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Summary 

This article presents an approach to the mathematical 

model of a fixed wing unmanned aerial vehicle 

prototype. The model is split in two different parts, 

related to the longitudinal and lateral stability, 

respectively. For this, Newton-Euler formulation is 

used as well as basic aerodynamic theory. 

Aerodynamic coefficients, inertias and characteristic 

points of the aircraft are obtained through simulations 

with an open-source software called XFLR-5, and the 

physical parameters of the model match the 

prototype’s. Then, a longitudinal control strategy

describes the altitude control in a cascade 

architecture, whose inner loop conveniently 

manoeuvres the pitch angle by acting on the 

symmetric flag deflection. Frequency domain 

techniques are used to design PID controllers.  

Key words: Fixed-wing unmanned aerial vehicle 

(UAV), stability derivatives, cascade control,

proportional integral derivative control.  

1. Introduction

The unmanned aerial vehicles (UAV) are becoming 

more and more popular as they can be used in a wide 

range of fields. The technology involved is being 

continuously developed and its price is constantly 

decreasing [1]. Every time open-source projects are 

being carried out by research groups and more and 

more information can be found on the internet, given 

by Radio Control fan communities. 

In the UAV field, of the four different categories, it is 

micro and mini that have experimented a greater 

expansion. Even though multirotors are the most 

popular, glider UAVs have more advantages as their 

autonomy is greater. That is why they are used in field 

recognition or to reach further places that multi-rotors 

cannot [2]. 

The fixed wing architecture has been chosen as it is 

easier to maintain than a conventional plane, and more

resistant in case of crushing. Normally the tail suffer 

the worst part, as the connection to the main body is 

weak.  

Regarding control, it is challenging since, in contrast

to the conventional architecture, where there are

multiple control surfaces, in a fixed wing aircraft we

can only control the flap deflection in a symmetric or 

asymmetric way, depending which stability 

(longitudinal or lateral) is to be controlled.  

For this work, an unconventional plane (fixed wing 

architecture) has been built with all the required 

avionics and actuators (servo motors, Ardupilot,

ESC,…). Figure 1 illustrates its dimensional 

characteristics. The final aim is the development of a

navigation and control system not to depend on 

commercial solutions. As a preliminary work, this 

paper describes the mathematical modelling of the 

fixed wing prototype, and focuses on the linear model

for longitudinal stability. Newton-Euler formulation 

[3] is being used, but the mayor difficulty is the 

identification of aerodynamically coefficients and 

characteristics points that will be obtained through 

simulations with an open-source software called 

XFLR-5 [4]. Then, a control strategy is being 

presented in order to firstly control the pitch angle, 

which modifies the angle of attack that modifies the 

magnitude of the lift force. This ultimately leads to 

proper altitude control. The system to be controlled is 

multivariable, non-linear and highly coupled. 

Figure 1: Aircraft prototype 

2. Fixed wing UAV modelling

UAV movement is defined by 6 degrees of freedom 

(DoF) in the earth inertial frame (E): 3 coordinates for 

spatial positioning [x,y,z]T and 3 angles for orientation 
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],,[  T. A fixed wing is an unconventional type of 

aircraft with only two control surfaces (flaps) for 

manoeuvring (Figure 2). The symmetric deflection (

E ) of flaps will act in the control of the longitudinal 

motion variables ( z, ), and the asymmetric 

deflection ( A ) of flaps will act in the control of the 

lateral motion variables ( , ). The controlled 

attitude (, ), and heading () are further responsible 

of spatial displacement.  

 

 
Figure 2: Symmetric E  and asymmetric A

deflections 
 

Linear Twvu ],,[  and angular Trqp ],,[ velocities of 

the fixed wing are measured in the body frame (B). 

Figure 3 depicts the three orthogonal axis of this 

second reference frame, which is clamped to the mass 

centre of the vehicle.  

 

In all aerodynamic systems, special attention should 

be payed to the “wind frame” (W), whose X-axis is 

parallel to the air velocity vector aV . W reference 

frame involves a rotation  (attack angle) with respect 

to the body Y-axis and a rotation   (sweep angle) with 

respect to the body Z-axis, as Figure 3 illustrates. aV

magnitude depends on the relative vehicle’s forward 

airspeed. 

 
 

Figure 3: Body clamped frame (colour) and wind 

frame (grey) 
 

2.1 Equations of motion in the body frame 

 

Newton’s second law on the linear momentum yields 

the contribution of the three force components in the 

body frame:  

 

{

𝐹𝑥 = 𝑚(𝑢̇ + 𝑞𝑤 − 𝑟𝑣)
𝐹𝑦 = 𝑚(𝑣̇ + 𝑟𝑢 − 𝑤𝑞)

𝐹𝑧 = 𝑚(𝑤̇ + 𝑝𝑣 − 𝑢𝑞)

  (1) 

 

where m is the plane mass.  

 

Euler’s second law on the angular momentum yields 

the contribution of the three torque components in the 

body frame:   

 

{

𝑀𝑥 = 𝐼𝑥𝑥𝑃̇ + (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑄𝑅 + 𝐼𝑥𝑧𝑃̇ + 𝐼𝑥𝑧𝑃𝑄

𝑀𝑦 = 𝐼𝑦𝑦𝑄̇ + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑃𝑅 + (𝑅
2 + 𝑃2)𝐼𝑥𝑧

𝑀𝑧 = 𝐼𝑧𝑧𝑅̇ + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑃𝑄 + 𝐼𝑥𝑧𝑃̇ − 𝐼𝑥𝑧𝑄𝑅

, (2) 

 

being the inertial tensor:  
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Mass and inertial moments for the fixed wing 

prototype in this work are in Table 1, together with 

other relevant parameters. Moments of inertia have 

been computed using the 3D simulation program 

XFLR-5 [4].  

 

Parameters Values Units 

m 0.9  𝑘𝑔 

A 0.27  𝑚2 

b 1  𝑚 

c 0.27 m 

Va 31  𝑚/𝑠 

 −0.5  º 

 0 º 

g −9.81 𝑚/𝑠2 

kd 8.5 ∗ 10−9 𝑁 ∙ 𝑚 ∙ 𝑠2/𝑟𝑎𝑑 

kt 5.65 ∗ 10−7 𝑁 ∙ 𝑚 ∙ 𝑠/𝑟𝑎𝑑 

Ixx 0.02381 𝑘𝑔 ∙ 𝑚2 

Iyy 0.00841 𝑘𝑔 ∙ 𝑚2 

Izz 0.03222 𝑘𝑔 ∙ 𝑚2 

Ixz=-Izx 0  𝑘𝑔 ∙ 𝑚2 

 𝑰𝒋
𝑿 2.44 ∗ 10−6 𝑘𝑔 ∙ 𝑚2 

 

Table 1. Parameters of fixed wing prototype and 

flight conditions 

 

2.2  External strengths and torques  

 

The relative vehicle’s forward airspeed Va exerts an 

aerodynamic strength due to the variance of pressure 
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between the upper and lower parts of the wing, whose 

surface is A;  is the air density. Thus, the drift (D), 

sweep (S) and lift (L) components of the aerodynamic 

strength in the wind frame are 

 

 𝐅𝑎
W = [

−𝐷
𝑆
−𝐿

] = 1

2
𝜌𝑉𝑎

2𝐴 [

−𝐶𝐷
𝐶𝑆
−𝐶𝐿

], (5) 

 

being 𝐶𝐷, 𝐶𝑆, and 𝐶𝐿 the aerodynamic coefficients in 

each W axis. Then, the rotation matrix 

 

𝐑B←W = (

cosα cosβ −cosα sinβ −sinβ
sin β cos β 0

sin α cos β −sinα cos β cosα
)   (6) 

 

is applied to obtain those strengths in the body frame: 

 

𝐅𝑎 = 𝐑
B←W 𝐅𝑎

W = [

𝐹𝑎𝑋
𝐹𝑎𝑌
𝐹𝑎𝑍

]  (7) 

 

The application point of 𝐅𝑎   can slightly change 

depending on the attack  and sweep   angles. In 

order to simplify the problem, the application point is 

considered fixed and roll (L), pitch (M) and yaw (N) 

moments 

 

𝐌𝒂  = [
𝐿
𝑀
𝑁
] = 1

2
𝜌𝑉𝑎

2𝐴 [

−𝑏 𝐶𝑙
𝑐 𝐶𝑚
−𝑏 𝐶𝑛

]  (8) 

 

are added to correct this assumption; b and c are the 

wing span and chord, respectively; Table 1 details 

their values for this work prototype. 𝐶𝑙 , 𝐶𝑚, 𝐶𝑛 are 

aerodynamic coefficients in each axis. They depend 

on the attack angle (), the flap deflection ( E , A ) 

and the angular velocities Trqp ],,[ . Translational (5) 

and rotational (8) aerodynamic coefficients have been 

calculated following the equations in [3]. 

 

A tail propeller rotates at j, which provides a thrust 

force along the X-body axis   

 
2

jtj ) ( k=T       (9) 

 

to get the plane sustentation force. However, the 

friction between the propeller and the air also causes a 

parasitical drag moment around the X-body axis 

 
2

jdj ) ( k=  ,    (10) 

 

which hampers the plane controllability. Thus, it is 

worth investing time to find the best motor-propeller 

combination. For this work prototype, we have opted 

for a motor Racestar BR2205, 2300Kv, with a 3-blade 

propeller 5051, all powered with a 4S LiPo battery. 

Propellers coefficients tk  and dk  in Table 1 have been 

experimentally identified according the procedure in 

[5].  

 

The propeller rotation axis changes its orientation as 

the craft rotates. This induces a gyroscopic torque 

 

𝐌𝒈  = [

𝐼𝑗
𝑋𝜔̇𝑗

𝐼𝑗
𝑋𝜔𝑗  𝑟

−𝐼𝑗
𝑋𝜔𝑗  𝑞

]   (11) 

 

where 𝐼𝑗
𝑋 is the moment of inertia of the rotor around 

the X-body axe.  

 

Finally, the craft weight in the earth frame responds to 

𝐅𝒘
𝐄 = [

0
0

−𝑚 𝑔
]    (12) 

 

where m is the mass of the aircraft and g is the gravity. 

Then, this force is conveniently rotated to the body 

frame giving 

 

𝐅𝒘 = [

−𝑚 𝑔 𝑠𝑖𝑛𝜃 
𝑔 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃
𝑔 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃

]   (13) 

 

2.3  Non-linear model  

 

Substituting external forces and moments (Section 

2.2) in generic forces and moments 

zyxzyx MMMFFF ,,,,,  in (1) and (2), and 

rearranging, it yields the dynamic non-linear model of 

motion in the body frame: 

 

{
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𝑚
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𝑚
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𝐼𝑥𝑥
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(𝐼𝑥𝑥−𝐼𝑧𝑧)𝑞𝑟

𝐼𝑥𝑥
   = 𝑝̇

𝐼𝑗
𝑋𝜔𝑗 𝑟

𝐼𝑦𝑦
+

1

2
𝜌𝑉2𝑆𝑐𝑚𝑐

𝐼𝑦𝑦
−

(𝐼𝑧𝑧−𝐼𝑥𝑥)𝑝𝑟

𝐼𝑦𝑦
= 𝑞̇

−𝐼𝑗
𝑋𝜔𝑗 𝑞

𝐼𝑧𝑧
−

1
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𝜌𝑉2𝑆𝑐𝑛𝑏

𝐼𝑧𝑧
−

(𝐼𝑥𝑥−𝐼𝑦𝑦)𝑝𝑞

𝐼𝑧𝑧
= 𝑟̇

    (14) 

 

The linear velocities [u, v, w]T can be transferred to the 

earth frame by multiplying them by matrix (see [5])  

 

𝐑E←B = 𝐑𝑥
E←B ∙ 𝐑𝑦

E←B ∙ 𝐑𝑧
E←B ,  (15) 

 

And after integration, it yields absolute position [x, y 

z]T. Expression (15) uses Euler angles that can be 

calculated integrating 
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[

𝜙̇

𝜃̇
𝜓̇

] = [

1 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛𝜃 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛𝜃
0 𝑐𝑜𝑠 𝜙 −𝑠𝑖𝑛 𝜙
0 𝑠𝑖𝑛 𝜙 𝑠𝑒𝑐 𝜃 𝑐𝑜𝑠 𝜙 𝑠𝑒𝑐𝜃

] ∙ [
𝑝̇
𝑞̇
𝑟

]    (16) 

 

This also yields absolute orientation ],,[  T.  

 

 

2.4 Linear model: Longitudinal stability 

 

In order to develop linear control laws, small signal 

linear models of (14) will be computed. The 

linearization process is about deriving the equations 

regarding all variant parameters, evaluating them on a 

nominal flight condition (Va=31 m/s, =-0.5º , =0º), 

and multiplying them by the sensitivity. The result of 

this process is commonly called stability derivatives in 

the aeronautic field. Longitudinal stability is used for 

pitch and height control, and lateral stability for roll 

and yaw control [3] [6].  

 

The longitudinal stability allows us to observe the 

behaviour of the linear velocity in X-axis (𝑢), the 

angle of attack (), the angular velocity in Y-axis (𝑞) 

-all them computed in the body frame- , and the pitch 

angle ( ) in the earth frame, which is approximated 

by the integration of the aforementioned angular 

velocity q under the assumption of small roll angles. 

The symmetric deflection of flaps E  is the actuation 

variable.  

 

Only the strengths in X and Z axes, and the moments 

in Y axis will be studied, since they are the only ones 

deemed to intervene in longitudinal stability. With the 

coefficients obtained following [7], it yields the 

longitudinal linear model:  

 

(

𝑢̇

𝛼̇

𝑞̇

𝜃̇

) =

(

 
 

𝑋𝑢 + 𝑋𝑇𝑈 𝑋𝑎 0 −𝑔

𝑍𝑢

𝑈0

𝑍𝛼

𝑈0

𝑍𝑞 + 𝑈0

𝑈0
0

𝑀𝑢 + 𝑀𝑇𝑈 𝑀𝛼 + 𝑀𝑇𝛼 𝑀𝑞 0

0 0 1 0 )

 
 
(

𝑢

𝛼

𝑞

𝜃

) +

(

 
 

𝑋𝛿𝐸
𝑍𝛿𝐸

𝑈0
𝑀𝛿𝐸

0 )

 
 
𝛿𝐸 

 (17) 

 

In particular, the state equation  

 

(

𝑢̇

𝛼̇

𝑞̇

𝜃̇

) = (

−0.19 0 0 −9.17

0 −20.27 0.96 0

4.04 −3861.27−9.90 0

0 0 1.00 0

)(

u

α

q

θ

) + (

0.51

−11.05

−2985.33

0

) 𝛿𝐸  

 (18) 

 

is obtained for the fixed wind prototype in this work. 

Accordingly, the following input-output transfer 

functions  

 
𝜃(𝑠)

𝛿𝐸(𝑠)
=

−2985 𝑠2−18820 𝑠−3487

𝑠4+30.37𝑠3+3987𝑠2+787.8 𝑠+658.7
 (19) 

 

𝛼(𝑠)

𝛿𝐸(𝑠)
=

−10.95 𝑠3−2964 𝑠2−569.6 𝑠−334.3

𝑠4+30.37𝑠3+3987𝑠2+787.8 𝑠+658.7
 (20) 

  

are of interest in the longitudinal control strategies.  

 

 

3. Control strategy 
 

In flight dynamics, it is all about controlling the 

magnitude and orientation of the lift vector. Thus, we 

will have to study those variables whose effect on the 

vector are significant. We find that the attack angle 

controls the magnitude and the sweep angle controls 

the orientation of the lift vector. Consequently, any 

manoeuvre of winning or losing height would start 

with a change in the angle of attack, in the same way 

that a change in the sweep angle has an inherited 

change in the lateral position.  

 

The desired attack angle is obtained by controlling a 

desired pitch angle, which finally will intervene in the 

altitude control. Similarly, a desired sweep angle is 

obtained by controlling a desired roll angle, which will 

intervene in the yaw control.  

 

In this work, two cascaded loops will allow controlling 

first the pitch angle. Then, considering the attack 

angle, it will allow controlling the height inside 

another outer loop. 

 

3.1 Pitch control architecture   

 

Figure 4 depicts the pitch control architecture. Block 

a(s) represents the actuator dynamic, which is here 

discarded (a(s)=1) in comparison with the rigid solid 

dynamics (s)/E(s). The pure derivative in the inner 

loop is actually a mathematical resource, since q is the 

measurable variable in practice. Thus, gain Kq is the 

controller in the feedback path of the inner loop. The 

outer loop provides the feedback controller C(s) in 

the direct path. The control design process is 

performed from the inner to the outer loop, as it is 

following detailed. 

 

 
Figure 4: Pitch control architecture 

 

From a pure mathematical point of view the 

diferenciator in the inner loop mitigates the under-

damping (0.244) of dominant poles in (s)/E(s) of 

(19). Figure 5 depicts this effect in the frequency 

domain response of /E. Then, Kq is tuned to achieve 

a suitable control bandwidth BW; acceptable values 

are between 1 and 10 rad/s. Finally, a value of 
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𝐾𝑞 = −0.25    (21) 

 

achieves a BW=1.71 rad/s, as Figure 6 shows. Let us 

remark that a negative control gain is necessary in the 

inner loop since (s)/E has inverse gain.  

 

 
Figure 5: Open-loop frequency response /E 

 

 
 

Figure 6: Closed loop frequency response /c 
 

Regarding the outer loop design, a proportional-

integral (PI) controller is attempted: first, an integrator 

to remove the position error and later on a zero to 

mitigate the integrator effect over medium frequencies 

guaranteeing enough phase margin (PM) -higher than 

40º-. The PI controller gain modulates the gain cross 

over frequency gc (values between 1 and 10 rad/s are 

acceptable). Negative control gain is necessary since 

/c has inverse gain as phase plot reveals in Figure 6. 

The final controller at the outer loop is  

s

5s)+(1
-0.632=(s) C

  (22) 

 

which achieves a PM of 90º at gc of 9.78 rad/s, as 

Figure 7 depicts. Finally, the closed-loop frequency 

response /c reaches -3dB above BW=5.5 rad/s.   

 

 
Figure 7:  Open-loop frequency response of /e  

 

 

3.2 Altitude control architecture   

 

The altitude control consists of another feedback 

control loop above the pitch control structure /c of 

Figure 4, as Figure 8 shows. )(sCh  is the feedback 

controller to be designed. The path angle 

 

)()()( ttt      (23) 

 

is related to the altitude such that  

 

 00 sin UUh 


,  (24) 

 

where U0 is the craft velocity that is equal to Va=31 

m/s when ==0º.  

 

 
 

Figure 8: Altitude control architecture 
 

Considering (23) (19) and (20), it is obtained  

 

0.191)+6.115)(s+(s

0.1727)+41.91)(s-39.77)(s+s -0.003667(
= 

(s)

(s)




,(25) 

 

which can be approximated by 

 

115.6

5.4189

(s)

(s)








s
  (26) 

 

in order to simplify the design process. Finally, h/c 

presents the frequency response in Figure 9.  
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A PI controller cannot achieve acceptable PM (above 

45º) for good stability and high enough cross over-

frequencies (1-10 rad/s) for a good performance. 

However, the final controller  

 

)4.2/1(

)1)(9.0/1(05.0
)(

ss

ss
sCh




   (27) 

 

achieves a PM of 51.45º and cg=2.54 rad/s as Figure 

10 shows. The closed-loop bandwidth of h/hc is 

BW=4.25 rad/s. 

 

 
Figure 9: Frequency response of h/c 

 

 
Figure 10: Open-loop frequency response of h/eh 

 

3.3.  Validation in the non-linear model 

 

Longitudinal control is being tested in the fully 

coupled system with all the non-linear behaviours. 

The non-linear model in Section 2.3 has been 

implemented in a “User-Defined Block” in Simulink 

with the symmetric and asymmetric flap deflection as 

control inputs, and the three Euler Angles and altitude 

as controlled outputs. Using this block, the 

aforementioned control loops (Sections 3.1 and 3.2) 

have been also implemented in the script. Besides, 

yaw must be controlled to zero, using a similar control 

structure (Figure 11) as in the height control, let us 

note as it includes inner roll control loops, similar to 

the pitch control architecture.  

 

 
 

Figure 11: Yaw control architecture 

 

Figure 12 depicts several time responses related to 

height reference changes of step and ramp type. Plot 

(a) depicts the height tracking response (black) to 

reference signals (grey) of different nature; plot (b) 

shows the pitch that is demanded (grey) and how it is 

attained (black) by the inner loop; and plot (c) shows 

the deflection angle variation.  

 

 
Figure 12: Altitude control performance 

 

 

4. Conclusions 
 

In this article, we have presented the mathematical 

model of a fixed wing aircraft. For a hand-made 

protype, we have identified aerodynamic and physical 

parameters such as aerodynamic coefficients, inertias 

or weights, among others, mainly using the open-

source software XFLR-5. Furthermore, we have 
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isolated all the moments and strengths in the system: 

weight, aerodynamic forces and moments, thrust, drag 

sweep.  

 

Following Newton-Euler formulation, we have come 

up with a non-linear model, which has been linearized 

in order to apply linear control theory. 

 

A longitudinal stability model has been used to design 

feedback control loops of a cascade structure. 

Frequency domain techniques were used to design 

PID type controllers. An inner feedback loop 

controlled the pitch angle by conveniently acting on 

the flap deflection. Then, an outer loop allowed 

tracking the desired altitude.  

 

Achieving this controlled model is the start of a way 

for improvement and allows us to contribute to the 

creation of navigation systems, laying the foundations 

of new work lines. 

 

The development of the model and its control is the 

first step to design optimized control strategies and to 

explore new possibilities in the field. 
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