 73.83 66.38 98.70 80.31 78.54
D-F1 60.42 75.18 66.38 98.70 81.10 80.87
D-F2 60.42 75.50 66.38 98.70 81.88 81.01
D-N2 60.42 74.54 66.38 98.70 81.88 81.01

Cons

C 60.42 31.17 66.38 98.70 81.88 74.14
D-F1 60.42 60.49 66.38 98.70 81.16 80.52
D-F2 60.42 41.31 66.38 98.70 80.38 79.49
D-N2 60.42 33.93 66.38 98.70 80.38 79.15

IG

C 60.42 82.94 67.13 98.70 83.83 78.28
D-F1 60.42 80.12 66.75 98.70 83.38 79.15
D-F2 60.42 71.91 66.75 98.70 83.51 79.15
D-N2 60.42 79.79 67.13 98.70 83.51 79.15

ReliefF

C 60.42 84.61 67.50 98.70 81.94 75.43
D-F1 60.42 81.98 67.25 98.70 83.77 75.86
D-F2 60.42 66.90 67.25 98.70 85.59 75.67
D-N2 60.42 80.56 67.25 98.70 85.60 75.67
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Table B.7: Test classification accuracy achieved by the centralized and distributed
approaches of vertical partitioning using C4.5 and NB algorithms, α = 0.75.

Isolet Madelon Mnist Breast Gli85 CLL-SUB-111 Lung cancer 11-Tumors

C
4
.5

CFS

C 80.61 73.34 85.36 68.42 75.86 59.46 77.94 53.45
D-F1 83.90 79.63 87.07 73.68 75.86 67.57 83.82 60.34
D-F2 82.68 72.75 86.85 73.68 75.86 67.57 83.82 67.24
D-N2 83.51 80.50 86.89 73.68 75.86 62.16 83.82 65.52

INT

C 76.76 77.94 84.77 78.95 75.86 59.46 77.94 58.62
D-F1 79.99 74.38 89.14 73.68 75.86 72.97 75.00 67.24
D-F2 73.51 78.50 89.93 73.68 75.86 56.76 79.41 60.34
D-N2 80.12 80.63 89.41 73.86 75.86 67.57 85.29 65.52

Cons

C 54.04 78.39 85.40 68.42 82.76 72.97 83.82 46.55
D-F1 79.79 77.75 86.31 78.95 75.86 70.27 76.47 63.79
D-F2 60.81 73.13 84.63 73.68 75.86 62.16 76.47 63.79
D-N2 79.03 80.63 89.31 73.68 75.86 70.27 80.88 62.07

IG

C 79.00 79.63 86.69 52.63 75.86 62.16 86.76 56.90
D-F1 82.23 79.63 88.80 73.68 75.86 70.27 82.35 65.52
D-F2 82.49 72.75 88.66 73.68 75.86 62.16 82.35 65.52
D-N2 81.98 80.50 88.60 73.68 75.86 62.16 83.82 67.24

ReliefF

C 79.02 82.93 85.59 73.68 75.86 72.97 88.24 60.34
D-F1 84.41 69.50 89.70 52.63 75.86 72.97 82.35 65.52
D-F2 83.32 69.38 88.17 57.89 75.86 62.16 82.35 63.79
D-N2 84.73 84.38 87.76 57.89 75.86 62.16 85.29 67.24

N
B

CFS

C 72.44 69.94 72.18 36.84 86.21 64.86 92.65 84.48
D-F1 76.78 70.63 70.24 36.84 82.76 59.46 95.59 82.76
D-F2 75.95 70.38 70.62 36.84 82.76 59.46 95.59 82.76
D-N2 75.75 71.75 69.71 36.84 86.21 62.16 95.59 81.03

INT

C 67.17 69.73 69.87 36.84 86.21 67.57 94.12 82.76
D-F1 73.00 67.75 71.11 36.84 86.21 64.86 94.12 82.76
D-F2 67.16 68.13 72.61 36.84 86.21 70.27 94.12 81.03
D-N2 72.61 70.50 72.51 36.84 86.21 59.46 92.65 81.03

Cons

C 40.19 69.81 71.78 36.84 82.76 70.27 85.29 58.62
D-F1 68.51 67.25 73.04 36.84 86.21 67.58 91.18 86.21
D-F2 44.52 68.00 73.50 36.84 86.21 62.16 92.65 84.48
D-N2 67.48 70.50 74.21 36.84 79.31 64.86 94.12 84.48

IG

C 69.62 69.78 68.80 36.84 79.31 70.27 88.23 86.21
D-F1 70.24 70.63 69.61 36.84 82.76 64.86 91.18 82.76
D-F2 71.52 70.38 69.35 36.84 82.76 62.16 91.18 82.76
D-N2 70.05 71.75 71.06 36.84 86.21 67.57 91.18 84.48

ReliefF

C 64.67 69.64 69.58 84.21 86.21 62.16 88.24 75.86
D-F1 70.69 67.50 71.08 84.21 82.76 70.27 91.18 82.76
D-F2 70.36 68.38 69.21 89.47 82.76 59.46 91.18 82.76
D-N2 69.17 69.75 69.40 84.21 82.76 70.27 91.18 81.03
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Table B.8: Test classification accuracy achieved by the centralized and distributed
approaches of vertical partitioning using KNN and SVM algorithms, α = 0.75.

Isolet Madelon Mnist Breast Gli85 CLL-SUB-111 Lung cancer 11-Tumors

k
N
N

CFS

C 55.63 68.86 86.34 63.16 75.86 72.97 95.59 89.66
D-F1 60.81 86.13 87.56 78.95 86.21 72.97 95.59 82.76
D-F2 56.25 74.25 87.68 78.95 86.21 75.68 94.12 84.48
D-N2 61.32 85.63 86.92 73.68 86.21 72.97 94.12 84.48

INT

C 46.88 72.95 85.04 52.63 79.31 62.16 94.12 87.93
D-F1 51.44 76.00 93.24 84.21 86.21 67.57 95.59 84.48
D-F2 50.99 80.88 94.03 78.95 86.21 75.68 95.59 84.48
D-N2 49.78 88.50 94.07 73.68 86.21 72.97 92.65 82.76

Cons

C 53.05 75.04 85.42 47.37 82.76 75.68 83.82 55.17
D-F1 63.44 71.25 89.09 73.68 86.21 72.97 94.12 87.93
D-F2 57.86 76.00 87.17 63.16 86.21 67.57 92.65 86.21
D-N2 61.00 88.50 95.58 78.95 86.21 67.57 94.12 82.76

IG

C 53.94 78.07 89.35 68.42 89.66 62.16 95.59 82.76
D-F1 55.36 86.13 92.64 78.95 86.21 75.68 97.06 84.48
D-F2 56.45 74.25 92.62 78.95 86.21 72.97 97.06 82.76
D-N2 55.10 85.63 92.43 78.95 86.21 70.27 95.59 84.48

ReliefF

C 56.69 89.32 89.27 73.68 82.76 75.68 95.59 82.76
D-F1 60.87 69.75 94.00 73.68 82.76 83.78 94.12 82.76
D-F2 60.55 67.75 91.22 89.47 82.76 83.78 94.12 82.76
D-N2 58.69 90.25 90.92 78.95 82.76 67.57 94.12 82.76

S
V
M

CFS

C 82.36 65.23 80.15 68.42 86.21 72.97 94.12 89.66
D-F1 85.44 67.13 78.82 78.95 86.21 67.57 98.53 87.93
D-F2 84.16 67.13 78.60 78.95 86.21 64.87 97.06 87.93
D-N2 84.67 66.50 78.36 63.16 86.21 62.16 97.06 87.93

INT

C 72.53 65.01 78.44 73.68 86.21 67.57 94.12 86.21
D-F1 83.07 67.00 78.77 78.95 86.21 72.97 98.53 87.93
D-F2 68.76 66.88 79.90 78.95 86.21 67.57 98.53 87.93
D-N2 78.06 66.75 79.59 63.16 86.21 67.58 98.53 89.66

Cons

C 29.29 65.04 74.42 31.59 89.66 62.16 79.41 48.28
D-F1 69.47 67.00 76.07 78.95 86.21 70.27 97.06 86.21
D-F2 33.80 67.00 76.03 78.95 86.21 70.27 94.12 87.93
D-N2 69.53 66.75 78.69 78.95 82.76 67.57 94.12 89.66

IG

C 81.09 65.90 78.60 78.95 86.21 64.85 95.59 84.48
D-F1 85.12 67.13 79.85 78.95 86.21 72.97 97.06 86.21
D-F2 85.76 67.13 80.07 78.95 86.21 70.27 97.06 84.48
D-N2 85.63 66.50 79.82 73.68 86.21 64.86 98.53 86.21

ReliefF

C 81.92 66.40 74.93 63.16 86.21 75.78 95.59 82.76
D-F1 86.27 67.00 77.02 68.42 86.21 75.68 97.06 86.21
D-F2 86.27 66.88 75.18 78.95 86.21 78.38 95.59 89.66
D-N2 85.70 67.25 74.02 73.68 86.21 72.97 95.59 89.66
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Table B.9: Test classification accuracy achieved by the vertical distributed approach
D-F1 with overlap using C4.5 and NB algorithms, α = 0.75.

Isolet Madelon Mnist Breast Gli85 CLL-SUB-111 Lung cancer 11-Tumors

C
4
.5

CFS
5% 84.86 79.88 86.57 78.95 75.86 72.97 83.82 63.79
10% 84.16 79.13 87.93 73.68 75.86 72.97 86.76 60.35
15% 83.45 79.88 86.17 73.68 75.86 81.08 88.24 63.79

INT
5% 76.52 80.25 88.70 73.68 75.86 72.97 82.35 62.07
10% 79.28 80.25 90.71 73.68 75.86 67.57 76.47 62.07
15% 76.72 80.25 87.77 73.68 75.86 78.38 85.29 58.62

Cons
5% 79.03 80.25 87.06 63.16 82.76 72.97 83.82 53.45
10% 77.42 80.25 88.72 52.63 79.31 67.57 80.88 70.69
15% 73.83 80.25 86.22 63.16 75.86 78.38 83.82 60.34

IG
5% 80.69 72.63 88.88 63.16 75.86 67.57 82.35 62.07
10% 82.94 72.75 88.68 63.16 75.86 62.16 82.35 65.52
15% 81.40 72.63 87.53 63.16 75.86 67.57 86.76 65.52

ReliefF
5% 82.36 70.88 88.57 84.21 75.86 67.58 82.35 62.07
10% 80.31 70.50 90.31 52.63 75.86 70.27 82.35 67.24
15% 79.47 71.88 88.15 68.42 75.86 81.08 82.35 65.52

N
B

CFS
5% 75.75 71.38 68.02 36.84 86.21 59.46 94.12 84.48
10% 75.56 71.63 69.47 36.84 86.21 64.86 94.12 84.48
15% 73.70 71.38 67.98 36.84 82.76 64.86 94.12 84.48

INT
5% 66.71 70.38 73.09 36.84 86.21 72.97 94.12 84.48
10% 72.61 69.63 72.53 36.84 79.31 70.27 94.12 86.21
15% 65.11 70.38 75.77 36.84 82.76 78.38 94.12 87.93

Cons
5% 65.94 70.38 71.40 36.84 72.97 72.97 89.71 77.59
10% 72.42 69.63 74.15 36.84 75.86 70.27 88.24 81.03
15% 51.70 70.38 69.33 36.84 75.86 75.68 89.71 82.79

IG
5% 69.79 70.75 68.68 36.84 82.76 56.76 91.18 84.48
10% 71.58 70.13 70.99 36.84 82.76 62.16 91.18 84.48
15% 70.56 70.75 69.27 36.84 82.76 62.16 92.65 84.48

ReliefF
5% 67.54 67.75 71.44 42.11 79.31 64.86 89.71 82.76
10% 63.31 67.25 72.20 42.11 82.76 64.86 91.18 84.48
15% 60.17 67.63 72.82 42.11 82.76 67.57 89.71 86.21
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Table B.10: Test classification accuracy achieved by the vertical distributed ap-
proach D-F1 with overlap using kNN and SVM algorithms, α = 0.75.

Isolet Madelon Mnist Breast Gli85 CLL-SUB-111 Lung cancer 11-Tumors

k
N
N

CFS
5% 58.95 76.75 87.25 78.95 86.21 72.97 94.12 84.48
10% 59.72 76.00 89.42 73.68 86.21 72.97 94.12 86.21
15% 61.13 76.75 86.66 68.42 82.76 72.97 97.06 86.21

INT
5% 52.98 79.00 93.56 57.89 86.21 62.16 95.59 84.48
10% 47.92 76.63 96.39 73.68 86.21 62.16 95.59 87.93
15% 53.11 79.00 91.38 63.16 86.42 64.86 95.59 81.03

Cons
5% 47.59 79.00 93.41 68.42 86.21 62.16 94.12 63.79
10% 42.14 76.63 93.61 68.42 86.21 59.46 94.12 67.24
15% 50.35 79.00 90.65 68.42 86.21 64.86 88.24 63.79

IG
5% 55.55 70.50 92.95 63.16 86.21 62.16 97.06 82.76
10% 54.07 67.50 93.17 68.42 86.21 67.57 94.12 84.48
15% 53.95 70.50 90.88 68.42 86.21 67.57 95.59 84.48

ReliefF

5% 59.72 69.13 91.88 73.68 86.21 72.97 94.12 86.21
10% 57.86 68.00 94.97 78.95 86.21 78.38 95.59 84.48
15% 57.86 66.00 93.38 78.95 86.21 72.97 95.59 86.21

S
V
M

CFS
5% 85.63 66.63 79.16 78.95 86.21 67.57 97.06 87.93
10% 84.67 66.75 79.68 68.42 86.21 72.97 98.53 84.48
15% 84.54 66.63 78.28 84.21 86.21 75.68 97.06 84.48

INT
5% 72.23 66.75 78.82 78.95 86.21 70.27 97.06 84.48
10% 79.41 66.63 82.97 73.68 86.21 75.68 98.53 89.66
15% 70.37 66.75 78.95 78.95 86.21 70.27 97.06 89.66

Cons
5% 77.55 66.75 76.64 57.89 89.66 70.27 94.12 75.86
10% 75.37 66.63 78.43 57.89 86.21 70.27 95.59 81.03
15% 61.51 66.75 75.37 57.89 89.66 67.57 95.59 79.31

IG
5% 85.89 66.88 79.90 68.42 82.76 70.27 97.06 86.21
10% 85.18 66.88 79.96 63.16 86.21 67.57 97.06 84.48
15% 83.13 66.88 79.02 68.42 82.76 67.57 98.53 84.48

ReliefF
5% 85.44 67.88 75.80 63.16 86.21 78.38 95.59 89.66
10% 84.67 68.38 78.33 68.42 86.21 75.68 97.06 87.93
15% 83.98 67.75 75.60 78.95 86.21 72.97 95.59 87.93
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With regard to Chapter 5, Tables B.11, B.12 and B.13 depict the classification

accuracy (%) and standard deviation for the MIM, JMI and mRMR feature selection

methods, respectively.

Table B.11: Classification accuracy (%) and standard deviation for MIM method.

Top Dataset #Bits
features 4 8 16 32 64

5

Congress 92.64± 0.03 94.25± 0.01 94.02± 0.02 94.02± 0.02 94.02± 0.02
Waveform 71.54± 0.01 69.46± 0.01 68.30± 0.01 68.30± 0.01 68.30± 0.01
Connect-4 71.81± 0.00 69.42± 0.00 71.97± 0.00 71.97± 0.00 71.97± 0.00
Splice 89.32± 0.01 88.25± 0.01 88.2± 0.01 88.25± 0.01 88.25± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 79.83± 0.00 79.83± 0.00 79.83± 0.00 79.83± 0.00 79.83± 0.00
GISETTE 89.65± 0.01 86.75± 0.01 84.10± 0.01 84.10± 0.01 84.10± 0.01
Arcene 72.50± 0.04 81.00± 0.07 76.00± 0.04 76.00± 0.04 76.00± 0.04

10

Congress 91.95± 0.02 93.10± 0.02 93.10± 0.02 93.10± 0.02 93.10± 0.02
Waveform 79.80± 0.02 78.66± 0.02 78.66± 0.02 78.66± 0.02 78.66± 0.02
Connect-4 74.72± 0.01 74.32± 0.01 76.55± 0.01 76.55± 0.01 76.55± 0.01
Splice 84.38± 0.01 86.30± 0.01 86.55± 0.01 86.55± 0.01 86.55± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 92.17± 0.00 90.17± 0.00 90.68± 0.00 90.68± 0.00 90.68± 0.00
Arcene 73.50± 0.05 80.00± 0.05 81.00± 0.02 81.00± 0.02 81.00± 0.02

20

Waveform 80.12± 0.01 79.32± 0.01 80.06± 0.01 80.06± 0.01 80.06± 0.01
Connect-4 78.51± 0.01 76.56± 0.00 77.76± 0.00 77.76± 0.00 77.76± 0.00
Splice 79.05± 0.02 79.09± 0.01 78.99± 0.01 78.99± 0.01 78.99± 0.01
CorrAL-100 97.75± 0.00 97.81± 0.00 97.74± 0.00 97.74± 0.00 97.74± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 93.42± 0.01 91.40± 0.01 91.47± 0.00 91.47± 0.00 91.47± 0.00
Arcene 78.50± 0.05 81.50± 0.06 83.50± 0.04 83.50± 0.04 83.50± 0.04
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Table B.12: Classification accuracy (%) and standard deviation for JMI method.

Top Dataset #Bits
features 4 8 16 32 64

5

Congress 90.80± 0.00 93.79± 0.00 95.86± 0.00 95.86± 0.00 95.86± 0.00
Waveform 60.74± 0.00 75.08± 0.00 75.26± 0.00 75.26± 0.00 75.26± 0.00
Connect-4 89.10± 0.00 88.44± 0.00 88.44± 0.00 88.44± 0.00 88.44± 0.00
Splice 89.10± 0.00 88.44± 0.00 88.44± 0.00 88.44± 0.00 88.44± 0.00
CorrAL-100 90.62± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 89.95± 0.00 89.95± 0.00 89.95± 0.00 89.95± 0.00 89.95± 0.00
GISETTE 85.88± 0.00 89.23± 0.00 91.38± 0.00 91.38± 0.00 91.38± 0.00
Arcene 78.50± 0.05 83.00± 0.05 83.00± 0.05 83.00± 0.05 83.00± 0.05

10

Congress 92.41± 0.02 95.17± 0.02 94.25± 0.02 94.25± 0.02 94.25± 0.02
Waveform 66.04± 0.01 79.94± 0.00 79.94± 0.00 79.94± 0.00 79.94± 0.00
Connect-4 71.37± 0.01 75.96± 0.01 76.49± 0.01 76.49± 0.01 76.49± 0.01
Splice 85.38± 0.01 87.05± 0.01 87.02± 0.01 87.02± 0.01 87.02± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 91.25± 0.00 90.28± 0.01 92.67± 0.01 92.67± 0.01 92.67± 0.01
Arcene 79.00± 0.08 80.50± 0.11 80.50± 0.11 80.50± 0.11 80.50± 0.11

20

Waveform 72.84± 0.01 80.04± 0.01 79.92± 0.01 79.92± 0.01 79.92± 0.01
Connect-4 77.90± 0.00 77.66± 0.00 78.41± 0.00 78.41± 0.00 78.41± 0.00
Splice 80.03± 0.01 79.05± 0.01 79.34± 0.01 79.34± 0.01 79.34± 0.01
CorrAL-100 97.80± 0.00 97.68± 0.00 97.76± 0.00 97.68± 0.00 97.68± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 93.57± 0.00 93.57± 0.00 93.72± 0.00 93.72± 0.00 93.72± 0.00
Arcene 77.50± 0.07 83.00± 0.09 83.00± 0.09 83.00± 0.09 83.00± 0.09
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Table B.13: Classification accuracy (%) and standard deviation for mRMR method.

Top Dataset #Bits
features 4 8 16 32 64

5

Congress 94.02± 0.02 94.71± 0.02 94.71± 0.02 94.71± 0.02 94.71± 0.02
Waveform 71.24± 0.01 73.44± 0.02 76.26± 0.01 76.26± 0.01 76.26± 0.01
Connect-4 69.39± 0.00 69.51± 0.00 70.74± 0.00 70.74± 0.00 70.74± 0.00
Splice 87.97± 0.01 89.20± 0.01 87.99± 0.01 87.97± 0.01 87.97± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 89.95± 0.00 89.95± 0.00 89.95± 0.00 89.95± 0.00 89.95± 0.00
GISETTE 84.82± 1.21 87.87± 0.97 89.63± 0.72 89.63± 0.72 89.63± 0.72
Arcene 70.50± 0.04 76.50± 0.06 76.50± 0.06 76.50± 0.06 76.50± 0.06

10

Congress 99.07± 0.03 99.05± 0.02 99.05± 0.02 99.05± 0.02 99.05± 0.02
Waveform 77.78± 0.01 78.88± 0.016 79.74± 0.01 79.74± 0.01 79.74± 0.01
Connect-4 70.84± 0.00 71.35± 0.00 72.61± 0.00 72.61± 0.00 72.61± 0.00
Splice 84.50± 0.01 86.80± 0.01 86.80± 0.01 86.80± 0.015 86.80± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 100.00± 0.00 100.000± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 89.42± 0.65 90.47± 0.52 91.65± 0.70 91.65± 0.70 91.65± 0.70
Arcene 69.00± 0.04 75.00± 0.08 75.00± 0.08 75.00± 0.08 75.00± 0.08

20

Waveform 78.16± 0.01 80.08± 0.01 80.08± 0.01 80.08± 0.01 80.08± 0.01
Connect-4 73.16± 0.00 71.98± 0.00 74.18± 0.00 74.18± 0.00 74.18± 0.00
Splice 77.51± 0.02 79.31± 0.01 79.18± 0.01 79.18± 0.01 79.18± 0.01
CorrAL-100 97.72± 0.00 97.68± 0.00 97.77± 0.00 97.77± 0.00 97.77± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 92.38± 0.64 91.50± 0.56 93.57± 0.27 93.57± 0.27 93.57± 0.27
Arcene 73.00± 0.05 80.00± 0.06 80.00± 0.06 80.00± 0.06 80.00± 0.05
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Resumen del trabajo

El Big Data, o datos masivos, es ya una realidad indiscutible. En los últimos

años, los datos han aumentado en volumen, variedad y velocidad en varias disci-

plinas. Algunas estimaciones sitúan la generación de datos en 2.5 exabytes por d́ıa,

creados en prácticamente cualquier campo: genómica, astronomı́a, experimentos en

el CERN, registros de transacciones bancarias, publicaciones en redes sociales (Twit-

ter genera 500 millones de tweets/d́ıa) o imágenes y v́ıdeos digitales (en YouTube

se suben 300 horas de v́ıdeo cada minuto), etc. El ritmo al que en la actualidad

se están almacenando datos en prácticamente todas las instituciones y empresas no

tiene precedente en la historia, y ha creado la posibilidad de utilizar estos datos

con el objetivo de extraer información y conocimiento, que puede ser cŕıtico para

el crecimiento o el declive de una empresa, conocimiento que podŕıa conducir a im-

portantes descubrimientos en ciencia, conocimiento que podŕıa permitir identificar

las causas y posibles tratamientos para enfermedades letales, etc. Por todo ello,

los métodos de aprendizaje automático se han vuelto imprescindibles para extraer

conocimiento útil de grandes cantidades de datos que de otra manera no tendŕıan

sentido. En una sociedad que necesita lidiar con datos masivos, existe una necesidad

urgente de desarrollar nuevas herramientas de análisis y procesamiento.

Además del aumento obvio en el tamaño de los datos, tanto en el número de

muestras como en el de caracteŕısticas, las técnicas de aprendizaje automático deben

ser capaces de hacer frente también a otros desaf́ıos dados por la gran variedad de

datos, aśı como su naturaleza cambiante y la explosión del Internet de las cosas. En
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la era de los datos masivos, la complejidad de un problema de aprendizaje automático

adopta múltiples formas. Algunas de esas formas son:

Caracteŕısticas intŕınsecas de los datos. Durante las últimas décadas, se ha

avanzado enormemente en el desarrollo y refinamiento de algoritmos de apren-

dizaje automático. Sin embargo, el aprendizaje automático todav́ıa parece

estar lejos de alcanzar ese logro en tareas diarias. Por esta razón, cuando los

clasificadores no son perfectos, nos preguntamos si esto es debido a una defi-

ciencia en el diseño de los algoritmos o a alguna dificultad intŕınseca a la tarea

de clasificación.

Un requisito previo para establecer expectativas apropiadas sobre el rendimien-

to de la clasificación es comprender la complejidad de un problema espećıfico

que surge de una aplicación. El trabajo de Ho y Basu [60] fue fundamen-

tal para analizar la complejidad de un problema de clasificación mediante el

uso de descriptores extráıdos de un conjunto de datos de aprendizaje. Dado

que no existe ninguna técnica de aprendizaje automático que pueda obtener

el mejor rendimiento para cualquier problema de clasificación, este tipo de

análisis permite determinar si existen o no patrones en los datos. También es

útil obtener orientación para seleccionar técnicas de clasificación espećıficas.

Consideramos que ésta es una de las claves para avanzar en las tareas de

clasificación automática.

Gran número de instancias. En el escenario actual regido por un aumento

explosivo de los datos a nivel global, el término “Big Data” se utiliza prin-

cipalmente para describir conjuntos de datos que no pueden ser percibidos,

adquiridos, gestionados y procesados por las tecnoloǵıas de la información

tradicionales y las herramientas de software/hardware en un tiempo razon-

able. Por lo tanto, este nuevo escenario ofrece oportunidades para descubrir

nuevos valores, obtener una comprensión profunda de los valores ocultos y

también conlleva nuevos desaf́ıos, por ejemplo, cómo organizar y gestionar

eficazmente dichos conjuntos de datos.

La mayoŕıa de los algoritmos de aprendizaje existentes se desarrollaron cuando

los tamaños de los conjuntos de datos eran mucho más pequeños, pero hoy en

d́ıa se requieren diferentes soluciones para problemas de aprendizaje a gran
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escala. Los problemas de aprendizaje a pequeña escala están sujetos al com-

promiso habitual de aproximación-estimación, pero este compromiso es más

complejo en el caso de problemas de aprendizaje a gran escala, no solo debido a

la precisión sino también al coste computacional del algoritmo de aprendizaje.

Además, dado que la mayoŕıa de los algoritmos se basan en estructuras de

datos en memoria, estos algoritmos no son útiles cuando todo el conjunto de

datos no cabe en la memoria del sistema. Esto significa que los resultados tem-

porales tendrán que escribirse en el disco o el conjunto de datos tendrá que

dividirse en particiones lo suficientemente pequeñas como para ser procesadas

en memoria.

Elevado número de caracteŕısticas. En algunas aplicaciones, las muestras de

datos están representadas por un elevado número de caracteŕısticas. Escena-

rios de aprendizaje automático, como el análisis de microarrays de ADN, la

clasificación de imágenes, el reconocimiento facial o la clasificación de texto,

pueden tener fácilmente varios millones de caracteŕısticas o variables de en-

trada, superando con creces el rango de 10-1000 considerado común hasta hace

relativamente pocos años. Por ello, la llegada de datos masivos ha planteado

desaf́ıos sin precedentes a los investigadores. La alta dimensionalidad de en-

trada no solo implica mayores requisitos de memoria, sino también la pérdida

de capacidad de generalización de los algoritmos de aprendizaje automático

debido a la maldición de la dimensionalidad. Para evitarla, es aconsejable

utilizar algoritmos de selección de caracteŕısticas, definida ésta como el pro-

ceso de identificación de caracteŕısticas relevantes a partir del conjunto de

entrenamiento.

Tradicionalmente, los métodos de selección de caracteŕısticas se diseñaron para

ser ejecutados en un entorno centralizado. Para hacer frente al elevado número

de caracteŕısticas fruto de la explosión del Big data, existe una fuerte demanda

de métodos de selección de caracteŕısticas escalables pero eficientes, dado que

los métodos existentes no son adecuados.

Dataset shift. Los sistemas basados en técnicas de aprendizaje automático a

menudo se enfrentan a un importante desaf́ıo cuando estos se aplican a pro-

blemas reales. Las condiciones bajo las cuales se desarrolló el modelo pueden

discernir de aquellas en las que será aplicado, debido a un sesgo intŕınseco de
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la selección de la muestra o bien por la existencia de escenarios estacionarios.

Sin embargo, la mayoŕıa de los algoritmos de aprendizaje supervisado asumen

que los datos de entrenamiento y test siguen la misma distribución de proba-

bilidad. En problemas de clasificación, a menudo se observan cambios en el

balanceo de clases. Por ejemplo, la proporción mujer-hombre es casi 50-50% en

el mundo real (conjunto de test), mientras que las muestras de entrenamiento

recolectadas en un laboratorio de investigación tienden a estar dominadas por

datos masculinos.

Este problema complica la tarea de aprender un modelo a partir de los datos y

requiere enfoques especiales, diferentes a las técnicas tradicionales, que traten

las instancias que llegan con el mismo grado de importancia para el concepto

final.

Explosión del Internet de las cosas. Debido al crecimiento de la tecnoloǵıa

de comunicación inalámbrica y a la reducción de costes de los componentes

electrónicos, el número de dispositivos relativos al Internet de las cosas se

ha disparado en los últimos años. Estos dispositivos generan continuamente

zettabytes de datos, que deben nutrir a un sistema de aprendizaje automático

con el objetivo de analizar la información y tomar decisiones en base a ella. Sin

embargo, las limitaciones en las capacidades computacionales de los sistemas

embebidos portátiles—memorias pequeñas y limitado poder de cómputo—

impiden la implementación de la mayoŕıa de los algoritmos de aprendizaje

automático en ellos.

Para satisfacer esta demanda, un nuevo paradigma de computación, llamado

Edge Computing, ha surgido. Hasta hace relativamente poco tiempo, estos

millones de dispositivos que conforman el Internet de las cosas solamente re-

gistraban datos para posteriormente enviarlos a la nube, donde eran procesados

para obtener información y conocimiento. El enfoque Edge Computing tiene

como objetivo cambiar esta situación permitiendo que los datos sean analizados

en los nodos de la red o en los propios dispositivos. De esta forma, además

de evitar tráfico de red innecesario, este nuevo paradigma permite obtener

conocimiento en tiempo real. También existen factores que harán que este

tipo de paradigma sea menos complejo en el futuro: el coste cada vez más

reducido tanto de dispositivos como de sensores se suma al aumento de su
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potencia—incluso en los dispositivos más modestos. También hay necesidades

industriales que contribuyen a apostar por el enfoque Edge Computing: en

ciertos entornos, la única forma de optimizar aún más los procesos es tratar de

evitar la comunicación con la nube. Esto permite reducir latencias, consumir

menos ancho de banda—no es necesario enviar continuamente todos los datos

a la nube—y el acceso inmediato al análisis y evaluación del estado de todos

esos sensores y dispositivos.

Otra ventaja muy importante es la seguridad. Cuantos menos datos haya en la

nube, menos vulnerable será ese entorno si se ve comprometido. Obviamente,

la seguridad en estos dispositivos y sensores deberá ser atendida adecuada-

mente. Sin embargo, esto no significa que los entornos de computación en la

nube desaparezcan: ambas tendencias deben contribuir y, por ejemplo, el en-

foque Edge Computing es más apropiado cuando se necesite velocidad y baja

latencia en aquellos datos que requieran una potencia de cómputo notable.

Por esta razón, ambos escenarios han sido considerados en este trabajo.

En resumen, los problemas del mundo real con los que tendrán que lidiar las

técnicas de aprendizaje automático tienen generalmente complejidades inherentes,

como las propias caracteŕısticas intŕınsecas de los datos, su elevado volumen—tanto

a nivel de muestras como caracteŕısticas—, cambios en la distribución entre el con-

junto de entrenamiento y test, etc. Todos estos aspectos son importantes y, por

ello, se requieren nuevos modelos que puedan enfrentarse a estas situaciones. En

esta tesis hemos abordado todos estos problemas, simplificando el proceso de apren-

dizaje automático, que actualmente es aún más complejo debido a la explosión del

Big Data y el Internet de las cosas. En primer lugar, se realiza un análisis de com-

plejidad para observar cómo influye ésta en la tarea de clasificación, y si es posible

que la aplicación de selección de caracteŕısticas reduzca esta complejidad. Luego,

se aborda el proceso de simplificación de la fase de aprendizaje mediante la filosof́ıa

divide-y-vencerás del enfoque distribuido. A continuación, aplicamos esa misma

filosof́ıa sobre el proceso de selección de caracteŕısticas. Finalmente, optamos por

un enfoque diferente siguiendo la filosof́ıa del Edge Computing. Esta última aprox-

imación creemos que es pionera, pues en la literatura cient́ıfica disponible en la

actualidad aún no se han implementado técnicas de selección de caracteŕısticas bajo

restricciones computacionales.
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Análisis de la complejidad intŕınseca de los datos. Esta primera parte de la

tesis está dedicada al análisis de la complejidad de los datos, la cual permite com-

prender si el rendimiento de un clasificador podŕıa verse afectado, no por las limita-

ciones del propio algoritmo, sino por las caracteŕısticas intŕınsecas de los datos. Las

caracteŕısticas intŕınsecas extráıdas de los conjuntos de datos de entrenamiento en

problemas de clasificación han demostrado ser predictores efectivos. Entre ellos, las

medidas de complejidad de datos se pueden utilizar para identificar particularidades

de los datos que implican cierta dificultad a la hora de separar las muestras del prob-

lema en sus clases esperadas, como la forma del ĺımite de la clase, la cantidad de

solapamiento entre las clases, la proximidad entre las clases o el número de muestras

informativas disponibles para la etapa de entrenamiento.

Para mostrar cómo lidiar con este problema, hemos elegido como ejemplo conjun-

tos de datos microarray. Estos conjuntos de datos se caracterizan por su alto número

de caracteŕısticas (genes) en relación a su número de muestras, aspecto que supone

un gran desaf́ıo para los investigadores dedicados al aprendizaje automático. Este

tipo de datos también presenta otras particularidades que pueden afectar negativa-

mente a la capacidad de generalización de los clasificadores, como el solapamiento

entre clases y el desbalaceo de las mismas. Haciendo uso de varias medidas de com-

plejidad de datos, se ha explorado la conexión entre la complejidad intŕınseca de

varios conjuntos de datos microarray (tanto binarios como con múltiples clases) y

los resultados emṕıricos obtenidos por cuatro clasificadores ampliamente utilizados

en la literatura. Además, se ha realizado un estudio para analizar si la selección

de caracteŕısticas reduce esta complejidad. Los resultados experimentales sobre 21

conjuntos de datos microarray demuestran que existe una correlación entre la com-

plejidad intŕınseca de estos conjuntos de datos y las tasas de error obtenidas por los

diferentes algoritmos de clasificación.

Clasificación distribuida. En la era del Big data, los métodos de aprendizaje

automático y, más espećıficamente, los algoritmos de mineŕıa de datos no escalan

adecuadamente—requisitos de memoria y tiempos de ejecución impracticables—,

dañando su rendimiento y eficiencia. Una posible estrategia consiste en distribuir la

tarea de aprendizaje en varios procesadores/nodos. Aśı, se presenta un sistema dis-

tribuido donde las muestras de entrenamiento y test han sido extráıdas de la misma

distribución, con las muestras de entrenamiento distribuidas en nodos disjuntos.
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Además de las tradicionales asunciones del proceso de aprendizaje, asumimos la

disponibilidad de un conjunto de test lo suficientemente grande como para obtener

información de su distribución. Las probabilidades de clase pueden mostrarse como

un promedio ponderado de las probabilidades de clase individuales dentro de cada

nodo. Estas ponderaciones dependen de las probabilidades marginales de la mues-

tra sobre cada nodo y sobre todo el conjunto de datos. Teniendo esto en cuenta, se

proponen dos enfoques diferentes para aproximar estas ponderaciones. La primera

propuesta está basada en estimar la distancia entre las distribuciones de carac-

teŕısticas entre cada nodo y el conjunto de test, mientras que la segunda propuesta

controla la distribución de cada muestra del conjunto de test con el objetivo de

minimizar estas distancias de distribución.

Por diseño, nuestro enfoque es particularmente útil en el tratamiento de nodos

desbalanceados. Nuestros métodos no requieren comunicación entre los nodos, lo que

permite la privacidad de los datos, la independencia del tipo de clasificador entrenado

en cada nodo y la máxima velocidad en la fase de entrenamiento. De hecho, nuestros

métodos no requieren reentrenamiento de los clasificadores del nodo si estos están

disponibles. Resultados experimentales en varios conjuntos de datos sintéticos y

reales mostraron beneficios en términos de precisión de clasificación, especialmente

cuando se empleó el segundo enfoque. Además, aunque se consideraron varias reglas

de combinación diferentes para agrupar los clasificadores individuales, se proporciona

soporte teórico para la óptima utilización de la regla de la suma.

Selección de caracteŕısticas distribuida. La gran explosión de datos ahora tiene

el problema adicional de la gran dimensionalidad. Cuando se trata de conjuntos de

datos de alta dimensión, el rendimiento de los algoritmos de aprendizaje automático

puede verse degradado debido al sobreajuste, los modelos aprendidos disminuyen su

interpretabilidad cuando son más complejos y, además, la velocidad y eficiencia de los

algoritmos decae en relación al tamaño. El aprendizaje automático puede beneficia-

rse de los llamados métodos de selección de caracteŕısticas, ya que estos son capaces

de reducir la dimensión de un problema determinado. Se entiende como selección

de caracteŕısticas el proceso de detectar las caracteŕısticas relevantes y eliminar las

redundantes y/o irrelevantes, tratando de obtener un subconjunto de caracteŕısticas

lo más pequeño posible que resuelva el problema dado con una degradación mı́nima

en el rendimiento. Sin embargo, y de manera similar a los métodos de aprendizaje,
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cuando se trata con grandes bases de datos, la mayoŕıa de los algoritmos de se-

lección de caracteŕısticas existentes no escalan adecuadamente y su eficiencia puede

deteriorarse drásticamente hasta el punto de volverse impracticable. Además, los

datos a menudo se encuentran distribuidos en diferentes localizaciones, y no es ni

económico ni legal reunirlos en un misma ubicación. Por estas razones, se propone

una reducción de la complejidad del proceso de selección de caracteŕısticas sigu-

iendo el enfoque distribuido. El objetivo principal de esta estrategia es distribuir el

proceso de selección de caracteŕısticas, suponiendo que se obtendrá una reducción

considerable en el tiempo de ejecución y que la precisión no se verá afectada en

exceso. Aśı, se presentan varias propuestas para tratar tanto con una distribución

horizontal como vertical de los datos. A diferencia de los procedimientos existentes

para combinar las salidas parciales obtenidas de cada nodo, proponemos un proceso

de fusión utilizando la complejidad teórica de estos subconjuntos de caracteŕısticas.

Los resultados experimentales obtenidos en varios conjuntos de datos muestran

que los enfoques distribuidos permiten reducir el tiempo de ejecución significativa-

mente con respecto a la aproximación centralizada. De hecho, respecto al tiempo de

ejecución, el comportamiento de las propuestas distribuidas es excelente, siendo ésta

la ventaja más importante. Además, en cuanto a la precisión de clasificación, las

aproximaciones distribuidas son capaces de igualar—e incluso mejorar en algunos

casos—los resultados obtenidos por los algoritmos tradicionales.

Selección de caracteŕısticas bajo restricciones computacionales. A dife-

rencia del enfoque distribuido seguido anteriormente, aqúı tratamos de reducir la

complejidad de la tarea de selección de caracteŕısticas desde la filosof́ıa del Edge

Computing. Con la llegada y estandarización de la conectividad inalámbrica y la

reducción de coste de los componentes electrónicos, la cantidad y diversidad de dis-

positivos relativos al Internet de las cosas se ha disparado en la última década. Estos

dispositivos portátiles generalmente se emplean como sistemas locales, y sus princi-

pales requisitos son trabajar con baja potencia de cómputo y pequeñas memorias.

Sin embargo, estos requisitos se convierten en un gran desaf́ıo ya que estos dispo-

sitivos emergentes no son solamente sensores: deben realizar cálculos sofisticados,

recopilar y agregar datos para propagarlos a la nube, y responder en tiempo real

a las peticiones de los usuarios. Estos datos son la base para construir un sistema

de aprendizaje automático donde se analice la información y se tomen decisiones en
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base a ella. Desgraciadamente, las limitaciones en la capacidades computacionales de

estos dispositivos portátiles impiden la implementación de los algoritmos de apren-

dizaje automático tradicionales en ellos. Posteriormente, los datos deben ser en-

viados a una infraestructura informática remota. Sin embargo, el llamado Edge

Computing ha llegado para permitirnos simplificar la tarea de aprendizaje en este

nuevo escenario.

Teniendo esto en cuenta, hemos propuesto una nueva versión de la medida de

información mutua—una de las medidas más comunes para el cálculo de la depen-

dencia entre variables en los algoritmos de selección de caracteŕısticas—utilizando

en este caso parámetros de precisión reducidos. Para comprobar la efectividad del

enfoque propuesto, se ha implementado esta medida en varios algoritmos de se-

lección de caracteŕısticas sobre un amplio paquete de conjuntos de datos sintéticos y

reales. Los resultados obtenidos demuestran que representaciones bajas en el número

de bits son suficientes para conseguir un rendimiento similar al obtenido mediante

parámetros en doble precisión (64 bits) y, por lo tanto, abren la puerta para el uso

de algoritmos de selección de caracteŕısticas en plataformas integradas que además

minimizan el consumo de enerǵıa y las emisiones de carbono, permitiendo una com-

putación energéticamente sostenible .

Esta tesis cubre un amplio conjunto de problemas surgidos tras la llegada de

los datos masivos y la explosión del Internet de las cosas. Los enfoques propuestos

han demostrado su capacidad para reducir la complejidad de los métodos de apren-

dizaje automático tradicionales y, por lo tanto, se espera que la contribución de esta

tesis abra las puertas al desarrollo de nuevos métodos de aprendizaje máquina más

simples, más robustos, y más eficientes computacionalmente.
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