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Abstract 

This paper presents a classification model for the 
automatic quantification of tremor severity in 
patients with essential tremor (ET). The system is 
based on the signals measured by two commercial 
smartwatches that the patients wear on their wrist 
and ankle. The smartwatches register acceleration 
and angular velocity in these body segments. A set of 
nine tremor features were used to train the 
classification algorithm. The proposed algorithm is 
based on a C4.5 decision tree classifier. It is able to 
assess rest and kinetic (postural or action) tremor. 
The method was evaluated using data collected from 
thirty-four patients with ET. The algorithm classifies 
the severity of tremor in five levels 0-4 corresponding 
to those in the Fahn-Tolosa-Marin tremor rating 
scale with a 94% accuracy. The method can be 
implemented in a networked platform for the remote 
monitoring and assessment of movement disorders 
such as ET or Parkinson’s disease. 

Keywords: tremor assessment; time series 
classification; Essential Tremor.  

1 INTRODUCTION 

Essential tremor (ET) is considered the most 
prevalent type of tremor in adults, affecting ~ 5% of 
people over age 65 [1]. Bilateral postural with or 
without kinetic (in posture or action) tremor are the 
hallmarks of this entity, but mild rest tremor can be 
observed in some long-standing severe kinetic tremor 
[2]. Remarkably, 75% of the patients with ET report 
significant disability [3], consisting in relevant 
interference with employment, activities of daily 
living (ADL), and social function [4]. Improving 
tremor management in these patients could therefore 
drastically reduce direct and indirect costs related to 
the disease. It could also improve the quality of life 
and independence of both patients and caregivers. 

Many objective transducer-based measures, such as 
electromyography (EMG), vocal acoustic analysis, 
accelerometers, or gyroscopes,  have been used for 
the quantification and characterization of tremor [5]. 
They proved to be more sensitive than clinical rating 
scores to changes in tremor amplitude and frequency 
in specific scenarios [6]. The miniaturization of 
inertial measurement units (IMU) makes wearable 
technology closer to be ready for the clinical practice 
and long-term ambulatory tremor monitoring [7], [8]. 
However, new machine learning algorithms are 
needed to translate the high-dimensional data 
provided by wearables into clinically meaningful 
information [9].   

Kubota et al. reviewed [9] unsupervised (clustering) 
and supervised machine learning algorithms such as 
linear regression, neural networks classifiers, support 
vector machines, k-nearest neighbors, naïve Bayes, 
or decision trees for measuring tremor symptoms in 
Parkinson’s disease [9]. Whereas these methods can 
achieve very high values of accuracy, an incorrect 
training of the classifier can lead to errors in the 
prediction of new tremor episodes due to the 
overfitting of the trained model. Furthermore, these 
algorithms are trained with the assumption that the 
distribution of the training data is static and 
unchanging. Hence, the algorithms must be re-trained 
periodically in order to prevent invalid predictions. 
On the other hand, many of the reviewed algorithms 
focus on the detection of tremor and rely on further 
analysis for the quantification of severity [10]. 

In this paper, we propose an automated method for 
the classification of tremor severity in patients with 
ET. The methodology is based on the analysis of the 
signals registered by accelerometers and gyroscopes 
during standard clinical tasks to assess rest, postural 
and action tremor. A simple set of 9 features and a 
C4.5 decision tree classifier can be used to build a 
model that can be used later for the online 
classification of tremor in ambulatory monitoring 
applications. The automatic detection and 
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characterization of tremor are two of the main goals 
of the NetMD Project1.  

2 METHODOLOGY 

2.1 PARTICIPANTS 

Thirty-four patients (ages 18-81) with ET were 
recruited by the Neurology Department of the 
University Hospital “12 de Octubre” in Madrid.

Eighteen of them were taking medication for their 
disease during the tests. Table 1 depicts the main 
clinical features of the participants in the study. 

Table 1: Demographic and clinical data of patients 
with essential tremor (N = 34). 

Age 
Mean ± SD 64 ± 14.4 
Gender 
Female 
Male 

14 (41.1%) 
20 (59.9%) 

Disease duration (years) 
Mean ± SD 12.5 ± 10.4 
Global FTM-TRS score 
at recruitment 27.9 ±12.6 

  FTM-TRS-A 9.1 ± 4.9 
  FTM-TRS-B 13.5 ± 6.4 
  FTM-TRS-C 5.3 ± 2.6 

2.2 APPARATUS 

An expert neurologist in movement disorders 
examined the patients. He used the Fahn-Tolosa-
Marin (FTM) tremor rating scale (TRS) to assign a 
score to several items measured during a clinical 
examination: rest tremor, postural tremor, and action 
tremor.  All the patients followed a specific protocol, 
which includes the following tasks: 

A. Measurement of rest tremor. Sitting on a 
chair with their hands resting in their lap. 
Count from 100 to 0. 

B. Measurement of kinetic (postural) tremor. 
Holding the arms outstretched with the 
hands in pronation.  

C. Measurement of kinetic (action) tremor. 
Finger to nose movements starting and 
ending with the arms outstretched to the 
sides. 

D. Measurement of kinetic (action) tremor. 
Pouring water between two glasses starting 
and ending with the arms resting. 

1 http://g-nec.com/project_NetMD.html 

These items are enumerated in Table 2 and 
correspond to the FTM-TRS part A and B [11]. The 
whole session was videotaped. The neurologist 
assigned a score to each task and patient after a 
thorough examination of the video. 

Table 2: Fahn-Tolosa-Marin (FTM) tremor rating 
scale (TRS) score pattern for the tasks A-D. 

FTM-TRS-A: Items 5 or 6 

Tasks A,B,C: 
rest and 
kinetic 
tremor 

0: None 
1: Slight. May be intermittent. 
2: Moderate. Intermittent (< 2 cm). 
3: Marked amplitude (2-4 cm). 
4: Severe amplitude (> 4 cm). 

FTM-TRS-B: Item 14 

Task D:  
Pouring 
water from a 
glass 

0: Normal 
1: Slow, but no water is spilled. 
2: Spills 10% of water. 
3: Spills ~50% of water.  
4: Unable to complete the task. 

During the experiments, the patients wore two Sony 
Smartwatch3 located on the wrist (SW3w) and ankle 
(SW3a) of the most affected hemibody. They also 
carried an Android Smartphone ASUS inside of a 
belt-pouch on the waist. An ad-hoc Android 
application acquired raw data obtained from the 
gyroscopes and the accelerometers at a sampling 
frequency of 50Hz. The Smartphone stored a 
timestamp and angular velocity and linear 
acceleration in three axis in a text file (txt). See 
Figure 1.  

Figure 1: System of reference of the SW3. 

The experiments were approved by the ethical 
standards committees on human experimentation at 
the University Hospital ‘‘12 de Octubre’’ (Madrid). 

The participants read and signed informed consent 
prior to the tests. 
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2.3 CLASSIFICATION ALGORITHM 

2.3.1 Signal preprocessing 

The txt files were processed on a 2.83 GHz Inter 
Core 2 Quad Q9500 machine running Windows 7 
Professional 32-bit. The preprocessing of the signal 
was done off-line using Matlab software (version 
7.11.0 (R2010b); MathWorks, Natick, MA). A total 
of 136 segments (4 tasks x 34 patients) were 
annotated by the neurologists in terms of clinical task 
(A-D) and severity (0-4). The durations (mean ± SD) 
of the segments corresponding to the tasks A-D are: 

 Task A (rest tremor): 20.1 ± 11.4 s
 Task B (kinetic tremor): 23.3 ± 20 s
 Task C (kinetic tremor): 12.8 ± 3.5 s
 Task D (kinetic tremor): 54.8 ± 18 s

Figures 2-4 illustrate three examples of the gyroscope 
signal measured during the tasks which assessed 
kinetic tremor.  

Figure 2: Gyroscope signal measured in the x-axis of 
the SW3w. The blue curve represents the velocity of 
the wrist prono-supination in task B; the orange, the 

band-pass filtered signal. 

Figure 3: Seven repetitions of the finger-to-nose task 
(Task C). Raw and filtered wrist prono-supination. 

More precisely, Figure 2 shows postural tremor, 
Figure 3 depicts action tremor in the finger-to-nose 
task, and Figure 4 exemplifies action tremor in the 
pouring task. 

Figure 4: Two repetitions of the pouring task (Task 
D). Raw (blue) and filtered (orange) wrist prono-

supination 

The segmented signals were band-pass filtered using 
a 10th order Butterworth high-pass filter (freq1>3 Hz) 
which removed the voluntary component, followed 
by a 10th order Butterworth low-pass filter (freq2<12 
Hz) which eliminated tremors of higher frequency.  

2.3.2 Feature extraction 

Nine tremor features were estimated from the 
recordings of the smartwatches as determined in [10]. 
They are enumerated in Table 3. The data registered 
by the SW3w in the wrist was used to estimate the 
features f1-f6, f8, and f9. Note that feature f4 was 
estimated from the 3 Hz low-passed gyroscope 
signal.  On the other hand, the feature f7, “other body

segment energy” was calculated from the data 
registered by SW3a, located in the ankle. The 
extraction of the features is based on a 3 s moving 
window with 0.1 s overlapping.  

Table 3: Features for tremor recognition 

Feature Id Sensor 
Dominant Frequency 
Energy on Dominant Frequency 
High Frequency Energy 
Low Frequency Energy 
Spectrum Entropy 
Mechanical Energy 
Other Body Segment Energy 
Ratio Hi/Lo Frequency 
f1*f2 

f1 
f2 
f3 
f4 
f5 
f6 
f7 
f8 
f9 

Gyro 
Gyro 
Gyro 
Gyro 
Gyro 
Acce 
Gyro 
Gyro 
Gyro 

Gyro = gyroscopes; Acce = accelerometers 

XXXVIII Jornadas de Automática

349



2.3.2 Tremor classification 

We used the Weka [12] collection of machine 
learning algorithms for the training of a C4.5 
decision tree classifier and the evaluation of our set 
of tremor features.  

The method proposed for the selection of the features 
was the wrapper approach. This method takes into 
account the classifier chosen. It also uses the best-
first search algorithm. The wrapper approach used 
two classifiers: the C4.5 decision tree classifier and 
the naïve Bayes classifier consecutively. 
Additionally, a 10-fold cross-validation procedure 
was employed to achieve a more robust evaluation. 

We also computed a 10-fold cross-validation during 
the training of the classifiers in order to avoid 
overfitting [13]. 

3 RESULTS 

A total of 32745 sets of features were analyzed. The 
patients recruited showed mostly episodes of mild to 
moderate tremor. The FTM-TRS scores in the 
instances analyzed is depicted in Figure 5.  

Figure 5: Distribution of instances corresponding to 
each FTM-TRS level assigned by the neurologist. 

3.1 SELECTION OF FEATURES 

With the C4.5 decision tree, the most selected 
features were the dominant frequency (f1), the 
energy at the dominant frequency (f2), the energy at 
low frequencies (f4), the spectrum entropy (f5), the 
mechanical energy (f6), the energy measured in 
SW3a (f7), and the ratio of high/low energy (f8). The 
least selected features were the energy at high 
frequencies (f3) and f9. On the other hand, the naïve 
Bayes classifier selected f1, f5, and f8.  

3.2 CLASSIFICATION MODELS 

Two tremor severity classifiers were built: TC1 and 
TC2. TC1 was trained with the 9 features. The 
features f3 and f9, which were discarded by the 

wrapper approach, are not included in the training 
and evaluation of the tremor classifier TC2.  

The decision tree TC1 was built in 4.9 s. It had 1050 
leaves and showed a classification error of 5.85 %. 
The range of error with a confident interval (CI) of 
95 % was 5.55-6.09 %. The areas under ROC for the 
classes 0 to 4 were 0.969, 0.965, 0.968, 0.976, and 
0.974, respectively.  

TC2 had 1040 leaves and was able to only classify 
incorrectly 1804 instances (5.51%), CI at 95 %, 5.25-
5.77 %. The time taken to build it with Weka was 
3.33 s. In this case, the areas under ROC for the 
classes 0 to 4 were 0.971, 0.966, 0.969, 0.977, and 
0.973. Table 4 depicts the confusion matrix estimated 
for TC2. 

Table 4: Confusion matrix of the C4.5 decision tree 
classifier TC2 for tremor in ET. 

TC2 Classified as 
Class 0 1 2 3 4 

0 4153 303 17 2 1 
1 232 15701 348 69 23 
2 22 406 7414 79 51 
3 1 53 92 2623 9 
4 0 17 58 21 1050 

We could not achieve a significant improvement of 
the classification errors after not including f3 and f9 
in TC2. However, we improved the time needed to 
build the model by 32 %.  

4 DISCUSSION 

In this paper we proposed an algorithm for the 
automatic assessment of tremor severity in patients 
with ET. The algorithm is based on the analysis of 
the signals recorded by the accelerometers and 
gyroscopes which are integrated in two smartwatches 
that the patients wear in their wrist and ankle. These 
signals were preprocessed and characterized by a set 
of nine features. These extracted features were then 
used to train two C4.5 decision tree classifiers, TC1 
and TC2. The system was validated with thirty-four 
patients with ET recruited at the University Hospital 
“12 de Octubre”. 

The results show that the classifiers are able to 
identify the tremor severity among 5 levels of FMT-
TRS score. Even though the accuracy of TC1 and 
TC2 is very similar, we were able to reduce the time 
needed to build the model in Weka by 32%.  

The simplicity of the model makes it very easy to 
implement in different platforms. Additionally, the 
smartwatches used for the measurement of tremor 
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showed good wearability and an affordable price. 
These characteristics make the proposed platform a 
very interesting solution for the continuous and 
objective ambulatory monitoring of tremor and other 
movement disorders. 

4.1 EXPERIMENTAL CONCERNS 

There are some limitations in the experiment that 
could affect the results and the reproducibility of the 
study. The neurologist was blinded to the signals 
registered by the smartwatches. However, he had 
treated the patients during the recruitment phase. 
Hence, his evaluation of the videotapes could be 
biased.  In future studies, a second neurologist with 
expertise in pathological tremor and movement 
disorders will be included in the analysis. The 
agreement between raters will be assessed with a 
correlation Cohen’s kappa coefficient. Additionally, 

the location of the smartwatch in the distal forearm 
could affect the registry of tremor. The amplitude of 
the tremorous signal increases distally and it is 
maximum in the hand and fingers. Consequently, our 
smartwatch could be unable to register significant 
components of distal tremor on these body segments.  

Our results reveal a slightly higher number of 
classification errors between the classes 1 and 2. This 
could be due to the imbalanced data from these 
classes, but also to the nature of the FTM tremor 
rating scale. In the case of the levels 1 “slight, 

intermittent” and 2 “moderate, intermittent”, the 

rating provided by the neurologists can be extremely 
subjective. Other well-known clinical scales such as 
The Essential Tremor Rating Assessment Scale 
(TETRAS) rate tremor 0-4 in half-point intervals 
[14]. We will be able to reduce the variability of the 
rating and improve the accuracy of our tremor 
classifiers if we use this clinical scale in the future. 

4.2 FUTURE WORKS 

In future studies, we will improve our tremor 
classifier by including several neurologists to achieve 
a more precise rating of the tremor segments. We 
will also evaluate the performance of other classifiers 
such as Hidden Markov Models, Support Vector 
Machines, or k-Nearest Neighbors and extract new 
tremor features. The model will be implemented in 
the NetMD online platform. The platform will 
register the movements of the patient during a 24-
hour monitoring and will provide the neurologists, 
patients and caregivers with an objective full tremor 
report. More information on the NetMD Project can 
be found at the link provided in Section 1. 

In addition to this, we are interested in introducing 
new context awareness to our assessment of tremor. 
More specifically, we will train new classifiers to 

identify several activities of the daily living. We will 
detect periods of rest and physical activity, including 
gait. Tasks of special interest are those related to 
dressing (putting a shirt on and buttoning it), 
grooming (combing hair or brushing teeth) or feeding 
(fine movements and gross movements with a spoon 
or a fork and a knife). A similar method was 
presented in [15] using signals registered by four 
IMUs located in the hand, forearm and arm of 
patients with ET. 

With all this new information, the neurologists will 
be able to monitor and characterize not only episodes 
of tremor but also to identify the specific activity that 
the patient was performing when an onset of tremor 
was detected. This will be very valuable information 
to assess the evolution of the disease. It can also help 
them to detect the possible side effects that the 
medication can have on the daily activities of the 
patients and the tremor in their upper and lower 
limbs. 

5 CONCLUSION 

In this paper, we used nine features to train an 
automatic tremor severity classifier. The proposed 
method showed good accuracy in the identification of 
tremor severity in signals of gyroscopes and 
accelerometers. The method was able to assess the 
severity of tremor in 34 patients with ET. The system 
classified tremor instances as five levels of severity 
(0, 1, 2, 3, and 4), corresponding to the levels 
described by Fahn-Tolosa-Marin tremor rating scale. 

The method can be implemented in a networked 
platform for the remote monitoring and assessment of 
movement disorders. 
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