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Abstract

In this paper, we propose a distributed control
law for non-holonomic vehicles that guarantees to
achieve the desired formation and location before
a given deadline, while maintaining the connec-
tivity of the group. The group is commanded by
a a selected subset of the agents, which know the
location of the desired objective, while the rest of
the vehicles only have information about their rel-
ative desired positions respect their set of neigh-
bors. The analytical results are illustrated with a
simulation example.

Palabras clave: Multi-agent systems, formation
control, distributed control, connectivity.

1 INTRODUCTION

Significant developments in the fields of communi-
cation technology, wireless technology, embedded
devices, and many others, have enabled the de-
velopment of autonomous air, ground, or under-
water vehicles. Groups of such vehicles, referred
to as agents, can be utilized to solve a variety of
problems very efficiently, such as for example ex-
ploration and monitoring tasks [3, 9, 11].

One example of a group objective for multi-agent
systems is state agreement or consensus, i.e., all
agents are supposed to converge to a common
point or state. Such consensus problems have a
variety of applications in flocking, attitude syn-
chronization in satellite swarms, distributed sen-
sor networks, congestion control in communica-
tion networks, or formation control [8]. We are
particularly interested in the last field of applica-
tion since achieving a stable formation is analo-
gous to reaching consensus.

Another way of interaction in a multi-agent sys-
tems is when there are the so-called leader agents,
whose dynamics need not conform to those of the
non-leader (follower) agents. In these setups, a
selected subset of the agents are following a task-
level controller that encodes the transport of the
network from one location to another. The rest of
the agents are executing a simple local interaction-

based control strategy for keeping the team to-
gether. The motivation of such configuration is
that it relieves resources since only the leader
agents are able to tell global positions and/or po-
sitions relative to particular landmarks, thus lim-
iting the required sensor load of the remaining
agents [4].

It is well known that a general connectivity anal-
ysis of an arbitrary network is extremely complex,
and a lot of results have appeared recently regard-
ing maintaining connectivity in networks of ho-
mogeneous agents [10, 12, 14] and heterogeneous
agents [15], to cite a few. In this paper, we address
the problem of connectivity maintenance but, ad-
ditionally, the group of agents has to perform a
task before some given deadline. This time con-
straint imposes an additional requirement to the
group since it has to travel together to maintain
the connectivity but fast enough to reach the ob-
jective in time, considering that only the leader(s)
know the final destination of the system. Whereas
finite-time consensus algorithms [2, 13] can guar-
antee the achievement of a formation in finite-time
and predict the deadline based on initial condi-
tions and algebraic properties, basically, the idea
here is different: The time constraint is given and
it is the design of the control law that guarantees
its satisfaction.

Moreover, in this paper, instead of modeling
agents as single or double integrator such as in the
papers cited above, we consider non-holonomic ve-
hicles that move in the plane, which is a more real-
istic model for mobile robots. The team of robots,
commanded by the leader(s) needs to reach a for-
mation around a specific point in the state space,
only known by the leader(s), while the rest of the
the agents only have information about relative
distances. Then, the leader agents have to com-
mand the team of robots to reach the objective
before some given deadline.

The remainder of the paper is as follows. In Sec-
tion 2 we state the required preliminaries. The
problem is formulated in Section 3. In Section 4
we describe the proposed solution and the analyt-
ical results of the paper are provided. In Section
5 a simulation example illustrates the results. Fi-
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nally, a discussion about the results concludes the
paper is Section 6.

2 PRELIMINARIES

Consider a set of N agents. The topology of the
multi-agent system can be modeled as a static
undirected graph G = (V, E), where V is the set of
nodes and E is the set of edges, which denotes the
communication capability between the respective
agents. For each agent i, Ni represents the neigh-
borhood of i, i.e., Ni = {j ∈ V : (i, j) ∈ E}.
A subgraph Gs of an undirected graph G is an
undirected graph such that the vertex set V(Gs) ⊆
V(G) and the edge set E(Gs) ⊆ E(G). Let G1 and
G2 be subgraphs of G. We say that G1 and G2

are disjoint if they have no vertex in common,
and edge-disjoint if they have no edge in common.
The union G1∪G2 is the subgraph with vertex set
V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2).

A path graph of N vertices, denoted by PN , is a
graph whose vertices can be listed in the order v1,
v2, . . . , vN such that the edges are (vi, vi+1) where
i = 1, 2, . . . , N−1. A path is a particularly simple
example of a tree, since no vertex has degree 3 or
more.

The Laplacian matrix L(G) ∈ RN×N of a network
of agents is defined as L(G) = E(G)E(G)⊤, where
E(G) is the incidence matrix. The Laplacian ma-
trix L(G) is positive semidefinite, and if G is con-
nected and undirected, then 0 = λ1(G) < λ2(G) ≤
· · · ≤ λN (G), where {λi(G)} are the eigenvalues of
L(G).

The edge Laplacian is an edge variant of the graph
Laplacian defined as Le(G) = E(G)⊤E(G), and
has the following algebraic properties [16]: 1) The
non-zero eigenvalues of Le are equal to the non-
zero eigenvalues of L; 2) the rank of Le depends
only on the number of connected components;
3) the null space of Le, N (Le), depends on the
number of cycles in the graph and it holds that
N (Le) = N (E). Furthermore, N (E) is spanned
by all the linearly independent signed path vec-
tors corresponding to the cycles of E; 4) if G is
a spanning tree, then Le has no zero eigenvalues
and, hence, N (Le) = ∅.

Finally, we denote by | · | the cardinality of a set
(group of agents).

The next lemma follows from the results in [16]
and will be useful in the reminder of this paper.

Lemma 1. Suppose Le ∈ RNe×Ne is the edge
Laplacian of an undirected connected graph G.
Then, for allt ≥ 0 and all vectors z ∈ RNe with
z = E⊤x and x ∈ RN , it holds that

∥e−Letz∥ ≤ e−λ2(G)t∥z∥.

Proof. Let us assume that the graph G has nc in-
dependent cycles. Then, the multiplicity of the
zero eigenvalues of Le is nc. Since Le is symmetric,
the eigenvectors of Le can always be chosen such
that they form and orthonormal basis T and it
holds that Le = T ·diag(0, . . . , 0, λ2, . . . , λN ) ·T⊤,
where the first nc vectors in T correspond to the
nc zero eigenvalues, and the rest corresponds to
the eigenvalues λ2, . . . , λN of L. Then

e−Let = T diag(1, . . . , 1, e−λ2t, . . . , e−λN t)T⊤.

For z = E⊤x ∈ RNe , it holds

e−Letz = T diag(1, . . . , 1, 0, . . . , 0)T⊤z

+ T diag(0, . . . , 0, e−λ2t, . . . , e−λN t)T⊤z.

The first term is 0 using the third property de-
scribed above and, hence

∥e−Letz∥ ≤ ∥T diag(0, . . . , 0, e−λ2t, . . . , e−λN t)T⊤z∥.

Note that ∥A ·B∥ ≤ ∥A∥∥B∥ for any two matrices
and that ∥T∥ = ∥T⊤∥ = 1 for an orthonormal
basis, then it follows

∥e−Letz∥ ≤ ∥diag(0, . . . , 0, e−λ2t, . . . , e−λN t)∥∥z∥
= e−λ2t∥z∥,

which completes the proof.

3 PROBLEM STATEMENT

3.1 Control objective

The control objective the system has to achieve is
threefold:

• The group of agents, commanded by a subset
of them called leaders, needs to reach a for-
mation with relative position offset denoted
by dij = di − dj around a point of the state
space denoted by c. For each agent, we define
a region of the state space Bi defined as

Bi = {y ∈ Rn : ∥y − ci∥ ≤ r}, (1)

and denoted as Bi = (ci, r), where ci = c+di.

• The group has to achieve such a control ob-
jective before some deadline denoted by T .

• The motion law is such that the connectivity
of the group is maintained.

More details will be given in the following sections.
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Figure 1: Scheme for a non-holonomic mobile
robot.

3.2 Agent dynamics and control

Let us assume that the N agents obey the single-
integrator dynamics:

ẋi(t) = ui(t), i = 1, . . . , N, (2)

where xi(t), ui(t) ∈ Rn are the state and the con-
trol inputs of agent i, respectively. The state of
the overall system is defined as x = (x⊤1 , . . . , x

⊤
N )⊤

and the control law u = (u1, . . . , u
⊤
N )⊤.

For each agent of the form (2), let us consider a
control law of the form

ui(t) = κi(xi(t),
∪

j∈Ni(t)

xj(t), πi), i = 1, . . . , N,

(3)
where each κi(·) is locally Lipschitz and πi repre-
sents a set of additional parameters. For instance,
the leaders will include in πi information about
the objective regions (1). The control law (3) re-
quires the availability of the state of other agents,
called neighbors and denoted by Ni for the agent
i. Depending on the setup, this can be obtained
from sensors (proximity sensors, for instance) or
via communication. It is assume that an agent
can only reach those others that stay inside a ball
of radius R, which is the range of communication.

However, single integrators do not describe prop-
erly the dynamics of most of commercial mobile
robots, since these cannot move in any direction
instantaneously. In robotics, holonomicity refers
to the relationship between the controllable and
total degrees of freedom of a given robot. If
the controllable degrees of freedom are less than
the total degrees of freedom the vehicle is non-
holonomic.

Let us consider a set of robots that are able to
move in R2, i.e., its state can be described by its
position in the plane and orientation (xi, yi, θi).

To avoid the non-holonomic constraint, let us de-
fine the dynamics in terms of the front wheels co-
ordinates (x̄i, ȳi) (see Figure 1): ˙̄xi

˙̄yi
θ̇i

 =

cos θi −h sin θi
sin θi h cos θi
0 1

(vi
ωi

)
, (4)

where x̄i = xi + h cos θi, ȳi = yi + h sin θi, and
vi and ωi are the linear and angular velocities,
respectively, and are considered the control iputs,
ui = (vi, ωi)

⊤.

According to [6], the following feedback lineariza-
tion can be used to transform the dynamics (4)
into two decoupled single integrators:(

vi
ωi

)
=

(
cos θi −h sin θi
sin θi h cos θi

)−1(
v̄i
ω̄i

)
. (5)

With the new control inputs v̄i, ω̄i, the linearized,
decoupled model of robot i is given by(

˙̄xi
˙̄yi

)
=

(
v̄i
ω̄i

)
, (6)

and θ̇i = ωi.

Then, we can consider the single integrator model
given by (2), and design the control law ui =
(v̄i, ω̄i) to fulfill the control objectives and, then,
implement it according to the transformation (5).

4 MAIN CONTRIBUTION

Next we present the control law that allow the
achievement of the control objectives. Two type of
agents are distinguished: the leaders, which know
the final destination, and the rest of the agents
called followers. We denote the leaders as L. For
simplicity, we assume that there is a single leader.
Hence, we propose a continuous controller which
may include one or two terms, depending on the
role of the agent:

ui =


∑
j∈Ni

k(xj − xi − dji)− a(xi − c) if i ∈ L

∑
j∈Ni

k(xj − xi − dij) otherwise
,

(7)
where dji = dj − di ∈ Rn are predefined relative
position offsets, and the gains k and a are to be
designed such that the time constraint is fulfilled
while the connectivity of the group is maintained.

The next two propositions give a guideline for the
design of the feedback gains k and a. If the dy-
namics are rewritten in terms of the group state x
and control vector u, then it follows

ẋ = −k(L(G)⊗In)(x−d)−a(D⊗In)(x−1N ⊗c),
(8)
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where d = (d⊤1 . . . d
⊤
N )⊤, L(G) is the Laplacian ma-

trix of the graph G that describes the topology,
and D is a diagonal matrix where its diagonal el-
ements are defined as follows:

Dii =

{
1 if i ∈ L
0 otherwise.

(9)

Moreover, the incidence matrix allows rewriting
the variables of the vertex V in terms of the edges
E . Actually, we can define a vector z for the state
of the edges in E such that z = (E⊤ ⊗ In)x, and
its dynamics are given by

ż =− k(Le(G)⊗ In)(z − de)

− a(E⊤(G)D ⊗ In)(x− 1N ⊗ c), (10)

where de = E⊤d. Let us denote z̄ = z − de, then
(10) is transformed into

˙̄z =− k(Le(G)⊗ In)z̄

− a(E⊤(G)D ⊗ In)(x− 1N ⊗ c), (11)

We further make the following assumption.

Assumption 1. The distance to the objectives ci
is upper bounded by cmax, i.e., ∥xi − ci∥ ≤ cmax
∀i ∈ V. Furthermore, the initial conditions are
such that ∥z̄(0)∥ ≤ R, where R is the communica-
tion range.

Proposition 1. If the graph G is connected at t =
0 and Assumption 1 holds, the graph G remains
connected and no links are removed if the feedback
gains k, a in (7) satisfy the following relationship:

a ≤ Rλ2(G)k√
Ncmax

. (12)

Proof. Let us assume that no edges are removed
or added in the group of agents. Thus, according
to (11), the evolution of the system is

z̄(t) = e−k(Le⊗In)tz̄(0)

−
∫ t

0

e−k(Le⊗In)(t−s)a(E⊤D ⊗ In)(x− 1N ⊗ c)ds.

Taking norms and using the result of Lemma 1, it
follows that

∥z̄(t)∥ ≤ e−kλ2t∥z̄(0)∥

+a
√
N

∫ t

0

e−kλ2(t−s) supi∈V ∥xi − c∥ds.

From Assumption 1, supi∈V ∥xi − c∥ ≤ cmax and
∥z̄(0)∥ ≤ R and, hence

∥z̄(t)∥ ≤ e−kλ2tR+ a
√
Ncmax

kλ2
(1− e−kλ2t).

The connectivity is maintained if ∥z̄i(t)∥ ≤ R for
all the edges i in E . Since ∥z̄i(t)∥ ≤ ∥z̄(t)∥, the
feedback gain a given by (12) guarantees the con-
nectivity and that no edges are removed.

Remark 1. In the proof of Proposition 1, it is as-
sumed that no edges are added to the graph G.
This can be relaxed without altering the results,
since adding new edges in the graph can only in-
crease the value of λ2(G) [16] and, hence, all the
upper bounds used in the proof still hold if the
value of λ2(G) at the beginning of the task is con-
sidered.

Before proceeding with the results that guaran-
tee that the systems completes its objective on
time, the following lemma studies the spectral
properties of the matrix M = kL + aD ∈ RN×N ,
k, a ∈ R>0, where L and D are the Laplacian ma-
trix and D isdefined in (9).

Lemma 2. The eigenvalues of the matrix M de-
fined above are lower bounded by( N − 1

N(N − 1) + a/k

)N−1

a. (13)

Proof. The proof is provided in the appendix.

Since it is assumed there is a single leader in the
group, i.e., the number of elements of the set L is
1. This simplifies the analysis, but the results can
be extended to a more general setting.

Proposition 2. If the feedback gains k, a in (7)
are chosen such that(

N−1
N(N−1)+a/k

)N−1

≥ 1

T
log

√
Ncmax
r

, (14)

then the team of agents reaches the formation de-
fined by the set of region Bi given in (1) before
T .

Proof. Let us consider the group dynamics (8),
which can be rewritten as follows

ẋ = −k(L(G)⊗In)(x−d)−a(D⊗In)(x−d−1N⊗cL),

where cL = c− dL, being dL the offset position of
the leader L. Since (L(G)⊗ In)(1N ⊗ cL) = 0 (1N
is an eigenvector of L(G)), then

ẋ(t) = −(kL(G) + aD)⊗ In(x(t)− d− 1N ⊗ cL).
(15)

If we define δ(t) = x(t) − d − 1N ⊗ cL, it follows
that

δ̇(t) = −(kL(G) + aD)⊗ Inδ(t). (16)

If we denote as x0 (δ0 = x0 − d − 1N ⊗ cL) and
t0 = 0 the initial conditions and the starting time,
respectively, then it holds that

δ(t) = e−((kL(G)+aD)⊗In)tδ0. (17)

Let us denote M = (kL(G) + aD) ⊗ In and we
next apply the results of Lemma 2 to this matrix.
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Note that the eigenvalues of e−(kL(G)+aD)⊗In are
all negative (the eigenvalues ofM are all positive),
and this guarantees that δ(t) in (17) converges
to zero (δ → 0 when t → ∞). Moreover, be-
causeM has an orthonormal basis of eigenvectors,
it holds that ∥δ(t)∥ = ∥e−((kL(G)+aD)⊗In)tδ0∥ ≤
e−λ1(M)t∥δ0∥ ≤ e−λ1(M)t∥δ0∥, where

λ1(M) = (
N − 1

N(N − 1) + a/k
)N−1a, (18)

according to Lemma 2. Thus, in particular, for
t = T :

∥δ(T )∥ ≤ e−λ1(M)T ∥δ0∥. (19)

If k, a fulfill (14), then all agents reach the bound-
ary of Bi before T .

Remark 2. Propositions 1 and 2 provide con-
straints for the choice of a and k to guarantee that
the graph remains connected and the objective re-
gion is achieved on time. For instance, (12) im-

poses a/k to be upper bounded by α = Rλ2(G)√
Ncmax

.

Then, taking the equality and introducing it in
(14) yields

a =
(
N(N−1)+α

N−1

)N−1
1
T log

√
Ncmax
r

(20)

k = 1
αa, (21)

Moreover, to obtain feasible values of k and a,
it is required that r <

√
Ncmax, which can be

guaranteed by an appropriate choice of cmax. For
instance, cmax is an upper bound for the distance
to the objective regions and can be increased to
satisfy the constraint.

Remark 3. The value of k given by (20) requires
the knowledge of the eigenvalue λ2(L(G)). This
can be estimated in a distributed fashion as pro-
posed in [1]. Alternatively, one can consider an
upper bound such as λ2(L(G)) ≤ minv∈V deg(v),
i.e., the minimum degree of the graph.

5 SIMULATION EXAMPLE

Let us consider a system of four vehicles whose
dynamics are modeled by (4) with h = 0.16, and
whose communication graph is characterized by
the following Laplacian matrix

L =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 ,

and thus, λ2(L) = 2. The desired formation is
described in Figure 2, and the point c in the plane
around the formation should be situated is c =
(−2, 5). The leader of the formation is the agent
1. The rest of the parameters of the setting are

1 2

4 3

Figure 2: Relative distance of the desired forma-
tion and communication graph.

-3 -2 -1 0 1 2 3
X

-1

0

1

2

3

4

5

6

Y

Figure 3: Movement of the robots in the plane.

r = 0.05, R = 3, and cmax = 10. The deadline
for reaching the formation described by the set of
regions Bi as in (1) is set to T = 10 s. The initial
conditions are x⊤0 = (2 −1 2 −0.5 2.3 −0.8 1.8−1),
and the orientations θi of the vehicles 1, 2, 3, and
4 are initially set to −π/2, π, −π/4, and π/3,
respectively.

If feedback gains k and a are computed accord-
ing to (20) and (21), respectively, the result is
k = 91.76 and a = 27.53. The trajectory of the
robots in the plane is depicted in Figure 3. It can
be noticed that the robots go to the final destina-
tion point and the desired formation is achieved.
Additionally, note how the non-holonomic dynam-
ics affects the movement of the vehicles, since the
robots first have to change their orientation and
then moves towards their objective. In Figure 4,
the disagreement respect the desired formation δ
is depicted. Note how the disagreement converges
to zero very fast and, hence, the time constraint
is satisfied by far.
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Figure 4: Time evolution of the disagreement re-
spect to the desired formation.

6 DISCUSSION

In this paper, by analyzing the rate of convergence
of the system, we derive distributed control laws
that guarantee that the formation of a team of
robots is achieved on time while the connectivity
of the group is maintained. The simulation exam-
ple illustrates the analytical results and shows that
the rate of convergence if much faster than the im-
posed by the time constraint. This is due to the
possible conservatism in the bounds derived for
certain parameters of the overall system dynam-
ics, that depend on the number of agents. Future
research will include the study of other methods
that scale better with the dimension of the group
and the extension to other types of robots that
have more degrees of freedom such as quadcopters.
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APPENDIX

Proof of Lemma 2: The Laplacian matrix L has
eigenvalues 0 = λ1(L) < λ2(L) ≤ ... ≤ λN (L).
Furthermore, D has one eigenvalue equal to 1, and
the rest N − 1 of them are zero. Note that M
is positive definite by construction, and thus all
its eigenvalues are real and positive. Then, the
results of Lemma 1 in [7] apply, i.e., for any matrix
A ∈ Cn×n with real and positive eigenvalues it
holds that

λ1(A) ≥
(n− 1

tr(A)

)n−1

det(A), (22)

where λ1(A) is the smallest eigenvalue of A.

The trace of the matrix M is upper bounded by

tr(M) ≤ kN(N − 1) + a > 0, (23)

since the diagonal elements of L are the degree of
each vertex which is upper bounded by N − 1.

We next find a lower bound for the determinant
of M . The determinant of M is the product of
its eigenvalues and, thus, is positive. From Weyl’s
theorem [5], it holds that 0 < λ1(M) ≤ kλ2(L),
kλN (L) ≤ λN (M), and kλi(L) ≤ λi(M) ≤
kλi+1(L) ∀i = 2, . . . , N − 1 (the eigenvalues inter-
lace). Furthermore, according to Theorem 4.1 in
[16], the eigenvalues of a connected graph Lapla-
cian L are lower bounded by those of the contained
spanning trees. Hence, we next analyze the case
of M when the graph is a tree and, for simplicity,
a path graph, and we show that adding an edge in
the graph can only increase the determinant. The
extension to a general tree is trivial.

Let us consider the path graph P2 and let us
assume, without loss of generality, that D =
diag(1, 0). Then

det(M) =

∣∣∣∣k + a −k
−k k

∣∣∣∣ = ka = k2−1a > 0.

Similary, for P3 and D = diag(1, 0, 0) it holds

det(M) =

∣∣∣∣∣∣
k + a −k 0
−k 2k −k
0 −k k

∣∣∣∣∣∣ = k2a = k3−1a > 0.

Assume that this holds for N − 1, that is, for L =
PN−1, det(M) = kN−2a. Then, for L(PN ) and
D = diag(1, 0, . . . , 0) ∈ RN×N :

det(M) =

∣∣∣∣∣∣∣∣∣
k + a −k . . . 0
−k 2k . . . 0
...

...
. . .

...
0 0 . . . k

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
a −k . . . 0
0 2k . . . 0
...

...
. . .

...
0 0 . . . k

∣∣∣∣∣∣∣∣∣
where we have used basic properties of the deter-
minants in the last equality. Applying the Laplace
expansion by minors along the first row [5]:

det(M) = a·

∣∣∣∣∣∣∣∣∣
2k −k . . . 0
−k 2k . . . 0
...

...
. . .

...
0 0 . . . k

∣∣∣∣∣∣∣∣∣+k·
∣∣∣∣∣∣∣∣∣
0 −k . . . 0
0 2k . . . 0
...

...
. . .

...
0 0 . . . k

∣∣∣∣∣∣∣∣∣ .
The second determinant is zero, since the first col-
umn has all its elements equal to zero. For the first
determinant, the element in the first row and the
first column can be decomposed as 2k = k+k and
then det(M) = a det(kL(PN−1)+k ·DN−1). Then,
using the results for the case N − 1 with a = k it
follows that

det(M) = kN−1a. (24)
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Assume that an edge is added to PN and denote
this graph by P+e

N . Then the incidence matrix
of P+e

N is E(P+e
N ) = [E(PN ) e] and the Lapla-

cian matrix L(P+e
N ) = L(PN ) + ee⊤, where e⊤ =

(e1 . . . eN ) denotes a column corresponding to the
added edge and ei = 1 if i is the initial node of the
edge, ei = −1 if i is the terminal node of the edge,
otherwise ei = 0. Thus, in this case, the matrix
M can be written asM = k(L(PN )+ee⊤)+aDN .
Using the fact that det(A+B) ≥ det(A)+det(B),
it follows that adding new edges in the graph
can only increase the determinant and (24) is a
lower bound: (det(k(L(PN ) + ee⊤) + aDN ) ≥
det(k(L(PN )+aDN ))+det(ee⊤) = kN−1a). Com-
bining this with (23) and (22), it yields(

N−1
N(N−1)k+a

)N−1

kN−1a ≤ λ1(M) ≤ · · · ≤ λN (M),

(25)
which completes the proof.
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