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Abstract

An identification procedure designed to be part of an 
autotuning method for event-based proportional-
integral (PI) control systems is proposed in this 
contribution. The rationale of the identification 
method is based on the information obtained from the 
limit cycle that the event based sampler plus an 
adequate tuning of the PI controller can generate in 
the closed loop. From the information of two limit 
cycles at different frequencies, the parameters of the 
common transfer function used for tuning of PI 
controllers will be deduced. Simulations demonstrate 
the effectiveness of the method.

Keywords:  send-on-delta,  limit  cycle,  events,
identification, autotuning, PI controller.

1  Introduction 

Methods  for  the  identification  of  transfer  functions
parameters in event-based PI control loops have been 
proposed in the last years in several publications. The 
first investigation was described in [4]. In that work, 
the  process  parameters  are  estimated  considering  a 
limit  cycle  generated  by  a  pre-tuned  event-based  PI 
controller. Other two methods are described in [5, 6]. 
In such contributions, the rationale of the estimation 
methods  is  based  on  curving  fitting  and  state-space 
approaches.  Contributions  on  specific  methods  for 
identification  in  an  event-based  control  loop  have 
been recently reported in [10, 11]; both methods are 
based on forcing a limit cycle. 

The identification approach described in this paper is 
based  on  [11]  but  taking  into  account  the  full  PI 
controller.  In  [11],  the  integral  part  of  the  controller 
is  deactivated  during  the  identification  and  only  the 
proportional part is used to generate the limit cycle; it 
is also necessary to add a bias to the sampler output 
to introduce asymmetry in the limit cycle to calculate 
the  dc  gain.  However,  one  of  the  cons  described  in 
[11] is that in lower frequencies the identification of 
processes with integration can be not very accurate as 
some  of  the  critical  points necessary  to  estimate  the 
parameters  are  located  in  the  first  and  second 
quadrants of the Nyquist plot (it is due to the fact that 

such  points  correspond  to  the  third  and  fifth 
harmonics  of  the  output  system).  In  the  procedure 
described here, the PI controller works on-line during 
the  identification  as  the  proportional  and  integral 
parts  are  taken  into  account  to  generate  the  limit 
cycle. Also, the issue of providing accurate results at 
low  frequencies  is  worked  out  by  adding  an 
additional  delay  in  order  to  reduce  the  frequency  of 
the limit cycle. 

The  paper  is  organised  as  follows.  In  Section  2  the 
event-based  architecture  is  presented.  The  event-
based identification procedure is described in Section 
3. Section 4 explains how to improve the procedure.
Finally, conclusions are given in Section 5. 

Fig. 1. Event-based control architecture. 

2  Event-based PI control architecture

The  control  architecture considered  in  this
contribution is shown in Figure 1. In this event-based 
control system, when the sampler detects an event, it 
sends the information to the PI controller C(s). Many 
logical  conditions  have  been  proposed  in  the 
literature  for  the  occurrence  of  an  event.  The  one 
employed  here  is  the  Symmetric  Send-On-Delta 
(SSOD) sampling [4]. Its behaviour is described as 
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With  this  logical  condition,  the  sampler  receives  a 
continuous signal e(t) and generates a sampled signal
e∗(t) that is multiple of . The key of the relationship 
between e(t) and e∗(t) is that it can be considered as a 
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generalization of a relay with hysteresis. This implies 
that its describing function can be derived [7].  
 

 
Figure 2: Nyquist plot of ),(1 AN .  

 
The  describing  function  of  the  SSOD  sampler  is 
given by [9]  
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where A is the amplitude of a sinusoidal input signal, 

and  Am .  The  portrait  of ),(1 AN   is  shown 

in Figure 2 for   ,A . Each intersection in Figure 

2  of  the  system )()()( sPsCsG    with  an  arc  of 

),(1 AN   produces  an  oscillation  (or  limit  cycle) 

of  a  different  amplitude:  Intersections  with  the  arc 
starting  in C1 produce  oscillations  with  2,A , 

intersections  with  the  arc  starting  in C2  generate 
oscillations  with  3,2A ,  and  so  on.  So,  for 

example, the intersection of a system )(sG  with the 

point jC
44

1


   in  the  Nyquist  map  represents 

the existence of a limit cycle of amplitude A  and 

frequency osc ;  this  frequency  satisfies  the 

expression 1)( CjG osc  . 

 

3  Identification procedure 
 
The  identification  method  is  based  on  the  stable 
oscillations induced in the system G(s) thanks to the 
existence  of  the  event-based  sampler.  It  must  be 
noticed  that  the  current process  to  identify  must 
intersect  the  negative  real  axis  (if  not,  it  should  be 
added a certain delay). Once the system is in a stable 
limit cycle, experimental measurements derived from 
the  oscillatory  signals  are  taken  and  used  to  obtain 

the  parameters  of  the  transfer  functions  used  for 
tuning a PI controller.  
 
The rationale of the procedure consists in forcing the 
system  to  oscillate  at  a  frequency osc   by  the 

detuning of the PI controller C(s). As said before, the 

system  will  oscillate  at osc   as  consequence  of  the 

intersection  of )()()( sPsCsG    with  the  reciprocal 

of  the  SSOD  sampler  describing  function  in  the 
Nyquist map, that is, 
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As  the  condition  for the  existence  of  limit  cycles  is 
given  by  (3),  a  convenient  detuning  of C(s)  will 
produce an oscillatory behaviour of the system. So, if 
the  Nyquist  point  where  the  system  is  oscillating  at 

osc  is measured experimentally, that is, )( oscjG , 

it  is  feasible  to  derive  the  parameters  of  a  given 

transfer function model )(̂sP .  

 
Thus,  once  the  system  is  oscillating,  the  procedure 
for fitting a model is:  
 
(a) To measure )( oscjG ,  

(b)  To  get  the  experimental  value  of  the  process  at 
the  oscillation  frequency,  that  is, )( oscjP ,  by 

removing )( oscjC  from (3), 

(c) To obtain )( oscjP  and )(arg oscjP , 

(d) To equate the two values obtained in the previous 
step  to  the  magnitude  and  argument  expressions  of 
the transfer function selected to fit, and  
(e) To solve the equations system and get the model 
parameters.  
 
These  steps  are  now  explained  in  a  more  detailed 
way. 
 
The solution adopted to get )( oscjG  during a test is 

first presented in [14] and is proved in [11]. As in a 
limit  cycle, y(t)  and u(t)  are  periodic  and  piecewise 
signals, using the Laplace transform of both, it can be 
written 
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where y(t) and u(t) are measured during a test. It must 
be noticed that (4) cannot be applied to determine the 

steady  gain  ( 0osc )  because  the  oscillations 

produced by the SSOD block are symmetric and the 
integration  of  the  periods  will  be  zero.  How  the 
procedure  is  applied  to  get  the  steady  gain  will  be 
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explained  afterwards,  but  we  anticipate  that  the 
inclusion of an additional delay will play a key role. 
 

As the PI control parameters and osc  are known, it 

is possible to obtain the value of )( oscjC ,  
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Using  (4)  and  (5),  it  is  easy  to  obtain  the 
experimental  value  of  the process  at  the  oscillation 
frequency, 
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The transfer function models considered in this work 
to explain the procedure are: 
 
Model FOPTD: 
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Model IFOPTD: 
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Model SOPTD: 
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and their argument and magnitude expressions are: 
 
Model FOPTD: 
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 LTjP oscoscosc   )arctan()(̂arg   (11) 

 
Model IFOPTD: 
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Model SOPTD: 
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   LTjP oscoscosc   arctan2)(̂arg   (15) 

 

To  get K  and T  it  is  necessary  to  equate )( oscjP  

with the magnitude of a transfer function )(̂ oscjP  

and  solve  the  system  of  equations.  As  there  are  two 
unknowns, K and T, in the magnitude expressions, it 
is necessary to run two tests to get two experimental 

values,  that  is, )( 1_oscjP   and )( 2_oscjP .  Notice 

that  each  test  will  be  run with  a  different  set  of 
control parameters to force the system to oscillate at 

different  frequencies,  that  is, 1_osc   and 2_osc .  It 

will be explained how to modify the PI parameters in 
the  following  paragraphs  depending  on  the  process 
and the model to identify. Once K and T are known, 
the  delay L  is  obtained  by  equating )(arg 1_oscjP  

with the argument expression of the selected transfer 
function model to fit, that is, with (11), (13) or (15). 
 
The  following  expressions  are  the  result  of  solving 
the  equations  for  the  three  models.  For  the  sake  of 

simplicity, i  represents iosc_ , iP  represents 

)( _ioscP ,  and iParg   corresponds  to 

)(arg _ioscjP . 
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Model SOPTD: 
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As  said  before,  it  is  necessary  to  run  two  tests  to 
measure )( 1_oscjG  and )( 2_oscjG . The first test is 

done just by increasing the proportional gain Kp until 
the  system  reaches  a  limit  cycle  and  oscillates  at  a 

frequency 1_osc .  The  second  test  is  prepared  by  a 
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second  increase  of Kp  to  reach  a  new  limit  cycle  at 
another frequency 1_2_ oscosc   .  

 
However,  the  previously  defined  procedure  just 
works when the current process and the model to fit 
have the same order and structure. This is due to the 
following reasons: 
 

- If  the  transfer  function  template  to  fit )(̂sP   is 

exactly equal to the actual process to identify, the 
identification  procedure  will  provide  an  exact 
result. This is due to the fact that the template is 
fitted with the same degrees of freedom than the 

true process. As result, the behaviour of )(̂sG will 

be equal to )(sG  in all the frequencies range. 

 
- If the process has a higher order than the template 
or  a  different  structure,  this  will  produce  the 
result  to  be  exact  at  the  range  of  frequencies 

between 1_osc   and 2_osc   but  with 

discrepancies  at  other  frequencies.  This  is  a 
consequence  of  fitting  the  template  with  lesser 
degrees  of  freedom  than  the  true  process.  The 
effect  is  that  the  behavior  of  the  model  at 
frequencies out of the range Modofy can become 
very  inaccurate.  Such  fact  will  be  especially 
notorious and visible at frequencies below 1_osc  

or  at  the  steady  state  when  the  fitted  model  is  a 
FOPTD  or  a  SOPTD,  that  is,  when  the  current 
process does not have integral dynamics.  

 
The  solution  proposed  in this  work  consists  of 
forcing the system to oscillate during the second test 
at a very low frequency as close to zero as possible. 
To  reduce  the  frequency  of  the  limit  cycle  below 

1_osc   an  additional  delay  will  be  added  to  the 

system  during  the  second  test.  Next  some  examples 
are  given  in  order  to  explain  better  the  problem  and 
present the solution. 
  
3.2. Identification of IFOPD processes 
 
Example 1: To  start  illustrating  the  event-based 
identification  procedure,  let  considering  the  process 
[8],  
 

 
 1

)(
2.0






ss

e
sP

s

 (25) 

 
Initially,  the  process  is  controlled  by  a  PI  tuned  to 
force  the  system  to  oscillate.  The  controller 
parameters  selected  for  such  a  goal  are 

]10,1[  ip TK . In all the simulations, measurement 

noise was not considered and  was set to 1. The data 
obtained  in  the  first  test  were 

)6357.08542.0()( 1_ jjG osc    at  frequency

755.01_ osc .  For  the  second  test, pK was 

increased  to  1.2  to  obtain a  limit  cycle  at  a  higher 
frequency  and Ti  was  not  changed.  Now,  the  second 

test  data  were 8671.02_ osc   and 

)5652.08878.0()( 2_ jjG osc  .  The  model 

parameters  were  obtained  by  applying  (5)  and  (6)  to 
the previous data to get )( 1_oscjP  and )( 2_oscjP , 

and after that, using (19), (20) and (21). The resulting 
model  and  results  obtained  from  other  relay-based 
identification methods are presented in Table I. It can 
be  appreciated  that  the  event-based  procedure  gives 
results of the same quality as more elaborated methods 
based  on  state-space  [1]  and  curve-fitting  [8] 
approaches. 
 
Table I: Models and errors for (25) where 16.2pc . 

Method Model E
~

Event-based 
procedure  10000.1

0000.1 2015.0





ss

e s

 0.00349 

By [8] 
 19998.0

0000.1 2.0





ss

e s

 0.00027 

By [1] 
 19999.0

0000.1 2.0





ss

e s

 0.00013 

 
The  accuracy  of  the  estimated  process  model  is 
computed  using  the  frequency  domain  estimation 

error  index  (E
~
)  for  each  of  the  process  models  is 

found  by  applying  integral  of  absolute  error  (IAE) 
criterion as 
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where pc   is  the  phase  cross  over  frequency  of  the 

actual  process )(sP ,  that  is,  the  frequency  where  

phase shift is equal to -180º.  
 
Example 2: Let now considering the identification of 
the higher-order process presented in [8], 
 

 
 5

5

1

)1(
)(








ss

es
sP

s

 (26) 

 
After two consecutive tests with the two set of control 
parameters ]50,1.0[  ip TK   and  

]50,12.0[  ip TK ,  the  model  obtained  is  shown 

and  compared  in  Table  II. The  obtained  data  were 

098.01_ osc  and )4.7364 --8.8169()( 1_ jjP osc   
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for  the  first  test,  and 1167.02_ osc   and 

)2.3685--7.996()( 2_ jjP osc   for the second one. 

 

 
Figure 3: Plots of (26) and the identified model.  

 
In the Example 2, the Nyquist plots of the model and 
the  process  are  apparently  similar  in  the  third 
quadrant (see Figure 3). In particular, the model and 

the process behave in a similar way between 1_osc  

and 2_osc .  However,  there  are  discrepancies  at 

lower  frequencies.  Indeed,  at  the  frequencies
01.0 , 0.001 and 0.0001, the differences between 

the true process and model, that is, )(̂)(  jPjP  , 

are  0.088,  0.87,  and  8.73,  respectively  (see  detail  in 
Figure 3 of the Nyquist points at 001.0 ). 
 

Table II: Models and errors for (26) where 143.0pc . 

Method Model E
~

By the event-
based 
procedure  19670.1

9991.0 0526.9





ss

e s

 0.00019 

By [8] 
 10051.21953.3

7319.0 5.0





ss

e s

 0.52121 

By [13] 
 15293.2

018.1 5278.8





ss

e s

 0.00156 

 
3.3. Identification of FOPTD processes 
 
Example 3: Consider the following process 
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e
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 (27) 

 
that  is  being  well  controlled  by  a  SSOD-PI  tuned 
with ]10,2[  ip TK .  By  increasing  the 

proportional gain, the sets of parameters used to enter 
the  system  into  two  different  stable  limit  cycles  are 

found to be ]10,5[  ip TK  and ]10,6[  ip TK . 

The results of the fitting can be found in Table III. It 
must  be  noticed  that  the  result  of  the  event-based 
procedure is very accurate because the actual process 
has the same order that the template to fit. 
 
Example 4: Now the following high-order process is 
going to be identified as a FOPTD model 
 

 4)1()( ssP  (28) 

 
where 1pc .  Applying  the  procedure  as  before, 

that is, with two sets of control parameters that force 
the  system  to  oscillate,  for  example, 

]3,5.1[  ip TK   and ]3,6.1[  ip TK ,  the 

estimated model is 
 

 
17939.8

9113.2
)(̂

1751.1






s

e
sP

s

 

 
Table III: Models and errors for (27) where 844.0pc . 

Method Model E
~

By the event-based 
procedure 19999.9

9999.0 0015.2





s

e s

 0.00054 

By [2] 
19957.9

999.0 0.2





s

e s

 0.00055 

By [12] 
13.10

03.1 3.2





s

e s

 0.1140 

 
Obviously, such result is not acceptable as the steady 
gain is far from the correct value of one producing an 

estimation  error  index  very  high  ( 347.0
~
E ).  With 

the identification procedure as originally defined, the 
fitting  of  the model  is  good  around  the  two  Nyquist 
points  defined  by  the  frequencies  of  the  two  limit 
cycles  but  not  at 0 .  In  this  example,  such 

oscillations  frequencies  are 0.55061_ osc   and 

0.57392_ osc , and the differences are small, 

 

0004.0)(̂)( 1_1_  oscosc jPjP   

01949.0)(̂)( 2_2_  oscosc jPjP   

 
but not for 0 ,  
 

9113.1)0(̂)0( PP  

 
It  can  be  observed  in  Figure  4  that  the  identified 
model  fits  correctly  around  the  oscillation 
frequencies  measured  in  the  two  tests.  In  particular, 
the  fitting  is  exact  for 1_osc   as  it  is  the  frequency 
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selected  for  getting L  with  (18)  once K  and T  are 
known by (16) and (17).  
 

 
Figure 4: Nyquist plots of (28) and the fitted model.  
 
 
If a fitting of a SOPTD model is tried, the new result 
improves with respect to the previous FOPTD model, 
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)17102.1(
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e
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with 0753.0
~
E ,  but  there  is  still  a  10%  of 

discrepancy at 0 , 
 

 1110.0)0(̂)0( PP  

 

4  Modifying the procedure  
 
A  practical  solution  to  make  a  correct  identification 
is  to  generate  in  the  second  test  a  limit  cycle  at  a 
frequency 2_osc  as near zero as possible. A point of 

)(sG   with  a  frequency 1_2_ oscosc     are,  in 

general, far from the intersection with the DF of the 
even-based  sampler  and,  also,  due  to  the  integral 
action  of  the  PI  controller,  the  point  will  be  located 
along the negative real axis of the Nyquist map. The 
solution  is  to  add  new  dynamics  to )(sG   to  allow 

that the very low frequency range of the new system 
)('sG intersects  in  some  point  with ),(1 AN .  To 

understand  how  to  modify  the  estimation  procedure 
to  make  the  second  test with  a  low  frequency  limit 
cycle, see the steps depicted in Figure 5. 
 
Step 1  consists  in rotating  a  unknown  Nyquist  point 

)( 2_1 oscjGP  ,  where 2_osc  is a very low 

frequency, to the grey area depicted in Figure 5. That 
area represents the theoretical section of the Nyquist 
map  where  the  intersection  of )('sG   with  the 

negative reciprocal of ),( AN can be produced after 

a  radial  movement  of  the  point P2  (Step  2).  This 

theoretical  section  is  located  between 

  )),(/1arg( N   and 

 75.0)),(/1arg(  N ,  that  is,  between  -180º 

and -135º.  
 

 
Figure 5: Steps to modify the second test to get 

oscillations at frequencies near zero. 
 
A way to get that is by rolling )(sG around the center 

of  Nyquist  map.  As  the  rotation  can  be  done  by 
adding  a  delay Lad  to )(sG ,  that  is, 

adsLesGsG  )()(' ,  bounds  for Lad to assure that P1 

will be rotated inside the grey area are given by, 
 

 
2_

1

2_

1 arg75.0arg

osc
ad

osc

P
L

P







 



  (29) 

 
Assuming that the frequency 2_osc  selected for the 

second  test  is  low  enough  (e.g., 1_1.0 osc ),  and 

because of the integral action of the PI controller, we 
can consider 5.0arg1 P (that is, -90º) at very low 

frequencies. Thus, from (29) practical bounds for Lad 
could be, 

 
2_2_

25.05.0

osc
ad

osc

L







   (30) 

 
and fixing 1_2_ 1.0 oscosc   , 

 

 
1_1_

5.25

osc
ad

osc

L







  (31) 

 
Now,  as  the  unknown  point  

adosc Lj
osc ejGP 2_)( 2_2





 is  located  in  the  grey 

area but far from the intersection with ),(/1 AN , it 

is necessary to give a second step. This step consists 

in  a  radial  translation  of  the new  system adsLesG )(  

looking  for  an  intersection  with ),(/1 AN .  That 

must be done by reducing the proportional gain as it 
can  be  appreciated  in  Figure  5.  Unfortunately,  the 
calculation  of  this  gain  is  not  intuitive  and  must  be 
done by trial and error. 
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Example 5: We  identify  the  previous  process 
4)1()( ssP   by  applying  the  modified 

procedure.  The  first  test  is  run  with  the  same 
parameters  as  in  the  previous  example,  that  is, 

]3,5.1[  ip TK ,  and  the  result  is 

55067.01_ osc   and º146)(arg 1_ oscjG .  By 

fixing 1_2_ 1.0 oscosc    and according to (30), we 

obtained 2.145.28  adL .  The  second  test  is  run 

with  the  following  set  of  parameters 

]4.21,3,15.0[  adip LTK   and  the  frequency 

measured  is 049.02_ osc ,  that  is  close  to 

1_1.0 osc .  In  Table  IV  and  Figure  6,  the  new 

estimation is presented and compared with the model 
obtained by a more elaborated method. 
 
Table IV: FOPTD models of (28) where 1pc . 

Method Model E
~

By the event-based 
procedure 15032.2

0026.1 9450.1





s

e s

 0.0993 

By [3] 
11036.3

987.0 889.1





s

e s

 0.1426 

 
Example 6:  Table  V  shows  the  fitting  of 

4)1()( ssP   to  a  SOPTD  model  using  the 

results of the two tests of the Example 5.  
 
As  said  before,  if  the  structure  of  the  actual  process 
and the model to fit are the same, the original method 
is  valid  for  any  model  and  it  is  not  necessary  in  the 
second test to force the system to oscillate  at a very 
low  frequency.  But  if  the  structure  of  the  actual 
process  is  higher  than  the  model  template  it  will  be 
necessary to modify the method as explained before.  
 
However,  the  original  method  is  valid  for  FOPTDI 
fitting  of  high-order  processes  with  one  pole  at  the 
origin  (see  Example  7).  It  is  due  to  the  double 
integral  action  introduced  by  the  process  and  the 
controller.  Forcing  the  second  limit  cycle  at  a  very 
low  frequency  can  be  done  by  reducing  the 
proportional gain used in the first test. The effect of 
this action produces two consequences in the Nyquist 

plot  of )(sG :  (a)  to  be  moved  radially  towards  the 

origin,  and  (b)  the  reduction  of  the  phase  margin  as 

consequence of a lower integral gain ( ipTK / ). The 

radial  movement  produced  an  approach  of  the  low 
frequencies  to  the  origin,  and  the  reduction  of  the 

phase margin reassures the intersection of )(sG with 

the reciprocal of the describing function of the event-
based block. 
 

 

Figure 6: Nyquist plots of 
4)1()( ssP and the 

identified model with the modified procedure. 
 
Table V: SOPTD models of (28) where 1pc . 

Method Model E
~

By the event-based 
procedure 2

127.1

)15189.1(

0007.1





s

e s

 0.0472 

By [3] 2

004.1

)1762.1(

054.1





s

e s

 0.0827 

 
Example  7: To  produce  a  new  limit  cycle  at  a  very 
low frequency using the process of the Example 2, a 
new  simulation  is  run  with  the  control  parameters 

]50,001.0[  ip TK .  It  must  be  noticed  that  the 

proportional gain has been significantly reduced with 
respect to the parameters applied in the second test in 

Example 2 (that are ]50,12.0[  ip TK ). Now, the 

frequency  of  this  new  limit  cycle  is 
004.0_2_ newosc .  It  can  be  observed  in  Figure  7 

the  differences  in  the frequencies  of  the  limit  cycles 
depending on the selected set of controller parameter. 
The  identified  FOPTDI  model  of  (26)  using  data 

from  the  limit  cycles  at 098.01_ osc   and 

004.02_ osc  is 

 

 
 10233.2

0001.1
)(̂

9984.8






ss

e
sP

s

  (32) 

 
With  this  new  model,  the  discrepancies  at  lower 
frequencies  with  respect  to  (26)  have  been  reduced. 
For  the  frequencies 01.0 ,  0.001  and  0.0001,  the 

differences )(̂)(  jPjP    are  0.027,  0.167,  and 

1.66,  respectively  (compare  these  values  with  those 
presented at the end of Example 2). 
 

442



 
Figure 7: Plots of )(sG  where 

55 )1()1()(   sessP s and  )(sC changes its 

parameters. 

 
Conclusions 
 
In  this  paper,  an  autotuning  method  completely 
designed  for  event-based  PI  control  loops  has  been 
presented.  The  identification  approach  is  based  on 
the  information  obtained  from  two  limit  cycles 
produced by the SSOD sampler and the PI controller. 
Simulation  examples  have  proven  the  effectiveness 
of  the  method.  However,  there  are  some  issues  that 
need to be improved. 
 
For  example,  regarding  the  identification  of  FOPTD 
and  SOPTD  models,  it  is  necessary  to  improve  the 
procedure to determine the second test, especially the 
estimation  of  the  new  proportional  gain  to  apply  in 
the Step 2. This will be part of future investigations. 
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