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SUPPLEMENTARY METHODS 

Study subjects. Patient recruitment was performed between June 2007 and December 2010. 

Patients were recruited from a total of 52 clinical departments from different university hospitals 

from Spain belonging to the Immune-Mediated Inflammatory Disease Consortium (IMIDC)1-3. 

The IMIDC is a network of clinical and biomedical researchers investigating the molecular basis 

of immune-mediated inflammatory diseases. Informed consent was obtained from all 

participants, and protocols were reviewed and approved by local institutional review boards. 

This study was conducted in accordance with the Declaration of Helsinki principles.  

The inclusion and exclusion criteria for each IMID disease were as follows:  

• RA: diagnosed according to the revised American College of Rheumatology (ACR) 1987 

diagnostic criteria for RA4, and with >2 years of disease evolution. All patients had joint 

erosions in either hands or feet. Concomitant cutaneous psoriasis was an exclusion 

criterion for RA patients.  

• PsA: diagnosed according to the CASPAR diagnostic criteria for PsA5 with >1 year of 

disease evolution. Exclusion criteria for PA included the presence of any other form of 

inflammatory arthritis, or rheumatoid factor levels greater than twice the normality threshold. 

• CD: diagnosed according to the standard Lennard-Jones diagnostic criteria for CD6. 

Concomitance of any other IMID was an exclusion criterion for CD patients. 

• UC: diagnosed according to the Lennard-Jones diagnostic criteria for UC6. Concomitance of 

any other IMID was an exclusion criterion for UC patients. 

• SLE: diagnosed according to the ACR diagnostic criteria for SLE7 and with ≥3 years of 

disease evolution. Concomitance of any other rheumatic disease, cutaneous psoriasis or 

inflammatory bowel disease was an exclusion criterion for SLE patients. 

• Ps: All eligible PS patients had to have chronic plaque type of PS affecting torso and/or 

extremities with at least 1 year of duration at the time of recruitment. 

All IMID patients were >18 years old at the time of sample collection and were born in Spain. 

Also, all patients were Caucasian and with all grandparents and parents born in Spain.  

Control individuals were recruited in collaboration with the Spanish National DNA Bank from 

blood bank donors in 13 Spanish hospitals. All the controls were screened for the presence of 

any autoimmune disorder, as well as for first-degree family occurrence of autoimmune diseases. 

If positive, the individuals were excluded. All control individuals had also to be Caucasian with 

all four grandparents born in Spain. Most of the control individuals (i.e. 98%) were ≥40 years old 

at the time of recruitment.  

Study design. The urine metabolomics study in IMIDs was designed following a two-stage 

approach8-11. In the first stage (i.e. discovery stage), we analyzed the urine metabolome of 

1,210 IMID patients (203 CD patients, 213 UC patients, 250 RA patients, 169 SLE patients, 190 

PsA patients, and 187 Ps patients) and 100 control individuals in order to identify metabolites 



associated with disease diagnosis and metabolites associated with disease activity. In the 

second stage (i.e. validation stage), we used an independent cohort of 1,200 IMID patients (i.e. 

200 patients per disease) and 200 control individuals to validate the association of the most 

significant metabolite markers identified in the discovery stage.  

In both the discovery and validation stages, patients within each IMID disease were selected 

from the IMIDC sample biobank (IMID-Biobank) in order to represent the two extremes of 

disease activity (i.e. high and low disease activity; Supplementary Figure 1). For each IMID, 

established scores were used to measure the disease activity at the time of sample collection 

(Table 1). Within the SLE cohort we used the maximum of the BILAG and SELENA-SLEDAI 

indices to select the patients according to disease activity. Importantly, patients and controls 

selection was performed in order to minimize the differences in potential confounding 

epidemiological variables like gender, age or body mass index, as well as technical variables 

like fasting time of the individual before sample collection, or the time of the day of sample 

collection.  

Urine sampling. Urine samples from IMID patients were collected in the clinical departments of 

each of the participating university hospitals. From each patient, 10 mL of urine were obtained 

and preserved using HCl (1% final concentration). All urine samples were then transported from 

each center to the IMID-Biobank within 24 hours at room temperature. In the biobank, samples 

were centrifuged (x600 g, 5 min), aliquoted and immediately stored at -80ºC. Urine samples 

from the control individuals were also collected using the same procedure and were processed 

and stored at -80ºC until use in the Spanish national DNA Biobank (BNADN, Salamanca, 

Spain). For NMR measurement, 200 μL of buffer phosphate (1.5 mM Na2HPO4/NaH2PO4 in 

D2O, pH=7.2) containing 0.62 mM of 3-trimethyl-silyl[2,2,3,3-d4] propionate (TSP) as internal 

reference were added to 400 μL urine (adjusted pH = 7.2) and the resulting mixture was 

subsequently transferred to a 5 mm NMR tube. 

NMR spectroscopy. 1H-NMR spectra were recorded at 298K on a Bruker Avance III 600 

spectrometer operating at a proton frequency of 600.20 MHz using a 5 mm CPTCI triple 

resonance (1H, 13C, 31P) gradient cryoprobe. One-dimensional 1H pulse experiments were 

carried out using the nuclear Overhauser effect spectroscopy (NOESY)-presaturation sequence 

(RD-90º–t1–90º–tm–90º ACQ) to suppress the residual water peak. t1 time was set to 4µs, tm 

(mixing time) was 100 ms and recycling delay time was 7 s. The 90° pulse length was calibrated 

for each sample and varied from 16.3 μs to 18.9 μs. The spectral width was 12.000 Hz (20 

ppm), and a total of 64 transients were collected into 64 k data points for each 1H spectrum. The 

acquired NMR spectra were phased, baseline-corrected and referenced to a TSP signal at 

δ(0.00 ppm) and used as input to FOCUS processing workflow12. Two-dimensional (2D)-1H,13C-

HSQC (heteronuclear single quantum correlation) and (2D)-1H-1H COSY (correlation 

spectroscopy) were acquired in a sample subset for structural confirmation purposes. Several 

database engines (BBioref AMIX database (Bruker), Chenomx and HMDB13) were used for 1D-



resonances assignment. The HMDB13 and COLMAR 1H,13C-HSQC14 databases were used for 

2D structural confirmation  of  those 1D assignments. 

Spectral processing, metabolite identification, normalization and scaling. In the discovery 

stage, the raw spectral 1H-NMR profiles were processed using FOCUS software12. FOCUS is a 

complete workflow for NMR data processing that efficiently integrates the different analytical 

steps, including peak identification, alignment and quantification. One of the main advantages of 

this method is that it is able to efficiently process large numbers of samples like in the present 

study. Also, FOCUS includes the RUNAS algorithm, which performs robust peak alignment 

without the need of a reference spectrum. The RUNAS algorithm has shown to have much 

better performance than other algorithms, particularly, in metabolomic studies with significantly 

unaligned spectra. 

In this study, spectral processing was performed using spectral windows with a 50% of overlap 

and a length of 0.077 ppms corresponding to 256 spectral data points. The minimum peak width 

was set to 0.01 ppms, and the peak frequency threshold was set to 5%. After running FOCUS, 

we applied several quality control filters at the peak level in order to guarantee the quality of the 

final set of peaks. First, NMR peaks from windows showing a high degree of sample 

unalignment were discarded. Significant unalignment was defined when the standard deviation 

of the shift corrections applied to the spectra was higher than one third of the window length. 

Second, spectral peaks showing strong evidences of overlapping with other peaks were also 

discarded.  

After applying the quality control filters, we performed the metabolite identification in order to 

assign to each spectral peak or set of spectral peaks their corresponding metabolite (Table S1). 

In those cases when multiple spectral peaks represent one same metabolite, we selected the 

peak showing the highest intensity levels as well as the lowest degree of overlapping (if any). 

Importantly, exogenous metabolites generated from the metabolism of drugs (e.g. ibuprofen, 

acetaminophen and 5-aminosalicylic acid) or metabolites related with sample processing (e.g. 

methanol and ethanol) were identified and subsequently removed from the analysis. Finally, 

those metabolites that had a high missingness rate (>15% missingness, n=2), were also 

discarded from the analysis.  

In the validation stage, the spectral 1H-NMR profiles from the case and control urine samples 

were also processed using FOCUS software. In this case, and in order to improve the accuracy 

of the data analysis, the NMR signal processing was restricted to the metabolites identified in 

the discovery stage. Consequently, the parameters used in FOCUS NMR signal processing 

were set to accurately analyze the spectral regions that were informative in the discovery stage.  

Intensity normalization is an important step in 1H-NMR spectral processing and it can be critical 

when analyzing urine samples9,15-17. The objective of this analytical step is to correct the 

variability introduced by the dilution of metabolites naturally present in urine samples. 

Normalization to creatinine area was discarded, since the urine concentrations of this metabolite 



have been associated to gender, muscle mass or dietary habits9,18. We therefore chose 

normalization to the total spectral area (i.e. area under the curve; AUC), a robust method that 

has been extensively used in multiple urine metabolomics studies19-22. In order to avoid the bias 

introduced by metabolites present in high concentrations in urine, we excluded the following 

regions from the total spectral calculation: creatinine (4.00 to 4.10 and 3.00 to 3.10 ppm), water 

(4.70 to 5.00 ppm), citrate (from 2.50 to 2.71), hippurate (from 7.80 to 7.86), eretic (10.50 to 

11.50 ppm), and TSP (-0.50 to 0.50 ppm). Nonetheless, when comparing the AUC 

normalization values to the creatinine normalization values in both the discovery and validation 

cohorts, we found relatively high levels of correlation between the two normalization methods 

(r=0.87 and r=0.77, respectively). In order to avoid the biases introduced by outlying metabolite 

values in the subsequent multivariate association analyses, we applied a logarithmic 

transformation to the metabolite quantifications23. In order to avoid infinite transformed values 

generated from the transformation of zero values, we substitute them by 0.1 times the minimum 

non-zero value. 

Sample quality control. Sample quality control was performed in two steps. First, we used the 

AUC normalization values and the missingness rates of the final metabolite panel to identify 

outlier samples. Samples showing AUC normalization values lower than 1st percentile or higher 

than 99th percentile were removed. We also removed samples with missingness rates higher 

than 20%. Second, we performed a principal component analysis (PCA) on the transformed 

intensities of the final metabolite panel. Before applying the PCA, peak intensities were scaled 

using Pareto scaling method as described previously24. Once scaled, we iteratively applied the 

PCA to compute the principal component scores of all samples. At each iteration, outlier 

samples (defined as samples having PC scores >4 times the standard deviation of the first and 

second principal components) were excluded. This process was repeated until no outlier 

samples were left.   

Epidemiological and sample collection variables. There is substantial evidence that 

metabolite levels in human body fluids are influenced by many different factors that can act as 

confounders in disease association analyses8,10,11,25. In order to control for these factors, we 

collected information on several potentially confounding variables. This potential confounders 

included epidemiological variables (i.e. gender, age, and body mass index), variables 

associated with the urine collection process (i.e. collection time and fasting time), and variables 

summarizing lifestyle and dietary habits. With regards to lifestyle, we specifically analyzed three 

lifestyle variables which are smoking status, amount of leisure time physical activity and 

physical labor at work. Variables of dietary habits included: (a) weekly consumption of meat, 

fish, eggs, dietary products, vegetables, legumes, cereals, and sweets, and (b), daily 

consumption of coffee/tea, beer and wine. 

Statistical analysis. The association analyses between each metabolite and the phenotype of 

interest were performed using linear regression analysis. In order to discard the effect of 

potential confounders in each metabolite association, we included the potential confounders of 



the metabolite being tested in the linear regression model as described previously26. This model 

corresponds to the following formula: 

1
i i

i NC Ph X X+ + +: L  

where Ci refers to the concentrations of metabolite i, Ph refers to the phenotypic variable being 

tested and 1 ,i i
NX XK  refers to the set of N potential confounders for metabolite i. Potential 

confounders were defined as those epidemiological or technical variables showing a nominal 

association with the metabolite concentrations in the control cohort (univariate linear regression, 

P<0.05). Including these covariates when adjusting the multivariate linear regression model we 

efficiently controlled their potential confounding effect over the metabolite association with each 

disease and/or disease activity.  

Previous to clinical association analyses we verified that drug therapies were not associated 

with any metabolite in all the evaluated IMID diseases. In this analysis we used the information 

of the patients of each IMID that were under each considered treatment at the urine sample 

collection time. We included in the analysis the most established therapy groups for IMIDs: 

biological therapies (i.e. etanercept, infliximab and adalimumab), immunomodulators 

(methotrexate, leflunomide, azathioprine and salazopyrin), anti-inflammatory drugs (5-

aminosalicylic acid, ibuprofen and diclofenac) and glucocorticosteroids (prednisone and 

deflazacort). No relevant or significant associations were found. 

Three types of clinical association analyses of urine metabolites were performed:  

• Diagnostic biomarkers: the urine metabolite levels of each IMID disease were compared 

against the levels in the control cohort. In this analysis approach we used all the patients 

from each IMID and we also performed an analysis using only the patients showing high 

disease activity levels. 

• Differential diagnostic biomarkers: the metabolite levels were compared between IMID 

diseases that have the most similar clinical features (i.e. CD vs. UC, RA vs. PsA, Ps vs. 

PsA, and RA vs. SLE). 

• Activity biomarkers: within each IMID disease, we compared the urine metabolite levels 

between high and low disease activity groups of patients. 

Correction for multiple testing was performed using the false discovery rate (FDR) method27. 

After multiple test correction, a significant metabolite association (i.e. FDR-adjusted P-Value 

<0.05) was subsequently selected for replication in the independent validation dataset. In the 

validation analysis, multiple test correction was also performed using the FDR approach. 

Combined P-Values of the discovery and validation datasets were computed using Fisher’s 

method28.  



IMID diseases and metabolites were clustered according to the replicated metabolite-disease 

associations using hierarchical clustering (i.e. function “heatmap.2” of the R package “Gplots” 
29). The input data for the clustering was a matrix (metabolites x disease), containing the 

association –log10(P-Values) between the corresponding row metabolite and the corresponding 

column disease.  

The receiver operating characteristic (ROC) curve analysis for metabolomic diagnostic 

biomarkers was performed to evaluate the prediction power of the urine metabolome to 

distinguish between healthy subjects and IMID patients as described previously23,30. The area 

under de curve (AUC) metric was used to assess the performance of the classifiers. The ROC 

curves were computed using the “pROC” R package31. The optimal threshold was determined 

by maximizing the sum of the sensitivity and specificity parameters across de ROC curve. The 

prediction models were built using only those metabolites associated in the discovery cohort for 

each IMID disease. The concentrations of each cohort (i.e. discovery and validation) were 

scaled using Pareto scaling based on the mean and variance of the corresponding control 

cohorts. The classification models were based on the PLS-DA algorithm included in the 

“mixOmics” R package32. In this analysis, two latent variables and the entire set of metabolites 

associated at the single level in the discovery cohort were used. We used the validation dataset 

to assess the performance of the PLS-DA model built with the entire discovery dataset. This 

approach corresponds to a true validation on a completely independent dataset.  
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SUPPLEMENTARY TABLES 

Supplementary Table 1. Sample quality control. Number of samples passing each one of the 

three quality control stages. 

QC stage 
Discovery Validation 

Controls IMIDs Controls IMIDs 
Initial 100 1210 200 1200 
Sample quality 95 1210 199 1198 
Missingness >20% 94 1183 196 1156 
PCA 93 1180 196 1152 

 

  



Supplementary Table 2. Urine metabolite panel. The list of metabolites identified in urine that 

pass all the quality control filters and that were included in the subsequent statistical association 

analyses. 

Metabolite δ(1H)[ppm] δ(13C)[ppm] Moiety QCIP† HMDB 
Trigonelline* s-9.13 - C3-N+ 0.10 HMDB00875 
Hippurate* d- 7.85 129.9 C2-ring 0.80 HMDB00714 

Phenylacetylglycine* m-7.43 131.01 C3,C5 aromatic 0.70 HMDB00821 
Unknown 1 s-7.25 -  0.10 - 
Unknown 2 s-7.21   0.50 - 
Tyrosine* d-7.15 133.4 C2,6-ring 0.25 HMDB00158 

Creatinine* s -4.05 59.2 CH2-N 0.95 HMDB00562 
Unknown 3 s-4.03 58.5  0.95 - 

Phosphocreatine s-3.94 56.4 -CH2- 0.90 HMDB01511 
Unknown 4 s-3.91   0.85 - 

Glycine* s -3.56 44.1 aCH2 0.95 HMDB00123 
Phenylacetate* s-3.50 - aCH2 0.35 HMDB00209 

TMAO* s -3.29 62.3 (CH3)3-N 0.95 HMDB00925 
Carnitine* s- 3.23 - (CH3)3-N 0.75 HMDB00062 

o-phosphocholine* s- 3.20 56.4 (CH3)3-N 0.75 HMDB01565 
Dimethylsulfone* s- 3.12 44 2×(CH3) 0.70 HMDB04983 

Unknown 5 s-3.11   0.60 - 
N,N-dimethylglycine* s-2.93 46.3 2×(CH3) 0.55 HMDB00092 

Unknown 6 s-2.78   0.30 - 
N,N-dimethylamine* s- 2.72 37.5 (CH3)2-NH 0.90 HMDB00087 

Citrate* s- 2.69 48.5 half-CH2 0.90 HMDB00094 
3-Hydroxyisovalerate* s- 2.35 - aCH2 0.75 HMDB00754 

Aminoadipate* t-2.27 34.2 dCH2 0.60 HMDB00510 
Acetoacetate* d-2.22 - CH3- 0.45 HMDB00060 

Unknown 7 s-2.17 25.4 CH3 without coupling 0.70 - 
N-acetyl Aas* s-2.07 - CH3- 0.80 - 
Unknown 8 s-2.05   0.80 - 

Free acetate* s-1.91 25.9 CH3- 0.70 HMDB00042 
Thymine s-1.86 - CH3- 0.40 HMDB00262 
Alanine* d-1.48 19 CH3- 0.50 HMDB00161 
Lactate* d-1.33 22.9 CH3- 0.55 HMDB00190 

Methylsuccinate* d-1.07 19.7 aCH3 0.35 HMDB01844 
Butyrate* t-0.89 - CH3- 0.40 HMDB00039 

 

* Metabolites identified in urine by previous 1H-NMR studies. 

† Mean intensity percentile of the peak maximums considering all the spectral data points.   



Supplementary Table 3. List of metabolic associations when comparing phenotypically closer IMID diseases. This table shows the replicated 
associations between metabolite concentrations and IMID diseases pairs. 

Metabolite IMID1 IMID2 log2(IMID2/IMID1)DISC P-ValueDISC log2(IMID2/IMID1)DISC P-ValueVAL P-ValueCOMB 
Unknown 7 CD UC 3.090 (2.384,3.795) 2.63E-12 2.552 (1.791,3.313) 5.78E-08 6.70E-18 
Citrate CD UC 0.604 (0.401,0.807) 1.41E-06 0.423 (0.223,0.622) 5.28E-04 1.60E-08 
Hippurate CD UC 0.730 (0.458,1.001) 1.25E-05 0.558 (0.302,0.814) 3.65E-04 9.20E-08 
Unknown 7* RA PsA -1.240 (-1.787,-0.693) 2.12E-04 -0.787 (-1.378,-0.196) 2.87E-02 7.90E-05 
Tyrosine* RA PsA -1.047 (-1.555,-0.539) 7.45E-04 -0.597 (-1.018,-0.177) 1.97E-02 1.80E-04 
Phenylacetate† RA SLE -0.240 (-0.383,-0.097) 5.95E-03 -0.317 (-0.482,-0.152) 1.71E-03 1.30E-04 
3-Hydroxyisovalerate† CD UC 0.550 (0.163,0.937) 1.97E-02 0.920 (0.470,1.370) 8.23E-04 2.00E-04 
* Validated at the nominal level 
† Associated at the nominal level in both the discovery and validation cohorts 
  



Supplementary Table 4. List of metabolites with replicated associations to disease activity in CD patients. This table shows the activity association 
results that have been replicated. 

IMID / Metabolite log2(IMIDHIGH/IMIDLOW)DISC P-ValueDISC log2(IMIDHIGH/IMIDLOW)VAL P-ValueVAL P-ValueCOMB 
CD/Citrate -1.225 (-1.594,-0.857) 1.20E-07 -0.660 (-0.941,-0.380) 1.40E-04 4.40E-10 
CD/Hippurate -1.057 (-1.482,-0.631) 6.00E-05 -0.803 (-1.180,-0.425) 5.50E-04 6.00E-07 
CD/3-Hydroxyisovalerate -1.761 (-2.455,-1.066) 4.30E-05 -0.973 (-1.665,-0.281) 2.10E-02 1.30E-05 
PsA/Citrate* -0.494 (-0.772,-0.217) 3.70E-03 -0.537 (-0.780,-0.294) 3.50E-04 1.80E-05 
UC/Hippurate* -0.636 (-0.988,-0.284) 3.20E-03 -0.643 (-0.981,-0.305) 1.90E-03 8.00E-05 
CD/N,N-dimethylglycine* -0.475 (-0.754,-0.196) 5.40E-03 -0.445 (-0.748,-0.142) 1.60E-02 9.00E-04 
SLE/Citrate* -0.463 (-0.804,-0.122) 2.60E-02 -0.582 (-0.919,-0.245) 5.00E-03 1.30E-03 
UC/3-Hydroxyisovalerate* -0.765 (-1.259,-0.271) 1.10E-02 -0.851 (-1.412,-0.291) 1.30E-02 1.40E-03 
* Nominal level of association 

 

  



SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Distribution of disease activity indices in the extreme low and high activity patient subgroups. This figure shows the 
distribution of the disease activity indices in the low (L) and high (H) activity subgroups of each IMID disease. 

 

  



Supplementary Figure 2. Distribution of epidemiological and sample collection variables across the IMID and control groups. Distribution of gender, 
current smoking behaviour, fast time before sample collection, sample collection time, age at collection time and body mass index across the studied patient 
and control cohorts in the discovery and validation datasets. 

  



Supplementary Figure 3. Distribution of trigonelline concentration according to daily coffee/tea consumption. This figure shows the distribution of 
logarithmic trigonelline levels in the control cohort depending on the reported daily consumption of coffee/tea cups. 
 

 

  



Supplementary Figure 4. Distribution of trigonelline concentration on each IMID cohort stratified by coffee/tea consumption. This figure shows the 
distribution of normalized trigonelline levels on each IMID cohort. (A) refers to the complete set of patients while (B) and (C) respectively refers to patients 
having 0 or 1 coffee/tea cups per day. 

 

  



Supplementary Figure 5. ROC curves of the diagnostic PLS-DA classification models and metabolite loadings of the CD and UC models. (A) ROC 
curves evaluated in the discovery and validation datasets for the classification models build using the discovery dataset. (B) Loadings of each metabolite 
included in the PLS-DA classification models for UC and CD. 

 


