
Applications of GPU Computing to Control and Simulate Systems

Miguel Romero Hortelano

Escuela Técnica Superior de Ingeniería Informática, UNED,

mromero@scc.uned.es

Abstract

This work deals with the new programming paradigm

that exploits the benefits of modern Graphics

Processing Units (GPUs), specifically their capacity

to carry heavy calculations out for simulating

systems or solving complex control strategies in real

time.

Keywords: Control theory, GPU accelerators, high

performance computing and physical simulation.

1 INTRODUCTION

The potential of graphics processors, which are

known as GPUs, has demonstrated to be a valuable

tool to carry out the most diverse scientific tasks

where it is necessary a high computational power [9,

10]. These GPUs have become an integral part of

mainstream computing systems [19] due to their

larger capacity of handling huge calculations in

comparison with traditional solutions based on CPUs

(Central Process Units).

Traditionally, mathematical algorithms that represent

the behaviour of physical systems had been

implemented to run on the CPU, since classical

computers had no other processing unit.

Microprocessors based on CPU allowed giga

floating-point operations per second (GFLOPS) to

the desktop and hundreds of GFLOPS to cluster

servers.

However, the most current computers integrate the

GPU, which was born to absorb graphics tasks from

the CPU. Initially, GPU implemented a limited

number of graphics primitive operations to accelerate

operations for drawing arcs, circles, rectangles and

triangles. Today, this device can carry out complex

geometric calculations such as the rotation,

translation and manipulation of vertices in 3D. To do

so, GPUs have evolved from fixed function rendering

devices into programmable parallel processors

architectures. Thus, the current GPU is not only a

quick graphics engine but also an exceedingly

parallel programmable processor [19] integrated by a

streaming processing model giving rise to the

concept of GPGPU (General-Purpose Graphics

Processing Unit). The computing performance of

these kind of processors are currently 100 TFLOPS

[16], greatly exceeding the performance that a CPU-

based architecture can offer.

The success of this concept is unquestionable, not

only considering that principal manufacturers have

even developed GPGPU accelerators for scientific

and technical computing without graphics engine

strictly speaking (i.e. Nvidia® Tesla® [16]) but also

considering that small single-board computers such

as Raspberry Pi integrate a GPU allowing to run

more sophisticated control algorithms in real time

within Internet of Things (IoT) environment.

It is well known that certain non-LTI control

strategies depend on a high computing capacity to be

applicable in a real time system. There exist many

implementations; without the intention of being

exhaustive; we can mention: Predictive control

strategies with constraints [3, 2], where the optimal

control law is obtained by minimizing a given cost

function subject to a set of constraints at each

sampling time. Adaptive control [12], where it is

used a set of techniques for automatic adjustment of

the controller in real time for achieving a certain

system performance, etc.

On the other hand, simulation of physical phenomena

has been ever a challenge for computer developers

due to computer power needed to solve a physical

model numerically [20]. From one of the first general

purpose computers ENIAC (used to design ballistics

tables to estimate where artillery shells will impact

depending of projectile mass, wind, gunpowder

charges, etc.) until nowadays modern computers

which have been programmed to obtain accurate

physical simulations for science, engineering, etc.

It is a fact that physical model simulation is an active

and interesting research topic whose evolution is

tightly linked to the development of rapid computer

algorithms, which make possible to solve heavy

numerical problems such as physical model

simulations with infinite memory or hereditary

phenomena. The fractional calculus is frequently

used to mathematically describe this kind of

phenomena, in view of its valuable characteristics for

modelling infinite memory behaviours by means of

Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018

792

https://doi.org/10.17979/spudc.9788497497565.0792

its fractional operators [6, 32]. It is in the field of the

linear viscoelasticity where its practical application

gains more relevance, replacing the ordinary

derivatives in the classical models [26, 13].

Thus, the aim of this work will be to show some

applications where the use of GPU computing

paradigm supposes to take a step forward in terms of

performance when a system is simulated or

controlled. To do so, this paper has been structured as

follows: In section 2 the GPU computing paradigms

are described. Section 3 presents some applications

of GPU computing applied to control and systems

simulations. Finally, section 4 draws the main

conclusions of this work.

2 GPU COMPUTING ESSENTIALS

High performance computing has found a strong

pillar in GPU computing due to the performance gain

achieved through new graphics processing units.

Numerous researchers and GPU computing

programmers have reported a speed increment

between 10 and 100 times of their applications and

algorithms using these new graphics processing units

[9].

Early CPUs were designed to execute general-

purpose applications integrating, generally, one

processing unit per processor. This traditional

architecture allows to run only one task at any point

in time. Therefore, software applications were

written as sequential programs attending to Von

Neumann principles. During this period, execution

speed relied on advances in hardware (CPU cache,

branch prediction, increase in clock frequency, etc.)

and backward compatibility.

Due to lack of heat dissipation in processor die,

extreme transistor miniaturization (near theoretical

limits) and energy consumption issues; processors

vendors have had to leap to models with multiple

processing units (processor cores) in order to increase

processing power, departing progressively from

ancient sequential programming principles [27].

Therefore, execution speed increments depend now

on the simultaneous use of multiple compute

resources to complete the work faster. A sequential

program that continues running only on one of the

processor cores is not a rival in terms of

performance.

On the other hand, due to the need of getting more

and more realistic scenes for professional

environment and personal entertainment, customized

effects came out by means of programmable shaders

on graphics hardware. A shader is a program to

determine the final surface properties of a 3D−object

allowing to calculate rendering effects with a high

degree of flexibility. With the arrival of the

Microsoft® API, DirectX® 10, all types of shaders

were unified using a common-shader core (see

Figure 1). This unified shader model has permitted

the GPU to evolve into a powerful programmable

processor with enormous arithmetic capability,

substantially greater than a high-end CPU of its time.

Figure 1: Data flow in a shader stage diagram.

In the following, we will show how to take advantage

of this technology using the different available

programming environments.

2.1 GPU COMPUTING SOFTWARE

GPU's hardware architecture enables massive parallel

computing by means of platforms whose internal

configurations depend on their manufacturers.

Nowadays, the main GPU manufacturers are

NVIDIA® (www.nvidia.com) and AMD®

(www.amd.com). Both of them lead currently

graphics card market and are staunch defenders of

the GPGPU programming paradigm.

2.1.1 CUDA®

CUDA (Compute Unified Device Architecture) is a

parallel computing platform with an application

programming interface (API) designed and created

by Nvidia for programming its GPUs. Therefore, it is

incompatible with any other hardware from other

manufacturers. There is support for most general-

purpose programming languages such as C, C++,

Python, etc. [17]

2.1.2 MATLAB® and SIMULINK®

The latest versions of Matlab allow to accelerate the

execution of the programs created in this

environment as long as the hardware is compatible

with CUDA [23]. To do so, it is only necessary that

the Matlab function accepts “gpuArray” input

arguments. The list of supporting functions is so huge

and includes functions to calculate the discrete

Fourier transform, matrix manipulation,

trigonometric calculations, etc. (For a complete list of

supporting functions, see [14]). Therefore, if these

functions are called with at least one gpuArray as an

input argument, the specific function is executed on

the GPU and automatically accelerated.

As far as Simulink is concerned, the number of

system blocks supported is getting more and more

793

important, although up until now there are limitations

for their use.

2.1.3 OPENCLTM

OpenCL (Open Computing Language) is not only an

open royalty-free standard language but a whole

framework for parallel programming that permits

writing programs which can be executed across

heterogeneous platforms and accelerates parallel

computation. This open standard is maintained by the

Khronos Group [11] and it has been adopted by

principal graphics hardware manufacturers:

NVIDIA®, AMD®, INTEL®, etc. There is also

support for most general-purpose programming

languages such as C, C++, Python, etc.

2.1.4 DIRECT HARDWARE PROGRAMMING

Normally, it is an extremely complicated practice

because of the little information about the

programming at low level of the different GPUs and

it is usually required much development time. This

practice is only recommended when there are not

available higher level programming interfaces as

CUDA, OpenCL, etc. but the development is worth

the effort.

For example, the small single-board computer,

Raspberry Pi, was initially developed for computing

teaching science purposes. However, due to its

valuable hardware resources and low price, its

success integrating all types of applications is

unquestionable.

Raspberry Pi integrates a GPU together with a CPU,

which is been used by developers to extract a

performance peak. Although there is a good attempt

to implement the OpenCL standard for the GPU of

Raspberry Pi that is called VC4CL [30], it is not fully

functional and its version (1.2) is a bit old. However,

there exist general purpose codes developed freely by

programmers to take advantage of GPU potential as

[7], where the Fourier transform is accelerated and

[22], where it is presented a GPU-accelerated

implementation of matrix multiply function for

Raspberry Pi, which can be applied on control and

simulation.

Finally, Table 1 summarizes the main characteristics

of the previous GPU programming environments as

well as a comparison between them.

3 APPLICATIONS IN CONTROL

AND SIMULATION

In the following, we will show some applications that

expose the interest of programming these devices,

GPUs, to control or simulate systems.

3.1 CONTROL APPLICATIONS

The recent presence of control strategies more and

more sophisticated for non-LTI systems or the need

of satisfy the increasing computational demands to

control systems with a large number of states may

require the help of intensive computing units in the

control devices, if these ones are available. The LTI

control systems in the state space have an equivalent

matrix form (1)









)()()(

)()()1(

kDuxCxky

kBukAxkx
 (1)

If the number of states of the LTI system (1) is large,

and the state matrix A is dense, then it is necessary to

compute the inverse of a sequence of large-scale

dense matrices. In [1] the large-scale dense matrices

inversion with application in control has been studied

and optimized for computational systems with GPUs.

On the other hand, there exist many non-LTI control

strategies that require solving complex mathematical

problems in each sampling time. For example, the

model predictive control (MPC) with constraints is

based on the prediction of the future process outputs

by means of minimization of a cost function within a

time windows in each sampling time [25]. It leads to

the resolution of a mathematical optimization

problem known as quadratic programming (2).

0subject to
2

1
)(min





bxC

xGxxaxf

T

T

x
 (2)

Following this line, several authors have proposed

algorithms to compute this kind of problems using

GPUs. For example, in [8] a way to accelerate the

sequential quadratic programming on GPUs is

introduced.

In our case, we have based on the algorithm

developed by D. Goldfarb and A. Idnani [5] and its

C++ implementation by L. Di Gaspero [4] to

parallelize it and optimize it, using the GPU

programming paradigm. It has been developed using

the OpenCL API in C++.

Figure 2 shows the results obtained using our

implementation in OpenCL in comparison with the

implementation of L. Di Gaspero. One observes that

the performance increment depends on N (number of

variables). The larger this is, the larger the increment

in performance is obtained. However, there not exists

this performance increment when values of N below

1200 are used as it is shown on Figure 3, where the

relationship between the performances of both

implementation in function of N is illustrated.

794

Table 1 GPU Programming Environments Comparison

Programming

Environment

Compatible Hardware Learning Curve Programming Language

CUDA Only Nvidia hardware Medium Most general-purpose programming

languages

OpenCL Principal graphics hardware

manufacturers

Medium Most general-purpose programming

languages

Matlab Only Nvidia hardware Low Only Matlab language

Direct Hardware

Programming

Only target hardware High Low-level languages as C and

assembler

Figure 2: Execution time of quadratic programming

implementations.

Figure 3: Performance comparison.

3.2 PHYSICAL SIMULATIONS

It is well known that realistic physical simulations

need simulations models with complex algorithms

which are very time-consuming. However, the high

performance of GPUs combined with high levels of

parallelism of calculations could achieve a dramatic

reduction in the computation time for these

simulations.

Using this idea, physical simulation applications have

appeared taking advantage of this computational

power increment. For example, in [31] it is presented

a study to quantify the cost and accuracy benefits of

using high-order unstructured schemes on GPUs for

scale-resolving simulations of unsteady flows. In [21]

the simulation of compressible fluids is dealt using

different techniques to increment the performance in

comparison with CPUs implementations.

On the other hand, the viscoelasticity is a physical

property of materials, which has both viscous and

elastic characteristics when they are undergone

deformation. Due to this dualism, the mathematical

models that represent it often require an intense

numerical computation that is a tedious and time-

consuming task. The viscous effect is represented by

a purely viscous damper and the elastic effect is

represented by a purely elastic spring (see Figure 4).

Due to the resulting computational cost, many

authors have opted to use the GPU resources to

achieve the necessary performance. For example, in

[28] it is used a new GPU finite element scheme of

anisotropic viscoelasticity for soft tissue simulation

using CUDA. A model for simulating elastic wave

propagation using the Kelvin-Voigt model of

viscoelasticity is proposed in [29], where the

simulation is accomplished via Matlab using the

GPU and the Parallel Computing Toolbox.

Figure 4: A viscoelasticity model.

Moreover, a new way to obtain more accurate models

of viscoelasticity has arisen during the last years,

which is based on the use of fractional calculus to

describe this physical behaviour [13].

Fractional calculus is a mathematical branch that

deals with derivatives and integrals of real or oven

complex order [18]. Fractional order operators are

usually represented using the notation Dα. Positive

values of α correspond to fractional order derivates

795

and negative values of α correspond to fractional

order integrals. The numerical evaluation of this

operator is accomplished using the Grünwald-

Letnikov differintegral −GL− (3) that is a

generalization of the well-known definition of the

first-order derivative:

 ihkhf
i

hLimtfD
i

i

h
kht 








 










0
0

)1()(


 (3)

 with h the sampling period.

The discrete function (3) has got an unlimited

number of terms. Precisely, because of this specific

feature, fractional calculus has become valuable tool

for capturing and describing complex effects related

to infinite memory behaviours (i.e. polymer

viscoelasticity). Nevertheless, the so-called short

memory principle [24] is generally used due to only

the recent past plays an important role in evaluating

Dα. It corresponds to n-term truncated series, paying

a penalty in the form of some inaccuracy.

At the beginning, it is not necessary to parallelize

using the GPU the computation of the binomial

coefficients 









i

i


)1(. This calculus can be done

off-line using this well-known recursive algorithm

[15]. However, it is necessary to parallelize the long

sum of the previous n-terms binomial coefficients

multiplied by the functions values f(kh-ih). To do so,

a program that calculates the dot product of two

vectors (see Figure 5) is created using OpenCL.

w0 w1 w2 w3 w4 w5 … y0 y1 y2 y3 y4 y5 …

s0 s1 s2 s3 s4 s5 …

…

partial_sums array

w0 w1 w2 w3 w4 w5 … y0 y1 y2 y3 y4 y5 …

s0 s1 s2 s3 s4 s5 …

…

partial_sums array
Figure 5: Computation of products.

In the following, it is highlighted the performance

increment obtained using the previous

implementation on GPU in comparison with a

sequential implementation running on CPU. So, two

computers with different graphics hardware (Nvidia

230M and Nvidia 560GTX) and quite similar CPUs

have been used. Figure 6 shows the corresponding

execution times of GL functions with different

number of terms, n={5120, 51200, 512000}. It is

observable the performance increment obtained

around 2.5 times faster in the 230M case and 10

times faster in the 560GTX case in comparison with

the sequential execution without using GPU

optimization. Moreover, Figure 6 also illustrates the

performance of 560GTX that is between 3.5 and 5

times faster than 230M. Obviously, better hardware

means better performance.

Figure 6: Execution time of the GL implementations.

0

50

100

150

200

250

300

350

PC 230M PC 560GTX

T
im

e
 (

μ
s
)

Sequential

OpenCL

OpenCL PT

Figure 7: Execution times for comparison with PT.

Furthermore, we have adapted our source code using

the programming methodology proposed by AMD,

which is called “Efficient dot Product

Implementation Using Persistent Thread” −PT−. So,

Figure 7 presents the results for the case of n equal to

51200 terms with GPU code optimization using and

not using PT, and sequential execution on CPU. One

observes the performance increment of GPU with PT

implementation is about 2.5 times faster than GPU

without PT implementation.

4 CONCLUSIONS

In this paper, we have presented some applications

that expose the benefits of GPU programming to

obtain an important performance boost, because of

the powerful programmable processors that the GPUs

include with an enormous arithmetic capability,

substantially greater than a high-end CPU.

It has also been shown two own developments. On

the one hand, we have presented a implementation

for GPU to resolve a quadratic programming problem

for predictive control strategies using OpenCL and,

on the other hand, we have shown other

implementation for GPU, where a parallel algorithm

has been developed to boost numerical evaluation of

fractional operators, which represent the physical

behaviour of viscoelasticity in a lot of models for

simulation. In both cases, the advantages of using the

GPU to perform the calculations have been

demonstrated.

796

Acknowledgments

The author wish to acknowledge the work of students

D. José A. Chico and D. Francisco de la Hoz and the

GPU Grant Program of Nvidia for its support.

References

[1] Benner, P., Ezzatti, P., Ortí, Q., Enrique, S., and

Remón Gómez, A. (2013). “Matrix inversion on

CPU-GPU platforms with applications in

control theory”. Concurrency and Computation:

Practice and Experience 25(8). 1170-1182.

[2] Camacho, E.F., and Bordóns, C., (2004). Model

Predictive Control. 2nd edition. Springer.

[3] Clarke, D.W., Mohtadi, C., and Tuffs, P.S.,

(1987). “Generalized predictive control. Part I.

The basic algorithm”. Automatica 23(2), 137-

148.

[4] Gaspero, L.D. (2018). QuadProg++. url:

http://www.diegm.uniud.it/digaspero/index.php

[5] Goldfarb, D., and Idnani, A. (1983). “A

numerically stable dual method for solving

strictly convex quadratic programs”.

Mathematical Programming, 27(1). 1-33.

[6] Hilfer, R., (2000). Applications of Fractional

Calculus in Physics. World scientific publishing

Co. Pte. Ltd. Singapore.

[7] Holme, A., (2018). FFT using GPU in

Raspberry Pi url:

 https://www.raspberrypi.org/blog/accelerating-

fourier-transforms-using-the-gpu/

[8] Hu, X., Douglas, C.C., and Lumley, R. (2017).

“GPU accelerated sequential quadratic

programming”. Proceedings of the 16th

DCABES Symposium. 3-6.

[9] Hwu, W., (2011). GPU Computing Gems

Emerald Edition. Applications of GPU

Computing Series. Elsevier Inc., USA.

[10] Hwu, W., (2012). GPU Computing Gems Jade

Edition. Applications of GPU Computing

Series. Elsevier Inc., USA.

[11] Khronos OpenCL Working Group. (2018). The

OpenCL 2.2 specification, url:

https://www.khronos.org/registry/OpenCL/spec

s/2.2/pdf/OpenCL_API.pdf

[12] Landau, I.D., Lozano, R., M’Saad M., and

Karimi, A., (2011). Adaptive Control.

Algorithms, Analysis and Applications. 2nd

edition. Springer.

[13] Mainardi, F. (2010). Fractional Calculus and

Waves in Linear Viscoelasticity. An

Introduction to Mathematical Models. Imperial

College Press, UK.

[14] Matlab. (2018). “Run Built-In Functions on a

GPU”. url:

https://es.mathworks.com/help/distcomp/run-

built-in-functions-on-a-gpu.html#bsloua3-1

[15] Monje, C.A., Chen Y.Q., Vinagre, B.M., and

Xue, D. (2010). Fractional-order Systems and

Controls: Fundamentals and Applications.

Springer-Verlag. UK.

[16] Nvidia. (2018). “Tesla Data Center GPUs for

Server”. url: https://www.nvidia.com/en-

us/data-center/tesla/.

[17] Nvidia. (2018). “CUDA Zone”. url:

https://developer.nvidia.com/cuda-zone

[18] Oldham, K.B., and Spanier, J. (1974). The

Fractional Calculus. Academic Press. New

York.

[19] Owens, J.D., Houston M., Luebke, D., Green,

S., Stone, J.E., Phillips, J.C. (2008). “GPU

computing”. Proceedings of the IEEE 96, 879-

899.

[20] Pang, T., (2006). An Introduction to

Computational Physics. Cambridge University

Press, USA.

[21] Pekkila, J., Vaisala, M., Kapyla, M., Kapyla, P.,

and Anjum, O. (2017). “Methods for

compressible fluid simulation on GPUs using

high-order finite differences”. Journal of

Computer Physics Communications 217, 11-22.

[22] Pi GEMM (2018). url:

 https://github.com/jetpacapp/pi-gemm

[23] Ploskas, N., and Samaras, N. (2016). GPU

Programming in Matlab. Elservier Inc., UK.

[24] Podlubny., I. (1999). Fractional Differential

Equations. Mathematics in Science and

Engineering. Vol. 198 Academic Press. USA.

[25] Romero, M., de Madrid, A.P., Mañoso, C., and

Milanés, V. (2015). “Low speed hybrid

generalized predictive control of a gasoline-

propelled car”. Isa Transactions 57. 373-381.

797

[26] Stiassnie, M. (1979). “On the application of

fractional calculus for the formulation of

viscoelastic models”. Journal of applied

mathematical modelling 3(4), 300-302.

[27] Sutter, H., and Laurs, J. (2005). “Software and

the concurrency revolution”. Journal ACM

Queue 3(7). 54-62.

[28] Taylor, Z.A., Comas, O., Cheng, M., Passenger,

J. Hawkes, D.J., Atkinson, D., and Ourselin, S.

(2009). “On modelling of anisotropic

viscoelasticity for soft tissue simulation:

Numerical solution and GPU execution”.

Medical Image Analysis 13, 234-244.

© 2018 by the author.

Submitted for possible

open access publication

under the terms and conditions of the Creative
Commons Attribution CC-BY-NC 3.0 license
(https://creativecommons.org/licenses/by-nc/3.0).

[29] Treeby, B.E., Jaros, J., and Rohrbach, D.

(2014). “Modelling elastic wave propagation

using the k-Wave MATLAB toolbox”.

Proceedings of the IEEE IUS, Chicago, USA,

146-149.

[30]VC4CL(2018).url:https://github.com/doe300/VC

4CL

[31] Vermeire, B.C., Witherden, F.D., and Vincent,

P.E. (2017). “On the utility of GPU accelerated

high-order methods for unsteady flow

simulations: a comparison with industry-

standard tools”. Journal of Computational

Physics 334, 497-521.

[32] West, B.J., Bologna, M., and Grigolini, P.

(2003). Physics of Fractal Operators. Springer-

Verlag. USA.

798

