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Abstract

Recent analyses suggest that encoders pretrained for lan-
guage modeling capture certain morpho-syntactic structure.
However, probing frameworks for word vectors still do not re-
port results on standard setups such as constituent and depen-
dency parsing. This paper addresses this problem and does
full parsing (on English) relying only on pretraining archi-
tectures – and no decoding. We first cast constituent and de-
pendency parsing as sequence tagging. We then use a single
feed-forward layer to directly map word vectors to labels that
encode a linearized tree. This is used to: (i) see how far we can
reach on syntax modelling with just pretrained encoders, and
(ii) shed some light about the syntax-sensitivity of different
word vectors (by freezing the weights of the pretraining net-
work during training). For evaluation, we use bracketing F1-
score and LAS, and analyze in-depth differences across rep-
resentations for span lengths and dependency displacements.
The overall results surpass existing sequence tagging parsers
on the PTB (93.5%) and end-to-end EN-EWT UD (78.8%).

Introduction
Traditionally, natural language processing (NLP) models
represented input sentences using one-hot vectors, together
with weighting schemes such as TF-IDF. Such vectors can
encode shallow linguistic information, like term frequency
or local context if n-grams are allowed. However, they can-
not capture complex linguistic structure due to the inability
to consider non-local context, their orderless nature, and the
curse of dimensionality.

This paradigm has however become obsolete for many
NLP tasks in favour of continuous vector representations,
also known as word embeddings. The idea is to encode
words as low-dimensional vectors (~v ∈ Rn), under the
premise that words with similar context should have simi-
lar vectors – which seemingly better capture semantic and
morpho-syntactic information. In practice, these architec-
tures have been widely adopted because they have not only
made it possible to obtain more accurate models but also
conceptually simpler ones, reducing the number of features
required to obtain state-of-the-art results.
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In parsing, two research paths have arisen with respect to
word vectors: (i) whether and to what extent pretraining ar-
chitectures can offer help creating parsers which avoid the
need for dozens of hand-crafted structural features, ad-hoc
parsing algorithms, or task-specific decoders; and (ii) how
to explain what sort of syntactic phenomena are encoded in
such pretraining encoders. In related work, to test (i) it is
common to rely on ablation studies to estimate the impact of
removing features, or to further contextualize word embed-
dings with powerful, task-specific neural networks to show
that richer linguistic contextualization translates into better
performance. But to the best of our knowledge, there is no
work that has tried to do (full) parsing relying uniquely on
word embeddings, i.e. no features beyond words, no parsing
algorithms, and no task-specific decoders. To test (ii), the
most common probing framework consists in using mod-
els with limited expression (e.g. feed-forward networks on
top of the word vectors) to solve tasks that can give us in-
sights about the linguistic information that word vectors can
encode (Tenney et al. 2018). However, these recent studies
do not provide results on full parsing setups, but instead on
simplified versions, which sometimes are even limited to an-
alyzing capabilities on specific syntactic phenomena.

Contribution In this paper, we try to give an answer to
these questions using a unified framework. Our approach
consists in casting both (full) constituent and dependency
parsing as pretraining from language modelling.1 To do so,
we first reduce constituent and dependency parsing to se-
quence labeling. Then, under this paradigm we can directly
map, through a single feed-forward layer, a sequence of
word embeddings of length n into an output sequence (also
of length n) that encodes a linearized tree. The novelty of
the paper is twofold: (i) we explore to what extent it is pos-
sible to do parsing relying only on pretrained encoders, (ii)
we shed light on the syntactic abilities of existing encoders.

Related work
We now review previous work on the two research directions
that we will be exploring in our paper.

1In this paper, we limit our analysis to English.



Word vectors for simpler parsing
Syntactic parsers traditionally represented input sentences
as one-hot vectors of discrete features. Beyond words,
these included part-of-speech (PoS) tags, morphological
features and dozens of hand-crafted features. For instance,
in transition-based dependency parsers it was common to re-
fer to daughter or grand-daughter features of a given term in
the stack or the buffer, in order to provide these models with
more contextual information (Zhang and Nivre 2011). We
will be referring to these features as structural features.

Chen and Manning (2014) were one of the first to use
word vectors to train a transition-based dependency parser
using a feed-forward network. They showed that their model
performed comparably to previous parsers, while requiring
fewer structural features. Later, Kiperwasser and Goldberg
(2016) demonstrated that replacing Chen and Manning’s
feed-forward network with bidirectional long short-term
memory networks (BILSTMs) (Hochreiter and Schmidhuber
1997) led to more accurate parsers that at the same time re-
quired even fewer features. Following this trend, Shi, Huang,
and Lee (2017) proposed a minimal feature set, by tak-
ing advantage of BILSTMs and dynamic programming algo-
rithms. Furthermore, this redundancy of structural features
in neural parsers was empirically demonstrated by Falen-
ska and Kuhn (2019). However, in addition to small sets
of hand-crafted features, these approaches relied on ad-hoc
parsing algorithms. In this vein, recent research has showed
that task-specific sequence-to-sequence and sequence label-
ing decoders suffice to perform competitively even without
small sets of structural features nor parsing algorithms (Li et
al. 2018; Strzyz, Vilares, and Gómez-Rodrı́guez 2019).

For constituent parsing, the tendency has run parallel.
Transition-based systems (Zhu et al. 2013) used templates
of hand-crafted features suiting the task at hand. More re-
cent research has shown that when using word embed-
dings and neural networks such templates can be simplified
(Dyer et al. 2016) or even ignored (Kitaev and Klein 2018a;
2018b). Finally, it has been proved that transition-based or
chart-based parsers are not required to do constituent pars-
ing, and that task-specific neural decoders for sequence-to-
sequence and sequence labeling suffice (Vinyals et al. 2015;
Gómez-Rodrı́guez and Vilares 2018).

Probing syntax-sensitivity of word vectors
These improvements in parsing have raised the question of
whether and to what extent pretraining architectures cap-
ture syntax-sensitive phenomena. For example, Mikolov et
al. (2013) and Pennington, Socher, and Manning (2014) al-
ready discussed the syntax-sensitivity of word2vec and
GloVe vectors, evaluating them on syntactic word analogy
(e.g. ‘seat is to seating as breath is to x’). However this only
provides indirect and shallow information about what syn-
tactic information such vectors accommodate.

State-of-the-art pretrained encoders such as ELMO (Pe-
ters et al. 2018) or BERT (Devlin et al. 2018), trained with
a language modeling objective and self-supervision, seem-
ingly encode some syntactic properties too. Goldberg (2019)
discusses this precisely using BERT, and reports results

on subject-verb agreement tasks (e.g. ‘The dog of my un-
cle eats’ vs ‘The dog of my uncles eat’). He used similar
methods to the ones employed to assess how recurrent neu-
ral networks (RNN) capture structure. For example, Linzen,
Dupoux, and Goldberg (2016) studied how LSTMs perform
on subject-verb agreement, and trained the network using
different objectives to know whether it predicted the gram-
matical number of the next word. Gulordava et al. (2018) ad-
ditionally incorporated the concept of ‘colorless green ideas’
(Chomsky 1957), i.e. they replaced content words with ran-
dom terms with the same morphological information, to
force the model to attend to syntactic patterns and not words.

Another common strategy consists in analyzing the ca-
pabilities of word vectors using models with limited ex-
pression, i.e. simple models such as n-layer feed-forward
networks that take word vectors as input and are used to
solve structured prediction tasks in NLP. This is the angle
taken by Tenney et al. (2018), who evaluated contextual-
ized embeddings on problems such as part-of-speech tag-
ging or named-entity labeling. They also included simplified
and partial versions of constituent and dependency parsing.
They ask the model to predict the type of phrase of a span or
the dependency type between two specific words, i.e., not to
predict the full syntactic structure for a sentence. In a sim-
ilar fashion, Liu et al. (2019) analyze syntactic properties
of deep contextualized word vectors using shallow syntactic
tasks, such as CCG supertagging (Clark 2002).

In a different vein, Hewitt and Manning (2019) proposed a
structural probe to evaluate whether syntax trees are embed-
ded in a linear transformation of an ELMO and BERT word
representation space. Although their study does not support
full parsing analysis either, it reports partial metrics.2

Parsing only with word vectors
Nevertheless, it remains an open question how much of the
workload these encoders can take off a parser’s shoulders. To
try to answer this, we build on top of previous work reducing
parsing to sequence tagging as well as on using models with
limited capacity. The goal is to bring to bear what pretrained
encoders have learned from distributional evidence alone.

Notation We will be denoting a raw input sequence by
w = [w0, w1, ..., w|w|], with wi ∈ V and mark vectors and
matrices with arrows (e.g. ~v and ~W ).

Parsing as sequence labeling
Sequence labeling is a structured prediction task where
given an input sequence, w|w|, the goal is to generate one
output label for every wi. Part-of-speech tagging, chunking
or named-entity recognition are archetype tasks of this type
of problem. In this vein, recent work has demonstrated that
is possible to design reductions to address full constituent
and dependency parsing as sequence labeling too.3

2These partial metrics refer to analysis such as undirected Unla-
beled Attachment Score (UUAS) as well as the average Spearman
correlation of true to predicted distances.

3Whether sequence labeling is the most adequate paradigm, in
terms of performance, for obtaining syntactic representations (in



Constituent parsing as sequence labeling Gómez-
Rodrı́guez and Vilares (2018) reduced constituent parsing to
a pure sequence labeling task, defining a linearization func-
tion Φ|w| : T|w| → L|w| to map the constituent tree of an
input sentence w=[w0, w1, ..., w|w|] into a sequence of |w|
labels, i.e. they proposed a method to establish a one-to-one
correspondence between words and labels that encode a syn-
tactic representation for each word with enough information
to encode the full constituent tree of the sentence. In partic-
ular, each label li ∈ L is a 3-tuple (ni,ci,ui) where:4

• ni encodes the number of tree levels in common between
wi and wi+1 (computed as the relative variation with re-
spect to ni−1).

• ci encodes the lowest non-terminal symbol shared be-
tween those two words.

• ui encodes the leaf unary branch located at wi (if any).
Figure 1 illustrates the encoding with an example.

Figure 1: A linearized constituent tree according to Gómez-
Rodrı́guez and Vilares (2018). For example, n‘The’ = 2 since
‘The’ and ‘future’ have in common the top two levels in
the tree (and there is no previous n), c‘The’=NP because that
is the non-terminal symbol shared at that lowest common
ancestor, and u‘The’ = ∅ as there is no unary branch for
‘The’. If we move one step forward, for ‘future’ we have
n‘future’ = −1 (in terms of the variation with respect to the
previous timestep), since ‘future’ and ‘is’ just share the top
level of the tree, i.e. one level less than for n‘the’.

Postprocessing The linearization function is complete and
injective, but not surjective, i.e. postprocessing needs to be
applied in order to ensure the validness of a predicted output
tree. We follow the original authors’ strategy to solve the
two potential sources of incongruities:

1. conflicting non-terminals, i.e. a nonterminal c can be the
lowest common ancestor of more than two pairs of con-
tiguous words (wi, wj) with ci 6= cj . In such case, we
ignore all but the first prediction.

2. empty intermediate unary branches, i.e. decoding the se-
quence of ni’s might generate a predicted tree where some

contrast to algorithms) is a fair question. That said, the aim of this
work is not to outperform other paradigms, but to find a way to
estimate the ‘amount of syntax’ that is encoded in embeddings.
To achieve this, we consider that sequence labeling with limited
expressivity is a natural probing framework for syntax-sensitivity.

4The index is omitted when not needed.

intermediate unary branches are not assigned any non-
terminal. If so, we simply delete that empty level.

Dependency parsing as sequence labeling In a similar
fashion to Gómez-Rodrı́guez and Vilares (2018), Strzyz, Vi-
lares, and Gómez-Rodrı́guez (2019) define a function to en-
code a dependency tree as a sequence of labels, i.e. Υ|w| :

Td,|w| → L
|w|
d . Let ri ∈ Ld be a particular label that en-

codes the head term of wi, they also represent it as a 3-tuple
(oi, pi, di) where:5

• The pair (oi, pi) encodes the index of the head term. In-
stead of using the absolute index of the head term as a
part of the label, the head of wi is represented as the oith
closest word to the right with PoS tag pi if oi > 0, and the
−oith closest word to the left with PoS tag pi, if oi < 0.

• di denotes the dependency relation between the head and
the dependent.

Figure 2 illustrates the encoding with an example.

Figure 2: A linearized dependency tree according to the PoS
tag-based encoding used in Strzyz, Vilares, and Gómez-
Rodrı́guez (2019). For instance, (o‘The’, p‘The’) = (1, N)
which means that the head of ‘The’ is the first word to the
left whose part-of-speech tag is N, i.e. ‘future’; and d‘The’=
det, which denotes the syntactic relationship existing be-
tween the head ‘future’ and the dependent ‘The’.

Postprocessing We ensure that the predicted dependency
tree is acyclic and single-headed:

1. If no token is selected as syntactic root (by setting its head
to be index 0, which we use as a dummy root, as seen
in Figure 2), take as root the first one with d=root, or (if
none exists) the first token. If multiple roots have been
assigned, the first one is considered as the only root, and
the rest become children of that one.

2. If a token has an invalid head index, attach it to the real
syntactic root.

3. If there are cycles, the first token involved is assigned
to the real root. The process is repeated until the tree is
acyclic.

5Note that a dependency tree can be trivially encoded as a se-
quence of labels using a naı̈ve positional encoding that uses the
word absolute index and the dependency type, but in previous work
this did not lead to robust results.



Models with limited expression
Parsing as sequence labeling can be used to set up a direct,
one-to-one mapping from words to some sort of syntactic la-
bels that help establish conclusions about the syntactic prop-
erties that such word vectors accommodate. However, previ-
ous work on parsing as sequence labeling did not exploit this
paradigm to study this. Instead, they simply trained different
task-specific decoders such as BILSTMs, which can poten-
tially mask poor syntactic abilities of word representations.

We propose to remove any task-specific decoder and in-
stead directly map n word vectors (extracted from a given
pretrained architecture) to n syntactic labels that encode the
tree (using a single feed-forward layer, the simplest map-
ping strategy). Such architecture can be used to study the
two research questions we address. First, it can be used to
explore how far we can reach relying only on pretraining
architectures. At the same time, these models can be used
to probe syntax-sensitivity of continuous vector represen-
tations. More particularly, they minimize the risk of neu-
ral architectures, training objectives or specific parsing algo-
rithms implicitly hiding, modifying and biasing the syntactic
abilities captured by word representations during pretrain-
ing. This is in line with Tenney et al. (2018), who explore
properties of contextualized vectors by fixing their represen-
tations and training a 2-layer perceptron for certain tasks.
The aim was to have a model with limited expression, to
focus on the information that is directly represented in the
vectors. However, when evaluating syntax-sensitivity, Ten-
ney et al. relied on a simplified and partial version of con-
stituent and dependency parsing, as mentioned in the related
work section. It is also worth remarking that we take a more
extreme approach, and use just a single feed-forward layer.

Model architecture
We denote the output of a pretrained encoder by ~x =
[~x0, ~x1, ..., ~x|x|], where ~xi is the vector for the word indexed
at i. PoS tags and character embeddings are not used to train
the model.6 Our architecture is depicted in Figure 3: we use
a feed-forward layer on top of the pretrained encoder to pre-
dict each label, yi, followed by a softmax activation func-
tion:

P (y = j|~xi) = softmax ( ~W · ~xi +~b) =
e
~Wj ·~xi∑K

k e ~Wk·~xi

(1)

The model is optimized using categorical cross-entropy:

L = −
∑

log(P (y|~xi)) (2)

We allow to freeze or fine-tune the word vectors during
training, and refer to the models as ff (feed-forward) and
ff-ft, respectively. Freezing word representations aims
to not adapt the syntax-sensitivity inherently encoded. The
goal of fine-tuning is to test the best performance that we
can achieve using just pretraining networks.

6Note that for dependency parsing we have predicted PoS tags
separately to rebuild the tree in CoNLL format, as the output labels
contain the PoS tag of the head term. We understand this could lead
to some latent learning of PoS tagging information.

Figure 3: High level architecture of parsing as pretraining

Models with task-specific decoders We also build mod-
els using task-specific decoders. More particularly, we
use for this setup 2-stacked BILSTMs. This is similar to
Gómez-Rodrı́guez and Vilares; Strzyz, Vilares, and Gómez-
Rodrı́guez (2018; 2019). This has a secondary goal: to fur-
ther illustrate if the tendencies observed with the models
with limited expression remain, and thus to provide a more
complete evaluation on how choices of embeddings interact
with the presence or absence of task-specific decoding. We
again will freeze and fine-tune the pretraining architectures,
and will refer these models as lstm and lstm-ft.

Pretrained encoders
We test both precomputed (lookup tables that map words
to vectors), and contextualized representations (where each
word vector is dependent on the context and generated by a
pretrained neural network). In this work, we test:

• Random embeddings: Uniformly distributed, in the inter-
val [−

√
(3.0)/d,

√
(3.0)/d], where d = 300 is the di-

mension of the embedding. We tried other dimensions
corresponding to the size of other tested methods, but
we did not observe significant differences. We consider
this can roughly be seen as a suitable baseline to know
whether the tested embedding methods learn syntax above
expectation by chance.

• Skip-gram word2vec (Mikolov et al. 2013). The ap-
proach learns to predict the window context based on the
word, learning to generate the representation for that word
in the process.7

• Structured skip-gram word2vec (Ling et al. 2015). A
variant of the standard word2vec that is sensitive to
word order, keeping separate matrices to learn to predict
the word at each position in the window context.8

• Cbow-based FastText (Bojanowski et al. 2017). A
cbow word2vec extension. It tries to predict a word

7For word2vec, we use GoogleNews-vectors-negative300
(https://code.google.com/archive/p/word2vec/)

8For structured skip-gram word2vec, we use the vectors at
https://github.com/clab/lstm-parser/blob/master/README.md



based on its context, learning to generate its representa-
tion in the process.9

• GloVe (Pennington, Socher, and Manning 2014). It cre-
ates precomputed word vectors combining matrix factor-
ization with local window methods.10

• ELMO (Peters et al. 2018). Each word vector is a
weighted average: (i) a context-independent vector com-
puted through a character convolutional network, (ii) an
output vector from a 2-layer left-to-right LSTM, and (iii)
and output vector from a 2-layer right-to-left LSTM. Fol-
lowing the canonical paper, we let the fine-tuned models
learn a linear combination of these representations, but
will freeze the language modeling layers.11

• BERT (Devlin et al. 2018). Uses a Transformer to generate
the output word vectors. As the Transformer purely relies
on attention mechanisms, the positional information is en-
coded through positional embeddings, which poses an in-
teresting difference with respect to ELMO, where such in-
formation is inherently encoded through the recurrent net-
work.12

When available, we chose 300-dimensional vectors, but
ELMO vectors have 1024 dimensions, BERT 768, and the
Ling et al. (2015) ones just 100. Despite this, we stuck to
available pretrained models since we feel the experiments
are more useful if performed with the standard models used
in NLP. Also, it lies out of the standard computational ca-
pacity to train BERT and ELMO models from scratch to force
them to have the same number of dimensions.

We build on top of the framework by Yang and Zhang
(2018) to run all vectors under our setup, except BERT, for
which we use a pytorch wrapper and its hyperparameters.13

Experiments
The source code is accessible at
https://github.com/aghie/parsing-as-pretraining.

Corpora
We use the English Penn Treebank (PTB) (Marcus, San-
torini, and Marcinkiewicz 1993) for evaluation on con-
stituent parsing, and the EN-EWT UD treebank (v2.2) for de-
pendency parsing (Nivre and others 2017). To train our se-
quence labeling models, we add dummy beggining- and end-
of-sentence tokens, similarly to previous work on parsing as
sequence labeling. The labels are predicted atomically.

9FastText can consider subword level information. In early
experiments we tried both wiki-news-300d-1M-subword and wiki-
news-300d-1M pretrained vectors, choosing the latter because they
behaved better (https://fasttext.cc/docs/en/english-vectors.html).

10For GloVe, we use the glove.840B.300 vectors (https://nlp.
stanford.edu/projects/glove/)

11ELMO can be downloaded from https://allennlp.org/elmo
12For BERT, we used bert-base-cased (https://github.

com/google-research/bert)
13https://github.com/huggingface/pytorch-pretrained-BERT. For

ff/lstm, the learning rate was set to 5e-4.

Metrics
For constituents, we use labeled bracketing F1-score and the
COLLINS.PRM parameter file. We also break down the re-
sults according to different span lengths. For dependencies,
we use UAS14 and LAS15. We use the EN-EWT UD treebank
with predicted segmentation by UDPipe (Straka 2018), for
comparison against related work. We also compute depen-
dency displacements, i.e., signed distances between the head
and the dependent terms (where the dependency type is pre-
dicted correctly too).

Results and discussion
Table 1 shows the F1-scores for constituent parsing on the
PTB, and both UAS and LAS scores for dependency pars-
ing on the EN-EWT UD; evaluating both models where the
pretraining network is frozen (ff) and fine-tuned (ff-ft)
during training. For a better understanding of how the ten-
dencies of these results can be influenced by a task-specific
decoder, Table 2 replicates the same set of experiments us-
ing instead a 2-layered BILSTM decoder, allowing to freeze
(lstm) and fine-tune (lstm-ft) the pretraining weights.

PTB EN EWT
Vectors ff ff-ft ff ff-ft

F1 F1 UAS LAS UAS LAS
Random 32.9 42.8 37.3 30.6 46.4 39.7
GloVe 37.9 42.9 44.7 38.0 47.1 40.3
Struct.word2vec 40.0 43.2 45.4 37.8 47.0 40.2
word2vec 39.1 43.5 45.6 37.9 46.8 40.2
FastText 41.4 43.0 46.6 39.0 47.5 40.3
ELMO 69.7 75.8 65.2 60.3 67.6 62.4
BERT 78.2 93.5 68.1 63.0 81.0 78.8

Table 1: Labeled F1-score on the PTB test set, and UAS/LAS
on the EN-EWT UD test set (with predicted segmentation)

PTB EN EWT
Vectors lstm lstm-ft lstm lstm-ft

F1 F1 UAS LAS UAS LAS
Random 80.7 88.0 62.3 56.5 73.2 69.7
GloVe 89.2 89.5 74.3 71.2 75.6 72.5
Struct.word2vec 89.0 89.5 73.2 69.5 74.7 71.5
word2vec 89.1 89.6 72.1 68.5 74.7 71.5
FastText 89.0 89.5 73.2 69.9 74.6 71.5
ELMO 92.5 92.7 78.8 76.5 79.5 77.4
BERT 92.2 93.7 78.4 75.7 81.1 79.1

Table 2: Same scores reported in Table 1 on the PTB and EN-
EWT UD, but using instead a (task-specific) 2-layer BILSTM
decoder (freezing and fine-tuning the pretraining network).

Parsing with pretraining architectures
We first discuss the performance of the ff and ff-ft
models. Among the precomputed word vectors, window-

14Unlabeled Attachment Score: Percentage of relations for
which the head has been assigned correctly.

15Labeled Attachment Score: Percentage of relations for which
the head and the dependency type have been assigned correctly.



based approaches perform slightly better than alternatives
such as GloVe, but they all do clearly surpass the control
method (random embeddings). With respect to contextual-
ized ones, for ff, both ELMO and BERT get a decent sense
of phrase structures, with BERT slightly superior. For the
ff-ft models differences are larger: while ELMO is well
behind a robust model (we believe this could be due to keep-
ing the BILM weights fixed as done by default in (Peters et
al. 2018)), BERT ff-ft performs competitively. From the
results in Table 2 using task-specific decoders, we observe
that even if the tendency remains, the differences across dif-
ferent vectors are smaller. This is due to the capacity of these
decoders to obtain richer contextualized representations for
the target task and to mask poor syntax capabilities of the
input, even when the pretrained network is kept frozen.

Tables 3 and 4 compare the BERT-based models without
task-specific decoders against the state of the art for con-
stituent and dependency parsing, respectively. In this con-
text, it is worth remarking that all our models only use words
as features. For constituents, BERT obtains a 93.5% F1-
score vs the 95.8% reported by Kitaev and Klein (2018b)
and Zhou and Zhao (2019), which are the current best per-
forming models and use BERT representations as input (to-
gether with PoS tag embedddings, and in the case of Zhou
and Zhao also char embeddings). Surprisingly, the perfor-
mance of BERT ff-ft is superior to strong models such
as (Dyer et al. 2016), and it outperforms traditional parsers
that used dozens of hand-crafted features to explicitly give
the model structural information, such as Zhu et al. (2013)’s
parser. Against other sequence tagging constituent parsers,
we improve by more than two points the 91.2% by Vilares,
Abdou, and Søgaard (2019), which was the current state of
the art for this particular paradigm, and used task-specific
decoders and multi-task learning, together with PoS tags
and character embeddings. For dependencies, we observe
similar tendencies. With respect to the state of the art, the
winning system (Che et al. 2018) at the CoNLL-UD shared
task reported a LAS of 84.57% with an ensemble approach
that incorporated ELMO vectors (and also additional features
such as PoS tag embeddings). BERT ff-ft also performs
close to widely used approaches such as (Kiperwasser and
Goldberg 2016). When comparing against sequence labeling
dependency parsers, we obtain a LAS of 78.8% versus the
78.6% reported by (Strzyz, Vilares, and Gómez-Rodrı́guez
2019), which included task-specific decoders and linguistic
features, such as PoS tags and character embeddings.

Analysis of syntactic abilities

Here, we consider the ffmodels for two reasons: they (i) do
not fine-tune word vectors, and (ii) have limited expression.

Figure 4 shows the F1-score on span identification for dif-
ferent lengths. All precomputed vectors surpass the random
model. For contextualized vectors, although BERT does con-
sistently better than ELMO, both fairly succeed at identifying
labeled spans. Figure 5 shows the performance by span la-
bel. Labels coming from shorter and frequent spans (e.g. NP)
are easier to handle by precomputed vectors. However, these
struggle much more than contextualized ones when these

Models PTB
F1

ffBERT 78.2
ff-ftBERT 93.5
Vinyals et al. (2015) 88.3
Gómez-Rodrı́guez and Vilares (2018)� 90.7
Zhu et al. (2013) 90.4
Vilares, Abdou, and Søgaard (2019)� 91.2
Dyer et al. (2016) (generative) 92.1
Kitaev and Klein (2018a) 95.1
Kitaev and Klein (2018b) 95.8
Zhou and Zhao (2019) 95.8

Table 3: Comparison against related work on the PTB. � are
other sequence tagging parsers.

Models EN-EWT
LAS UAS

ffBERT 63.0 68.1
ff-ftBERT 78.8 81.0
Strzyz, Vilares, and Gómez-Rodrı́guez (2019)� 78.6 81.5
Kiperwasser and Goldberg (2016) 79.0 82.2
Straka (2018) (UDpipe 2.0) 82.5 85.0
Che et al. (2018) 84.6 86.8

Table 4: Comparison against related work on the EN-EWT
UD test set. � are other sequence tagging parsers.

come from larger or less frequent spans (e.g. VP).16

Figure 6 shows the analysis for dependencies, using de-
pendency displacements. The results for precomputed em-
beddings are similar across positive and negative displace-
ments. For contextualized vectors, the differences between
both ELMO and BERT are small, and smaller than for con-
stituents. They also perform closer to precomputed vectors,
suggesting that these models could be less suited for depen-
dency structures. The results also show similarities to the
analysis on the constituent and dependency subtasks pro-
posed by Tenney et al. (2018), who expose that ELMO and
BERT perform closer to each other when they are asked
to find out dependency relations. Figure 7 shows the per-
formance on common dependency relations. Simple rela-
tions such as det are handled accurately by both precom-
puted and contextualized vectors,17 while harder ones such
as root, nsubj or obj need deep contexualized ones.

In general, we feel Figures 4-7 distill that ELMO and
BERT representations respond better to phrase-structure rep-
resentations. Our intuition is that this might be due to lan-
guage modelling objectives, where learning the concept of
‘phrase’ seems more natural that the one of ‘dependency’,
although the answer to this is left as an open question.

16For unary chains, we only pick up the uppermost element.
Also, the span containing the whole sentence is ignored.

17Other simple relations such as punct or case also showed
a high performance, but only when evaluating relation labels only
(i.e. when failing the head index was not penalized, as opposed to
Figure 7). These results are not included due to space limitations.



Figure 4: Span length F1-score on the PTB test set for the ff
models

Figure 5: Span label F1-score on the PTB test set for the ff
models.

Conclusion
We proposed a method to do constituent and dependency
parsing relying solely on pretraining architectures – that is,
without defining any parsing algorithm or task-specific de-
coders. Our goal was twofold: (i) to show to what extent it
is possible to do parsing relying only in word vectors, and
(ii) to study if certain linguistic structures are learned in pre-
training networks. To do so, we first cast parsing as sequence
labeling, to then map; through a linear layer, words into a
sequence of labels that represent a tree. During training, we
considered to both freeze and fine-tune the pretraining net-
works. The results showed that (frozen) pretraining archi-
tectures such as ELMO and BERT get a sense of the syntactic
structures, and that a (tuned) BERT model suffices to parse.
Also, by freezing the weights we have provided different
analyses regarding the syntax-sensitivity of word vectors.

Contemporaneously to this work, Hewitt and Liang
(2019) proposed to complement probing frameworks that

Figure 6: Dependency displacement F1-score on the EN-
EWT UD test set for the ff models (with gold segmentation)

Figure 7: F1-score for the most common relations on the EN-
EWT UD test set for ff models (with gold segmentation)

test linguistic abilities of pretrained encoders with control
tasks, i.e. tasks that can be only learned by the probing
framework (e.g. classifying words into random categories).
If the pretrained network is encoding the target property, the
probing framework should perform well on the target task
and poorly on the control one. As future work, we plan to
add this strategy to our analyses, and expand our experi-
ments to languages other than English.
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