
marine drugs 

Review

Marine Natural Products from the Yucatan Peninsula

Dawrin Pech-Puch, Mar Pérez-Povedano, Oscar A. Lenis-Rojas †, Jaime Rodríguez *
and Carlos Jiménez *

Centro de Investigacións Científicas Avanzadas (CICA) e Departmento de Química, Facultade de Ciencias,
Universidade da Coruña, 15071 A Coruña, Spain; dawrin.j.pech@udc.es (D.P.-P.);
perezpovedanomaranabel@gmail.com (M.P.-P.); oscar.lrojas@udc.es (O.A.L.-R.)
* Correspondence: jaime.rodriguez@udc.es (J.R.); carlos.jimenez@udc.es (C.J.); Tel.: +34-881-012170 (C.J.);

Fax: +34-981-167065 (C.J.)
† Current address: Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN,

2780-157 Oeiras, Portugal.

Received: 17 December 2019; Accepted: 11 January 2020; Published: 16 January 2020
����������
�������

Abstract: Mexico is one of the three areas of the world with the greatest terrestrial and cultural
biological diversity. The diversity of Mexican medicinal flora has been studied for a long time
and several bioactive compounds have been isolated. The investigation of marine resources,
and particularly the potential of Mexican marine resources, has not been intensively investigated,
even though the Yucatan Peninsula occupies 17.4% of the total of the Mexican coast, with great
biological diversity in its coasts and the ocean. There are very few studies on the chemistry
of natural products from marine organisms that were collected along the coasts of the Yucatan
Peninsula and most of them are limited to the evaluation of the biological activity of their organic
extracts. The investigations carried out on marine species from the Yucatan Peninsula resulted in the
identification of a wide structural variety of natural products that include polyketides, terpenoids,
nitrogen compounds, and biopolymers with cytotoxic, antibacterial, antifouling, and neurotoxic
activities. This review describes the literature of bioprospecting and the exploration of the natural
product diversity of marine organisms from the coasts of the Yucatan Peninsula up to mid-2019.
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1. Introduction

The potential of marine natural products in drug discovery is invaluable due to the extremely
rich biodiversity of the marine environment. The marine environment contains a large number of
species which are the source of a wide range of structurally diverse bioactive secondary metabolites.
Approximately 29,000 marine natural products are known, from which eight compounds have become
commercialized drugs. During the last decade, more than 1000 new marine natural products have
been annually isolated, but the set of new and unique structures is far from being exhausted [1,2].
The interest in marine organisms has been increasing, since they are capable of producing a great
diversity of novel metabolites, such as unusual nucleosides, bioactive terpenes, sterols, cyclic peptides,
alkaloids, fatty acids, peroxides, and amino acid derivatives, many of them with high potential for
pharmacological applications [3].

The Yucatan Peninsula in Mexico, which comprises the Mexican states of Campeche, Quintana
Roo, and Yucatan, is known as a biotic province [4]. Although marine organisms constitute a recognized
source of a wide range of structurally diverse natural products, research that is focused on marine
natural products from the Yucatan Peninsula is still in infancy, mainly when compared to the numerous
studies of those isolated from terrestrial organisms, especially from plants [5].
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On the other hand, a priority task for the conservation and management of coastal areas, such
as the Yucatan Peninsula, and for the discovery of new sources of novel natural products, is the
study of their biodiversity. The first effort aimed at determining the state of health of the coast of the
Yucatan Peninsula was reported in 2010. Pech-Pool and Ardisson Herrera described the identification
of more than 400 thousand organisms from marine and coastal environments and lagoons, belonging
to 529 species, which were distributed in 13 phyla, 26 classes, 28 orders, 113 families, and 358 genera.
Of the registered species, 45% (237) corresponded to the Arthropod (Crustacea); 22% (118) to Mollusca;
14% (72) to the Nematoda; and, 13% (68) to the Annelida phyla. The remaining 6% (33) belonged
to the Echinodermata, Nemertea, Platyhelminthes, Sipuncula, Porifera, Chaetognatha, Chordata,
and Cnidaria phyla [6]. More specifically, taxonomic identification of coral and sponges was also
described. Thus, from a total of 31 registered coral species, 15 corresponded to order Scleractinia, being
Poritidae and Faviidae the most important families that were represented by four species each; other
15 species were octocorals, seven of them belonged to Plexauridae family and, finally, the remaining
species was a hydrocoral [7]. On the other hand, most of the registered sponges belonged to three
classes: Calcarea, Hexactinellida and Demospongiae, the last being the most predominant and with the
greatest diversity. The 50 species registered were distributed in 10 orders, two subclasses, 25 families,
and 35 genera [8]. The results of studies that were focused on marine biodiversity in specific benthic
communities were also reported. For example, the biodiversity analysis of the Alacranes Reef, one of
the largest platform-type reefs in Mexico, covering an approximate area of 333.7 km2, showed that
this benthic community mainly consists of macroalgae (50.1%), seagrass (16.2%), algal mat (13.6%),
scleractinia corals (11.1%), octocorals (7.6%), sponges (0.6%), and other vagile and sessile organisms
(0.5%) and hydrocorals (0.3%) [9]. A very recent report published in 2019 describes 31 ascidian species
from the Yucatan Peninsula that were grouped into 13 families and 19 genera, being two species,
Clavelina sp. and Pyura sp., described for the first time [10].

With the present review, we will cover the current knowledge of bioprospecting and the exploration
of the natural product diversity of marine organisms that were collected along the coasts of the Yucatan
Peninsula up to mid-2019.

2. Marine Natural Products from the Yucatan Peninsula

Although the number of secondary metabolites that were isolated from marine organisms collected
along the coasts of the Yucatan Peninsula is not very high, they display a great diversity of structures
and biological activities. They can be grouped into the following categories as polyketides (aliphatic
polyketides, glycolipids, and aromatic acids), terpenoids (diterpenes and sesterterpenes, steroids,
and triterpenoids saponins), nitrogen compounds (indole derivatives, nucleosides, nitrogenous bases,
and conotoxins), and biopolymers, based upon the putative biogenetic origins.

The following sections show a detailed list of the isolated natural products from the reported
species, along with their biological activities, as well as the taxonomic identification of marine organisms
from which they were obtained.

2.1. Polyketides

2.1.1. Aliphatic Polyketides

The interest on the study of fatty acids derivatives from marine organisms, specifically ω-3
polyunsaturated fatty acids, was sparked by the approval of Lovaza® by the FDA as a mixture of
ethyl esters of eicosapentaenoic acid and docosahexaenoic acid used as therapeutic agent for reducing
serum triglycerides [1]. The Italian researcher group led by Cimino from Naples published in 1999
the isolation and structure elucidation of three new fatty acids derivatives, the butenolide lipids
1–3 from the gorgonian Pterogorgia anceps, which were collected at Puerto Morelos, Quintana Roo
state. The new fatty acids derivatives were identified as (R)-3-hexadecyl-5-methylfuran-2 (5H)-one (1),
(R)-3-(14-((3S,4R,5R)-4-hydroxy-5-methyl-2-oxotetrahydrofuran-3-yl)tetradecyl)-5-methylfuran-2(5H)
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-one (2), and (R)-4-hydroxy-5-methyl-3-(14-((R)-5-methyl-2-oxo-2,5-dihydrofuran-3-yl)tetradecyl)furan
-2(5H)-one (3). The proposed stereochemistry was confirmed by acetylation of 2 and 3 to give the
acetate derivatives 4 and 5, respectively [11]. Palmitic acid (6) was also isolated from the sponge
Haliclona tubifera (now H. (Reniera) tubifera) that was collected on the coasts of the Yucatan state [12]
(Figure 1).
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Figure 1. Structures of the aliphatic polyketides 1–3, along with their synthetic acetate derivatives 4
and 5, isolated from the gorgonian Pterogorgia anceps and palmitic acid (6) isolated from the sponge
Haliclona tubifera (now H. (Reniera) tubifera).

2.1.2. Glycolipids

Marine glycolipids are amphiphilic compounds that are divided into two main groups:
glycoglycerolipids (GGLs) and glycosphingolipids (GSLs). Glycoglycerolipids are composed by
a glycerol unit glycosylated at one primary alcoholic function. Sulfoquinovosyldiacylglycerols
constitute one of the most common types of glycoglycerolipids (GGLs) found in marine
organisms and some of them are present in large amounts in photosynthetic membranes of
cyanobacteria, algae and higher plants. Antiviral activity against HIV-1 was reported for some
sulfoquinovosyldiacylglycerols that were isolated from cyanobacteria [13]. Freile–Pelegrin and
collaborators reported in 2010, from the brown algae Lobophora variegata, collected at Puerto
Morelos in Quintana Roo state, the isolation, and structure elucidation of a new glycoglycerolipid,
1-O-palmitoyl-2-O-oleoyl-3-O-(6′′′-sulfo-α-d-quinovopyranosyl)-glycerol (7), along with two
known glycolipids: 1-O-palmitoyl-2-O-myristoyl-3-O-(6′′′-sulfo-α-d-quinovopyranosyl)-glycerol
(8), and 1,2-di-O-palmitoyl-3-O-(6′′′-sulfo-α-D-quinovopyranosyl)-glycerol (9). The mixture of
the three sulfoquinovosyldiacylglicerols 7–9 showed high in vitro antiprotozoal activity against
Entamoeba histolytica (IC50 value of 3.9 µg mL−1) and moderate activity against Trichomonas vaginalis
trophozoites (IC50 value 8.0 µg mL−1), with good selective index (SI > 10). However, they were less
effective than metronidazole being used as control (IC50 = 0.13 and 0.04 µg mL−1/0.759 and 0.230 nM,
respectively) [14]. The relative configuration of the glycerol unit in 7–9 was not specified (Figure 2).
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2.1.3. Aromatic Acids

Several aromatic acids, such as p-hydroxybenzaldehyde (10), vanillin (11), benzoic acid (12),
p-hydroxybenzoic acid (13), and phenylacetic acid (14), were isolated from the sponge Haliclona tubifera
(now H. (Reniera) tubifera) [12] (Figure 3).
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2.2. Terpenoids

2.2.1. Diterpenes and Sesterterpenes

Terpenoid biogenesis is one of the dominant pathways of most marine natural products, mainly
those that were isolated from cnidarians followed by sponges. The wide variety of biological activities
that were found in marine terpenes, together with their ecological role in the marine environment,
makes them a very interesting target of study apart from being potential drugs [15]. Pech-Puch et al.
reported in 2019 the isolation and structural characterization of seven terpenoids from the sponge
Spongia tubulifera (now S. (Spongia) tubulifera) that were collected at Rio Indio, Quintana Roo state.
Two of them resulted in being new natural products, 3β-hydroxyspongia-13(16),14-dien-2-one (15)
and 19-dehydroxy-spongian diterpene 17 (16), while the remaining five corresponded to previously
reported terpenes, three spongia furanoditerpenes: 9-nor-3-hydroxyspongia-3,13(16)14-trien-2-one
(17), 3β, 19 dihydroxyspongia-13(16),14-dien-2-one (epispongiadiol) (18), and spongian diterpene 17
(19); the furanoditerpene ambliol C (20) and the sesterterpene scalarin (21). The pharmacological
analysis of the isolated compounds displayed a very mild cytotoxic activity for 15, 18, and 20, while
they showed no antimicrobial (Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae,
and Staphylococcus aureus) or antiviral (HAdV5 and HAdV5-GFP) activities [16] (Figure 4).

From the organic extracts of the brown seaweed Dictyota ciliolata, collected at the Caribbean coast
of Quintana Roo state, Caamal-Fuentes et al. isolated the diterpenes pachydictyol A (22) and dictyol B
acetate (23) in 2014. Cytotoxic and antiproliferative activities of the isolated compounds were evaluated
on a panel of cancer cell lines (oral carcinoma (KB), epithelial carcinoma of the larynx (Hep-2), breast
adenocarcinoma (MCF-7), and cervix adenocarcinoma (SiHa)) and a human cell embryonic kidney
cell line HEK-293 as the control). Compound 22 exhibited inhibitory activity against all of the tested
cancer cell lines, whereas diterpene 23 showed cytotoxic activity against epithelial carcinoma of the
larynx-HEP-2 (CC50 = 19.6 µg mL−1/0.056 µM) and antiproliferative activity against breast-MCF-7
(IC50 = 38.3 µg mL−1/0.11 µM) and cervix-SiHa (IC50 = 34.4 µg mL−1/0.099 µM) [17] (Figure 4).
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2.2.2. Steroids

High diversity unusual structures of steroid derivatives with multiple potential biological
properties have been isolated from marine organisms. Bohlin et al. reported several marine
steroids as acetates from the sponge Teichaxinella morchella (now Axinella corrugata) collected
at a depth of 15 m at Puerto Morelos in Quintana Roo state in 1981. Two new sterols,
(22E,24S)-3E-acetoxymethyl-24-methyl-27-nor-A-nor-5α-cholest-22-ene (A-nor-patinosterol) (24)
and (22E,24R)-3E-acetoxymethyl-23, 24-dimethyl-A-nor-5α-cholest-22-ene (A-nor-dinosterol)
(25), along with six known sterols, (22E)-3E-acetoxymethyl-A-nor-5α-cholest-22-ene) (26),
3E-acetoxymethyl-A-nor-5α-cholestane (27), (22E,24S)-3E-acetoxymethyl-24-ethyl-A-nor-5α-cholest-22
-ene (28), (22E,24R)-3E-acetoxymethyl-24-ethyl-A-nor-5α-cholest-22-ene (29), (22E,24S)-3E-acetoxymetyl
-24-methyl-A-nor-5α-cholest-22-ene (30), and (22E,24R)-3E-acetoxymethyl-24-methyl-A-nor-5α-colest-
22-ene (31) were isolated. Furthermore, four known steroids were also detected, (24S)-3E-acetoxymethyl
-24-methyl-A-nor-5α-cholestane (32), (24R)-3E-acetoxymethyl-24-methyl-A-nor-5α-cholestane (33),
(24R)-3E-acetoxymethyl-24-ethyl-A-nor-5α-cholestane (34), and (24S)-3E-acetoxymethyl-24-ethyl-A-nor
-5α-cholestane (35) [18]. The relative configuration at C-3 and C-20 of 24–35 was not specified (Figure 5),
and no biological data were reported for these compounds.

From two brown algae, Padina sanctae-crucis and Turbinaria tricostata, which were collected at the
Caribbean coast of Quintana Roo state, were reported in 2014 from the isolation of fucosterol (36) and
24E-hydroperoxy-24-vinylcholesterol (37). Cytotoxic (CC50) and antiproliferative (IC50) activity assays
on a panel of human cancer cell lines (KB, Hep-2, MCF-7, and SiHa) and a human cell embryonic
kidney cell line HEK-293 as the control, showed that 36 is cytotoxic against Hep-2 and SiHa cell lines
(CC50 of 14.8 and 18.6 µg mL−1/0.036 and 0.045 µM, respectively), with a high selectivity index towards
Hep-2 (SI = 10) and antiproliferative activity against MCF-7 and SiHa (IC50 of 43.3 and 34.0 µg/mL/0.10
and 0.083 µM, respectively). Fucosterol (36) was also isolated from the brown algae Dictyota ciliolata.
Steroid 37 displayed not only the highest cytotoxic activity (CC50 of 3.1 µg mL−1/7.0 nM), but also
a high selectivity index (SI = 16.2) on KB cell lines. Additionally, 37 exhibited a moderate cytotoxic
activity towards the Hep-2, MCF-7, and SiHa cell lines (CC50 of 10.5, 12.1, and 18.9 µg mL−1/0.024, 0.027,
and 0.042 µM, respectively) with a lower selectivity index (SI of 4.7, 4.1, and 12.6, respectively) [17]
(Figure 5).
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from the brown algae Padina sanctae-crucis and Turbinaria tricostata.

2.2.3. Triterpenoid Saponins

Sea cucumbers constitute a rich source of triterpenoid saponins, with some of them exerting
pharmacological effects [19]. From the sea cucumber Astichopus multifidus, collected on the Yucatan
Peninsula coasts, Mena-Rejón and collaborators reported the isolation and the structural elucidation
of three oligoglycoside triterpenes in 2016. Two of them, stichloroside B2 (38) and astichoposide C
(39), were known, while the third one, named as astichoposide D (40), turned out to be a new natural
product. Antiproliferative activity assays against two cancer lines, MCF-7 (ATCC HTB-22) and a highly
invasive triple-negative breast cancer MDA-MB-231 (ATCC HTB-26), displayed that 38 had the highest
antiproliferative activity against MCF-7 cells (6.45 µM), while 39 had the highest antiproliferative
activity against the MDA-MB-231 cells (3.80 µM) [20]. The research group of Mena-Rejón also reported
in 2013 the isolation of the known triterpenoid saponin holothurin B2 (41) from the sea cucumber
Holothuria floridana (now H. (Halodeima) floridana) [21] (Figure 6).
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Figure 6. Structures of the triterpenoid saponins isolated from the sea cucumbers: the
hexaglycosides 38–40 from Astichopus multifidus and the diglycoside 41 from Holothuria floridana
(now H. (Halodeima) floridana).

2.3. Nitrogen Compounds

2.3.1. Indole Derivatives

Olguin-Uribe et al. isolated two indoles, indole-3-carbaldehyde (42) and its brominated derivate,
6-bromoindole-3-carbaldehyde (43), in 1997 from two different sources, the tunicate Stomozoa murrayi
(currently known as Stomozoa roseola) and the bacterium Acinetobacter sp. associated to its surface [22].
The tunicate was collected at a depth of 3–5 m in Puerto Morelos, Quintana Roo state, very close to the
Institute of Marine Sciences and Limnology research station of the National Autonomous University
of Mexico (UNAM). These compounds were evaluated in several biological assays. The brominated
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indole 43 displays antimicrobial activity by inhibiting the growth of four marine bacterial strains SM-S2,
SM-Z, Bacillus marinus, and Vibrio campbellii, while its debrominated analog 42 shows no inhibitory
activity. On the other hand, both of the compounds exhibit antifouling activity by completely inhibiting
the settlement of Balanus amphitrite (now Amphibalanus amphitrite) at the highest concentration tested
at 100 µg mL−1 (0.13 and 0.084 µM respectively) and, even, the most active compound 43 can inhibit
larval settlement by 80% at 10 µg mL−1/0.044 µM. Finally, these compounds showed no antipredatory
(deterrent) activity against the Serranus cabrilla fish, which were collected in the Mediterranean Sea,
or significant antialgal activity against the diatom Nitzchia acicularis (Figure 7).
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Pech-Puch et al. reported the isolation of another indole, serotonin (44), from the salivary glands
of Octopus maya collected in Sisal, Yucatan state in 2016 [23]. The neurotoxic activity previously found
in its extract was attributed to that compound (Figure 7).

2.3.2. Nucleosides and Nitrogenous Bases

The importance of the study of nucleosides comes from the fact that the arabino-nucleosides
spongothymidine and spongouridine, isolated from a marine sponge, were the first marine natural
products that showed their potential as drugs, because they constituted the basis of the development
of the first synthetic nucleosides approved as therapeutic drugs: the anticancer cytarabine (ara-C) and
the antiviral vidarabine (ara-A) [1].

Three nucleosides, thymidine (45), 2′-desoxyuridine (46), and uridine (47), were isolated from the
sponge Halichondria magniconulosa (now H. (Halichondria) magniconulosa) collected at 0.5–1 m of depth
in Chabihau, Yucatan state, and reported by the research group of Mena-Rejón in 2018 [24]. The same
year, Medina-Gómez et al. reported the isolation of cytosine (48) from the sponge Haliclona tubifera
(now H. (Reniera) tubifera) [12] (Figure 8). No biological data were reported for 45–48.
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tubifera), respectively.
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2.3.3. Conotoxins

The venomous fish-hunting cone snails that belong to the Conus genus are composed of a collection
of toxin peptides that serve to immobilize prey by targeting different physiological mechanisms in their
neuromuscular system. In this way,ω-conotoxin MVIIA, isolated from Conus magus, is commercialized
as the synthetic Prialt® (ziconatide), which constituted the first FDA-approved drug that was directly
derived from a marine natural product as a pain control drug [1]. On the basis of this background,
the research group lead by Aguilar from the Institute of Neurobiology-UNAM at Queretaro in Mexico,
reported the isolation of new conotoxins from three different snails, mainly belonging to the Conus
genus, which were collected along the coasts of the Mexican Caribbean.

Thus, the study of the extract of the venomous duct of Conus delessertii (now Conasprella delessertii),
mollusk collected in Quintana Roo state, allowed Aguilar and collaborators to report four new peptides:
conotoxin de13a (49) and conotoxin de7a (50), reported in 2005, conotoxin de7b (51), reported in
2009, and conotoxin de13b (52), reported in 2013. Conotoxin de13a (49) contains 32 amino acids
(3486.76 Da) and it was defined as a new class of conotoxins. This peptide is characterized by the
presence of high content of post-translational modified amino acids, such as 5-hydroxylysine, and the
residues of cysteine arranged in a pattern (C-C-C-CC-C-C-C), which were not previously described in
conotoxins [25]. On the other hand, conotoxin de7a (50) contains 28 amino acids (3170.0 Da), with
some of them being post-transductionally modified, and a residue (-γCCS-) previously found only
in two other conotoxins [26]. Conotoxin de7b (51), bearing 28 amino acids, including six cysteine
residues, is characterized by existing in different post-transductional modified isomorphs (with
molecular masses varying from 3078.6 to 3154.6 Da), some of them containing γ-carboxy-glutamate
and/or 4-hydroxyproline at positions 4, 7, and/or 14 [27]. Finally, conotoxin de13b (52) has the same
arrangement of cysteine residues as conotoxin de13a (49) [28] (Figure 9).

From the extract of the venom duct of a second mollusk, Conus spurius, Aguilar and collaborators
reported the isolation of twelve new conotoxin derivatives 53–64, from two different places: Quintana
Roo and Campeche states. Conotoxin sr5a (53), which was reported in 2006, is a hydrophobic peptide
belonging to the T-1 conotoxin family with a molecular mass of 1616.60 Da and a pair of disulfide
bridges. In a biological test in mice, this conotoxin caused a depressed behavioral activity [29]. One year
later, two new α-conotoxins of 18 amino acids, SrIA (54) and SrIB (55), with a molecular mass of 2202.9
and 2158.8 Da, respectively, were reported. Conotoxis 54 and 55 were evaluated as antagonists to
nicotinic acetylcholine receptors in order to search for new therapeutic alternatives against brain diseases
(schizophrenia, nocturnal frontal lobe epilepsy and Alzheimer’s disease). The results suggested not only
that these conotoxins can operate as nicotinic acetylcholine receptor inhibitors, but also that they bind to
nicotinic acetylcholine receptors with a very high affinity, increasing their intrinsic cholinergic response,
and making them excellent model tools for studying toxin-receptor interaction [30]. The fourth new
peptide, conotoxin sr11a (56), with a molecular weight of 3650.77 Da, was reported in 2007, being the
first I-conotoxin that was isolated from the Western Atlantic. This peptide produces a stiffening of body,
limbs, and tail when intracranially injected into mice [31]. Conotoxin sr7a (57), containing 32 amino acids
(3330.74 Da) and reported in 2007, displays several in vivo effects, such as hyperactivity in mice and
paralysis in freshwater snails (Pomacea paludosa), while it was inactive in intramuscular trials with the
limpet Patella opea and the freshwater fish Lebistes reticulatus [32]. In contrast, conorfamide-Sr2 (CNF-Sr2,
58), as reported in 2008, with a molecular mass of 1468.70 Da and without cysteine residues, exhibits
paralytic activity in the limpet Patella opea and produces hyperactivity in the freshwater snail Pomacea
paludosa and mice [33]. From specimens of Conus spurius, collected in Isla Arena, Campeche state, were
isolated and identified by reverse transcription polymerase chain reaction, seven conotoxins. Four of them
belong to the T-1 conotoxin family, (18V) sr5a (59), (18T) sr5a (60), “extended” (61), and “hydrophilic”
(62), which were reported in 2009 [34], and they are very similar to the conotoxin sr5a (53). The other
three, reported in 2010, were the known conotoxin sr11a (56) already reported in 2007 [31] and the new
conotoxins, sr11b (63) and sr11c (64) [35] (Figure 9).
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Finally, Aguilar and collaborators reported in 2009 the isolation of a new peptide, pal9a (65)
(3678.84 Da) with 34 amino acids, including six cysteine residues, from a third mollusk, Polystira albida,
collected in Campeche state. This is the first P-conotoxin-like turritoxin isolated from a member of the
family Turridae from the Western Atlantic [36] (Figure 9).
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Figure 9. Structures of conotoxins 49–65 isolated from cone snails belonging to the Conus genus and
Polystira albida.
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2.4. Biopolymers

Freile-Pelegrín and collaborators reported the characterization of l-carrageenan (66) in 2018, being
obtained from the direct extraction of the red algae Solieria filiformis collected at Telchac in the Yucatan
state. This polysaccharide shows high antiviral activity against Herpes simplex virus with an EC50

value of 6.3 µg mL−1/0.019 µM [37] (Figure 10).
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3. Bioprospecting Overview

A total of 95 scientific documents were recorded and analyzed in this review, including 82 articles,
four postgraduate dissertation theses, and nine meeting abstract communications. They describe the
reports related to research on pharmacological surveys of extracts, chemical composition, and isolation
of marine natural products. A total of 145 species of marine organisms are enclosed, belonging
to 12 phyla (Tables 1 and 2), being the most representative Rhodophyta (27%), Chlorophyta (22%),
Phaeophyta (17%), and Cnidaria (14%) (Figure 11).

Mar. Drugs 2020, 18, x FOR PEER REVIEW 11 of 24 

 

2.4. Biopolymers 

Freile-Pelegrín and collaborators reported the characterization of L-carrageenan (66) in 2018, 
being obtained from the direct extraction of the red algae Solieria filiformis collected at Telchac in the 
Yucatan state. This polysaccharide shows high antiviral activity against Herpes simplex virus with 
an EC50 value of 6.3 μg mL−1/0.019 μM [37] (Figure 10). 

 

Figure 10. Structure of L-carrageenan isolated from the red algae Solieria filiformis. 

3. Bioprospecting Overview 

A total of 95 scientific documents were recorded and analyzed in this review, including 82 
articles, four postgraduate dissertation theses, and nine meeting abstract communications. They 
describe the reports related to research on pharmacological surveys of extracts, chemical 
composition, and isolation of marine natural products. A total of 145 species of marine organisms are 
enclosed, belonging to 12 phyla (Tables 1 and 2), being the most representative Rhodophyta (27%), 
Chlorophyta (22%), Phaeophyta (17%), and Cnidaria (14%) (Figure 11). 

 

Figure 11. Distribution of the reported marine organisms by phylum. 

  

Figure 11. Distribution of the reported marine organisms by phylum.



Mar. Drugs 2020, 18, 59 12 of 24

Table 1. Reported marine species of the Yucatan Peninsula in which natural products were isolated.

Phylum Species Compounds Isolated
and Biogenetic Origin References

Proteobacteria Acinetobacter sp. 42, 43
(Nitrogen compounds) [22]

Chordata (Ascidian) Stomozoa murrayi
(now Stomozoa roseola)

42, 43
(Nitrogen compounds) [22]

Cnidaria
(Coral) Pterogorgia anceps 1–3

(Polyketides) [11]

Echinodermata
(Sea cucumbers)

Astichopus multifidus 38–40
(Terpenoids) [20]

Holothuria floridana
(now H. (Halodeima)

floridana)

41
(Terpenoid) [21]

Mollusca
(Mollusks)

Conus delessertii
(now Conasprella

delessertii)

49–52
(Nitrogen compounds) [25–28]

Conus spurius 53–64
(Nitrogen compounds) [29–35]

Octopus maya 44
(Nitrogen compound) [23]

Polystira albida 65
(Nitrogen compound) [36]

Porifera
(Sponges)

Halichondria
magniconulosa (now H.

(Halichondria)
magniconulosa)

45–47
(Nitrogen compounds) [24]

Haliclona tubifera
(now H. (Reniera) tubifera)

6, 10–14 (Polyketides)
and 48 (Nitrogen

compound)
[12]

Spongia tubulifera
(now S. (Spongia)

tubulifera)

15–21
(Terpenoids) [16]

Teichaxinella morchella
(now Axinella corrugata)

24–35
(Terpenoids) [18]

Phaeophyta
(Brown algae)

Dictyota ciliolata 22, 23, 36
(Terpenoids) [17]

Lobophora variegata 7–9
(Polyketides) [14]

Padina sanctae-crucis 36, 37
(Terpenoids) [17]

Turbinaria tricostata 36, 37
(Terpenoids) [17]

Rhodophyta
(Red algae) Solieria filiformis 66

(Biopolymer) [37]
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Table 2. Reported marine species from Yucatan Peninsula related to bioprospecting without determining
the chemical composition.

Domain: Bacteria
Kingdom: Bacteria

Phylum Genus or Species References

Actinobacteria

Streptomyces

[38]

Saccharomonospora
Dietzia

Nocardiopsis
Pseudonocardia
Verrucosispora

Brachybacterium
Jiangella

Salinispora

Domain: Eukarya
Kingdom: Animalia

Arthropoda
(Crustaceans)

Bathynomus giganteus [39]
Limulus Polyphemus [40]

Chordata (Ascidians) Trididemnum solidum [41]

Cnidaria
(Anemones)

Actiinidae Gen. sp. nov *. [42]
Anthopleura texaensis
Bartholomea annulata [43–46]

Bunodeopsis antilliensis [47]
Bunodeopsis globulifera

(now Viatrix globulifera) [48,49]

Condylactis gigantea [50]
Lebrunia danae

(now L. neglecta) [47,51]

Stichodactyla helianthus [47,52]
Telmatactis bernoni* [43]

Cnidaria
(Corals)

Millepora alcicornis [53–57]
Millepora complanata [53,55,58–62]

Porites astreoides [63]
Pseudodiploria strigosa [63]

Siderastrea siderea [63]

Cnidaria
(Jellyfish)

Aurelia aurita [64,65]
Carybdea marsupialis [47,66,67]
Cassiopea xamachana

(now Cassiopea andromeda) [47,68,69]

Linuche unguiculata [47]
Pelagia noctiluca [70]

Echinodermata
(Sea cucumbers)

Holothuria mexicana
(now H. (Halodeima) mexicana) [71]

Isostichopus badionotus [72–74]

Mollusca
(Mollusks)

Conus austini
(now C. cancellatus) [75]

Conus spurius [75,76]
Gemmula periscelida [77]

Octopus maya [78]
Polystira albida [75,77]

Domain: Eukarya
Kingdom: Plantae
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Table 2. Cont.

Chlorophyta (Green
algae)

Acetabularia schenckii (now A.
subg. Acicularia schenckii)

[79]

Avrainvillea cf digitata sp. [80–83]
Avrainvillea longicaulis [79]
Avrainvillea nigricans [84]

Caulerpa ashmeadii [79,85]
Caulerpa cupressoides [79,85,86]

Caulerpa mexicana [85]
Caulerpa paspaloides [79,85]

Caulerpa prolifera [79,85,87]
Caulerpa racemosa [85]

Caulerpa racemosa var. racemosa [88]
Caulerpa sertularioides [79,87]

Caulerpa taxifolia [79]
Cladophora prolifera [79]

Cladophora vagabunda [79]
Codium decorticatum [79,83]
Codium isthmocladum [85,88,89]

Enteromorpha intestinalis
(now Ulva intestinalis) [79]

Halimeda incrassata [80–83,85]
Halimeda monile [79]
Halimeda opuntia [86]

Halimeda tuna [79–83,86]
Penicillus capitatus [85,86]

Penicillus dumetosus [79–83,90]
Penicillus lamourouxii [80–83]
Penicillus pyriformis [79]

Rhipocephalus phoenix [81,82]
Rhipocephalus phoenix f

brevifolius [80,83]

Udotea conglutinata [79–83]
Udotea flabellum [80–83,86,91]

Udotea occidentalis [85]

Phaeophyta
(Brown algae)

Dictyopteris jamaicensis [83]
Dictyota bartayresiana [86]

Dictyota caribaea [80–83,92]
Dictyota cervicornis

(now Canistrocarpus
cervicornis)

[79,86]

Dictyota ciliolata [79,93,94]
Dictyota crenulata [79]
Dictyota dichotoma [89]

Dictyota menstrualis [85]
Lobophora variegata [79–83]
Padina boergesenii [86]
Padina durvillaei* [86]

Padina gymnospora [79,86,88]
Padina pavonica [83]

Padina perindusiata [80–83,92]
Padina sanctae-crucis [93,94]
Sargassum cymosun [86]

Sargassum filipendula [84–86,88,92]
Sargassum fluitans [80–83,86,93–96]
Sargassum hystrix [84,86]

Sargassum polyceratium [86]
Sargassum pteropleuron [79,86]
Sargassum ramifolium [79]

Sargassum vulgare [86]
Turbinaria tricostata [79,86,93,97]
Turbinaria turbinata [80–83,86,92]
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Table 2. Cont.

Rhodophyta
(Red algae)

Acanthophora spicifera [79]
Agardhiella sp. [80–83]

Agardhiella subulata [89]
Bryothamnion triquetrum

(now Alsidium triquetrum) [79–83,85,86,89]

Ceramium nitens [79–83,85]
Champia salicornioides [79,80,82,83]
Chondria atropurpurea [79]

Chondria baileyana [79]
Chondrophycus papillosus
(now Palisada perforata) [79]

Chondrophycus poiteaui
(now Yuzurua poteaui) [79]

Digenea simplex [79,85,86]
Eucheuma isiforme

(now Eucheumatopsis isiformis) [79–83,85,88,98]

Gracilaria blodgettii [99]
Gracilaria bursa-pastoris [79]

Gracilaria caudata
(now Crassiphycus caudatus) [79–83,85]

Gracilaria cervicornis [80–83,99]
Gracilaria cornea

(now Crassiphycus corneus)
[79,85,88,100]

Gracilaria crassissima
(now Crassiphycus

crassissimus)

[99,100]

Gracilaria cylindrica [79]
Gracilaria damaecornis* [80–83]

Gracilaria sp. [80–83]
Gracilaria tikvahiae [79]

Gracilariopsis tenuifrons [79,101]
Halymenia floresia
(now H. floresii)

[79,80,82–85,89,102,
103]

Heterosiphonia gibbesii [79–83]
Hydropuntia cornea

(now Crassiphycus corneus) [80–83,95]

Hypnea musciformis [104]
Hypnea spinella [79]
Jania capillacea [80–83]

Laurencia intricata [79,86,87]
Laurencia microcladia [80–83]

Laurencia obtusa [79,84–86]
Laurencia papillosa

(now Palisada perforata) [86]

Laurencia poiteaui
(now Palisada poiteaui) [85,86]

Liagora ceranoides [79]
Nemalion helmintoides* [79]

Rhodymenia pseudopalmata [95,105,106]
Solieria filiformis [95,107,108]

Spyridia filamentosa [87]

Tracheophyta
(Seagrasses)

Syringodium filiforme [87]
Thalassia testudinum [87]

* Organisms not found in World Register of Marine Species (WORMS database) [109].

The mollusk Conus spurius and two algae, Halymenia floresia (now H. floresii) and Sargassum
fluitans, with nine reports each, were the most reported species. The coral Millepora complanata
and eight algae, Halimeda tuna, Penicillus dumetosus, Udotea flabellum, Bryothamnion triquetrum (now



Mar. Drugs 2020, 18, 59 16 of 24

Alsidium triquetrum), Ceramium nitens, Eucheuma isiforme (now Eucheumatopsis isiformis), Gracilaria
caudata (now Crassiphycus caudatus), Lobophora variegata, and Turbinaria turbinata, with 6–8 reports each,
following the list as it is shown in Figure 12.
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From the territorial distribution point of view, the highest number of reports corresponds to
marine organisms that were collected at the coast of the Yucatan state (38%), followed by the coasts of
Quintana Roo state (36%) and, finally, the coasts of Campeche state (4%). However, 22% of the reports
did not specify the state where the marine organisms were collected (Figure 13).Mar. Drugs 2020, 18, x FOR PEER REVIEW 17 of 24 
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Figure 14 displays the number of reports per year. As far as we know, the first report was
published in 1981 and, since then, the number of publications related to the search for natural marine
products of the Yucatan Peninsula has been increasing. However, this increase was not constant, being
the years 2007, 2013, 2014, and 2016, with seven publications each, when more reports were published.
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4. Conclusions

The present review represents the first comprehensive report of natural products that have
been isolated from marine organisms collected along the coasts of the Yucatan Peninsula, covering
literature up to mid-2019. As result of 38 years of investigations of marine organisms that were
collected in the Yucatan Peninsula, 66 marine natural products were isolated from 18 species
belonging to eight different phyla (Proteobacteria (Acinetobacter sp.), Chordata (ascidian: Stomozoa
murrayi (now Stomozoa roseola), Cnidaria (Pterogorgia anceps), Echinodermata (Astichopus multifidus
and Holothuria floridana (now H. (Halodeima) floridana)), Mollusca (Conus delessertii (nowConasprella
delessertii), Conus spurius, Octopus maya, and Polystira albida), Porifera (Halichondria magniconulosa (now
H. (Halichondria) magniconulosa), Haliclona tubifera (now H. (Reniera) tubifera), Spongia tubulifera (now S.
(Spongia) tubulifera) and Teichaxinella morcella (now Axinella corrugata)), Rhodophyta (Solieria filiformis),
and Phaeophyta (Dictyota ciliolata, Lobophora variegata, Padina sanctae-crucis, and Turbinaria tricostata)
(Table 1). Out of the 66 marine natural products identified, 26 correspond to structures that were not
previously reported. These 26 new chemical entities correspond to three aliphatic polyketides (1–3),
one glycolipid (7), two diterpenes (15, 16), two steroids (24, 25), one triterpenoid saponin (40), and 17
conotoxins (49–65).

Figure 15 displays the overall biogenetic distribution of the reported compounds. The terpenoid
biogenesis is again the most prominent pathway (40.9%), enclosing the diterpenes-sesterterpenes
(nine compounds), steroids (14 compounds), and triterpenoids saponins (four compounds). On the
other hand, conotoxins, with 17 compounds (25.8%) constitute the largest group of the reported
natural products.
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The biological studies of the isolated compounds are focused on cytotoxic or antiproliferative
activities (diterpenes 15, 18, 20, 22, and 23; steroids 36 and 37, and triterpenoids saponins 38 and 39),
the antimicrobial, antifouling, antipredatory (deterrent), and antialgal activity (indole derivative 42 and
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43), the antiprotozoal activity (glycolipids 7–9), neurotoxic activity (indole derivative 44), behavioral
activity in animal models (conotoxins 53, 56–58), and finally in the interesting pharmacological activities
against brain diseases of the new conotoxins 54 and 55, and the high antiviral activity of the known
biopolymer L-carrageenan (66).

As a concluding remark, this review shows the potential of the Yucatan Peninsula as an interesting
source of new marine natural products, not only because of its unique and rich diversity of marine
organisms, but also due to the small number of works that have been published so far, which indicates
that this area of research has been poorly investigated. For these reasons, the marine biodiversity of
the Yucatan Peninsula can be considered as a poor exploited source of new bioactive marine natural
products, which could be the base of the development of new drugs.
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