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Abstract 

An estimation procedure for process control has been 
developed based on the information obtained from 
the oscillations that a non-linear element as a simple 
relay introduces in the feedback loop. Features of the 
method are: (1) the procedure does not demand a 
priori process information, (b) non-iterative 
algorithms are needed to derive the process 
parameters, (c) only one test is needed, and (d) it 
allows identifying the process at a user-specified 
phase lag in the third quadrant. The method is 
presented for estimation of most common transfer 
functions found in chemical and process industry: 
integrators, first-, second- as well as processes with 
non-minimum-phase dynamics. 

Keywords: Describing function, relay, estimation, 
limit cycle, oscillations. 

1 Introduction 

The main result presented in this paper is an 
enhanced estimation procedure based on a non-linear 
element as a relay. The proposed approach allows the 
identification of model parameters from 
measurements derived of the asymmetric oscillations 
generated by a relay and a bias added to the output. 
These measures are the oscillation frequency, the 
main harmonics, and the steady gain (if the process is 
without integration). The identification procedure is 
relevant for four reasons:  

(1) Unlike previous works based on relay-induced 
oscillations, the model parameters do not need to be 
calculated using a-priori information of the process 
(i.e., static gain, velocity gain, or dead-time),  
(2) Iterative methods to solve non-linear equations 
are not necessary,  
(3) The number of tests to obtain the measures is 
always one regardless the transfer function structure 
or order, and  
(4) The procedure can be extended to estimate any 
type of transfer function.  

The structure of the paper is as follows. First, the 
basis of the estimation approach and the problems 
that have been detected in similar methods are 
described in Section 2. In Section 3, the procedure is 
explained and solutions to the problems found are 
given; also, expressions to estimate the parameters of 
common transfer functions are derived and 
simulation results are presented. Section 4 discusses 
a way to estimate with user-defined phase margin 
specifications. The paper finishes with conclusions 
and recommendations about the use of the procedure. 

Figure 1: Basic relay feedback control loop. 

2 Estimation based on relay-induced 
oscillations: basis and problems 

The pioneering works on the use of relay feedback 
for identification purposes are from the 80’s [1]. The 
basis of the method is that a linear system under an 
ideal relay control (Figure 1) oscillates, 
approximately, at its ultimate frequency, that is, 

uosc    and the critical gain uK  is derived from 
the describing function (DF) of the ideal relay. That 
is, 

uK
A

D
AN 


4)( (1)

where A is the oscillation amplitude and D is the 
relay output. Knowing that the oscillation happens 
when the expression 
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1
oscjG
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is satisfied, it is feasible to derive the parameters of a 
transfer function model. One way to do that it is to 
use the magnitude and argument of the critical point 
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)( oscjG   in the Nyquist plot that corresponds to the 
intersection of )(sG  and )(1 AN , separating both 
components to solve them. That is,  

)(
)(

1
oscjG

AN



(3)

)(arg
)(

1arg oscjG
AN


 (4) 

To separate both parts is key to the estimation 
approach presented here. It is possible to apply 
iterative methods to solve directly (2), but when the 
transfer function to estimate has four or more 
unknowns (for example, K, 1T , 2T , and L), most of 
the time the iterative methods do not converge [7]. It 
is due primarily to the inaccuracy of the describing 
function and the extreme nonlinearity of the 
equations with respect to the parameters. However, 
by separating (2) in magnitude and argument, it is 
possible to solve (3) to get the zeros and poles, and 
(4) to obtain the time delay. 

Following this approach, for estimating the 
parameters of a first order process with time delay 

)1/(  TsKe Ls , the following two equations are 
obtained 

2)(14
oscT

K

D

A






 (5)

oscosc LT   )arctan(  (6) 

Once the steady gain K is known, it is possible to 
calculate first the lag T and next the time delay L (or 
observing L from the process response, T is first 
estimated and next K). However, the result will be an 
approximation as the critical gain and the phase lag 
of -180º are just approximations based on the 
principal harmonics of the relay output.  

Example 1: The system 

1
)(






s

e
sG

s

(7) 

under relay feedback control with D=1 oscillates at 
105.2osc  with A=0.6327, 4289.0)( oscjG  , 

and º609.174)(arg oscjG  . However, the 
describing function theory says that 

4969.0
4

1)( 
D

A

K
jG

u
osc

  (8) 

and º180)(arg oscjG  . Supposing that K is 
known, and using the information from the DF to 
estimate G(s), it produces T=0.8003 and L=1.9842. 
Obviously, the estimation is not very accurate.  

As the previous example confirms, authors report 
that the use of the describing function information 
can introduce errors in K-180º of 5%-20% [3]. For this 
reason, there has been a lot of research work to 
improve the information that the describing function 
provides and obtain additional critical points in the 
Nyquist plot at different phase margins to estimate 
transfer functions of order higher than one.  

The first try in using the describing function for 
estimating different types of transfer function is 
found in [8] with the AutoTune Variation method 
(ATV). This method needs a priori process 
information obtained from inspecting its temporal 
response (the steady-state gain and the dead-time) 
and the oscillation frequency produced by an ideal 
relay in a test; with all these parameters, the method 
allows fitting five different transfer functions models. 
For each of these models, expressions of magnitude 
and argument are derived, that is, (3) and (4). As the 
method uses only the ultimate gain and the ultimate 
frequency from the test, that is, just one critical point, 
to get solutions for some models is difficult and, 
according to the author, “there is no guarantee that 
any of the models will fit the data”. 

The Luyben’s method [8] was improved by the 
ATV2 method [7] being only necessary to know the 
dead-time. In the ATV2 method, analytical 
expressions were obtained for the steady-state gain 
and time constants of transfer function models from 
first to third order. In this work, the estimation is 
afforded by working with (2) as the nonlinear part is 
eliminated because the dead-time is a known 
parameter. For each model, two equations are 
obtained by separating the real and imaginary parts 
of (2) but the number of unknowns is two, three of 
four, depending of the model’s order. To obtain an 
additional critical point in the Nyquist plot, a known 
dead-time is added during a second test. In this way, 
four equations can be posed for each model and 
solved applying a linear least-square method. The bi-
ATV method is introduced in [11]; the main 
difference with respect to the previous ones is the use 
of a biased-relay to obtain the steady-state gain from 
the experiment; the approach to solve the equations is 
similar to the original ATV. Another improvement, 
known as ATV+, was introduced in [10]; to avoid the 
prior knowledge of the dead time as in previous ATV 
versions, the ATV+ proposes to find an estimate of 
the delay through the determination of minimum and 
maximum bounds; using dead time values located 
inside the bounds, calculations for different candidate 
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models are repeated and, by analyzing the residual 
errors, the best model is then chosen. Other 
modification of the ATV2 method is described in 
[13] and better results are obtained but just in 
limiting cases. The approaches presented in [12] and 
[15] provide a simple procedure to estimate a 
FOPTD system with a single symmetrical relay but it 
has not being extended to higher order processes and 
an iterative method has to be applied to obtain the 
system parameters. Another method, known as phase 
deviation, is proposed in [16]; it obtains the 
parameters with only a relay test plus experimental 
measurements of the first-, third- and fifth-order 
harmonics of the process. Ideas of these last two 
references have been used in this paper. Recent 
contributions can be found in [9] and [6]; in both 
works, the information provided by the describing 
function is used to know the critical point and the 
dead-time is obtained by measuring the initial 
difference in the response of the process output with 
respect to the process input. More references related 
to identification based on the relay’s describing 
function are [14] and [4]; the main contributions of 
these works is the design of the experiments for 
obtaining additional critical points at different 
frequencies to solve the equations. 

After reviewing the literature on DF-based 
identification, the main problems found are 
summarized: 

- The reciprocal of the DF provides an approximation 
of the Nyquist point at the frequency where the 
process oscillates. It is fundamental to obtain an 
exact value of )( oscjG  during a test. 
- In process without integration, it is necessary to 
obtain G(0) as a first parameter. If the transfer 
function template to fit is exactly equal to the real 
process to identify, it is not necessary, as the 
identification will provide exact results at any 
frequency. However, if the true process has higher 
order or different structure to the template and G(0) 
is not known, this will produce that the result is good 
around the critical frequency º180  but with 
discrepancies at 0  (see Example 2). It is due to 
the fact that the template is fitted with lesser degrees 
of freedom that the true process. So, the fitting will 
be exact around osc  but will present discrepancies 
in frequencies close to zero. 
- If the process has an integrator, as the identification 
is based on the behavior in the third quadrant, the 
results around º180  will be good even when the 
transfer function has different structure than the real 
process. However, if the structure is different, the 
results will differ at low frequencies, improving the 
results if the identification is done at frequencies 
around º135 . 

- It is necessary to design a procedure to get in just 
one test as many points of the Nyquist plane as 
unknowns )(sG  owns to solve the system of 
equations. One point will always be the oscillation 
point situated in the third quadrant of the Nyquist 
map. A second point must be G(0) when needed 
depending of the template to fit.  
- To be able of identifying at a user-defined phase 
lag. For example, recommendations on the margin 
phase of the Nyquist point to use in the identification 
depending of the process features are given in [4]. In 
[2], authors recommend estimating the process at 

º135  or º180  depending if PI or PID control is 
applied, respectively. 

Example 2: An example of not taking into account 
G(0) can be found in [16]. As the identification is 
done using a critical point close to º180  and 

sesssG 44 ])1()1[()(   is estimated using a 
second order model, the fitting is good enough 
around this Nyquist point but with an error in the 
steady-state gain of 24.6%. The estimated transfer 
function is sesssG 7.62 )]24.128.277.2(1[)(ˆ  . 
This process is employed in the simulations as a 
study case (see Table II) and the results are improved 
with respect to [16]. 

3 The basis of the approach 

As said before, the reciprocal of the relay DF is just 
an approximation and can introduce errors in the 
estimation. The solution adopted to get accurately 

)( oscjG   during a test is presented in [15]. As y(t) 
and u(t) are periodic and piecewise, using the 
Laplace transform of both, it can be written 

dtetu

dtety

jU

jY
jG

tj

tj

osc

osc
osc

osc

osc








  

 




 2

0

2

0

)(

)(

)(
)(

)(  (9) 

and following (9), and as indicated in [16], it is 
possible to obtain the harmonics 

,...3,2,1,
)(

)(
)( 2

0

2

0 








n
dtetu

dtety
jnG

tjn

tjn

osc
osc

osc

 

 

  (10) 

Expression (10) lets solving two problems: (i) to get 
the value of )( oscjG   that represents the exact point 
in the Nyquist plot where the intersection with

)(1 AN  is happening and, (ii) to obtain the 
additional points )( oscjnG   needed in one test to 
work out the equations.  
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The last problem to solve is the estimation of the 
steady gain. Expression (9) cannot be applied as the 
oscillations produced by a relay are symmetric and 
the integration of the semi periods will be zero. 
However, if an asymmetry is introduced in the 
oscillations by adding a small bias to the relay output 
(see Figure 1), the process static gain can be derived 
from (9) [11] as 

dttu

dtty
G




 



2

0

2

0

)(

)(
)0( (11) 

It is important to notice that without bias, the signals 
are symmetric and even harmonics become cero. 

3.1 Models 

The identification procedure can be adapted to most 
of the process found in process industry just 
obtaining the magnitude and argument expressions of 
the transfer function to fit. Expressions for a first 
order plus time delay (FOPTD), an overdamped 
second-order with time delay (SOPTD-1), a second-
order with time delay (SOPTD-2) to identify 
underdamped processes, and an integrating process 
with inverse response and time delay (IPIRTD) are 
given.  

Model 1: FOPTD 

1
)(1 




Ts

Ke
sG

Ls

(12) 

Model 2: SOPTD-1 

22 )1(
)(






Ts

Ke
sG

Ls

(13)

Model 3: SOPTD-2 

1
)( 23 




bsas

Ke
sG

Ls

(14)

Model 4: IPIRTD 

bsas

esT

sTs

esTK
sG

LsLs












2
1

2

1
4

)1(
)1(

)1()(  (15) 

where bK 1  and baT 2 . 

From each of these models, the expressions of 
magnitude and argument of )( oscjG   are derived. 

Model 1: FOPTD 

1
)(

22
1




osc

osc

T

K
jG


 (16)

LTjG oscoscosc   )arctan()(arg 1  (17) 

where  0,2)(arg 1  oscjG . 

As K, osc  and  oscjG 1  are obtained directly from 
the test using (10) and (11) by adding a bias, T can be 
obtained directly from (16). After that, L is derived 
from (17). 

Model 2: SOPTD-1 

1
)( 222 


osc

osc
T

K
jG


 (18)

LTjG oscoscosc   )arctan(2)(arg 2  (19) 

The unknowns are the same that in the previous one, 
so the procedure to apply is the same. 

Model 3: SOPTD-2 

12
)(

222423



oscoscosc

osc
aba

K
jG


  (20) 

LabjG oscoscoscosc   )1,arctan()(arg 2
3 (21) 

There are three unknowns K, a , and b  in (14). As K 
is obtained directly from the test using (11) by adding 
a bias, to get the other two unknowns is necessary the 
expression corresponding to the second harmonics, 
that is,  oscjG 23 . This expression is derived from 
(20) just replacing osc  by osc2  and its 
experimental value is obtained from the test (see 
(10)). Once a and b are known, the dead-time is 
derived from (21). 

Model 4: IPIRTD 

)(
1

)( 2222

22
1

4
ba

T
jG

oscosc

osc
osc 







  (22) 

L
abT

baT

jG

osc
osc

osc

osc
























)(
)(

arctan

)(arg

1

2
1

4

 (23) 

The unknowns in (22) are T1, a, and b. As it is a 
process with integration, the velocity gain can 
directly be obtained solving the system of equations. 
So, the expressions of  oscjG 24 and  oscjG 34

are needed and its experimental values are got from 
the test (see (10). The dead-time is directly got from 
(23) once the other three unknowns are obtained. 

The following expressions are the result of solving 
the previous equations for the four models. For the 
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sake of simplicity, nC  represents )( oscjnG   and 

1argC  corresponds to )(arg oscjG  . 

Model 1: FOPTD

1

2
1

2

C

CK
T

osc


 (24)

osc

oscTC
L


 )arctan(arg 1  (25)

Model 2: SOPTD-1 

1

11 )(
C

CKC
T

osc


 (26)

osc

osc CT
L


 1arg)arctan(2 

  (27) 

Model 3: SOPTD-2 
2
2

2
1

22
2

2
1 9)123( CC+KCCaux 
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Model 4: IPIRTD 
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ω
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2
1 arg)(),(arctan 
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3.2. Outline of the procedure 

The procedure is based on producing a limit cycle 
oscillating at osc  as consequence of the relay 
control actions generate when )(sG  crosses zero. As 
shown before, mathematically, the limit cycle is 
explained as the consequence of the intersection of 

)(sG  with )(1 AN  at osc . The intersection point 
corresponds to the value of )( oscjG  . 

The estimation procedure can be divided into the 
following steps: 

1. Add a small bias, i.e, D1.0  to the relay output.
2. Once the oscillation is stable, annotate osc , and

the harmonics )( oscjnG   needed to solve the
equations. In models without integration, it is
necessary K.

3. Use the expressions:
 (24) and (25) for FOPTD model.
 (26) and (27) for SOPTD-1 model.
 (28), (29), and (30) for SOPTD-2 model.
 (31), (32), (33), and (34) for IPIRTD model.

Remark 1: Model 3 lets detecting if the true process 
corresponds to a dynamics of first order instead of 
second order. In this case, the procedure will 
generate a value for a close to zero. 

Remark 2: Model 2 and 3 can produce the same 
result if the true process corresponds to an 
overdamped second order system. In case of being 
underdamped (non-monotone), models 1 and 2 can 
produce a complex value for the time lag or an 
overdamped solution, and the correct results are 
produced only by Model 3. 

3.3 Simulation examples 

The simulations have been run in Matlab/Simulink 
with a sampling time h=0.001. The parameters used 
in the tests have been D=1 and bias=0.1D. 

Table I shows the results when the structure of the 
true process and the model are the same. Models 2 
and 3 produce similar solutions for Cases 2 and 3 as 
both real processes correspond to overdamped 
systems. However, in Case 4, model 2 produces 
complex values as the true process is underdamped. 
The identification in Case 5 provides a complex 
value for 1T  close to zero (0.08i) due to the 
numerical errors; and it is ignored and equated to 
zero.  

Table II corresponds to the results when the structure 
of the true process is different to the transfer function 
to fit. Cases 7 and 8 correspond to the fitting of 
FOPTD models; cases 9, 10, and 11 to second order 
processes, and cases 12 and 13 to processes with 
integration and inverse response. In Case 9, it is not 
possible to present solutions for models 1 and 2 as 
the true process is an underdamped system (non-
monotone). Case 10 corresponds to the process used 
in Example 2 but the steady gain is correctly 
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estimated (see Figure 2). Although the DF theory 
establishes that the oscillation produced by a simple 
relay happens with a phase lag of -180º, it must be 
noticed in the simulations how the phase margin 
changes for each process. The higher discrepancies 
happen in processes with non-minimum phase 
dynamics as the process output becomes less 
sinusoidal. 

Table I: Solutions for processes with same order and 
structure than the transfer function fitted. 

 Real process Proposed method 
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Figure 2: Nyquist curves of real process and models 
for Case 10.  

Table II: Solutions for processes with higher order or 
different structure than the transfer function fitted. 

 Real process Proposed method 
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4 Selecting the identification phase 
margin 

The identification approach using a relay without 
hysteresis produces a model that corresponds exactly 
with the dynamics of the true process at the 
oscillation frequency, that is )(ˆ)( oscosc jGjG   . If 
the order of the process is equal to the transfer 
function model to fit, the identification will be exact 
and the behaviour of )(ˆ sG will be equal to )(sG  in 
all the frequencies range. However, if the order of 
process and model is different, it can be necessary to 
modify the oscillation frequency to find a more 
suitable approximation to the pursued control 
purposes. It is known that for PI control the 
identification should be done at an oscillation 
frequency that corresponds to a phase margin 

º45m  due to the phase lag that the PI control 
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introduces. For PID control the phase margin should 
be 0º as the controller provides phase lead [2]. 

In the previous examples, the phase margin is not 0º 
and changes depending of the features of the process. 
Theoretically, the bias added to the output cannot be 
used for this purpose as it does not affect to the phase 
margin as not provide phase shifting (see [5]),  

DbiasπA

πA

biasN(A) 4
1





  (35) 

To obtain a point in the Nyquist curve different to the 
obtained with the simple relay can be done by 
introducing hysteresis in the relay ([1]). The negative 
reciprocal of the DF of a biased relay with hysteresis 
is 

D
iA

DAN 44),(
1 22 



  (36) 

where A is the oscillation output, D the relay 
amplitude, and   the hysteresis (it must be noticed 
that the reciprocal is independent of the bias). As 
happens in the simple relay, this function is 
represented in the Nyquist map as a straight line 
parallel to the real axis. However, by increasing  , 
the line can be move down along the imaginary axis 
of the Nyquist map. As the intersection of G(s) with 
this line means the existence of an oscillation, the 
critical point where the intersection happens can be 
modified, increasing the phase margin to fulfill the 
user specifications. 

From (36), the theoretically phase margin obtained 
by applying hysteresis to the relay is defined by 




















AA
m




 arcsinarctan
22

 (37) 

where A . Obviously, this expression provides 
just an approximation that depends on the features of 
the true process.  

Example 3: The result of the identification of 
)1()(   ssesG s  using a relay with D=1, 0 , 

and bias=0.1D is 

)s.s(

)e.s.(
(s)G

s.

11391
0511161401ˆ
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with º66.2m . If the hysteresis is increased to
2 , the result of the identification is 

)1005.1(
)001.108321.0()(2ˆ

929.0







ss

es
sG

s

with º46m . In Figure 3, it can be appreciated the 
differences between the two results. The differences 
are explained by the fact that the identification 
algorithm is based on the fitting of the curve that 
represents a transfer function template to the curve 
that corresponds to the true process in the Nyquist 
map using the critical point as linkage between both 
curves. If model and process are similar (same 
degrees of freedom), the fitting is exact as the 
transfer function curve can be adjusted to the true 
process curve. However, if model and process own 
different structures, then the model curve cannot be 
adjusted exactly in all the frequency range to the 
process. In the Example 3, as the true process is with 
integration, the identification with a phase margin 
around 45º or higher will produce better results as the 
model curve adapts better to the real process in the 
third quadrant. 

 Figure 3: Example of the differences in the 
identification results depending of the phase margin.  

4.1. Automatic generation of the hysteresis 

In the previous example, the hysteresis was fixed by 
trial and error in successive simulations. A solution 
proposed in [1] for autotuning of PID controllers can 
be adapted to adjust iteratively the hysteresis during 
the tests using the information obtained from the 
experimental measure of )( oscjG  . The formula is 

1

1
1 )(




 




nn

nn
nrefnn 


  (38) 

where ref is the desired phase margin and 1  is a 
convergence speed factor. 
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Example 4: Applying the iterative method to the 
identification of the process of Example 3 using (38), 
fixing º1º45 ref  and 5.0 , it is obtained 

1.897  and the new identified model is 

)1(
)102286.0()(3ˆ

979.0







ss

es
sG

s

(39) 

with º32.45m . 

Conclusions 

An enhanced method for the identification of stable 
transfer functions models has been presented and 
explained. The basis of the method is the oscillations 
that a relay generates in the feedback control loop. 
Instead of using the approximations of the 
intersection points that the describing function of the 
relay provides, on-line measurements of the process 
and control signals are used to obtain the harmonics 
needed to solve the linear equations and generate the 
estimations. In this way, the number of tests to make 
the estimations is always one regardless the order or 
structure of the model transfer function to fit. 
Moreover, the identification procedure is not iterative 
so the computational cost is very low. With the 
simple relay, the identification procedure is done 
near the ultimate frequency. By using a relay with 
hysteresis and modifying its value, the identification 
will be possible at a user-specified phase lag in the 
third quadrant.  
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