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Abstract 

Nowadays, among the Deep Learning works, there is a tendency to develop networks with millions of 

trainable parameters. However, this tendency has two main drawbacks: overfitting and resource consumption 

due to the low-quality features extracted by those networks. This paper presents a study focused on the 

scoring of sleeping EEG signals to measure if the increase of the pressure on the features due to a reduction 

of the number though different techniques results in a benefit. The work also studies the convenience of 

increasing the number of input signals in order to allow the network to extract better features. Additionally, it 

might be highlighted that the presented model achieves comparable results to the state-of-the-art with 1000 

times less trainable and the presented model uses the whole dataset instead of the simplified versions in the 

published literature. 

 

Keywords 

Convolutional neural networks; Deep learning; EEG; Signal processing; Sleep scoring 

  



 

1. Introduction 

According to one the reports from the World Health Organisation (WHO) [1], sleeping 

problems are one of the major issues for many people around the world independently of the 

country and social role. Problems to obtain a good quality sleep have been related to other major 

diseases and disorders like depression, stress, heart problems, diabetes or early Alzheimer [2]. 

Consequently, in recent times, the resources dedicated to study sleeping problems have been 

increased and the sleeping units in most of the hospitals have multiplied their activity [3]. 

Although this is a good new, the increment in the activity has driven the specialist to a difficult 

situation with a huge amount of data to process. 

 

Any specialist from an sleeping unit has as main working tool the polysomnography (PSG), 

which is a recording of different signals registered through the night. Those records include 

different signals such as Electrocardiograms, Electroencephalograms (EEGs), breath or movement 

records, registered for a patient during a period between 6 and 24 h. After that registering process, 

the specialists have to manually label the different stages of the sleep and the result is a high time-

consuming processes which is quite prone to mistakes due to fatigue or monotony [4]. 

 

Many researchers have focused their attention on automatising this process. To do that, a 

common approach is to use the EEGs in the PSG to label the sleeping stage according to one of 

two main widely accepted guidelines known as Rechtschaffen & Kales (R&K) [5] and the 

American Academy of Sleep Medicine (AASM) [6], respectively. The latter one is the current 

standard defining a set of 5 stages that a patient can go through during his sleep, however, some 

studies have point out to 81% as the agreement ratio among experts when labelling the same 

PSG [7]. The main reason for that disagreement is the nonexistence of a common set of features 

identified and used by all of them. This is one of the mayor issues when automatising through 

machine learning has been tried, the unreliability on the background truth. 

 

In order to deal with this issue, some works have focused on using automatic feature extraction 

techniques, such as, Genetic Programming [8], although recently Convolutional Neural Networks 

have gained great popularity among the scientific community due to their remarkable 

achievements in different tasks like sound processing or detection of different elements in 

pictures [9], [10]. However, most of the previous applications present oversized models with to 

many parameters to be adjusted. This has two main collateral effects: first, the models needs a 

tremendous amount of resources for its training and execution and second, more parameters induce 

the models to memorise and consequently to overfit the solution. 

 

This paper uses the whole dataset known as SHHS-1 [11] in order to test on a real-world 

problem how the increment on the pressure on the convolutional layers could drive to a reduction 

in the requirements and a better generalisation. Additionally, a first approach to solve the 

aforementioned dataset is provided without removing the outlayers or reducing the number of 

patients. The aim is to test the architecture and the different approaches on a real-life problem. 

The paper presents on Section 2 a review of related works with special attention to the most 

modern ones which have used part of the dataset. Section 3 presents the proposed architecture, a 

summary of the key elements of convolutional neural networks and a description of the dataset 

used on the tests which are contained in 4. Finally, Section 5 and Section 6 present the conclusions 

and the future lines to work, respectively. 
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2. State of the art 

Over the years, researchers have done uncountable efforts to improve the extraction of features 

from different types of signals. One that has attracted particular interest has been 

Electroencephalograms (EEGs), trying to improve the solution of problems such as the detection 

of epileptic seizures [12], [13], evaluation of the state of the subject [14], [15] or the development 

of Brain-Controlled Interfaces [16], [17]. Among the problems related to EEG processing, one 

which has particularly focused a lot of attention is the scoring of the sleeping stages. 

 

Focusing on the latter mentioned problem, many researchers have attempted to use different 

approaches to improve the automation of this task. However, if the spotlight is put over the 

automatic extraction of features, the amount of works drops down significantly. The first work 

worth to be mentioned is [18], where the authors use of Fuzzy Logic in combination with an 

iterative classification method in order to perform the identification of the different sleeping 

stages. This work uses EEGs keeping the timeline and tries to extract the features from it. Going 

along the same line of keeping the timeline, [19] proposed to apply a decision tree to classify the 

features extracted from the raw signal. Later that year, the same researchers propose the use of a 

multiscale entropy combined with a simple Linear Discriminant Analysis (LDA), which 

overcomes their previous results [20]. A different approach was presented in [21], where a Hidden 

Markov Model was proposed to perform the classification. 

 

On the other hand, other works have preferred not to keep the timeline and look for features in 

alternative search spaces, like [22], which performs a wavelet transform before extracting different 

features and use them with different machine learning techniques to classify the signals. Another 

example of alternative representation used is [23] where the authors use a combination of the 

energies from different frequency bands to perform the classification with an Artificial Neural 

Network (ANN). 

 

Partially related, it is worth to mention those works which do not use the signal as it is while 

they focus their attention on some high-level features such as statistical features [24], power 

spectral density [25], graph theory features [26] or moment features [27]. 

 

Finally, in recent years, some works have focused their attention on the uprising techniques 

framed under the name of Deep Learning by using Random Belief Networks [28] or Convolutional 

Neural Networks [29]. All of those techniques are based on the same principle, each new layer of 

the neural networks extracts higher-level features from the information on the input. Applying this 

principle to EEGs, [30] proposed the use of Autoencoders to solve the labeling problem on a 20-

patient dataset [31]. In [32], the authors proposed a dual pipeline network called DeepSleep which 

overcome the results in [30] on the same dataset and, additionally, the paper also presents a second 

set of results on a different dataset [33]. Going along with those developments, Fernandez-Blanco 

et al. in [34] studies on the same dataset the advantages of using multiple signals with a 

convolutional neural network pointing out to an advantage of processing several EEG signals 

simultaneously. 

 

However, deep learning works previously mentioned use 2 relatively small datasets, more 

related to the work presented in this paper, the most relevant results due to the size of the dataset 

used can be found in [35]. That work uses the dataset known as SHHS-1 [11], which contains 

more than 5800 records from patients. However, the authors of that work have removed the 

outlayered data and trimmed the number of the wake periods, simplifying this problem while 

results get far from reality. Even though, the proposal is worth mentioned because using a set of 

convolutional layers is capable of extracting features and use them as the input of a Multilayer 

Perceptron for classification. 
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The main problem of the previously mentioned works is the use of convolutional layers which 

extract hundreds of low-quality feature, those low-quality features result in the requirement of 

more resources to train and use the models. This work explores if there is a possibility to obtain 

similar or better results but reducing the hardware requirements by increasing the pressure on the 

quality of the features extracted in each layer through reducing the number of filters to learn and 

the use of dropout layers. This reduction of the number of features also comes along with 

improved control of the overfitting because each feature has to represent more general knowledge 

in order to cover as much of the search space as possible. 

3. Materials and methods 

3.1. Convolutional neural networks 

Convolution in Neural Networks was proposed for the first time by Fukushima in 1982 [36]. 

Although in 1998 Yann LeCunn [29] proposed its use in the recognition of documents, until 

2012 [37] with the modifications proposed by Hinton et al. in the calculation of the gradients the 

use and construction of CNN was restricted to very small laboratory problems. However, since 

those advances, Convolutional Neural Networks (CNN) and Deep Learning, in general, have 

meant an important step forward in many knowledge areas by becoming the state-of-the-art for 

many problems. 

 

CNNs establish a hierarchy of layers where each neuron receives as inputs a spatial-close 

related piece of the input information. Each neuron on a convolutional layer receives a different 

input data like a sliding window over the signal or image, and the weights are the same for all 

neurons instead of being different, as in classical neural networks. Consequently, the result is the 

convolution of an input feature map X(l-1) with a set of learnable filters W(l) and adds 

biases b(l) to, finally, apply some kind of transfer function g like in Eq. (1) 

  

X(l)=gl(X(l-1)*W(l)+b(l))        (1)  

 

By stacking several layers that apply the Eq. (1), the result is a network where each layer 

extracts more general information from the information on the previous layer but conditioned by 

the spatial relationship [38]. Consequently, CNNs are composed by a number of convolutional 

layers which extracts the features of the signals or images. After the extraction, the resulting 

features are used with some sort of machine learning technique such as Support Vector machines 

or fully-connected perceptrons for the classification problem, while a Softmax layer could be used 

for regression. This architecture has been successfully used in many applications, although most of 

these works are mainly related to image processing, such as face recognition [39] or image 

classification [40], while signal processing is quite limited to natural language processing [41] or 

human voice recognition [42]. 

3.1.1. Depthwise separable convolution 

Although CNNs have been a successful change on the tack for many problems in recent years, 

one of its major issues is how expensive in time and resources this operation is. To deal with it, 

one of the major contributions has been the Pointwise Separable Convolution layers [43], which 

reduce drastically the computational cost. 

 

#OperationsConv=Ch*Ksz*(S-Ksz)*F      (2) 

 

#OperationsSepConv=Ch*Ksz*(S-Ksz)+Ch*(S-Ksz)*F    (3) 
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This type of convolution is the result of combining two simple convolutions, first, a spatial 

convolution which is performed on each input channel to extract a small number of features. The 

second convolution is performed as a point-wise convolution, i.e 1x1 convolution, to projects the 

results of the combination of the channels in a new space as it can be seen in Fig. 1. The benefits 

in time and memory costs of the application of this kind of convolution are evident if we examine 

the equations Eqs. (2), (3). 

 

 

Fig. 1. Conventional Convolution and its equivalent Deapthwise Separable Convolution. 

The number of operation in the traditional convolution (#OperationsConv) is represented in 

Eq. (2), where Ch represents the number of channels, Ksz is the size of the kernel to be 

applied, F the number of filters and S is the length of the signal. Comparing that amount to the 

number of operations in a separable convolution (#OperationsSepConv) which is represented in 

Eq. (3), the results is a lower the ratio between the number of operations for a normal convolution 

and a separated one (Eq. (4)). According to this relationship, the reduction is inversely 

proportional to the size of the Kernel (Ksz) and the number of filters (F). Therefore, Deepthwise 

Separable Convolutional is cheaper while its results are equivalent to a normal convolution. 

 

 

 
#𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑆𝑒𝑝𝐶𝑜𝑛𝑣

#𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝐶𝑜𝑛𝑣
=

1

𝐾𝑠𝑧
+

1

𝐹
       (4) 
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For example, in a single convolutional layer for a single dimension like the ones used in this 

paper, suppose that we use a kernel of size 7×2 and we extract 10 filters with each convolution. 

Therefore the result of the relation in Eq. (4) for that kernel will be 114+110=0.1714, that is an 

82.85% of fewer gradients to be calculated and updated in a single layer. Additionally, fewer 

weights also come with better control of the overtraining because the networks have less room to 

memorize instead of learning. 

3.1.2. Overfitting 

One of the biggest issues in the application of machine learning in general, and deep learning 

in particular, is the natural tendency of the training techniques to overfit the 

models [44], [45], [46]. When a model, instead of extracting the knowledge behind the presented 

patterns, is mainly memorizing them, it is what is called an overfitted model. Over the years, many 

approaches have tried to tackle these questions, like the use of validation sets or the inclusion of 

different penalization terms in the optimization techniques. 

 

This problem is even bigger in the Deep Learning models because of the increment in the 

number of weights drives to a higher capability of memorization by the network. Several proposals 

can be found in the literature, for example, introducing a special layer between the other known as 

the Dropout layer, which will drop some outputs from a previous layer forcing the following to 

relay on other connections. In this way, the training process tries to spread knowledge over the 

whole bunch of connections instead of specific ones. However, the problem is still rooted because 

the number of parameters in the networks tends to increase along with the capabilities of the 

systems. That is the reason why, the only effective way to control the overfit, is minimizing the 

number of weights and biases in a network. 

3.1.3. Evaluation criteria 

In order to contribute to control the overfitting of the model, the dataset was split into three 

datasets, training, validation and tests, according to 0.7, 0.1 and 0.2 ratios, respectively. The model 

with the lowest validation value was kept to proceed with the test step. Additionally to the 

accuracy and the confusion matrix, measures for Cohen’s Kappa and F1 score are also provided to 

measure the performance of the model. Cohen’s Kappa provides an estimation of the agreement 

between the algorithm and the technicians according to Eq. (5), excluding the chances of random 

agreement. To do that, the formula uses the observed agreement (p0) and the probabilities of a 

chance agreement (pe). 

 

𝜅 =
𝑝0−𝑝𝑒

1−𝑝𝑒
          (5) 

 

On its own, F1 score combines precision (or positive predictive value, PPV) and recall (or true 

positive rate, TPR) in a single measure according to the Eq. (6), where PPV represents the ratio 

between the true positives (TP) among all the cases labeled as positive by the model, while TPR 

represents The positive cases identified among the total number of positives in the ground truth 

 

𝐹1 =
𝑃𝑃𝑉∗𝑇𝑃𝑅

𝑃𝑃𝑉+𝑇𝑃𝑅
         (6)  
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3.1.4. Electroencephalograms 

One of the very few and non-invasive techniques to study the brain is electroencephalography. 

The records produced by this test, called electroencephalograms, register the alterations produced 

by the brain with its electrical activity over time. Widely used in different clinical problems such 

as diagnosis of epilepsy [47], depth of anesthesia [48], or sleep disorders [35]. These signals are 

captured by using a set of electrodes placed on the patient’s scalp following the standard 

10/20 [49] and calculating the difference between the potential of two electrodes. Those electrodes 

are also the source of the names of the different recorded channels, for example, in this work 

channels, C4-A1 and C3-A2 are going to be used because those 4 nodes were the ones used when 

the dataset was recorded. One of the main issues of these records is the amount of noise in the 

recorded signals. Potential measured in the scalp has an amplitude between 10 V and 100 V, this 

potential has to be preamplified d by a factor of 1000 to 10,000 times in order to be registered by 

the instruments which result in signals with many artifact and false positives. This high-level noise 

with the non-stationary nature of these signals results in a particular complex analysis as can be 

seen in Fig. 2. 

 

 
 
Fig. 2. Samples for each labeled stage of a EEG from SHHS-1 dataset. 

 

 

3.1.5. Dataset 

The multi-center cohort study known as Sleep Heart Health Study (SHHS) was carried out 

from 1995 until 2010. It was an initiative from the American National Heart Lung and Blood 

Institute whose objective was to determine the relationship between sleep-disorders and high-risk 

cardiovascular issues. 
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SHHS polysomnographic records contain two EEG channels (C4-A1 and C3-A2), two EOG 

channels, one EMG channel, one ECG channel, two inductance plethysmography channels 

(thoracic and abdominal), a position sensor, a light sensor, a pulse oxymeter, and an airflow 

sensor. 

 

Additionally, SHHS [11] was divided into two different datasets: SHHS-1 and SHHS-2, 

corresponding to two different visits of the same patient cohort. However, in this work, which is 

focused on using the EEG channels, only the SHHS-1 was used due to the homogeneity of the 

records. In SHHS-1, every EEG channel was recorded at 125 Hz and manually scored by a single 

technician according to R&K scoring rules [5], while in SHHS-2 EEGs were recorded between 

125 Hz and 128 Hz. Therefore, the dataset used contains records from 5804 patients which were 

labeled on 30s epochs in several sleep stages: Awake, S1, S2, S3, S4, REM and Unknown. The 

results are over 49Gbytes of data between the signals and the corresponding labels. It must be 

highlighted that the labeling was performed before AASM standard [6], consequently, an 

adaptation can be performed following the rules cited on the guidelines. The result was a label 

between Awake, N1, N2, N3, and REM for each epoch as it is shown in Table 1. 

 

Table 1. Conversion between R&K and AASM guidelines. 

Guideline Sleeping Stages 

R&K Awake S1 S2 S3 S4 REM Unknown 

AASM Awake N1 N2 N3 REM – 

 

 

3.2. Proposed architecture 

To solve the problem of sleep scoring described in Section 3.1.5, this work proposes an 

architecture mainly base on Depthwise Separable Convolutional layers. In this particular case, the 

resulting schema after several tests is shown in Fig. 3. As any Deep Learning model, the 

architecture presents two parts: first, the feature extractor and, second, the classifier. 

 

As input, the system receives 1 or 2 EEG signals from the SHHS-1 corresponding to the C3-A2 

and C4-A1 channels. Those signals, which were recorded at 125 Hz each, were labeled in intervals 

of 30 s, consequently, a label is available for every 3750 samples in the input signal, and they are 

generically called sections. The number of sections to be used in the input has been one of the 

components that this work has put under the spotlight performing many tests. More specifically, 

for each label, additionally, to the segment, tests were performed by including from 0 to 3 previous 

sections and from 0 to 2 latter ones. 

 

With respect to the feature extraction, it is made by a succession of depthwise separable 

convolutional layers followed by MaxPooling. This particular combination of those 2 

convolutional layers and the maxpooling layer is represented on Fig. 3 by blocks 

named SeparatedConvolutionMP, which are defined by the size of the kernel(K), the number of 

features(F) and the maxpooling size (M). 
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Fig. 3. Proposed architecture. 

This particular combination of layers increases the pressure on the extracted features for three 

main reasons. First, each couple of layer which perform a separable convolution uses fewer 

parameters, as was already explained in Section 3.1.1, this makes that parameters more important 

to represent the solution space. Second, in this case, a reduction in the number of filters was also 

made, in the proposed architecture the separable convolutional layers extract between 10 to 20 

filters oppositely to other works who extracted over 100. Finally, the last step to increase the 

pressure over the extracted features is the use of the MaxPooling layers reducing the number of 

features by half in each layer. Comparing the result of the last convolutional layer which is a set of 

1700 inputs used as inputs for the classifier with the 37,500 data points in the input makes an idea 

of that pressure increment. 

 

It is also worth to mention that Kernels sizes run from 7 to 3. The size of the kernels starts from 

the achievements of [50], which points to 7 to the best size to extract information from the brain, 

while the reduction and number of layers was the result of a set of exploratory tests, some of 

which are shown in Section 4. 

4. Tests 

Different architectures and configurations have been tested on the dataset described in 

Section 3.1.5. The main objective which has driven the tests has been to understand the influence 

of the number of parameters, weights and bias, and the depth on the network in the solution of the 

problem. Going along with this objective, the influence of the Deep-wise Separable Convolution 

to solve signal processing problems was also put under the spotlight. Dataset was split into 3 

subsets for training, validation, and test. That split process was done according to the number of 

patients instead of the patterns in order to keep the 3 different datasets as much separated as 

possible and closer to a real scenario. The percent for the division were set as 70%, 10% and 20% 

for each one of the three subsets: training, validation, and test respectively. Once the data was 

defined, tests were carried out by following always the same pipeline. Once the architecture is 

defined, a training process is performed with mini-batches of 50 input patterns. After going 

through the whole training dataset, the validation dataset is evaluated. The training process will 
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stop after 100 iterations over the whole training set or after 10 iterations while the loss of the 

validation dataset has not improved. The result is the network with the lowest error on the 

validation test, which is evaluated with the test dataset. A summary of the sections contained on 

the 1161 patient used for testing is on Table 2. That table also contains the percentage of a 

particular subset with respect to the total. 

 

Table 2. Sleeping Stages on test. 

Awake N1 N2 N3 REM TOTAL 

335,798 42,919 459,378 151,697 162,047 1,151,830 

(29%) (3%) (40%) (13%) (15%)  

 

Finally, the classifier starts with a Dropout layer which is used during training with a 

probability of 0.5 in order to improve the generalization of the network. The rest of the classifier 

network is composed by a single fully-connected layer, that applies a Softmax function over the 

output. This output has been changed to a one-hot encoded in order to apply a categorical cross-

entropy as the loss function. Finally, it may be appointed that the optimization is done with a 

gradient optimization known as ADAM [51]. 

 

Although, it is not the main objective of the paper, it may be highlighted that this is the first 

model which uses the whole SHHS-1 dataset without trimming data or removing any patient. 

 

The results of these tests can be seen in Fig. 4. That figure represents the accuracy obtained by 

different architectures on respect to the number of parameters used on those architectures. 

Therefore, in this figure, each circle in the scatter plot represents a test with a different 

architecture, where the x position represents the number of parameters and the position on the y-

axis represents the accuracy. Additionally, the size of the circles is proportional to the number of 

layers, while the colour represents the kind of convolutional process undertaken. Two kinds of 

convolutions are represented, with darker points the conventional convolution and lighter ones for 

the architectures with separable convolution. It should be highlighted the number of parameters 

has been represented in a logarithmic scale for a more convenient representation due to the 

differences between the networks, which run from 3,939 parameters to 884,915. Analyzing the 

figure, it is obvious that increasing the depth of the network is more profitable than increasing the 

number of parameters. The figure shows networks with 20 times fewer parameters return 

equivalent or better results. As it can be seen on the top left corner, the architectures with a better 

performance with less or equal number of parameters to train have always been the ones with the 

Depth-wise Separable Convolutions, which increased the number of layers while keeping the 

number of parameters under control as it can be seen by the size of the lighter dots. 

 

Fig. 5 allows to take a closer look by only considering networks with less than 50,000 

parameters. This figure shows the same information as Fig. 4, but changing the scale of the 

number of parameters to normal and removing any test with more than 50,000 parameters. 
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Fig. 4. Tests performance according to number of trainable parameters, depth and type of convolution. 

 

 
 

 
Fig. 5. Tests performance according to number of trainable parameters, depth and type of convolution for less than 50,000 

parameters. 

 

It is clear that with the same number of parameters the networks perform better with depth-

wise separable convolution as every light dot is on the top-left corner of the figure. When the 

network has the same number of parameters it always performs better increasing the depth rather 

than increasing the width of the networks. As can be seen in the figure, if we fix the attention on a 

number of parameters and take a look from down to up, the size of the dots is constantly 

increasing. However, if we take a look from left to right with the exception of two points, to obtain 

a similar performance the number of parameters has to be drastically increased. This fact is 

associated with the increment on the pressure of the weights mentioned in Section 3.1.1. 

Oppositely to other works that have used this dataset, keeping a very small bunch of weights 

points out to make them more valuable and representative improving the results with a lower 

resource cost. 
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Additionally, if the number of signals is on the spotlight the results of the test are represented 

in Fig. 6. It shows the accuracy of different architectures according to the size of the input. The 

input is represented in the x-axis by tuples which are the number of previous and latter sections 

used. In those tuples, the first number is the number of previous 30s sections considered before the 

one to be classified as additional information. On the other hand, the second number represents the 

number of sections taken from after the section to be classified. Finally, the colour of the dots 

represents if there has been used one of the signals or both of them as input. 

 

 
 

 
Fig. 6. Test according to the accuracy obtained on respect to temporal frame use. 

In Fig. 6, the tests show a clear benefit of using both EEG signals at a time instead of only one 

of them. This fact comes to confirm something that was pointed out in [34] on a smaller dataset. 

Moreover, when the attention is focused on the temporal window uses as input, it is also clear that 

additional information, independently of the number of signals used, has a significant benefit in 

the performance. However, in the figure, it is also clear that there is a point where additional 

information has no effect, for example, tests performed with 3 previous sections and none of the 

latter show worse performance than test performed only with 2 previous sections and none of the 

later ones. Specific cases are shown in Table 3, there is a comparison of the proposed architecture 

but changing the input configuration of sections used before and after and the number of signals. 

Another point to highlight is the small difference in terms of the number of trainable parameters 

between the architectures using one or two signals. 

 

All in all, the best results were obtained by using a network with a Depth-wise Separable 

convolution together with the two EEGs recorded in the PSG. The classification also showed an 

important improvement when the input contains additional information to the section to be 

classified. More specifically, the use of 2 previous sections and 2 latter ones showed the best 

general performance. Table 4 shows the confusion matrix of the test, which represent the results 

obtained by the network against the ground truth. A closer analysis of that matrix shows that the 

network has problems mainly on identifying the class N1being the only category under the 80% of 

precision and recall. This category has as mayor problem the underrepresentation in any dataset, 

for example, SHHS1 has only 3% of the total amount of sections labeled as N1 as can be seen 

in Table 1. In fact, many works join the states N1 and N2 in a single state labeled as ”swallow 

sleep” due to the fact that even the expert technicians have problems to separate one from the 

other. Even though this category bias the general performance measurements of the network, when 

the behaviour of the remaining classes is analyzed, the precision and recall are always between 
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82% and 92%. These measures are considered is acceptable due to the fact that among human 

experts a general coincidence of 84% has been observed [52]. 

 

Table 3. Comparison of different input configuration with the proposed architecture. 

Sections Sections Number of Accuracy κ F1 Trainable 

Before After Signals   (macro) Parameters 

2 0 1 82.0% 0.74 0.72 10,982 

2 0 2 84.4% 0.78 0.74 10,982 

2 1 1 82.4% 0.75 0.72 13,882 

2 1 2 83.0% 0.76 0.74 13,899 

3 0 1 81.8% 0.74 0.71 13,882 

3 0 2 84.2% 0.78 0.75 13,899 

 

 

Table 4. Confusion matrix of the best network in test. 

                                                                               Ground truth  

  Awake N1 N2 N3 REM Precision 

Network Awake 306,336 9,517 10,806 216 7,207 91.69% 

N1 3,520 9,476 2,951 2 1,598 54.00% 

N2 16,663 14,842 420,743 26,891 18,958 84.47% 

N3 1,269 13 23,097 124,530 61 83.59% 

REM 8,010 9,071 1,781 58 134,223 87.64% 

 Recall 91.23% 22.08% 91.59% 82.09% 82.83%  

 

Table 5. Performance of the different works on SHHS-1 and their complexity 

. Number of Accuracy k F1 Trainable 

 Patients   (macro) Parameters 

[35] 5,728 87.00% 0.81 0.86 199,068,478 

This work 5,804 85.22% 0.79 0.76 16,799 

 

Overall, the general performance of the network can be seen in Table 5 together with another 

work that has used the same dataset. It should be highlighted that the presented work, oppositely to 

the one presented by [35], do not perform any additional filtering or clipping of the signals. 

 

While the results are comparable with the already published architectures, it might be 

highlighted that the complexity of the one presented in this paper is definitely lower if the number 

of parameters to modify is taken into account. With 16,799 trainable parameters, the presented 

model could be trained in almost any desktop computer. More specifically, the tests shown in this 

paper have been executed in an Intel i7 2.6 GHz with 16Gbytes of RAM and the support of an 
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NVidia Titan X graphical card. Each training and test has taken been 2 and 6 days on the described 

computer. Something that may be highlighted is the fact that results from [35] have been 

impossible to reproduce because the removed patients and the patients used on the dataset were 

not published. Additionally, the previously published network requires an infrastructure that the 

authors can not afford. 

5. Conclusions 

As the main conclusion of this work, it can be stated that similar results to already published 

works can be obtained by improving the quality of the features extracted by the convolutional 

networks. Instead of networks with lots of low-quality weights, increasing the pressure on those 

weights to extract more meaningful features is an advantage. One of the benefits from the shrink 

down of the number of parameters is overfitting control. Fewer parameters mean that features can 

not memorize the patterns instead of learning the features of a group, as oppositely of what can 

happen in other works like [30], which has more than 500 million parameters for a fraction of 

those patterns. Another side effect of this shrink is an increase in the overall training process, due 

to fewer parameters mean less gradient modification to calculate and, therefore, less time to 

perform the training. Finally, going along with the aforementioned benefits, the contention of the 

number of parameters while increasing the depth allows to extract higher-level features with less 

resources. For example, in this work, Deep-wise separable convolution and pooling layers have 

been used to increase the pressure on the extracted features by the convolutional layers. By 

applying those two easy mechanisms to control the number of parameters, this work has shown 

similar results to the ones achieved by previously published ones although with a reduction of 

1000 times less trainable parameters. 

 

Another point that has confirmed some recently published works on small data sets 

like [47], [53], [34], is the fact that using several signals recorded simultaneously improves the 

results on the classification. As tests shown in Table 3, it is better to use more information in the 

input allowing the network to extract as much information as possible. 

 

Finally, the last fact to be mention is the improvement in the results when not only the section 

to be classified is used but also temporally related information. As it is also shown in Fig. 6, the 

use of previous and latter sections as inputs of the network does not suppose a significative impact 

on the number of parameters but it really makes a difference in the performance of the network. 

6. Futures works 

This work opens several possibilities to continue its development, first, it is clear that the 

dataset has a problem with the class N1 which is clearly unrepresented compared with the 

remaining ones. To explore alternatives to deal with this issue should be on top of the list, for 

example, by weighting with higher values the samples of the lower representative classes during 

the training. 

 

Second, the inclusion of other signals contained in the PSG like electromyograms, 

electrooculograms or electrocardiograms could improve the labeling by integrating information 

from different sources. Different alternatives are open at this point, especially due those signals 

have been sampled at different rates and its integration is not straightforward. Although some 

recent works such as [54] have shown its advantages on small datasets. 

 

Third, it would be also interesting to check the behaviour of this architecture with other 

datasets. Usually, each dataset records different EEG channels. It would be interesting to check the 

behaviour of this architecture with those small datasets. Furthermore, this could be a good 
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opportunity to check if the transfer learning observed principles, observed in recently published 

works [55], [56], is applicable in the signal processing. 

 

Finally, as it was aforementioned, the use of more than one signal simultaneously is a clear 

improvement for the architecture, however not always all the signals are available, for example 

with a stick-off pad. A set of tests in order to check the failure tolerance of the systems when one 

of the signals is misleading or simply does not exist. 
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