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Abstract
The extraction of meaningful features from the monitoring of laser processes is the foundation of new non-destructive quality
inspection methods for the manufactured pieces, which has been and remains a growing interest in industry. We present
ConvLBM, a novel approach to monitor Laser Based Manufacturing processes in real-time. ConvLBM uses a Convolutional
Neural Network model to extract features and quality indicators from raw Medium Wavelength Infrared coaxial images.
We demonstrate the ability of ConvLBM to represent process dynamics, and predict quality indicators in two scenarios:
dilution estimation in Laser Metal Deposition, and location of defects in laser welding processes. Obtained results represent
a breakthrough in the 3D printing of large metal parts, and in the quality control of welding processes. We are also releasing
the first large dataset of annotated images of laser manufacturing.
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Introduction

Laser technologies play a key role in high precision processes
in sectors such as automotive industry and aeronautics. In
these sectors a continuous improvement towards the goal of
“zero defects manufacturing” is essential to reduce costs and
avoid exploitation problems. For this reason, new techniques
are continuously developed for on-line quality monitoring
and fast defect detection. We focus in two laser processes,
Laser Metal Deposition (LMD), and laser welding.

LMD is amanufacturing process based on the creation of a
molten pool into which metal powder is injected as particles.
This new additive technology is expected to enable 3D print-
ing of net-shaped large metal components and is replacing
previous techniques for coating and repairing critical parts
in metallurgic industries. Currently, the biggest challenge for
LMD is the lack of control in process dynamics at the high
deposition rates required for large pieces (Song et al. 2012).
Process monitoring in real time is critical for the efficient and
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fast manufacturing of larger andmore complex parts (Hauser
and De Weck 2007).

Laser welding industry is a mature technology imple-
mented in most automotive industries. However, defects are
a significant issue in production lines and any deviation in
the position of the work piece produces defects and non-
compliance with quality standards. Process monitoring in
real-time anddetecting anydeviation from the desired param-
eters will lead to a dramatic reduction in repairing costs and
significant increase in product quality.

Automatic quality control in laser processes is challenging
and stable online monitoring systems are still in early devel-
opment stages. Nowadays, destructive analysis and visual
inspection are the main techniques for defect detection. The
automation of this process will suppose a great improvement
in the production lines. In addition, many parameters such
as track geometry or dilution can only be obtained through
destructive testing, as metallographic analysis and 3D scan-
ning. These procedures cannot be used for on-line quality
control since they are either destructive or time-consuming.A
vision system inspection allows the online monitoring show-
ing key indicators of the studied processes.

Monitoring and control of manufacturing processes have
significantly evolved, and recent research efforts rely on the
use of non-intrusive sensors that can work with accuracy in a
harsh environment, such as Charged Couple Device (CCD)
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or Complementary Metal–Oxide–Semiconductor (CMOS)
cameras, photodiodes (Liu et al. 2019) and pyrometers
(Song et al. 2012). Among these sensors, CCD/CMOS
cameras provide the most comprehensive information from
the process. These cameras are commonly used to obtain
cladding height or geometry (Meriaudeau and Truchetet
1996; Iravani-Tabrizipour and Toyserkani 2007; Bi et al.
2007), particle-in-flight velocity (Doubenskaia et al. 2004;
Meriaudeau and Truchetet 1996), powder delivery distribu-
tion (Doubenskaia et al. 2004), and melt pool features such
as surface temperature (Meriaudeau and Truchetet 1996) and
thermal images (Hu and Kovacevic 2003; Bi et al. 2007).

Thermal imaging is an effective technique for defect
detection (Jager andHamprecht 2009; You et al. 2015) defect
classification (Lapido et al. 2015) and laser power control
(Hofman et al. 2012; Rodriguez-Araujo et al. 2012). In par-
ticular, high-speed Medium Wavelength Infrared (MWIR)
imaging, has the benefits of being low cost and providing a
high thermal dynamic range (Rodríguez-Araújo et al. 2017),
and has been successfully applied to the control of laser pro-
cesses (Panadeiro-Castro et al. 2018; Garcia et al. 2018).

The equipment used for laserwelding andLMDis ideal for
monitoring the molten pool with coaxial imaging. However,
twomajor barriers limited the success of previousmonitoring
and control approaches. On one hand, images in the visible
range from traditional sensors present problems of visual
noise due to signal overflow and reflections exacerbated by
dynamic range issues. These problems are solved with the
appearance of low cost high-speed uncooled sensors in the
MWIR range (Rodríguez-Araújo et al. 2017). On the other
hand, obtaining measurements from images of the process is
a challenging task due to the unintuitive nature of the images
and the difficulty in obtaining annotated datawith parameters
of interest.

The image processing field is experiencing a huge trans-
formation and many applications are meeting industry
requirements with the use of Convolutional Neural Networks
(CNN). A CNN is a type of feed-forward deep neural net-
work based on a multilayer perceptron (Rosenblatt 1961),
and designed to analyze visual information with minimal
preprocessing. Schemes based on CNNs have a stunning
ability to recognize images, objects, and image character-
istics (Krizhevsky et al. 2012). These models use a labelled
set of examples to train a model with convolutional elements
that extract meaningful representations of the data without a
handcrafted approach.

CNNs approaches are capable of analysing MWIR ther-
mal images (see Fig. 1) to extract parameters of laser
processes (Kwon et al. 2018) and quality indicators (Amin-
zadeh and Kurfess 2018; Zhang et al. 2019). We designed
ConvLBM as a modular system that allows on-line quality
control and defect detection in manufactured components.

Fig. 1 Examples of MWIR images acquired during a Laser process

These capabilities will lead to the development of new con-
trol approaches for industrial laser manufacturing.

Materials andmethods

We assumed that high-speed MWIR images capture well the
heat flows that characterize the quasi-steady states of themelt
pool, and that such steady states can be encoded in a CNN,
providing an unequivocal representation of the process (Gar-
cia et al. 2018). With this perspective, ConvLBM is trained
using a two-step approach.

First, we built a large dataset labelled with laser power
and process speed. The selected variables are easy to control
and good indicators of the energy and mass input. This is
supported by recent efforts on modelling (Pinkerton 2015)
and control (Tapia and Elwany 2014), where parameteriza-
tion studies assume that two intrinsic magnitudes, enthalpy
and mass input, drive the process and determine key quality
indicators such as dilution, clad bead geometry and porosity
(Zhong et al. 2015).

To that end, 405 tests were recorded using different sets
of parameters within acceptable ranges. Training ConvLBM
on this dataset, the network captures the dynamic changes of
the laser process from the raw images, without the need of
manual feature extraction.

Then, we used a technique called transfer learning. This
technique applies a second training to the model, using a
smaller dataset specific for every process and laser config-
uration. With transfer learning, ConvLBM can predict new
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quality measurements while retaining the knowledge about
the process gained from the initial training.

Transfer learning is used in two scenarios. In a first exper-
iment we used images from the LMD process to estimate
dilution, quality indicator that can only be measured trough
destructive testing. In a second experiment laser welding
images are used to detect defects in the manufactured parts.

ConvLBM network

ConvLBM is a CNN model that predicts laser power and
speed from 28×28 raw MWIR coaxial images of a laser
process. We implemented ConvLBM using Keras1 and Ten-
sorFlow2 frameworks.

Figure 2 details the architecture of ConvLBM.This design
is a modification of ResNet (He et al. 2016), a network that
shows good results on the CIFAR-10 dataset, a well-known
benchmark for image applications. This architecture, uses
blocks made of four operators:

• Convolutional layers, which performs the feature calcula-
tion on the image. They are a special type of perceptron
with known performance in computer vision (Bengio
1997).

• ReLu activations, that add non-linearities to the model
(Ioffe and Szegedy 2015).

• Batch normalization, a regularization technique to accel-
erate training and to reduce overfitting (Ioffe and Szegedy
2015).

• Shortcut connection, which performs an identity mapping
carrying the input to the next block and skipping the convo-
lutional layers. This approach tries to solve the saturation
problem of deep networks, that results in higher training
errors when adding more layers (He et al. 2016).

ConvLBM is made of 4 residual blocks followed by one
fully connected layer. Residual blocks add the output of a
shortcut convolutional layer to a stack of three convolutional
layerswith filters of different sizes.We use aReLUactivation
and a batch normalization step after every convolution.

We trained ConvLBM minimizing a mean squared error
loss function on a first dataset and used the resulting net as
a base model to apply transfer learning in different qual-
ity control applications. Thus, we replaced the last layer of
ConvLBMand retrained it tomeasure dilution in LMDappli-
cations and to detect defects in laser welding scenarios.

To estimate the dilution, we added an additional neuron to
the output layer in order to represent this variable, and trained
the new model using the dilution dataset and minimizing
mean squared error.

1 https://keras.io/.
2 https://www.tensorflow.org/.

To detect defects in images from laser welding, we
replaced the output layer with a softmax layer that rep-
resents the output as a category. The training mini-
mizes the categorical cross entropy on the defects dataset,
obtaining a classification tool. This tool detects defects
“segment-by-segment” in a component that is being man-
ufactured.

Datasets

We built three datasets of images for the different application
scenarios and then, divided each one into a training and a val-
idation set. The images were obtained with a Tachyon 1024
FPA camera at 1000 fps mounted coaxially to the laser head.
The primary dataset is a large set of images annotated with
the parameters of laser power and process speed. Then we
created two smaller datasets; one with dilution information
and one with labeled defects.

The primary dataset consists of over 1600,000 images
from 405 tracks of laser cladding, with 316L steel as powder
and base material. Every track was cladded with different
values of laser head speed and of laser power chosen from a
range of values that delivered good quality tracks.We divided
the dataset into a training and a validation set. In the training
dataset, the datasetwas resampled to obtain a set of images for
every tested combination of laser power and speed, resulting
in a total of 269,235 images. The validation dataset contains
268,470 images from 90 tracks (2983 images per track), and
represents evenly distributed parameters over the range of
tested laser power and speed.

The dilution dataset consists of LMD images with M2
tool steel as powder and base material and using the same
camera configuration as in the previous experiment. M2 is
known to be more challenging than 316L, and has signifi-
cant differences in process dynamics. The dataset contains
over 8000 images from 20 clad tracks labeled with the dilu-
tion value obtained from a manual inspection by experts. We
used a strategy of leave-one-out cross validation, training the
system with 7600 images from 19 clad tracks and using the
remaining one for validation. The process was repeated 20
times using a different track for validation in every itera-
tion.

The dataset of defects was acquired from a welding pro-
cess with an overlap joint laser configuration and DP600 as
material. The camera configuration is the same as in the para-
metric dataset. We recorded 50 tracks with 24,444 images
labeled with a binary classification (good joint or defected
joint), obtained from a metallographic inspection by experts.
The datasets are divided in two sets of 5/6 and 1/6 for the
training and validation sets respectively.
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Fig. 2 ConvLBM architecture

Results and discussion

Process representation

In the first experiment, we trained ConvLBM to predict the
known laser parameters power and speed, two parameters
that drive heat and mass input in a laser process, and thus, are
representative of its overall state. The first dataset was used

for this experiment, with the objective of making a model
capable of extracting meaningful features from raw images.

The results prove that ConvLBM is able to capture the
process dynamics using a regression analysis. A comparison
between the true and predicted laser power and laser head
speed is shown in Fig. 3.

ConvLBM achieved an accuracy of about±0.05 kW for
power and±1.75 mm/s for speed with over 99% confidence.
This accuracy is better than one step in the training stage
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Fig. 3 Estimation of laser power (a) and laser head speed (b) using ConvLBM. The magenta line corresponds to the mean of predicted values,
boxes represent the 50% confidence interval, and bars represent the 99.3% confidence interval

for power (0.1 kW), and slightly higher in the case of speed
(1 mm/s). Figure 3 shows the complete validation results.

Dilution estimation

Dilution is a major quality indicator in LMD and cladding
applications. During manufacturing, a low dilution may lead
to insufficient bound and produce warping, while a value too
high indicates large heat affected zones and a high probability
of defects due to thermal expansion. Dilution can only be
measured with accuracy through metallographic inspection,
a destructive procedure that requires cutting the sample.

For the second experiment, we used the dilution dataset
and applied transfer learning to the model of the previous
experiment. The re-trainedmodelwas able of predicting dilu-
tion measurements (Fig. 4) with a RMSE of 2.8%.

It is worth noting that in metallographic inspection,
dilution is measured at a specific transversal cut, and the
assumption is made that dilution is constant over the track.
In practise, variations of dilution may occur on the track and
affect the apparent performance of the model, especially if a
peak value occurs in the position of the cut.

A significant outcome of these results is that, despite the
base model being built on LMD images and with a differ-
ent material known to present a different thermal behaviour.
ConvLBM achieved a good generalization from onematerial
to the other.

Detection of defects

The detection of defects is a clear quality indicator in indus-
trial laser welding scenarios. The thermal cycles in welding

Fig. 4 Estimation of dilution by ConvLBM. The magenta line corre-
sponds to the mean of predicted values, the green represents 1 standard
deviation (68.2% of values) and the blue area represents 3 standard
deviations (99.7% of values)

processes generates residual stresses due to thermal expan-
sion, which results in cracks or deformations that weakens
the manufactured part. In order to detect these defects, the
analysis and visual inspection of the piece is needed. Usu-
ally a human operator checks the quality, weld by weld, and
remakes the defective pieces so they are compliant with the
quality standards. Most common defects are lack of fusion,
undercuts, holes and pores.

For the third experiment, we used the defects dataset and
applied transfer learning to the model of the first experiment,
with the objective of creating a model able to detect defects
during the laser welding process.

ConvLBM achieved in this experiment a F1-Score of
0.975 and 0.974 in the training and validation sets respec-

123



794 Journal of Intelligent Manufacturing (2020) 31:789–795

Table 1 Confusion matrix for defects in laser welding in the validation
set

True defective True non defective

Predicted defective 2555 63

Predicted non defective 73 1383

Table 2 Classification metrics for the training set and the validation set

Training set Validation set

Recall (TP rate) 0.973 0.972

Fallout (FP rate) 0.043 0.044

Specificity (TN rate) 0.957 0.956

Miss rate (FN rate) 0.027 0.028

Precision 0.976 0.976

Accuracy 0.968 0.967

F1 Score 0.975 0.974

tively. Table 1 display the confusion matrices for the training
and validation set, and Table 2 summarizes the most com-
mon classification metrics for both validation and training
sets.

The results indicate that the model is able to accurately
identify defects in laser weld beads from raw IR images.
Furthermore, this model was tested in an industrial scenario,
detecting defects in real-time. Figure 5 shows an exam-
ple of a successful defect detection in the laser welding
case.

It is important to note that, like in the dilution estimation,
ConvLBM achieved a good generalization to the new mate-
rial used in this experiment, which restates the generalization
capabilities of the algorithm.

Conclusions

We present a novel approach to monitor laser processes in
real time based on MWIR imaging. The ConvLBM model
is based on a residual CNN architecture trained with a novel
dataset of images from LMD to capture the basic dynamics
of laser processes and can be extended to different scenarios
by modifying the output layer, and re-training the network.
This training procedure fits well to common calibration in
industry practice.

ConvLBM is able to estimate the dilution for LMD appli-
cations and in the detection of defects for laser welding,
obtaining very promising results.

In LMD processes, ConvLBM can monitor accurately
parametric indicators that can be used in real time appli-
cations to define a control loop that keeps LMD processes in
the desired window.

For laser welding, we developed an on-line defect detec-
tion tool capable of determining the position, size and length
of defects. This tool can be easily integrated to increase the
overall quality and reliability of the product.

These results show that ConvLBM can estimate laser
parameters from high-speed thermal images and generalizes
well to different processes and geometries. Furthermore, the
good results of the model in three different materials (316L
steel in the process dataset, M2 tool steel in the dilution
dataset and DP600 dual phase steel in the defects dataset),
proves its flexibility and adaptability to new materials.

In future work, we will validate ConvLBMwith new indi-
cators representative of cladding quality such as porosity or
strength andmore tests performed in a broader range ofmate-
rials. Monitoring and controlling these indicators is crucial
in 3D applications of LMD, and better reference magnitudes
for new control systems should be achieved.

Fig. 5 Real-time defect
detection on a laser weld bead.
a and c show two side views of
the weld bead where the blue
rectangles mark a defective
section in the first and final
segments due to undercuts and
the yellow ellipses mark a
region where some points have
excessive porosity. c and d show
the corresponding output of
ConvLBM where red colour
show frames labelled as
defective and green show non
defective frames
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