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Abstract 

This work deals with the new programming paradigm 

that exploits the benefits of modern Graphics

Processing Units (GPUs), specifically their capacity 

to carry heavy calculations out for simulating 

systems or solving complex control strategies in real 

time. 

Keywords: Control theory, GPU accelerators, high 

performance computing and physical simulation. 

1 INTRODUCTION 

The potential of graphics processors, which are 

known as GPUs, has demonstrated to be a valuable

tool to carry out the most diverse scientific tasks 

where it is necessary a high computational power [9,

10]. These GPUs have become an integral part of 

mainstream computing systems [19] due to their 

larger capacity of handling huge calculations in 

comparison with traditional solutions based on CPUs 

(Central Process Units). 

Traditionally, mathematical algorithms that represent 

the behaviour of physical systems had been 

implemented to run on the CPU, since classical 

computers had no other processing unit. 

Microprocessors based on CPU allowed giga 

floating-point operations per second (GFLOPS) to 

the desktop and hundreds of GFLOPS to cluster 

servers. 

However, the most current computers integrate the 

GPU, which was born to absorb graphics tasks from 

the CPU. Initially, GPU implemented a limited 

number of graphics primitive operations to accelerate

operations for drawing arcs, circles, rectangles and 

triangles. Today, this device can carry out complex 

geometric calculations such as the rotation, 

translation and manipulation of vertices in 3D. To do 

so, GPUs have evolved from fixed function rendering 

devices into programmable parallel processors 

architectures. Thus, the current GPU is not only a 

quick graphics engine but also an exceedingly 

parallel programmable processor [19] integrated by a

streaming processing model giving rise to the 

concept of GPGPU (General-Purpose Graphics 

Processing Unit). The computing performance of 

these kind of processors are currently 100 TFLOPS

[16], greatly exceeding the performance that a CPU-

based architecture can offer. 

The success of this concept is unquestionable, not 

only considering that principal manufacturers have 

even developed GPGPU accelerators for scientific 

and technical computing without graphics engine 

strictly speaking (i.e. Nvidia® Tesla® [16]) but also 

considering that small single-board computers such 

as Raspberry Pi integrate a GPU allowing to run 

more sophisticated control algorithms in real time

within Internet of Things (IoT) environment.  

It is well known that certain non-LTI control

strategies depend on a high computing capacity to be

applicable in a real time system. There exist many 

implementations; without the intention of being 

exhaustive; we can mention: Predictive control

strategies with constraints [3, 2], where the optimal 

control law is obtained by minimizing a given cost 

function subject to a set of constraints at each 

sampling time. Adaptive control [12], where it is 

used a set of techniques for automatic adjustment of 

the controller in real time for achieving a certain 

system performance, etc.  

On the other hand, simulation of physical phenomena 

has been ever a challenge for computer developers 

due to computer power needed to solve a physical 

model numerically [20]. From one of the first general 

purpose computers ENIAC (used to design ballistics 

tables to estimate where artillery shells will impact 

depending of projectile mass, wind, gunpowder 

charges, etc.) until nowadays modern computers 

which have been programmed to obtain accurate

physical simulations for science, engineering, etc. 

It is a fact that physical model simulation is an active 

and interesting research topic whose evolution is 

tightly linked to the development of rapid computer 

algorithms, which make possible to solve heavy 

numerical problems such as physical model

simulations with infinite memory or hereditary 

phenomena. The fractional calculus is frequently 

used to mathematically describe this kind of 

phenomena, in view of its valuable characteristics for 

modelling infinite memory behaviours by means of 
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its fractional operators [6, 32]. It is in the field of the 

linear viscoelasticity where its practical application 

gains more relevance, replacing the ordinary 

derivatives in the classical models [26, 13]. 

 

Thus, the aim of this work will be to show some 

applications where the use of GPU computing 

paradigm supposes to take a step forward in terms of 

performance when a system is simulated or 

controlled. To do so, this paper has been structured as 

follows: In section 2 the GPU computing paradigms 

are described. Section 3 presents some applications 

of GPU computing applied to control and systems 

simulations. Finally, section 4 draws the main 

conclusions of this work.    

 

 

2 GPU COMPUTING ESSENTIALS 
 

High performance computing has found a strong 

pillar in GPU computing due to the performance gain 

achieved through new graphics processing units. 

Numerous researchers and GPU computing 

programmers have reported a speed increment 

between 10 and 100 times of their applications and 

algorithms using these new graphics processing units 

[9]. 

 

Early CPUs were designed to execute general-

purpose applications integrating, generally, one 

processing unit per processor. This traditional 

architecture allows to run only one task at any point 

in time. Therefore, software applications were 

written as sequential programs attending to Von 

Neumann principles. During this period, execution 

speed relied on advances in hardware (CPU cache, 

branch prediction, increase in clock frequency, etc.) 

and backward compatibility. 

 

Due to lack of heat dissipation in processor die, 

extreme transistor miniaturization (near theoretical 

limits) and energy consumption issues; processors 

vendors have had to leap to models with multiple 

processing units (processor cores) in order to increase 

processing power, departing progressively from 

ancient sequential programming principles [27]. 

Therefore, execution speed increments depend now 

on the simultaneous use of multiple compute 

resources to complete the work faster. A sequential 

program that continues running only on one of the 

processor cores is not a rival in terms of 

performance. 

 

On the other hand, due to the need of getting more 

and more realistic scenes for professional 

environment and personal entertainment, customized 

effects came out by means of programmable shaders 

on graphics hardware. A shader is a program to 

determine the final surface properties of a 3D−object 

allowing to calculate rendering effects with a high 

degree of flexibility. With the arrival of the 

Microsoft® API, DirectX® 10, all types of shaders 

were unified using a common-shader core (see 

Figure 1). This unified shader model has permitted 

the GPU to evolve into a powerful programmable 

processor with enormous arithmetic capability, 

substantially greater than a high-end CPU of its time. 

 

 
Figure 1: Data flow in a shader stage diagram. 

 

In the following, we will show how to take advantage 

of this technology using the different available 

programming environments. 

 

2.1 GPU COMPUTING SOFTWARE 

 

GPU's hardware architecture enables massive parallel 

computing by means of platforms whose internal 

configurations depend on their manufacturers. 

Nowadays, the main GPU manufacturers are 

NVIDIA® (www.nvidia.com) and AMD® 

(www.amd.com). Both of them lead currently 

graphics card market and are staunch defenders of 

the GPGPU programming paradigm. 

 

2.1.1 CUDA® 

 

CUDA (Compute Unified Device Architecture) is a 

parallel computing platform with an application 

programming interface (API) designed and created 

by Nvidia for programming its GPUs. Therefore, it is 

incompatible with any other hardware from other 

manufacturers. There is support for most general-

purpose programming languages such as C, C++, 

Python, etc. [17] 

 

2.1.2 MATLAB® and SIMULINK® 

 

The latest versions of Matlab allow to accelerate the 

execution of the programs created in this 

environment as long as the hardware is compatible 

with CUDA [23]. To do so, it is only necessary that 

the Matlab function accepts “gpuArray” input 

arguments. The list of supporting functions is so huge 

and includes functions to calculate the discrete 

Fourier transform, matrix manipulation, 

trigonometric calculations, etc. (For a complete list of 

supporting functions, see [14]). Therefore, if these 

functions are called with at least one gpuArray as an 

input argument, the specific function is executed on 

the GPU and automatically accelerated. 

As far as Simulink is concerned, the number of 

system blocks supported is getting more and more 
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important, although up until now there are limitations 

for their use.   

   

2.1.3 OPENCLTM  

 

OpenCL (Open Computing Language) is not only an 

open royalty-free standard language but a whole 

framework for parallel programming that permits 

writing programs which can be executed across 

heterogeneous platforms and accelerates parallel 

computation. This open standard is maintained by the 

Khronos Group [11] and it has been adopted by 

principal graphics hardware manufacturers: 

NVIDIA®, AMD®, INTEL®, etc. There is also 

support for most general-purpose programming 

languages such as C, C++, Python, etc. 

 

2.1.4 DIRECT HARDWARE PROGRAMMING  

 

Normally, it is an extremely complicated practice 

because of the little information about the 

programming at low level of the different GPUs and 

it is usually required much development time. This 

practice is only recommended when there are not 

available higher level programming interfaces as 

CUDA, OpenCL, etc. but the development is worth 

the effort.  

 

For example, the small single-board computer, 

Raspberry Pi, was initially developed for computing 

teaching science purposes. However, due to its 

valuable hardware resources and low price, its 

success integrating all types of applications is 

unquestionable.  

 

Raspberry Pi integrates a GPU together with a CPU, 

which is been used by developers to extract a 

performance peak. Although there is a good attempt 

to implement the OpenCL standard for the GPU of 

Raspberry Pi that is called VC4CL [30], it is not fully 

functional and its version (1.2) is a bit old. However, 

there exist general purpose codes developed freely by 

programmers to take advantage of GPU potential as 

[7], where the Fourier transform is accelerated and 

[22], where it is presented a GPU-accelerated 

implementation of matrix multiply function for 

Raspberry Pi, which can be applied on control and 

simulation.  

 

Finally, Table 1 summarizes the main characteristics 

of the previous GPU programming environments as 

well as a comparison between them. 

 

3 APPLICATIONS IN CONTROL 

AND SIMULATION 
 

In the following, we will show some applications that 

expose the interest of programming these devices, 

GPUs, to control or simulate systems.  

3.1 CONTROL APPLICATIONS 

 

The recent presence of control strategies more and 

more sophisticated for non-LTI systems or the need 

of satisfy the increasing computational demands to 

control systems with a large number of states may 

require the help of intensive computing units in the 

control devices, if these ones are available. The LTI 

control systems in the state space have an equivalent 

matrix form (1) 
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If the number of states of the LTI system (1) is large, 

and the state matrix A is dense, then it is necessary to 

compute the inverse of a sequence of large-scale 

dense matrices. In [1] the large-scale dense matrices 

inversion with application in control has been studied 

and optimized for computational systems with GPUs. 

 

On the other hand, there exist many non-LTI control 

strategies that require solving complex mathematical 

problems in each sampling time. For example, the 

model predictive control (MPC) with constraints is 

based on the prediction of the future process outputs 

by means of minimization of a cost function within a 

time windows in each sampling time [25]. It leads to 

the resolution of a mathematical optimization 

problem known as quadratic programming (2). 
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Following this line, several authors have proposed 

algorithms to compute this kind of problems using 

GPUs. For example, in [8] a way to accelerate the 

sequential quadratic programming on GPUs is 

introduced.   

 

In our case, we have based on the algorithm 

developed by D. Goldfarb and A. Idnani [5] and its 

C++ implementation by L. Di Gaspero [4] to 

parallelize it and optimize it, using the GPU 

programming paradigm. It has been developed using 

the OpenCL API in C++. 

 

Figure 2 shows the results obtained using our 

implementation in OpenCL in comparison with the 

implementation of L. Di Gaspero. One observes that 

the performance increment depends on N (number of 

variables). The larger this is, the larger the increment 

in performance is obtained. However, there not exists 

this performance increment when values of N below 

1200 are used as it is shown on Figure 3, where the 

relationship between the performances of both 

implementation in function of N is illustrated. 
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Table 1 GPU Programming Environments Comparison 

 

Programming 

Environment 

Compatible Hardware Learning Curve Programming Language 

CUDA Only Nvidia hardware Medium Most general-purpose programming 

languages 

OpenCL Principal graphics hardware 

manufacturers 

Medium Most general-purpose programming 

languages 

Matlab Only Nvidia hardware Low Only Matlab language 

Direct Hardware 

Programming 

Only target hardware High Low-level languages as C and 

assembler 

 

 
Figure 2: Execution time of quadratic programming 

implementations. 

 

 

 
Figure 3: Performance comparison. 

 

 

3.2 PHYSICAL SIMULATIONS 

 

It is well known that realistic physical simulations 

need simulations models with complex algorithms 

which are very time-consuming. However, the high 

performance of GPUs combined with high levels of 

parallelism of calculations could achieve a dramatic 

reduction in the computation time for these 

simulations. 

 

Using this idea, physical simulation applications have 

appeared taking advantage of this computational 

power increment. For example, in [31] it is presented 

a study to quantify the cost and accuracy benefits of 

using high-order unstructured schemes on GPUs for 

scale-resolving simulations of unsteady flows. In [21] 

the simulation of compressible fluids is dealt using 

different techniques to increment the performance in 

comparison with CPUs implementations. 

On the other hand, the viscoelasticity is a physical 

property of materials, which has both viscous and 

elastic characteristics when they are undergone 

deformation. Due to this dualism, the mathematical 

models that represent it often require an intense 

numerical computation that is a tedious and time-

consuming task. The viscous effect is represented by 

a purely viscous damper and the elastic effect is 

represented by a purely elastic spring (see Figure 4). 

Due to the resulting computational cost, many 

authors have opted to use the GPU resources to 

achieve the necessary performance. For example, in 

[28] it is used a new GPU finite element scheme of 

anisotropic viscoelasticity for soft tissue simulation 

using CUDA. A model for simulating elastic wave 

propagation using the Kelvin-Voigt model of 

viscoelasticity is proposed in [29], where the 

simulation is accomplished via Matlab using the 

GPU and the Parallel Computing Toolbox.    

 
Figure 4: A viscoelasticity model. 

 

Moreover, a new way to obtain more accurate models 

of viscoelasticity has arisen during the last years, 

which is based on the use of fractional calculus to 

describe this physical behaviour [13].  

 

Fractional calculus is a mathematical branch that 

deals with derivatives and integrals of real or oven 

complex order [18]. Fractional order operators are 

usually represented using the notation Dα. Positive 

values of α correspond to fractional order derivates 
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and negative values of α correspond to fractional 

order integrals. The numerical evaluation of this 

operator is accomplished using the Grünwald-

Letnikov differintegral −GL− (3) that is a 

generalization of the well-known definition of the 

first-order derivative: 
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   with h the sampling period. 

 

The discrete function (3) has got an unlimited 

number of terms. Precisely, because of this specific 

feature, fractional calculus has become valuable tool 

for capturing and describing complex effects related 

to infinite memory behaviours (i.e. polymer 

viscoelasticity). Nevertheless, the so-called short 

memory principle [24] is generally used due to only 

the recent past plays an important role in evaluating 

Dα. It corresponds to n-term truncated series, paying 

a penalty in the form of some inaccuracy. 

 

At the beginning, it is not necessary to parallelize 

using the GPU the computation of the binomial 

coefficients 









i

i


)1( . This calculus can be done 

off-line using this well-known recursive algorithm 

[15]. However, it is necessary to parallelize the long 

sum of the previous n-terms binomial coefficients 

multiplied by the functions values f(kh-ih). To do so, 

a program that calculates the dot product of two 

vectors (see Figure 5) is created using OpenCL. 

 

 
w0 w1 w2 w3 w4 w5 … y0 y1 y2 y3 y4 y5 …

s0 s1 s2 s3 s4 s5 …

…

partial_sums array

w0 w1 w2 w3 w4 w5 … y0 y1 y2 y3 y4 y5 …

s0 s1 s2 s3 s4 s5 …

…

partial_sums array  
Figure 5: Computation of products. 

 

In the following, it is highlighted the performance 

increment obtained using the previous 

implementation on GPU in comparison with a 

sequential implementation running on CPU. So, two 

computers with different graphics hardware (Nvidia 

230M and Nvidia 560GTX) and quite similar CPUs 

have been used. Figure 6 shows the corresponding 

execution times of GL functions with different 

number of terms, n={5120, 51200, 512000}. It is 

observable the performance increment obtained 

around 2.5 times faster in the 230M case and 10 

times faster in the 560GTX case in comparison with 

the sequential execution without using GPU 

optimization. Moreover, Figure 6 also illustrates the 

performance of 560GTX that is between 3.5 and 5 

times faster than 230M. Obviously, better hardware 

means better performance.  

 

 
 

Figure 6: Execution time of the GL implementations. 
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Figure 7: Execution times for comparison with PT. 

 

Furthermore, we have adapted our source code using 

the programming methodology proposed by AMD, 

which is called “Efficient dot Product 

Implementation Using Persistent Thread” −PT−. So, 

Figure 7 presents the results for the case of n equal to 

51200 terms with GPU code optimization using and 

not using PT, and sequential execution on CPU. One 

observes the performance increment of GPU with PT 

implementation is about 2.5 times faster than GPU 

without PT implementation.  

 

 

4 CONCLUSIONS 
 

In this paper, we have presented some applications 

that expose the benefits of GPU programming to 

obtain an important performance boost, because of 

the powerful programmable processors that the GPUs 

include with an enormous arithmetic capability, 

substantially greater than a high-end CPU. 

 

It has also been shown two own developments. On 

the one hand, we have presented a implementation 

for GPU to resolve a quadratic programming problem 

for predictive control strategies using OpenCL and, 

on the other hand, we have shown other 

implementation for GPU, where a parallel algorithm 

has been developed to boost numerical evaluation of 

fractional operators, which represent the physical 

behaviour of viscoelasticity in a lot of models for 

simulation. In both cases, the advantages of using the 

GPU to perform the calculations have been 

demonstrated. 
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