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Abstract

The purpose of this paper is to design a soft
robotic neck prototype with two Degrees of Free-
dom (DOF) and propose a control system based
on a fractional order PD controller (FPD). The
neck will be able to perform movements of flex-
ion, extension and lateral bending. To achieve
these movements, the design is made based on a
cable-driven mechanism, with components easy to
manufacture in a 3D printer. Simulations are per-
formed to validate the feasibility of the developed
parallel robot prototype and the robustness of the
proposed control scheme to mass changes at the
tip.

Keywords: Soft robotics neck, Cable-Driven Par-
allel Mechanisms (CDPM), Fractional order con-
trol, Robust control, Neck prototype.

1 Introduction

Nowadays, there exists a new trend on biologi-
cally inspired robots with ”soft” elements that are
able to perform tasks which are not available to
robots with rigid limbs. In the case of humanoid
robotics, a robot with soft links has the follow-
ing main advantages: a) simplicity of design, fa-
voring an under-actuated architecture; b) accessi-
bility and adaptability to complex environments;
and c) safer interaction with the human and the
environment.

Focusing on the neck element, there are several
humanoid neck mechanisms developed by differ-
ent researchers. They can be divided into two
categories, i.e. serial necks and parallel necks.

The neck in series is very used due to its easy con-
trol, since each DOF is operated independently.
Robotic necks in series such as HRP-4 [1] and
Honda ASIMO-2002 [2] have two DOF (pitch,
yaw). The four-bar robotic neck in [3] also has
two DOF. There are also designs with three DOF,
for example Albert HUBO [3], Dav [4] and the
final design of iCub [5].

Parallel robot necks are based in general on a par-
allel manipulator, which consists of a mobile plat-

form, a fixed base, several identical active chains
and a passive backbone, if necessary. This type of
mechanism is interesting for the following reasons:
the number of actuators is minimal; the number
of sensors necessary for the closed-loop control of
the mechanism is also minimal; when the actua-
tors are locked, the manipulator remains in its po-
sition, which is an important safety aspect for cer-
tain applications, such as medical robotics. The
SAYA head has a structure composed of a central
spring and several pneumatic artificial muscles [6].

In this paper a soft robotic neck is proposed based
on a cable-driven parallel mechanism. It is the
purpose for this soft link to be used interchange-
ably in various limbs of the humanoid robot, like
arms, neck and spine, under the constraints of
scalability, controllability of its stiffness and in-
tegration. The first step towards this goal is
the design and performance analysis of a proto-
type of soft link working as a neck, studying its
mathematical model and proposing a control sys-
tem that guarantees the performance robustness
to mass changes at the tip.

Due to the neck design and its elastic behavior, the
actuators will have different loads at every differ-
ent position, going through a varying load path
for every movement. In this situation, a robust
controller will be needed, and a fractional control
approach is considered.

The fractional order controllers receiving the most
attention in the last decades are the Fractional
Proportional Integral Derivative (PIλDµ) con-
trollers, formulated for the first time by Podlubny
[7] and studied in works such as [8], [9], or [10].

A remarkable number of articles, specially when
the subject involves motion control, focus on the
derivative control, leaving the integrator out. This
control scheme has the advantage of using the po-
sition sensor as an integrator, which simplifies the
controller, while the steady state error is still can-
celled, making the integral part unnecessary, even
undesired. The first to use this kind of fractional
controller was Dorcak in [11], and later in [12] or
[13], with application to the control of the joints of
a robot. Similar approaches have been proposed
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in [14], [15] and [16].

There are different tuning approaches, based on
different techniques. Many of them are based on
the numeric solution of nonlinear equation sys-
tems [10], [12] and [13]. Other approaches based
on optimization methods can be found in the lit-
erature, such as Particle Swarm Optimization al-
gorithm (PSO) [9], [15], Artificial Bee Colony al-
gorithm (ABC) [17], [18], Firefly Algorithm (FA)
[19], or Differential Evolution method (DE) [20].
A comparative study for optimization algorithms
applied to fractional controllers can be found in
[21].

A novel method for the tuning of a Fractional or-
der PD (FPD) controller is presented in this pa-
per. Differently from other tuning methods in the
literature based on numeric solutions of nonlinear
equation systems or optimization, our proposal
has a graphical nature, and allows the tuning of
the controller in a very intuitive way through very
simple and straightforward steps that do not re-
quire computational efforts.

The paper is organized as follows. Section II in-
troduces the soft neck proposal and its mathemat-
ical model. Section III presents the control prob-
lem and proposes a novel tuning method for an
FPD that improves the robustness of the system to
mass changes at the neck tip. Section IV discusses
the simulation results obtained from the control of
the neck using a PD and an FPD controller. Fi-
nally, Section V outlines the main conclusions of
the work.

2 Robotic Neck

The prototype proposed in this paper is the result
of research on robot necks, mainly in the configu-
ration of parallel robots for the advantages of [22].
The motions of the human neck include flexion /
extension (pitch), vertical rotation (yaw) and lat-
eral flexion (roll) [23], as shown in Fig. 1. The
flexion movement with a range of 50°, while the
extension has a range of 57.5°, ensures that the
head is tilted backwards. The vertical rotation of
the neck is described as the rotation of the head
to the right and to the left with a rotation range
of 70°. The lateral flexion allows the head to bend
towards the shoulder, with a maximum angle of
45°.

The Cable Drive Parallel mechanism (CDPM)
shown in Fig. 2(a) consists of: a fixed base, a
moving platform, three flexible cables with negli-
gible mas and a compression spring. The cables
are driven by a servomotor each, as shown in the
figure. The coordinate frame OXY Z is attached
to the fixed base and the Y-axis is along OA1. The

Figure 1: Prototype functional scheme.

coordinate frame oxyz is attached to the moving
platform and the y-axis is along OB1. The moving
platform is driven by three cables and the connec-

tion points are
−→
oB = (B1;B2;B3); the other end

of each cable connects to a roller driven by a mo-
tor and the cables pass through the fixed base at

points
−→
OA = (A1;A2;A3). We will denote the

force value along the cable as Ti and the cable
length between Ai and Bi as li.

(a) CDMP model. (b) Lateral bending of the spring.

Figure 2: Robot neck diagrams

In the plane formed by O, o and o′, with o′ the
projection of o to the fixed base, a planar body
frame Ost is attached to the spring, as show in
Fig. 2(a). The origin is the same as the base
coordinate frame OXZ, the t-axis is the same as
the Z-axis and the s-axis is along Oo′. As shown
in Fig. 2(a) and Fig. 2(b), the configuration of the
moving platform is defined by four parameters: θs
is the angle between the s-axis and the X-axis; θp
is the angle between the fixed base plane and the
moving platform plane; t0 is the vertical length
of the bending spring; so is lateral translation of
the bending spring. There are three parameters
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independent from each other, considering so as the
dependent parameter. In other words, once θs, θp
and t0 are given, so can be solved. In this case,
so is considered as a parasitic movement [24] that
can be determined by the other three parameters.

The homogeneous transformation matrix (1) rep-
resents the projection from frame oxyz to OXY Z.

OTo′ =

[
ORo′ Po

0 1

]
(1)

where Po is the position vector of point o with
respect to the base coordinate frame, Po =[
so cos θs so sin θs t0

]T
, and ORo′ (θs, θp) is

the rotational matrix that describes the orienta-
tion of the moving platform using the Euler angles
with orientation ZY Z.

The inverse position kinematics prob-
lem is to calculate the cable lengths

L =
[
L1, L2, L3

]T
given the desired moving

platform posture x =
[
θs θp t0

]T
.

The cable lengths are calculated by:

Li =
∥∥∥OTo′−−→oBi −−−→OAi∥∥∥ (i = 1, 2, 3) (2)

However, so cannot be an arbitrary number. We
transform all the cable forces to two perpendic-
ular forces F1 and F2 in the bending plane Ost,
and a moment M perpendicular to the plane at
the spring’s top center, as shown in Fig. 2(b).
The mass of the moving platform m is taken as a
mass point at the spring’s top center. The equilib-
rium conditions for force and torque at the moving
platform, as shown in Fig. 2(b), are as follows:

3∑
i=1

OTi + F = 0 (3)

3∑
i=1

Ori × OTi +M = 0 (4)

where

OTi = Ti(
OTo′
−−→
oBi −

−−→
OAi)/

∥∥∥OTo′−−→oBi −−−→OAi∥∥∥
Ori = ORo′ ·

−−→
oBi

F =
[
−F1 cos θs, −F1 sin θs, F2 −mg

]T
M =

[
−M sin θs, M cos θs, 0

]T
Considering β as the flexural rigidity after com-
pression of the spring [25], the lateral bending
curve of the spring spine can be taken as the fol-
lowing linear equation [26]:

β
d2s

dt2
= M + F2(s0 − s) + F1(t0 − t) (5)

with initial conditions:

s(0) = 0, s′(0) = 0, s(t0) = s0 s
′(t0) = tan θp

(6)
where s′ = ds/dt and β = β0L/L0. Using the
spring bending equation (5) and (6), so can be
obtained; therefore, the inverse position problem
can be solved.

Reverse kinematics and static analysis are imple-
mented in Matlab. Additionally, the inertia I and
bending constant βo of the spring must be calcu-
lated with the following equations:

I =
πd4

64
; βo =

2EGIL0

πNa
d
2 (E + 2G)

(7)

Table 1: Parameters of selected spring
ε [m] Lo[m] d [m] Na F [N] G [GPa] E [GPa]
0.001 0.1 0.003 15 9.8 80 200

whose constants values are given in Table 1. The
implementation is performed with a fixed to =
0.085m, varying θp from 0° to 40° and θs from
0° to 360°. We can obtain the results shown in
Fig. 3, where the cable lengths are located in the
z-axis.

In Fig. 3, it is observed that while θp is large,
the variation in cable length is also large. This
is because the more the mobile base is tilted, the
greater amount of force will be required.

Figure 3: Inverse position kinematics.

3 Control Problem

The architecture of the control system for the soft
neck is shown in Fig. 4, implemented in Simulink
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Matlab. The scheme has (left to right) input sig-
nals, reverse kinematics block, a linear to angular
displacement function (to convert cables length
into motor position references) for each of the
three motors, a PD block and FPD block con-
taining the PD and FPD controllers connected to
the transfer function of the motors in closed loop
(for the sake of controllers comparison), and fi-
nally, an scope to represent the temporal response
of the system.

Figure 4: Simulink block diagram.

Each motor will be modeled as a first forder sys-
tem, having velocity target input and angular joint
velocity output, with a gain of 1, because the mo-
tor is commanded directly from the intelligent mo-
tor driver. If the encoder is considered, the system
output will be position, while the input will still be
velocity. In this case, the control variable will be
the position, and an integrator must be added to
the transfer function, and the final system will be
the one in (8). See the response to a unitary step
and the Bode diagram for that system in Fig. 5.
Note that phase margin φm = 65°, and crossover
frequency is ωc = 30 [rad/s].

G(s) =
1

(0.1s+ 1)s
(8)

Figure 5: Step response of the motor (left). Bode
diagram of the motor (right).

Having an integrator in the plant, the best option
is to avoid another integrator in the controller,
what leads to a proportional derivative approach.

3.1 PD Control

The PD controller is given by

C(s) = Kp (1 + Tds) (9)

The transfer function of the open loop system is

C (s)G (s) =
Kp (1 + Tds)

(0.1s+ 1)s
(10)

From the basic definitions of phase margin φm and
crossover frequency ωc [27], the following set of
equations are obtained:

0 = arg [G (jωc)C (jωc)] + π − φm (11)

0 = |G (jωc)C (jωc)| − 1 (12)

To assign the appropriate value to Kp and Td, we
solve equations (11) and (12) using fsolve function
of Matlab (used for solving sets of nonlinear equa-
tions [29]). Considering as specifications ωc = 30
[rad/s] and φm = 65°, the resulting controller pa-
rameter are Kp = 65.22 and Td = 0.03521. The
Bode diagram of the open loop system with this
controller and the step response are shown in Fig.
6, where it is clearly seen that the specifications
are fulfilled.

Figure 6: Step response (left), Bode diagram
(rigth) for PD Control

3.2 FPD TUNING: ISOω METHOD

Because of the elastic nature of the system, the
motors will be affected by different loads for the
different positions. In addition, the neck will ac-
cept different payloads attached to the tip, which
adds uncertainties to the model and ask for a ro-
bust control system. According to this, the control
specifications to be met can be summarized as:

� Robustness to mass changes on the tip at a
nominal crossover frequency ωc

� Robustness to model uncertainties

The way to meet the first specification is by get-
ting the phase of the open loop system to be flat at
ωc so as the system will be robust to gain changes,
as demonstrated in [28]. In this system, the gain
of the model is mainly affected by the payloads of
the device, as proved in [29]. Therefore, meeting
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this specification will make the system robust to
changes in the load.

Here we propose a novel tuning method for an
FPD controller of the form in (13) so that the
above specifications are met:

C(s) = kp + τds
µ (13)

where kp is the proportional gain, τd is the deriva-
tive gain, and µ is the fractional order of the
derivative.

A new approach based on the cancellation of the
phase slope at a frequency chosen in the Bode di-
agram will be used for tuning. After phase cancel-
lation, the controlled system will have flat phase
around the desired frequency ωc, achieving robust-
ness to the changes in motor loads.

In this kind of controller, the phase slope can be
computed as:

m =
d

d log10(ω)
arctan

(
sin(µπ/2)

1
kd10log10(ω)µ + cos(µπ/2)

)

and simplified with the change of variable
log10(ω) = x, it results:

m =
d

dx
arctan

(
sin(µπ/2)

1
kd10xµ

+ cos(µπ/2)

)
(14)

In (14), all the slopes for all the frequencies (ω)
and parameters (kd, µ) are defined, but for the
sake of simplicity, only one case will be consid-
ered. Selecting the frequency ωµ = 1/kd (greatest
slope) offers a great simplification, and equation
(14) becomes:

mc = tan(µπ/4)µ log(10)/2 (15)

Plotting the values ofmc in front of µ, it is possible
to find µ from the slope. All values of mc are
computed for µ = (0, 1.6) obtaining the curve in
Fig. 7, for the specific case ωµ = 1/kd.

Having the exponent µ, it is needed to make the
controller fit the frequency of interest. Parameters
kd and µ have an effect on the crossover frequency
at which the phase slope cancellation occurs in the
Bode diagram.

Plotting all the values of ω in front of µ and kd,
for the case of ωµ = 1/kd to keep consistency, we
obtain Fig. 8. It is a computer demanding task,
but once done, the graph can be easily used by
graphical interpolation.
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Figure 7: Phase slope plot in the Bode diagram
at the frequency at which point φ(ω) = µ · 45°, as
µ changes.
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Figure 8: Surface of controller parameters, show-
ing ω as a funtion of µ and kd.

Once the surface is computed, an ISOω graph can
be obtained as shown in Fig. 9, which allows,
given a value of ω within the range of values chosen
during the graph computing, and a value of µ that
cancels the slope, to select a value of kd that sets
the controller frequency in order to perform the
cancellation at the correct place (ωc).
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Figure 9: Parameter tuning plot, showing isoω
curves as a funtion of µ and kd.

After that, kp will be used to set the open loop
system magnitude to 0[dB] at ωc, finishing this
way the tuning procedure.

Now that the method has been presented, it will
be used for the controller tuning, summarized in
the following steps:

-Choose ωc

As in the previous tuning, ωc = 30 [rad/s]

-Find the system slope at ωc
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Checking the phase curve in Fig. 5, the slope at
ωc is m = −40[deg/ log10(ω)].

-Find µ

Using Fig. 7, we find an exponent µ corresponding
to that value of m.

-Look for kd

For the ISOω curve ωc = 30[rad/s] in Fig. 9,
and µ = 0.8, there is only one possible value of
kd = 0.07.

-Set 0[dB] at ωc

The proportional constant is set for the open loop
system magnitude to be 0[dB] for ωc = 30[rad/s],
then:

kp =
1

|C̄(jωc)G(jωc)|
= 59 (16)

-Controller parameters

Once all the constants are known, the controller
results

C(s) = kp + τds
µ

C(s) = 59(1 + 0.07s0.8) = 59 + 4.13s0.8

The result is shown in Fig. 10. A flat slope at
a crossover frequency is shown, according to the
requirements. The step response of the controlled
system is also shown.
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Figure 10: Bode diagram and step response for
FPD controller based on the ISOω method.

4 Simulation results

Performing the robotic neck simulation with the
PD and FPD control system for different mass
gains Gw = (1, 0.6, 0.3), the robustness of the
designed controllers is checked.

In the Fig. 11 it can be seen that the PD
controller has different overshoots for changing
masses while the FPD controller has a constant
overshoot (iso-damping) and presents a very ro-
bust performance. The introduction of the frac-
tional order µ in the controller and the application

of the tuning method proposed enhance the per-
formance of the FPD-based system in comparison
with the PD-based system.

Figure 11: Comparison of the responses of all the
controllers (PD and FPD) for different masses at
the tip. Step input of θp = 15°and θs = 80°.

5 Conclusions

This paper has presented the design of a soft
robotic neck with two DOF providing pitch and
roll movements. The constraint is a maximum
inclination of 40°. The mechanical and electri-
cal design of the prototype have been addressed
taking this constraint into account. The mecha-
nism uses a coil compression spring to simulate
the cervical vertebrae and cables that act as mus-
cles. The mathematical model of the neck has
been presented and the theoretical static analysis
of the mechanism has been performed.

A novel tuning method for a fractional order PD
controller (FPD) has been proposed with applica-
tions to the control of the soft robotic neck. This
method is based on the graphical solution of the
controller parameters, avoiding the resolution of
nonlinear equations sets and allowing to solve the
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control problem in a very intuitive and direct way.
The resulting FPD controller outperforms the PD-
based performance of the system in terms of ro-
bustness.

In the future, the proposed soft neck will be built
and tested, and the tuning method will be ex-
tended to fractional order PID controllers.
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