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 25 

Osteoarthritis (OA) is the most prevalent musculoskeletal disease and a leading 26 

cause of disability worldwide. OA mostly affects the population aged over 50 27 

years and it is estimated that the population with OA will double in the next 30 28 

years. The pathogenesis of OA is a complex process that involves the entire 29 

joint. The pathological cascade of events in OA occur at the molecular, cellular 30 

and tissue level and not only involve cartilage degradation but also sub-31 

chondral sclerosis, synovial inflammation as well as damage to other joint 32 

structures such as ligaments and menisci, causing pain and loss of articular 33 

function (1). Although the cartilage degradation is not the only event responsible 34 

for joint degradation its role in OA pathogenesis continuous to be relevant. One 35 

factor that contributes to the pathological cascades is the imbalance between 36 

apoptosis and autophagy in the articular cartilage (1). 37 

 38 

Mitochondria are currently in the focus of biomedical research due to 39 

their role in aging and in the development of human pathologies (2). 40 

Mitochondria are the organelles that convert the nutritional molecules into 41 

adenosine triphosphate (ATP), generating most of the energy necessary for the 42 

cell. Mitochondrial dysfunction causes a series of metabolic alterations that lead 43 

to an increase in the production of reactive oxygen species (ROS) and 44 

decreasing ATP and oxygen consumption. Mitochondrial dysfunction causes 45 

also an inflammatory response inducing synthesis of cytokines and MMPs. 46 

Mitochondria contain their own genetic material, mtDNA; mtDNA has a high 47 

mutation rate, due to the absence of an effective system of repair and its 48 

proximity to the main source of ROS production in the cell, the electron 49 

transport chain. 50 

 51 

Increasing evidence suggests that mitochondria are involved in the 52 

pathogenesis of OA (3). Analyses of mitochondrial function in OA chondrocytes 53 

reveal decreased activity of the mitochondrial respiratory complexes II and III as 54 

well as increased mitochondrial mass, compared to healthy chondrocytes. 55 

Mitochondrial dysfunction can contribute to cartilage degeneration in OA. 56 

Increased ROS production, impaired anabolic and growth responses of 57 



chondrocytes, excessive and reduced chondrocyte apoptosis and autophagy 58 

respectively, and enhanced inflammatory responses are particularly important. 59 

Compared to normal cartilage, OA chondrocytes fail to generate energy and 60 

mitochondrial biogenesis is altered. All the data suggest that mitochondria and 61 

mitochondrial function needs to be regulated in order to prevent the generation 62 

of high levels of ROS and oxidative stress.  63 

 64 

Autophagy, which is activated under hypoxic and energy stress to 65 

provide energy for the cell, is a key regulator of cellular homeostasis through 66 

the removal of damaged macromolecules and organelles, including 67 

mitochondria (4). Mitophagy is the elimination of depolarized/damaged 68 

mitochondria. Pharmacological activation of autophagy in chondrocytes 69 

significantly protected against mitochondrial dysfunction suggesting that 70 

mitophagy may function to eliminate damage/dysfunctional mitochondria in 71 

chondrocytes and prevent oxidative stress (4). Studies in human chondrocytes 72 

showed that activation of autophagy is critical in protecting against 73 

mitochondrial dysfunction (5). Moreover, the mammalian target of rapamycin 74 

inhibitor DNA damage-inducible transcript 4 protein (DDIT4, also known as 75 

REDD1) is a key mediator of cartilage homeostasis through the regulation of 76 

autophagy and mitochondrial biogenesis; expression of DDIT4 is decreased in 77 

OA cartilage, and deficiency of this protein exacerbates the severity of injury-78 

induced OA (6).  79 

 80 

In this issue of Osteoarthritis and Cartilage, Ansari MY et al. suggest that 81 

Parkin-mediated mitophagy is an important mechanism to limit ROS production 82 

and improve OA chondrocyte survival under pathological conditions (7). Parkin 83 

is an E3 ubiquitin ligase; it is selectively recruited to dysfunctional mitochondria 84 

with low membrane potential. After recruitment, Parkin mediates the engulfment 85 

of mitochondria by autophagosomes and the selective elimination of impaired 86 

mitochondria. Authors propose that increased expression of Parkin might be 87 

involved in the clearance of damaged mitochondria and indeed OA 88 

chondrocytes with depleted Parkin expression showed increased production of 89 

ROS, accumulation of dysfunctional mitochondria, and apoptosis. These 90 

authors speculate that loss of Parkin function could contribute directly to the 91 



pathogenesis of OA. 92 

 93 

The interaction between Parkin and mitochondrial NAD-dependent 94 

protein deacetylase sirtuin 3 (SIRT-3) is a very interesting aspect to understand 95 

the relevance of the results reported by Ansary MY et al. SIRT-3, the chief 96 

deacetylase mitochondrial protein, has been shown to mediate age-related 97 

changes in cartilage redox regulation; this action protected against early-stage 98 

OA in rats and SIRT-3 has been described as a metabolic sensor that responds 99 

to changes in the energetic state of the cell through oxidized nicotinamide 100 

adenine dinucleotide, to regulate mitochondrial acetylation and protect against 101 

mitochondrial damage. SIRT-3 activates mitophagy and its deficiency impairs 102 

mitophagy by increasing acetylation of Pink/Parkin and decreasing Parkin 103 

expression (8) (Figure 1).   104 

 105 

Mitochondrial dysfunction has also been associated with a disbalance 106 

between ROS production and expression of superoxide dismutase 2 (SOD2), 107 

the major mitochondrial antioxidant protein. Downregulation of SOD2 has been 108 

reported in OA chondrocytes (9). Levels of this enzyme are decreased in the 109 

superficial layer of OA cartilage and markedly down-regulated in end-stage OA 110 

cartilage. Both SOD2 and SIRT-3 activity decreased with age in cartilage and 111 

treatment with SIRT-3 increased SOD2 activity suggesting that SIRT-3 could 112 

mediate age-related changes in cartilage redox regulation and protect against 113 

OA by rescuing acetylation-dependent inhibition of SOD2 activity (10).  114 

 115 

The proposed theory for the participation of mitochondria in OA suggests 116 

that dysfunction of the mitochondrial respiratory complex leads to increased 117 

production of ROS, resulting in mtDNA damage followed by mutations that 118 

compromise mitochondrial protein function and further increase production of 119 

ROS and reactive nitrogen species (RNS). mtDNA shows very high mutation 120 

and sequence evolution rates. The accumulated mtDNA mutations throughout 121 

evolution persist today as high frequency continent-specific mtDNA 122 

polymorphisms and are called haplogroups (11, 12). Specific mtDNA 123 

haplogroups have been consistently linked with a wide spectrum of diseases, 124 

including OA. Evidence has accumulated from a series of studies for an 125 



association between mtDNA haplogroups and prevalence, incidence and 126 

progression of OA in different cohorts of patients (13, 14). In terms of a direct 127 

relationship between mtDNA damage and haplogroups, greater damage could 128 

be expected in those haplogroups associated with increased ROS production. 129 

mtDNA haplogroups H and J have been found to differ in the gene expression 130 

and activity of SIRT-3 under simulated mild oxidative stress conditions using 131 

transmitochondrial cybrids, where H cybrids showed higher SIRT-3 activity and 132 

expression than J cybrids (15). These data suggest that mtDNA mutations and 133 

variants could modulate mitophagy through their capacity to regulate different 134 

nuclear target genes such as SIRT-3 and NAD-dependent protein deacetylase 135 

sirtuin-1 (SIRT1). SIRT1 is involved in mitochondria biogenesis inducing the 136 

expression of –peroxisome proliferator-activated receptor γ co-activator 1α 137 

(PGC-1α; the so-called master regulator of mitochondrial biogenesis) (16). 138 

 139 

A decreased capacity for mitochondrial biogenesis in chondrocytes is 140 

linked to reduced AMP-activated protein kinase (AMPK) activity and decreased 141 

expression of SIRT1, PGC1α; TFAM (transcription factor A, mitochondrial), 142 

nuclear respiratory factor 1 (NRF1) and NRF2 (16). AMPK is a key molecule 143 

associated with metabolism in chondrocytes that regulates energy metabolism 144 

through the downstream mediators such as SIRT1 and mechanistic target of 145 

rapamycin (mTOR) (17). Activation of the AMPK–SIRT1–PGC1α pathway 146 

increases mitochondrial biogenesis in chondrocytes, limiting OA progression. 147 

Furthermore, deficiency in AMPK and SIRT1 modulates PGC1α activity, leading 148 

to reduced oxidative stress and procatabolic responses in chondrocytes from 149 

patients with OA (16). 150 

 151 

All these results open a wide new spectrum of therapeutic approaches 152 

with the common goal of restoring mitochondrial function in chondrocytes and 153 

reducing the mitochondrial stress. Some new potential therapies could be: 1) To 154 

activate the AMPK-SIRT-3 pathway in order to induce Parkin expression and 155 

mitophagy 2) To activate the AMPK-SIRT-3 pathway in order to induce SOD2 156 

activity a reducing Mitochondrial stress. 3) Activation of the AMPK–SIRT1–157 

PGC1α pathway to promote mitochondrial biogenesis, 4) The development of 158 



cellular therapy using cells with harboring “good mitochondria”, or even the 159 

administration of isolated “good mitochondria” into the osteoarthritic joint. 160 

 161 

In summary, the study of Ansary MY et al. is in line with other published 162 

results that confirm the relevant role of mitochondrial activity and function in the 163 

process of articular cartilage degradation and in the pathogenesis of OA. In 164 

particular, some molecules such as AMPK, Parkin, SIRT-1, SIRT-3 and PGC1-165 

alpha may represent therapeutic targets for modulating mitophagy and 166 

mitochondrial biogenesis, which may represent new therapeutic alternatives in 167 

OA. It is necessary to confirm these promising results using in vivo models. 168 

 169 
 170 
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 274 

LEGEND OF FIGURE 275 

 276 

Figure 1: AMPK-SIRT-PARKIN pathway in OA chondrocytes. Hypothetical 277 

view on the key role of AMPK-SIRT-Parkin in regulating mitochondrial function 278 

and defense against excessive ROS.  279 
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